

[image: cover-image]

Integration Services: Extending Packages with Scripting

SQL Server 2012 Books Online

Summary: You can extend the power of Integration Services (SSIS) by adding code within the wrappers provided by the Script task and the Script component. This section of the Developer Reference provides instructions and examples for extending the control flow and data flow of an SSIS package using the Script task and the Script component.

Category: Reference
Applies to: SQL Server 2012
Source: SQL Server 2012 Books Online (link to source content)
E-book publication date: January 2013

[image: image]

Copyright © 2012 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written permission of the publisher

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Contents

Extending Packages with Scripting

Comparing the Script Task and the Script Component

Comparing Scripting Solutions and Custom Objects

Referencing Other Assemblies in Scripting Solutions

Debug a Script by Setting Breakpoints in a Script Task and Script Component

Extending the Package with the Script Task

Configuring the Script Task in the Script Task Editor

Coding and Debugging the Script Task

Using Variables in the Script Task

Connecting to Data Sources in the Script Task

Raising Events in the Script Task

Logging in the Script Task

Returning Results from the Script Task

Script Task Examples

Detecting an Empty Flat File with the Script Task

Gathering a List for the ForEach Loop with the Script Task

Querying the Active Directory with the Script Task

Monitoring Performance Counters with the Script Task

Working with Images with the Script Task

Finding Installed Printers with the Script Task

Sending an HTML Mail Message with the Script Task

Working with Excel Files with the Script Task

Sending to a Remote Private Message Queue with the Script Task

Extending the Data Flow with the Script Component

Configuring the Script Component in the Script Component Editor

Coding and Debugging the Script Component

Understanding the Script Component Object Model

Using Variables in the Script Component

Connecting to Data Sources in the Script Component

Raising Events in the Script Component

Logging in the Script Component

Developing Specific Types of Script Components

Creating a Source with the Script Component

Creating a Synchronous Transformation with the Script Component

Creating an Asynchronous Transformation with the Script Component

Creating a Destination with the Script Component

Additional Script Component Examples

Simulating an Error Output for the Script Component

Enhancing an Error Output with the Script Component

Creating an ODBC Destination with the Script Component

Parsing Non-Standard Text File Formats with the Script Component

Extending Packages with Scripting

If you find that the built-in components Integration Services do not meet your requirements, you can extend the power of Integration Services by coding your own extensions. You have two discrete options for extending your packages: you can write code within the powerful wrappers provided by the Script task and the Script component, or you can create custom Integration Services extensions from scratch by deriving from the base classes provided by the Integration Services object model.

This section explores the simpler of the two options—.

The Script task and the Script component let you extend both the control flow and the data flow of an Integration Services package with very little coding. Both objects use the Microsoft Visual Studio Tools for Applications (VSTA) development environment and the Microsoft Visual Basic or Microsoft Visual C# programming languages, and benefit from all the functionality offered by the Microsoft .NET Framework class library, as well as custom assemblies. The Script task and the Script component let the developer create custom functionality without having to write all the infrastructure code that is typically required when developing a custom task or custom data flow component.

In This Section

Comparing the Script Task and the Script Component

Discusses the similarities and differences between the Script task and the Script component.

Comparing Scripting Solutions and Custom Objects

Discusses the criteria to use in choosing between a scripting solution and the development of a custom object.

Using Other Assemblies in Scripting Solutions

Discusses the steps required to reference and use external assemblies and namespaces in a scripting project.

Extending the Package with the Script Task

Discusses how to create custom tasks by using the Script task. A task is typically called one time per package execution, or one time for each data source opened by a package.

Extending the Data Flow with the Script Component

Discusses how to create custom data flow sources, transformations, and destinations by using the Script component. A data flow component is typically called one time for each row of data that is processed.

Reference

Integration Services Error Reference

Lists the predefined Integration Services error codes with their symbolic names and descriptions.

Related Sections

Extending Packages with Custom Objects

Discusses how to create program custom tasks, data flow components, and other package objects for use in multiple packages.

Working with Packages Programmatically

Describes how to create, configure, run, load, save, and manage Integration Services packages programmatically.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

SQL Server Integration Services (SSIS)

Comparing the Script Task and the Script Component

The Script task, available in the Control Flow window of the Integration Services designer, and the Script component, available in the Data Flow window, have very different purposes in an Integration Services package. The task is a general-purpose control flow tool, whereas the component serves as a source, transformation, or destination in the data flow. Despite their different purposes, however, the Script task and the Script component have some similarities in the coding tools that they use and the objects in the package that they make available to the developer. Understanding their similarities and differences may help you to use both the task and the component more effectively.

Similarities between the Script Task and the Script Component

The Script task and the Script component share the following common features.

	Feature

	Description

	Two design-time modes

	In both the task and the component, you begin by specifying properties in the editor, and then switch to the development environment to write code.

	Microsoft Visual Studio Tools for Applications (VSTA)

	Both the task and the component use the same VSTA IDE, and support code written in either Microsoft Visual Basic or Microsoft Visual C#.

	Precompiled scripts

	Beginning in SQL Server 2008 Integration Services (SSIS), all scripts are precompiled. In earlier versions, you could specify whether scripts were precompiled.
The script is precompiled into binary code, permitting faster execution, but at the cost of increased package size.

	Debugging

	Both the task and the component support breakpoints and stepping through code while debugging in the design environment. For more information, see Coding and Debugging the Script Task and Coding and Debugging the Script Component.

Click here to view table as image

Differences between the Script Task and the Script Component

The Script task and the Script component have the following noteworthy differences.

	Feature

	Script Task

	Script Component

	Control flow / Data flow

	The Script task is configured on the Control Flow tab of the designer and runs outside the data flow of the package.

	The Script component is configured on the Data Flow page of the designer and represents a source, transformation, or destination in the Data Flow task.

	Purpose

	A Script task can accomplish almost any general-purpose task.

	You must specify whether you want to create a source, transformation, or destination with the Script component.

	Execution

	A Script task runs custom code at some point in the package workflow. Unless you put it in a loop container or an event handler, it only runs once.

	A Script component also runs once, but typically it runs its main processing routine once for each row of data in the data flow.

	Editor

	The Script Task Editor has three pages: General, Script, and Expressions. Only the ReadOnlyVariables and ReadWriteVariables, and ScriptLanguage properties directly affect the code that you can write.

	The Script Transformation Editor has up to four pages: Input Columns, Inputs and Outputs, Script, and Connection Managers. The metadata and properties that you configure on each of these pages determines the members of the base classes that are autogenerated for your use in coding.

	Interaction with the package

	In the code written for a Script task, you use the Dts property to access other features of the package. The Dts property is a member of the ScriptMain class.

	In Script component code, you use typed accessor properties to access certain package features such as variables and connection managers.
The PreExecute method can access only read-only variables. The PostExecute method can access both read-only and read/write variables.
For more information about these methods, see Coding and Debugging the Script Component.

	Using variables

	The Script task uses the P:Microsoft.SqlServer.Dts.Tasks.ScriptT ask.ScriptObjectModel.Variables property of the Dts object to access variables that are available through the task’s
P:Microsoft.SqlServer.Dts.Tasks.ScriptT ask.ScriptTask.ReadOnlyVariables and P:Microsoft.SqlServer.Dts.Tasks.ScriptT ask.ScriptTask.ReadWriteVariables properties. For example:

Dim myVar as String
myVar =
Dts.Variables("MyStringVariable
").Value.ToString
string myVar;
myVar =
Dts.Variables["MyStringVariable
"].Value.ToString();

	The Script component uses typed accessor properties of the autogenerated based class, created from the component’s
P:Microsoft.SqlServer.
Dts.Pipeline.ScriptCo
mponent.ReadOnlyVariables and
P:Microsoft.SqlServer.
Dts.Pipeline.ScriptCo
mponent.ReadWriteVariables properties.
For example:

Dim myVar as String
myVar =
Me.Variables.MyStringVariable
string myVar;
myVar =
this.Variables.MyStringVariable;

	Using connections

	The Script task uses the P:Microsoft.SqlServer.Dts.Tasks.ScriptT ask.ScriptObjectModel.Connections property of the Dts object to access connection managers defined in the package.
For example:

Dim myFlatFileConnection As
String
myFlatFileConnection = _
DirectCast(Dts.Connections("Tes
t Flat File
Connection").AcquireConnection(
Dts.Transaction), _
 String)

string myFlatFileConnection;
myFlatFileConnection =
(Dts.Connections["Test Flat
File
Connection"].AcquireConnection(
Dts.Transaction) as String);

	The Script component uses typed accessor properties of the autogenerated base class, created from the list of connection managers entered by the user on the Connection Managers page of the editor. For example:

Dim connMgr As
IDTSConnectionManager100
connMgr =
Me.Connections.MyADONETConnection
IDTSConnectionManager100 connMgr;
connMgr =
this.Connections.MyADONETConnecti
on;

	Raising events

	The Script task uses the P:Microsoft.SqlServer.Dts.Tasks.ScriptT ask.ScriptObjectModel.Events property of the Dts object to raise events. For example:

Dts.Events.FireError(0, "Event
Snippet", _
 ex.Message &
ControlChars.CrLf &
ex.StackTrace, _
 "", 0)

Dts.Events.FireError(0, "Event
Snippet", ex.Message + "\r" +
ex.StackTrace, "", 0);

	The Script component raises errors, warnings, and informational messages by using the methods of the T:Microsoft.SqlServer.
Dts.Pipeline.Wrappe r.
IDTSComponentMetaData100 interface returned by the P:Microsoft.SqlServer.
Dts.Pipeline.ScriptCo mponent.
ComponentMetaData property. For example:

Dim myMetadata as
IDTSComponentMetaData100
myMetaData = Me.ComponentMetaData
myMetaData.FireError(...)

	Logging

	The Script task uses the M:Microsoft.SqlServer.Dts.Tasks.ScriptT ask.ScriptObjectModel.Log(System.Stri ng,System.Int32,System.Byte[]) method of the Dts object to log information to enabled log providers. For example:

Dim bt(0) As Byte
Dts.Log("Test Log Event", _
 0, _
 bt)
byte[] bt = new byte[0];
Dts.Log("Test Log Event", 0,
bt);

	The Script component uses the M:Microsoft.SqlServer.
Dts.Pipeline.ScriptC
omponent.Log(System.String,
System.Int32,System.Byte[]) method of the autogenerated base class to log information to enabled log providers. For example: [Visual Basic]

Dim bt(0) As Byte
Me.Log("Test Log Event", _
 0, _
 bt)
byte[] bt = new byte[0];
this.Log("Test Log Event", 0,
bt);

	Returning results

	The Script task uses both the P:Microsoft.SqlServer.Dts.Tasks.ScriptT ask.ScriptObjectModel.TaskResult property and the optional P:Microsoft.SqlServer.Dts.Tasks.ScriptT ask.ScriptObjectModel.ExecutionValue property of the Dts object to notify the runtime of its results.

	The Script component runs as a part of the Data Flow task and does not report results using either of these properties.

Click here to view table as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Extending the Package with the Script Task

Extending the Data Flow with the Script Component

Comparing Scripting Solutions and Custom Objects

An Integration Services Script task or Script component can implement much of the same functionality that is possible in a custom managed task or data flow component. Here are some considerations to help you choose the appropriate type of task for your needs:

• If the configuration or functionality is specific to an individual package, you should use the Script task or the Script component instead of a developing a custom object.

• If the functionality is generic, and might be used in the future for other packages and by other developers, you should create a custom object instead of using a scripting solution. You can use a custom object in any package, whereas a script can be used only in the package for which it was created.

• If the code will be reused within the same package, you should consider creating a custom object. Copying code from one Script task or component to another leads to reduced maintainability by making it more difficult to maintain and update multiple copies of the code.

• If the implementation will change over time, consider using a custom object. Custom objects can be developed and deployed separately from the parent package, whereas an update made to a scripting solution requires the redeployment of the whole package.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Extending Packages with Custom Objects

Referencing Other Assemblies in Scripting Solutions

The Microsoft .NET Framework class library provides the script developer with a powerful set of tools for implementing custom functionality in Integration Services packages. The Script task and the Script component can also use custom managed assemblies.

[image: image] Note
To enable your packages to use the objects and methods from a Web service, use the Add Web Reference command available in Microsoft Visual Studio Tools for Applications (VSTA). In earlier versions of Integration Services, you had to generate a proxy class to use a Web service.

Using a Managed Assembly

For Integration Services to find a managed assembly at design time, you must do the following steps:

1. Store the managed assembly in any folder on your computer.

[image: image] Note
In earlier versions of Integration Services, you could only add a reference to a managed assembly that was stored in the %windir%\Microsoft.NET\Framework\vx.x.xxxxx folder or the %ProgramFiles%\Microsoft SQL Server\100\SDK\Assemblies folder.

2. Add a reference to the managed assembly.
To add the reference, in VSTA, in the Add Reference dialog box, on the Browse tab, locate and add the managed assembly.

For Integration Services to find the managed assembly at run time, you must do the following steps:

1. Sign the managed assembly with a strong name.

2. Install the assembly in the global assembly cache on the computer on which the package is run.
For more information, see Building, Deploying, and Debugging Custom Objects.

Using the Microsoft .NET Framework Class Library

The Script task and the Script component can take advantage of all the other objects and functionality exposed by the .NET Framework class library. For example, by using the .NET Framework, you can retrieve information about your environment and interact with the computer that is running the package.

This list describes several of the more frequently used .NET Framework classes:

• System.Data Contains the ADO.NET architecture.

• System.IO Provides an interface to the file system and streams.

• System.Windows.Forms Provides form creation.

• System.Text.RegularExpressions Provides classes for working with regular expressions.

• System.Environment Returns information about the local computer, the current user, and computer and user settings.

• System.Net Provides network communications.

• System.DirectoryServices Exposes Active Directory.

• System.Drawing Provides extensive image manipulation libraries.

• System.Threading Enables multithreaded programming.

For more information about the .NET Framework, see the MSDN Library.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Debug a Script by Setting Breakpoints in a Script Task and Script Component

This procedure describes how to set breakpoints in the scripts that are used in the Script task and Script component.

After you set breakpoints in the script, the Set Breakpoints - <object name> dialog box lists the breakpoints, along with the built-in breakpoints.

[image: image] Important
Under certain circumstances, breakpoints in the Script task and Script component are ignored. For more information, see the Debugging the Script Task section in Coding and Debugging the Script Task and the Debugging the Script Component section in Coding and Debugging the Script Component.

Procedures

[image: image]To set a breakpoint in script

1. In SQL Server Data Tools (SSDT), open the Integration Services project that contains the package you want.

2. Double-click the package that contains the script in which you want to set breakpoints.

3. To open the Script task, click the Control Flow tab, and then double-click the Script task.

4. To open the Script component, click the Data Flow tab, and then double-click the Script component.

5. Click Script and then click Edit Script.

6. In Microsoft Visual Studio Tools for Applications (VSTA), locate the line of script on which you want to set a breakpoint, right-click that line, point to Breakpoint, and then click Insert Breakpoint.
The breakpoint icon appears on the line of code.

7. On the File menu, click Exit.

8. Click OK.

9. To save the package, click Save Selected Items on the File menu.

Extending the Package with the Script Task

The Script task extends the run-time capabilities of Microsoft Integration Services packages with custom code written in Microsoft Visual Basic or Microsoft Visual C# that is compiled and executed at package run time. The Script task simplifies the development of a custom run-time task when the tasks included with Integration Services do not fully satisfy your requirements. The Script task writes all the required infrastructure code for you, letting you focus exclusively on the code that is required for your custom processing.

A Script task interacts with the containing package through the global Dts object, an instance of the T:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel class that is exposed in the scripting environment. You can write code in a Script task that modifies the values stored in Integration Services variables; later, the package can use those updated values to determine the path of its workflow. The Script task can also use the Visual Basic namespace and the .NET Framework class library, as well as custom assemblies, to implement custom functionality.

The Script task and the infrastructure code that it generates for you simplify significantly the process of developing a custom task. However, to understand how the Script task works, you may find it useful to read the section Extending the Control Flow with Custom Tasks to understand the steps that are involved in developing a custom task.

If you are creating a task that you plan to reuse in multiple packages, you should consider developing a custom task instead of using the Script task. For more information, see Comparing Scripting Solutions and Custom Objects.

In This Section

The following topics provide more information about the Script task.

Configuring the Script Task

Explains how the properties that you configure in the Script Task Editor affect the capabilities and the performance of the code in the Script task.

Coding the Script Task

Explains how to use Microsoft Visual Studio Tools for Applications (VSTA) to develop the scripts that are contained in the Script task.

Using Variables in the Script Task

Explains how to use variables through the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Variables property.

Using Connections in the Script Task

Explains how to use connections through the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Connections property.

Raising Events in the Script Task

Explains how to raise events through the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Events property.

Logging in the Script Task

Explains how to log information through the M:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Log(System.String, System.Int32,System.Byte[]) method.

Returning Results from the Script Task

Explains how to return results through the property P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.TaskResult and the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.ExecutionValue property.

Script Task Examples

Provides simple examples that demonstrate several possible uses for a Script task.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Script Task

Comparing the Script Task and the Script Component

Configuring the Script Task in the Script Task Editor

Before you write custom code in the Script task, you configure its principal properties in the three pages of the Script Task Editor. You can configure additional task properties that are not unique to the Script task by using the Properties window.

[image: image] Note
Unlike earlier versions where you could indicate whether scripts were precompiled, all scripts are precompiled beginning in SQL Server 2008 Integration Services (SSIS).

General Page of the Script Task Editor

On the General page of the Script Task Editor, you assign a unique name and a description for the Script task.

Script Page of the Script Task Editor

The Script page of the Script Task Editor displays the custom properties of the Script task.

ScriptLanguage Property

Microsoft Visual Studio Tools for Applications (VSTA) supports the Microsoft Visual Basic or Microsoft Visual C# programming languages. After you create a script in the Script task, you cannot change value of the ScriptLanguage property.

To set the default script language for Script tasks and Script components, use the ScriptLanguage property on the General page of the Options dialog box. For more information, see Select Variables Page (VSTA).

EntryPoint Property

The EntryPoint property specifies the method on the ScriptMain class in the VSTA project that the Integration Services runtime calls as the entry point into the Script task code. The ScriptMain class is the default class generated by the script templates.

If you change the name of the method in the VSTA project, you must change the value of the EntryPoint property.

ReadOnlyVariables and ReadWriteVariables Properties

You can enter comma-delimited lists of existing variables as the values of these properties to make the variables available for read-only or read/write access within the Script task code. Variables of both types are accessed in code through the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Variables property of the Dts object. For more information, see Using Variables in the Script Task.

[image: image] Note
Variable names are case-sensitive.

To select the variables, click the ellipsis (…) button next to the property field. For more information, see Select Variables Page.

Edit Script Button

The Edit Script button launches the VSTA development environment in which you write your custom script. For more information, see Coding the Script Task.

Expressions Page of the Script Task Editor

On the Expressions page of the Script Task Editor, you can use expressions to provide values for the properties of the Script task listed above and for many other task properties. For more information, see Using Expressions in Packages.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Coding the Script Task

Coding and Debugging the Script Task

After configuring the Script task in the Script Task Editor, you write your custom code in the Script task development environment.

Script Task Development Environment

The Script task uses Microsoft Visual Studio Tools for Applications (VSTA) as the development environment for the script itself.

Script code is written in Microsoft Visual Basic or Microsoft Visual C#. You specify the script language by setting the ScriptLanguage property in the Script Task Editor. If you prefer to use another programming language, you can develop a custom assembly in your language of choice and call its functionality from the code in the Script task.

The script that you create in the Script task is stored in the package definition. There is no separate script file. Therefore, the use of the Script task does not affect package deployment.

[image: image] Note
When you design the package and debug the script, the script code is temporarily written to a project file. Because storing sensitive information in a file is a potential security risk, we recommend that you do not include sensitive information such as passwords in the script code.

By default, Option Strict is disabled in the IDE.

Script Task Project Structure

When you create or modify the script that is contained in a Script task, VSTA opens an empty new project or reopens the existing project. The creation of this VSTA project does not affect the deployment of the package, because the project is saved inside the package file; the Script task does not create additional files.

Project Items and Classes in the Script Task Project

By default, the Script task project displayed in the VSTA Project Explorer window contains a single item, ScriptMain. The ScriptMain item, in turn, contains a single class, also named ScriptMain. The code elements in the class vary depending on the programming language that you selected for the Script task:

• When the Script task is configured for the Visual Basic 2010 programming language, the ScriptMain class has a public subroutine, Main. The ScriptMain.Main subroutine is the method that the runtime calls when you run your Script task.
By default, the only code in the Main subroutine of a new script is the line Dts.TaskResult = ScriptResults.Success. This line informs the runtime that the task was successful in its operation. The Dts.TaskResult property is discussed in Referencing Other Assemblies in Scripting Solutions (VSTA)/Execution Value.

• When the Script task is configured for the Visual C# programming language, the ScriptMain class has a public method, Main. The method is called when the Script task runs.
By default, the Main method includes the line Dts.TaskResult = (int)ScriptResults.Success. This line informs the runtime that the task was successful in its operation.

The ScriptMain item can contain classes other than the ScriptMain class. Classes are available only to the Script task in which they reside.

By default, the ScriptMain project item contains the following autogenerated code. The code template also provides an overview of the Script task, and additional information on how to retrieve and manipulate SSIS objects, such as variables, events, and connections.

' Microsoft SQL Server Integration Services Script Task
' Write scripts using Microsoft Visual Basic 2008.
' The ScriptMain is the entry point class of the script.

Imports System
Imports System.Data
Imports System.Math
Imports Microsoft.SqlServer.Dts.Runtime.VSTAProxy
<System.AddIn.AddIn("ScriptMain", Version:="1.0", Publisher:="",
Description:="")> _
Partial Class ScriptMain

Private Sub ScriptMain_Startup(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Startup

End Sub

Private Sub ScriptMain_Shutdown(ByVal sender As Object, ByVal e As
System.EventArgs) Handles Me.Shutdown
Try
' Unlock variables from the read-only and read-write variable collection
properties
If (Dts.Variables.Count <> 0) Then
Dts.Variables.Unlock()
End If
Catch ex As Exception
 End Try
End Sub

Enum ScriptResults
Success = DTSExecResult.Success
Failure = DTSExecResult.Failure
End Enum

' The execution engine calls this method when the task executes.
' To access the object model, use the Dts property. Connections, variables,
events,
' and logging features are available as members of the Dts property as shown
in the following examples.
'
' To reference a variable, call
Dts.Variables("MyCaseSensitiveVariableName").Value
' To post a log entry, call Dts.Log("This is my log text", 999, Nothing)
' To fire an event, call Dts.Events.FireInformation(99, "test", "hit the help
message", "", 0, True)
'
' To use the connections collection use something like the following:
' ConnectionManager cm = Dts.Connections.Add("OLEDB")
' cm.ConnectionString = "Data Source=localhost;Initial
Catalog=AdventureWorks;Provider=SQLNCLI10;Integrated Security=SSPI;Auto
Translate=False;"
'
' Before returning from this method, set the value of Dts.TaskResult to
indicate success or failure.
'
' To open Help, press F1.

Public Sub Main()
'
' Add your code here
'
Dts.TaskResult = ScriptResults.Success
End Sub

End Class
/*
 Microsoft SQL Server Integration Services Script Task
 Write scripts using Microsoft Visual C# 2008.
 The ScriptMain is the entry point class of the script.
*/

using System;
using System.Data;
using Microsoft.SqlServer.Dts.Runtime.VSTAProxy;
using System.Windows.Forms;
namespace ST_1bcfdbad36d94f8ba9f23a10375abe53.csproj
{
 [System.AddIn.AddIn("ScriptMain", Version = "1.0", Publisher = "",
Description = "")]
 public partial class ScriptMain
 {
 private void ScriptMain_Startup(object sender, EventArgs e)
 {

 }

 private void ScriptMain_Shutdown(object sender, EventArgs e)
 {
 try
 {
 // Unlock variables from the read-only and read-write
variable collection properties
 if (Dts.Variables.Count != 0)
 {
 Dts.Variables.Unlock();
 }
 }
 catch
 {
 }
 }

 #region VSTA generated code
 private void InternalStartup()
 {
 this.Startup += new System.EventHandler(ScriptMain_Startup);
 this.Shutdown += new System.EventHandler(ScriptMain_Shutdown);
 }
 enum ScriptResults
 {
 Success = DTSExecResult.Success,
 Failure = DTSExecResult.Failure
 };

 #endregion

 /*
The execution engine calls this method when the task executes.
To access the object model, use the Dts property. Connections, variables,
events,
and logging features are available as members of the Dts property as shown in
the following examples.

To reference a variable, call
Dts.Variables["MyCaseSensitiveVariableName"].Value;
To post a log entry, call Dts.Log("This is my log text", 999, null);
To fire an event, call Dts.Events.FireInformation(99, "test", "hit the help
message", "", 0, true);

To use the connections collection use something like the following:
ConnectionManager cm = Dts.Connections.Add("OLEDB");
cm.ConnectionString = "Data Source=localhost;Initial
Catalog=AdventureWorks;Provider=SQLNCLI10;Integrated Security=SSPI;Auto
Translate=False;";

Before returning from this method, set the value of Dts.TaskResult to
indicate success or failure.

To open Help, press F1.
*/

 public void Main()
 {
 // TODO: Add your code here

 Dts.TaskResult = (int)ScriptResults.Success;
 }
 }

Click here to view code as image

Additional Project Items in the Script Task Project

The Script task project can include items other than the default ScriptMain item. You can add classes, modules, and code files to the project. You can also use folders to organize groups of items. All the items that you add are persisted inside the package.

References in the Script Task Project

You can add references to managed assemblies by right-clicking the Script task project in Project Explorer, and then clicking Add Reference. For more information, see Referencing Other Assemblies in Scripting Solutions.

[image: image] Note
You can view project references in the VSTA IDE in Class View or in Project Explorer. You open either of these windows from the View menu. You can add a new reference from the Project menu, from Project Explorer, or from Class View.

Interacting with the Package in the Script Task

The Script task uses the global Dts object, which is an instance of the T:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel class, and its members to interact with the containing package and with the Integration Services runtime.

The following table lists the principal public members of the T:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel class, which is exposed to Script task code through the global Dts object. The topics in this section discuss the use of these members in more detail.

	Member

	Purpose

	P:Microsoft.SqlServer.Dts.Tasks.ScriptTa sk.ScriptObjectModel.Connections

	Provides access to connection managers defined in the package.

	P:Microsoft.SqlServer.Dts.Tasks.ScriptTa sk.ScriptObjectModel.Events

	Provides an events interface to let the Script task raise errors, warnings, and informational messages.

	P:Microsoft.SqlServer.Dts.Tasks.ScriptTa sk.ScriptObjectModel.ExecutionValue

	Provides a simple way to return a single object to the runtime (in addition to the TaskResult) that can also be used for workflow branching.

	M:Microsoft.SqlServer.Dts.Tasks.ScriptTa sk.ScriptObjectModel.Log(System.String, System.Int32,System.Byte[])

	Logs information such as task progress and results to enabled log providers.

	P:Microsoft.SqlServer.Dts.Tasks.ScriptTa sk.ScriptObjectModel.TaskResult

	Reports the success or failure of the task.

	P:Microsoft.SqlServer.Dts.Tasks.ScriptTa sk.ScriptObjectModel.Transaction

	Provides the transaction, if any, within which the task's container is running.

	P:Microsoft.SqlServer.Dts.Tasks.ScriptTa sk.ScriptObjectModel.Variables

	Provides access to the variables listed in the ReadOnlyVariables and ReadWriteVariables task properties for use within the script.

Click here to view table as image

The T:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel class also contains some public members that you will probably not use.

	Member

	Description

	P:Microsoft.SqlServer.Dts.Tasks.ScriptTa sk.ScriptObjectModel.VariableDispenser

	The P:Microsoft.SqlServer.
Dts.Tasks.ScriptTask.
ScriptObject
Model.Variables property provides more convenient access to variables. Although you can use the P:Microsoft.SqlServer.
Dts.Tasks.ScriptTask.
ScriptObject
Model.VariableDispenser, you must explicitly call methods to lock and unlock variables for reading and writing. The Script task handles locking semantics for you when you use the P:Microsoft.SqlServer.
Dts.Tasks.Script
Task.ScriptObject
Model.Variables property.

Click here to view table as image

Debugging the Script Task

To debug the code in your Script task, set at least one breakpoint in the code, and then close the VSTA IDE to run the package in SQL Server Data Tools (SSDT). When package execution enters the Script task, the VSTA IDE reopens and displays your code in read-only mode. After execution reaches your breakpoint, you can examine variable values and step through the remaining code.

[image: image] Warning
You can debug the Script task when you run the package in 64-bit mode.

[image: image] Note
You must execute the package to debug into your Script task. If you execute only the individual task, breakpoints in the Script task code are ignored.

[image: image] Note
You cannot debug a Script task when you run the Script task as part of a child package that is run from an Execute Package task. Breakpoints that you set in the Script task in the child package are disregarded in these circumstances. You can debug the child package normally by running it separately.

[image: image] Note
When you debug a package that contains multiple Script tasks, the debugger debugs one Script task. The system can debug another Script task if the debugger completes, as in the case of a Foreach Loop or For Loop container.

External Resources

• Blog entry, VSTA setup and configuration troubles for SSIS 2008 and R2 installations, on blogs.msdn.com.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

• Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Referencing Other Assemblies in Scripting Solutions

Configuring the Script Task in the Script Task Editor

Using Variables in the Script Task

Variables make it possible for the Script task to exchange data with other objects in the package. For more information, see Integration Services Variables.

The Script task uses the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Variables property of the Dts object to read from and write to T:Microsoft.SqlServer.Dts.Runtime.Variable objects in the package.

[image: image] Note
The P:Microsoft.SqlServer.Dts.Runtime.Variable.Value property of the T:Microsoft.SqlServer.Dts.Runtime.Variable class is of type Object. Because the Script task has Option Strict enabled, you must cast the P:Microsoft.SqlServer.Dts.Runtime.Variable.Value property to the appropriate type before you can use it.

You add existing variables to the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptTask.ReadOnlyVariables and P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptTask.ReadWriteVariables lists in the Script Task Editor to make them available to the custom script. Keep in mind that variable names are case-sensitive. Within the script, you access variables of both types through the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Variables property of the Dts object. Use the Value property to read from and write to individual variables. The Script task transparently manages locking as the script reads and modifies the values of variables.

You can use the M:Microsoft.SqlServer.Dts.Runtime.Variables.Contains(System.Object) method of the T:Microsoft.SqlServer.Dts.Runtime.Variables collection returned by the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Variables property to check for the existence of a variable before using it in your code.

You can also use the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.VariableDispenser property (Dts.VariableDispenser) to work with variables in the Script task. When using the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.VariableDispenser, you must handle both the locking semantics and the casting of data types for variable values in your own code. You may need to use the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.VariableDispenser property instead of the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Variables property if you want to work with a variable that is not available at design time but is created programmatically at run time.

Using the Script Task within a Foreach Loop Container

When a Script task runs repeatedly within a Foreach Loop container, the script usually needs to work with the contents of the current item in the enumerator. For example, when using a Foreach File enumerator, the script needs to know the current file name; when using a Foreach ADO enumerator, the script needs to know the contents of the columns in the current row of data.

Variables make this communication between the Foreach Loop container and the Script task possible. On the Variable Mappings page of the Foreach Loop Editor, assign variables to each item of data that is returned by a single enumerated item. For example, a Foreach File enumerator returns only a file name at Index 0 and therefore requires only one variable mapping, whereas an enumerator that returns several columns of data in each row requires you to map a different variable to each column that you want to use in the Script task.

After you have mapped enumerated items to variables, then you must add the mapped variables to the ReadOnlyVariables property on the Script page of the Script Task Editor to make them available to your script. For an example of a Script task within a Foreach Loop container that processes the image files in a folder, see Script Task Example: Working with Images.

Variables Example

The following example demonstrates how to access and use variables in a Script task to determine the path of package workflow. The sample assumes that you have created integer variables named CustomerCount and MaxRecordCount and added them to the ReadOnlyVariables collection in the Script Task Editor. The CustomerCount variable contains the number of customer records to be imported. If its value is greater than the value of MaxRecordCount, the Script task reports failure. When a failure occurs because the MaxRecordCount threshold has been exceeded, the error path of the workflow can implement any required clean-up.

To successfully compile the sample, you need to add a reference to the Microsoft.SqlServer.ScriptTask assembly.

Public Sub Main()

 Dim customerCount As Integer
 Dim maxRecordCount As Integer

 If Dts.Variables.Contains("CustomerCount") = True AndAlso _
 Dts.Variables.Contains("MaxRecordCount") = True Then

 customerCount = _
 CType(Dts.Variables("CustomerCount").Value, Integer)
 maxRecordCount = _
 CType(Dts.Variables("MaxRecordCount").Value, Integer)

 End If

 If customerCount > maxRecordCount Then
 Dts.TaskResult = ScriptResults.Failure

 Else
 Dts.TaskResult = ScriptResults.Success
 End If

End Sub
using System;
using System.Data;
using Microsoft.SqlServer.Dts.Runtime;

public class ScriptMain
{

 public void Main()
 {
 int customerCount;
 int maxRecordCount;

 if
(Dts.Variables.Contains("CustomerCount")==true&&Dts.Variables.Contains("MaxRe
cordCount")==true)

 {
 customerCount = (int) Dts.Variables["CustomerCount"].Value;
 maxRecordCount = (int) Dts.Variables["MaxRecordCount"].Value;

 }

 if (customerCount>maxRecordCount)
 {
 Dts.TaskResult = (int)ScriptResults.Failure;
 }
 else

 {
 Dts.TaskResult = (int)ScriptResults.Success;
 }

 }

}

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Integration Services Variables

Using Variables in Packages

Connecting to Data Sources in the Script Task

Connection managers provide access to data sources that have been configured in the package. For more information, see Integration Services Connections.

The Script task can access these connection managers through the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Connections property of the Dts object. Each connection manager in the T:Microsoft.SqlServer.Dts.Runtime.Connections collection stores information about how to connect to the underlying data source.

When you call the M:Microsoft.SqlServer.Dts.Runtime.ConnectionManager.AcquireConnection(System.Object) method of a connection manager, the connection manager connects to the data source, if it is not already connected, and returns the appropriate connection or connection information for you to use in your Script task code.

[image: image] Note
You must know the type of connection returned by the connection manager before calling AcquireConnection. Because the Script task has Option Strict enabled, you must cast the connection, which is returned as type Object, to the appropriate connection type before you can use it.

You can use the M:Microsoft.SqlServer.Dts.Runtime.Connections.Contains(System.Object) method of the T:Microsoft.SqlServer.Dts.Runtime.Connections collection returned by the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Connections property to look for an existing connection before using the connection in your code.

[image: image] Important

• You cannot call the AcquireConnection method of connection managers that return unmanaged objects, such as the OLE DB connection manager and the Excel connection manager, in the managed code of a Script task. However, you can read the ConnectionString property of these connection managers, and connect to the data source directly in your code by using the connection string with an OledbConnection from the System.Data.OleDb namespace.

• If you must call the AcquireConnection method of a connection manager that returns an unmanaged object, use an ADO.NET connection manager. When you configure the ADO.NET connection manager to use an OLE DB provider, it connects by using the .NET Framework Data Provider for OLE DB. In this case, the AcquireConnection method returns a System.Data.OleDb.OleDbConnection instead of an unmanaged object. To configure an ADO.NET connection manager for use with an Excel data source, select the Microsoft OLE DB Provider for Jet, specify an Excel file, and enter Excel 8.0 (for Excel 97 and later) as the value of Extended Properties on the All page of the Connection Manager dialog box.

Connections Example

The following example demonstrates how to access connection managers from within the Script task. The sample assumes that you have created and configured an ADO.NET connection manager named Test ADO.NET Connection and a Flat File connection manager named Test Flat File Connection. Note that the ADO.NET connection manager returns a SqlConnection object that you can use immediately to connect to the data source. The Flat File connection manager, on the other hand, returns only a string that contains the path and file name. You must use methods from the System.IO namespace to open and work with the flat file.

Public Sub Main()
 Dim myADONETConnection As SqlClient.SqlConnection
 myADONETConnection = _
 DirectCast(Dts.Connections("Test ADO.NET
Connection").AcquireConnection(Dts.Transaction), _
 SqlClient.SqlConnection)
 MsgBox(myADONETConnection.ConnectionString, _
 MsgBoxStyle.Information, "ADO.NET Connection")

 Dim myFlatFileConnection As String
 myFlatFileConnection = _
 DirectCast(Dts.Connections("Test Flat File
Connection").AcquireConnection(Dts.Transaction), _
 String)
 MsgBox(myFlatFileConnection, MsgBoxStyle.Information, "Flat File
Connection")

 Dts.TaskResult = ScriptResults.Success

End Sub
using System;
using System.Data.SqlClient;
using Microsoft.SqlServer.Dts.Runtime;
using System.Windows.Forms;

public class ScriptMain
{

 public void Main()
 {
 SqlConnection myADONETConnection = new SqlConnection();
 myADONETConnection = (SqlConnection)(Dts.Connections["Test
ADO.NET Connection"].AcquireConnection(Dts.Transaction)as SqlConnection);
 MessageBox.Show(myADONETConnection.ConnectionString, "ADO.NET
Connection");

 string myFlatFileConnection;
 myFlatFileConnection = (string)(Dts.Connections["Test Flat File
Connection"].AcquireConnection(Dts.Transaction) as String);
 MessageBox.Show(myFlatFileConnection, "Flat File Connection");

 Dts.TaskResult = (int)ScriptResults.Success;

 }

}

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Integration Services Connections

Creating Connection Managers

Raising Events in the Script Task

Events provide a way to report errors, warnings, and other information, such as task progress or status, to the containing package. The package provides event handlers for managing event notifications. The Script task can raise events by calling methods on the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Events property of the Dts object. For more information about how Integration Services packages handle events, see DTS Event Handlers.

Events can be logged to any log provider that is enabled in the package. Log providers store information about events in a data store. The Script task can also use the M:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Log(System.String,System.Int32,Sys tem.Byte[]) method to log information to a log provider without raising an event. For more information about how to use the M:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Log(System.String,System.Int32,Sys tem.Byte[]) method, see Logging.

To raise an event, the Script task calls one of the methods exposed by the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Events property. The following table lists the methods exposed by the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Events property.

	Event

	Description

	M:Microsoft.SqlServer.Dts.Runtime.IDTSC
omponentEvents.FireCustomEvent(Syste
m.String,System.String,System.Object[]@,
System.String,System.Boolean@)

	Raises a user-defined custom event in the package.

	M:Microsoft.SqlServer.Dts.Runtime.IDTSC
omponentEvents.FireError(System.Int32,S
ystem.String,System.String,System.String,
System.Int32)

	Informs the package of an error condition.

	M:Microsoft.SqlServer.Dts.Runtime.IDTSC
omponentEvents.FireInformation(System.
Int32,System.String,System.String,System
.String,System.Int32,System.Boolean@)

	Provides information to the user.

	M:Microsoft.SqlServer.Dts.Runtime.IDTSC
omponentEvents.FireProgress(System.Stri
ng,System.Int32,System.Int32,System.Int3
2,System.String,System.Boolean@)

	Informs the package of the progress of the task.

	M:Microsoft.SqlServer.Dts.Runtime.IDTSC
omponentEvents.FireQueryCancel

	Returns a value that indicates whether the package needs the task to shut down prematurely.

	M:Microsoft.SqlServer.Dts.Runtime.IDTSC
omponentEvents.FireWarning(System.Int
32,System.String,System.String,System.St
ring,System.Int32)

	Informs the package that the task is in a state that warrants user notification, but is not an error condition. Events Example

Click here to view table as image

Events Example

The following example demonstrates how to raise events from within the Script task. The example uses a native Windows API function to determine whether an Internet connection is available. If no connection is available, it raises an error. If a potentially volatile modem connection is in use, the example raises a warning. Otherwise, it returns an informational message that an Internet connection has been detected.

Private Declare Function InternetGetConnectedState Lib "wininet" _
 (ByRef dwFlags As Long, ByVal dwReserved As Long) As Long

Private Enum ConnectedStates
 LAN = &H2
 Modem = &H1
 Proxy = &H4
 Offline = &H20
 Configured = &H40
 RasInstalled = &H10
End Enum

Public Sub Main()

 Dim dwFlags As Long
 Dim connectedState As Long
 Dim fireAgain as Boolean

 connectedState = InternetGetConnectedState(dwFlags, 0)

 If connectedState <> 0 Then
 If (dwFlags And ConnectedStates.Modem) = ConnectedStates.Modem Then
 Dts.Events.FireWarning(0, "Script Task Example", _
 "Volatile Internet connection detected.", String.Empty, 0)
 Else
 Dts.Events.FireInformation(0, "Script Task Example", _
 "Internet connection detected.", String.Empty, 0, fireAgain)
 End If
 Else
 ' If not connected to the Internet, raise an error.
 Dts.Events.FireError(0, "Script Task Example", _
 "Internet connection not available.", String.Empty, 0)
 End If

 Dts.TaskResult = ScriptResults.Success

End Sub
using System;
using System.Data;
using Microsoft.SqlServer.Dts.Runtime;
using System.Windows.Forms;
using System.Runtime.InteropServices;

public class ScriptMain
{

[DllImport("wininet")]
 private extern static long InternetGetConnectedState(ref long
dwFlags, long dwReserved);

 private enum ConnectedStates
 {
 LAN = 0x2,
 Modem = 0x1,
 Proxy = 0x4,

 Offline = 0x20,
 Configured = 0x40,
 RasInstalled = 0x10
 };

 public void Main()
 {
 //
 long dwFlags = 0;
 long connectedState;
 bool fireAgain = true;
 int state;

 connectedState = InternetGetConnectedState(ref dwFlags, 0);
 state = (int)ConnectedStates.Modem;
 if (connectedState != 0)
 {
 if ((dwFlags & state) == state)
 {
 Dts.Events.FireWarning(0, "Script Task Example",
"Volatile Internet connection detected.", String.Empty, 0);
 }
 else
 {
 Dts.Events.FireInformation(0, "Script Task Example",
"Internet connection detected.", String.Empty, 0, ref fireAgain);
 }
 }
 else
 {
 // If not connected to the Internet, raise an error.
 Dts.Events.FireError(0, "Script Task Example", "Internet
connection not available.", String.Empty, 0);
 }

 Dts.TaskResult = (int)ScriptResults.Success;

 }

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Integration Services Event Handlers

Add an Event Handler to a Package

Logging in the Script Task

The use of logging in Integration Services packages lets you record detailed information about execution progress, results, and problems by recording predefined events or user-defined messages for later analysis. The Script task can use the M:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Log(System.String,System.Int32,Sys tem.Byte[]) method of the Dts object to log user-defined data. If logging is enabled, and the ScriptTaskLogEntry event is selected for logging on the Details tab of the Configure SSIS Logs dialog box, a single call to the M:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Log(System.String,System.Int32,Sys tem.Byte[]) method stores the event information in all the log providers configured for the task.

[image: image] Note
Although you can perform logging directly from your Script task, you may want to consider implementing events rather than logging. When using events, not only can you enable the logging of event messages, but you can also respond to the event with default or user-defined event handlers.

For more information about logging, see Integration Services Logging.

Logging Example

The following example demonstrates logging from the Script task by logging a value that represents the number of rows processed.

Public Sub Main()

 Dim rowsProcessed As Integer = 100
 Dim emptyBytes(0) As Byte

 Try
 Dts.Log("Rows processed: " & rowsProcessed.ToString, _
 0, _
 emptyBytes)
 Dts.TaskResult = ScriptResults.Success
 Catch ex As Exception
 'An error occurred.
 Dts.Events.FireError(0, "Script Task Example", _
 ex.Message & ControlChars.CrLf & ex.StackTrace, _
 String.Empty, 0)
 Dts.TaskResult = ScriptResults.Failure
 End Try

End Sub
using System;
using System.Data;
using Microsoft.SqlServer.Dts.Runtime;

public class ScriptMain
{

 public void Main()
 {
 //
 int rowsProcessed = 100;
 byte[] emptyBytes = new byte[0];

 try
 {
 Dts.Log("Rows processed: " + rowsProcessed.ToString(), 0,
emptyBytes);
 Dts.TaskResult = (int)ScriptResults.Success;
 }
 catch (Exception ex)
 {
 //An error occurred.
 Dts.Events.FireError(0, "Script Task Example", ex.Message +
"\r" + ex.StackTrace, String.Empty, 0);
 Dts.TaskResult = (int)ScriptResults.Failure;
 }

 }
}

Click here to view code as image

External Resources

• Blog entry, Logging custom events for Integration Services tasks, on dougbert.com

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

• Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Integration Services Logging

Returning Results from the Script Task

The Script task uses the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.TaskResult and the optional P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.ExecutionValue properties to return status information to the Integration Services runtime that can be used to determine the path of the workflow after the Script task has finished.

TaskResult

The P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.TaskResult property reports whether the task succeeded or failed. For example:

Dts.TaskResult = ScriptResults.Success

Click here to view code as image

ExecutionValue

The P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.ExecutionValue property optionally returns a user-defined object that quantifies or provides more information about the success or failure of the Script task. For example, the FTP task uses the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.ExecutionValue property to return the number of files transferred. The Execute SQL task returns the number of rows affected by the task. The P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.ExecutionValue can also be used to determine the path of the workflow. For example:

Dim rowsAffected as Integer
...
rowsAffected = 1000
Dts.ExecutionValue = rowsAffected

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

Script Task Examples

The Script task is a multi-purpose tool that you can use in a package to fill almost any requirement that is not met by the tasks included with Integration Services. This topic lists Script task code samples that demonstrate some of the available functionality.

[image: image] Note
If you want to create tasks that you can more easily reuse across multiple packages, consider using the code in these Script task samples as the starting point for custom tasks. For more information, see Extending the Package with Custom Tasks.

In This Section

Example Topics

This section contains code examples that demonstrate various uses of the .NET Framework classes that you can incorporate into an Integration Services Script task:

Script Task Example: Detecting an Empty Flat File

Checks a flat file to determine whether it contains rows of data, and saves the result to a variable for use in control flow branching.

Script Task Example: Gathering a List for the ForEach Enumerator

Gathers a list of files that meet user-specified criteria, and populates a variable for later use by the Foreach from Variable Enumerator.

Script Task Example: Querying the Active Directory

Retrieves user information from Active Directory based on the value of an Integration Services variable, by using classes in the System.DirectoryServices namespace.

Script Task Example: Monitoring Performance Counters

Creates a custom performance counter that can be used to track the execution progress of an Integration Services package, by using classes in the System.Diagnostics namespace.

Script Task Example: Working with Images

Compresses images into the JPEG format and creates thumbnail images from them, by using classes in the System.Drawing namespace.

Script Task Example: Finding Installed Printers

Locates installed printers that support a specific paper size, by using classes in the System.Drawing.Printing namespace.

Sending an HTML Mail Message with the Script Task

Sends a mail message in HTML format instead of plain text format.

Listing Excel Worksheets with the Script Task

Lists the worksheets in an Excel file and checks for the existence of a specific worksheet.

Sending to a Remote Private Message Queue with the Script Task

Sends a message to a remote private message queue.

Other Examples

The following topics also contain code examples for use with the Script task:

Variables in the Script Task

Asks the user for confirmation of whether the package should continue to run, based on the value of a package variable that may exceed the limit specified in another variable.

Connections in the Script Task

Retrieves a connection or connection information from connection managers defined in the package.

Events in the Script Task

Raises an error, a warning, or an informational message based on the status of the Internet connection on the server.

Logging in the Script Task

Logs the number of items processed by the task to enabled log providers.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

Detecting an Empty Flat File with the Script Task

The Flat File source does not determine whether a flat file contains rows of data before attempting to process it. You may want to improve the efficiency of a package, especially of a package that iterates over numerous flat files, by skipping files that do not contain any rows of data. The Script task can look for an empty flat file before the package begins to process the data flow.

[image: image] Note
If you want to create a task that you can more easily reuse across multiple packages, consider using the code in this Script task sample as the starting point for a custom task.
For more information, see Extending the Package with Custom Tasks.

Description

The following example uses methods from the System.IO namespace to test the flat file specified in a Flat File connection manager to determine whether the file is empty, or whether it contains only expected non-data rows such as column headers or an empty line. The script checks the size of the file first; if the size is zero bytes, the file is empty. If the file size is greater than zero, the script reads lines from the file until there are no more lines, or until the number of lines exceeds the expected number of non-data rows. If the number of lines in the file is less than or equal to the expected number of non-data rows, then the file is considered empty. The result is returned as a Boolean value in a user variable, the value of which can be used for branching in the package's control flow. The FireInformation method also displays the result in the Output window of the Microsoft Visual Studio Tools for Applications (VSTA).

[image: image] To configure this Script Task example

1. Create and configure a flat file connection manager named EmptyFlatFileTest.

2. Create an integer variable named FFNonDataRows and set its value to the number of non-data rows expected in the flat file.

3. Create a Boolean variable named FFIsEmpty.

4. Add the FFNonDataRows variable to the Script task's ReadOnlyVariables property.

5. Add the FFIsEmpty variable to the Script task's ReadWriteVariables property.

6. In your code, import the System.IO namespace.

If you are iterating over files with a Foreach File enumerator, instead of using a single Flat File connection manager, you will need to modify the sample code below to obtain the file name and path from the variable in which the enumerated value is stored instead of from the connection manager.

Code

 Public Sub Main()

 Dim nonDataRows As Integer = _
 DirectCast(Dts.Variables("FFNonDataRows").Value, Integer)
 Dim ffConnection As String = _

DirectCast(Dts.Connections("EmptyFlatFileTest").AcquireConnection(Nothing), _
 String)
 Dim flatFileInfo As New FileInfo(ffConnection)
 ' If file size is 0 bytes, flat file does not contain data.
 Dim fileSize As Long = flatFileInfo.Length
 If fileSize > 0 Then
 Dim lineCount As Integer = 0
 Dim line As String
 Dim fsFlatFile As New StreamReader(ffConnection)
 Do Until fsFlatFile.EndOfStream
 line = fsFlatFile.ReadLine
 lineCount += 1
 ' If line count > expected number of non-data rows,
 ' flat file contains data (default value).
 If lineCount > nonDataRows Then

 Exit Do
 End If
 ' If line count <= expected number of non-data rows,
 ' flat file does not contain data.
 If lineCount <= nonDataRows Then
 Dts.Variables("FFIsEmpty").Value = True
 End If
 Loop
 Else
 Dts.Variables("FFIsEmpty").Value = True
 End If

 Dim fireAgain As Boolean = False
 Dts.Events.FireInformation(0, "Script Task", _
 String.Format("{0}: {1}", ffConnection, _
 Dts.Variables("FFIsEmpty").Value.ToString), _
 String.Empty, 0, fireAgain)

 Dts.TaskResult = ScriptResults.Success

 End Sub
public void Main()
 {

 int nonDataRows = (int)(Dts.Variables["FFNonDataRows"].Value);
 string ffConnection =
(string)(Dts.Connections["EmptyFlatFileTest"].AcquireConnection(null) as
String);
 FileInfo flatFileInfo = new FileInfo(ffConnection);
 // If file size is 0 bytes, flat file does not contain data.
 long fileSize = flatFileInfo.Length;
 if (fileSize > 0)
 {

 int lineCount = 0;
 string line;
 StreamReader fsFlatFile = new StreamReader(ffConnection);
 while (!(fsFlatFile.EndOfStream))
 {
 Console.WriteLine (fsFlatFile.ReadLine());
 lineCount += 1;
 // If line count > expected number of non-data rows,
 // flat file contains data (default value).
 if (lineCount > nonDataRows)
 {
 break;
 }
 // If line count <= expected number of non-data rows,
 // flat file does not contain data.
 if (lineCount <= nonDataRows)
 {
 Dts.Variables["FFIsEmpty"].Value = true;
 }
 }
 }
 else
 {
 Dts.Variables["FFIsEmpty"].Value = true;
 }

 bool fireAgain = false;
 Dts.Events.FireInformation(0, "Script Task", String.Format("{0}:
{1}", ffConnection, Dts.Variables["FFIsEmpty"].Value), String.Empty, 0, ref
fireAgain);

 Dts.TaskResult = (int)ScriptResults.Success;
 }

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Script Task Examples

Gathering a List for the ForEach Loop with the Script Task

The Foreach from Variable Enumerator enumerates over the items in a list that is passed to it in a variable and performs the same tasks on each item. You can use custom code in a Script task to populate a list for this purpose. For more information about the enumerator, see Foreach Loop Container.

[image: image] Note
If you want to create a task that you can more easily reuse across multiple packages, consider using the code in this Script task sample as the starting point for a custom task. For more information, see Extending the Package with Custom Tasks.

Description

The following example uses methods from the System.IO namespace to gather a list of Excel workbooks on the computer that are either newer or older than a number of days specified by the user in a variable. It searches directories on Drive C recursively for files that have the .xls extension and examines the date on which each file was last modified to determine whether the file belongs in the list. It adds qualifying files to an ArrayList and saves the ArrayList to a variable for later use in a Foreach Loop container. The Foreach Loop container is configured to use the Foreach from Variable enumerator.

[image: image] Note
The variable that you use with the Foreach from Variable Enumerator must be of type Object. The object that you place in the variable must implement one of the following interfaces: System.Collections.IEnumerable, System.Runtime.InteropServices.ComTypes.IEnumVARIANT, System.ComponentModel IListSource, or Microsoft.SqlServer.Dts.Runtime.Wrapper.ForEachEnumeratorHost. An Array or ArrayList is commonly used. The ArrayList requires a reference and an Imports statement for the System.Collections namespace.

You can experiment with this task by using different positive and negative values for the FileAge package variable. For example, you can enter 5 to search for files created in the last five days, or enter -3 to search for files that were created more than three days ago. This task may take a minute or two on a drive with many folders to search.

[image: image] To configure this Script Task example

1. Create a package variable named FileAge of type integer and enter a positive or negative integer value. When the value is positive, the code searches for files newer than the specified number of days; when negative, for files older than the specified number of days.

2. Create a package variable named FileList of type Object to receive the list of files gathered by the Script task for later use by the Foreach from Variable Enumerator.

3. Add the FileAge variable to the Script task's ReadOnlyVariables property, and add the FileList variable to the ReadWriteVariables property.

4. In your code, import the System.Collections and the System.IO namespaces.

Code

Imports System
Imports System.Data
Imports System.Math
Imports Microsoft.SqlServer.Dts.Runtime
Imports System.Collections
Imports System.IO

Public Class ScriptMain

 Private Const FILE_AGE As Integer = -50
 Private Const FILE_ROOT As String = "C:\"
 Private Const FILE_FILTER As String = "*.xls"

 Private isCheckForNewer As Boolean = True
 Dim fileAgeLimit As Integer
 Private listForEnumerator As ArrayList

 Public Sub Main()

 fileAgeLimit = DirectCast(Dts.Variables("FileAge").Value, Integer)

 ' If value provided is positive, we want files NEWER THAN n days.
 ' If negative, we want files OLDER THAN n days.
 If fileAgeLimit < 0 Then
 isCheckForNewer = False
 End If
 ' Extract number of days as positive integer.
 fileAgeLimit = Math.Abs(fileAgeLimit)

 listForEnumerator = New ArrayList

 GetFilesInFolder(FILE_ROOT)

 ' Return the list of files to the variable
 ' for later use by the Foreach from Variable enumerator.
 System.Windows.Forms.MessageBox.Show("Matching files: " &
listForEnumerator.Count.ToString, "Results",
Windows.Forms.MessageBoxButtons.OK, Windows.Forms.MessageBoxIcon.Information)
 Dts.Variables("FileList").Value = listForEnumerator

 Dts.TaskResult = ScriptResults.Success

 End Sub

 Private Sub GetFilesInFolder(ByVal folderPath As String)

 Dim localFiles() As String
 Dim localFile As String
 Dim fileChangeDate As Date
 Dim fileAge As TimeSpan
 Dim fileAgeInDays As Integer
 Dim childFolder As String

 Try
 localFiles = Directory.GetFiles(folderPath, FILE_FILTER)
 For Each localFile In localFiles
 fileChangeDate = File.GetLastWriteTime(localFile)
 fileAge = DateTime.Now.Subtract(fileChangeDate)
 fileAgeInDays = fileAge.Days
 CheckAgeOfFile(localFile, fileAgeInDays)
 Next

 If Directory.GetDirectories(folderPath).Length > 0 Then
 For Each childFolder In Directory.GetDirectories(folderPath)
 GetFilesInFolder(childFolder)
 Next
 End If

 Catch
 ' Ignore exceptions on special folders such as System Volume
Information.
 End Try

 End Sub

 Private Sub CheckAgeOfFile(ByVal localFile As String, ByVal fileAgeInDays
As Integer)
 If isCheckForNewer Then
 If fileAgeInDays <= fileAgeLimit Then
 listForEnumerator.Add(localFile)
 End If
 Else
 If fileAgeInDays > fileAgeLimit Then
 listForEnumerator.Add(localFile)
 End If
 End If

 End Sub

End Class
using System;
using System.Data;
using System.Math;
using Microsoft.SqlServer.Dts.Runtime;
using System.Collections;
using System.IO;

public partial class ScriptMain :
Microsoft.SqlServer.Dts.Tasks.ScriptTask.VSTARTScriptObjectModelBase
 {

 private const int FILE_AGE = -50;

 private const string FILE_ROOT = "C:\\";
 private const string FILE_FILTER = "*.xls";

 private bool isCheckForNewer = true;
 int fileAgeLimit;
 private ArrayList listForEnumerator;

 public void Main()
 {

 fileAgeLimit = (int)(Dts.Variables["FileAge"].Value);

 // If value provided is positive, we want files NEWER THAN n days.
 // If negative, we want files OLDER THAN n days.
 if (fileAgeLimit<0)
 {
 isCheckForNewer = false;
 }
 // Extract number of days as positive integer.
 fileAgeLimit = Math.Abs(fileAgeLimit);

 ArrayList listForEnumerator = new ArrayList();

 GetFilesInFolder(FILE_ROOT);

 // Return the list of files to the variable
 // for later use by the Foreach from Variable enumerator.
 System.Windows.Forms.MessageBox.Show("Matching files: "+
listForEnumerator.Count, "Results",
MessageBoxButtons.OK, MessageBoxIcon.Information);
 Dts.Variables["FileList"].Value = listForEnumerator;

 Dts.TaskResult = (int)ScriptResults.Success;

 }

 private void GetFilesInFolder(string folderPath)
 {

 string[] localFiles;
 DateTime fileChangeDate;
 TimeSpan fileAge;
 int fileAgeInDays;

 try
 {
 localFiles = Directory.GetFiles(folderPath, FILE_FILTER);
 foreach (string localFile in localFiles)
 {
 fileChangeDate = File.GetLastWriteTime(localFile);
 fileAge = DateTime.Now.Subtract(fileChangeDate);
 fileAgeInDays = fileAge.Days;
 CheckAgeOfFile(localFile, fileAgeInDays);
 }

 if (Directory.GetDirectories(folderPath).Length > 0)
 {
 foreach (string childFolder in
Directory.GetDirectories(folderPath))
 {
 GetFilesInFolder(childFolder);
 }
 }

 }
 catch
 {
 // Ignore exceptions on special folders, such as System
Volume Information.
 }

 }

 private void CheckAgeOfFile(string localFile, int fileAgeInDays)
 {

 if (isCheckForNewer)
 {
 if (fileAgeInDays <= fileAgeLimit)
 {
 listForEnumerator.Add(localFile);
 }
 }
 else
 {
 if (fileAgeInDays > fileAgeLimit)
 {
 listForEnumerator.Add(localFile);
 }
 }

 }

 }

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Foreach Loop Container

How to: Configure a Foreach Loop Container

Querying the Active Directory with the Script Task

Enterprise data processing applications, such as Integration Services packages, often need to process data differently based on the rank, job title, or other characteristics of employees stored in Active Directory. Active Directory is a Microsoft Windows directory service that provides a centralized store of metadata, not only about users, but also about other organizational assets such as computers and printers. The System.DirectoryServices namespace in the Microsoft .NET Framework provides classes for working with Active Directory, to help you direct data processing workflow based on the information that it stores.

[image: image] Note
If you want to create a task that you can more easily reuse across multiple packages, consider using the code in this Script task sample as the starting point for a custom task. For more information, see Extending the Package with Custom Tasks.

Description

The following example retrieves an employee's name, title, and phone number from Active Directory based on the value of the email variable, which contains the e-mail address of the employee. Precedence constraints in the package can use the retrieved information to determine, for example, whether to send a low-priority e-mail message or a high-priority page, based on the job title of the employee.

[image: image] To configure this Script Task example

1. Create the three string variables email, name, and title. Enter a valid corporate email address as the value of the email variable.

2. On the Script page of the Script Task Editor, add the email variable to the ReadOnlyVariables property.

3. Add the name and title variables to the ReadWriteVariables property.

4. In the script project, add a reference to the System.DirectoryServices namespace.

5. . In your code, use an Imports statement to import the DirectoryServices namespace.

[image: image] Note
To run this script success fully, your company must be using Active Directory on its network and storing the employee information that this example uses.

Code

Public Sub Main()

 Dim directory As DirectoryServices.DirectorySearcher
 Dim result As DirectoryServices.SearchResult
 Dim email As String

 email = Dts.Variables("email").Value.ToString

 Try
 directory = New _
 DirectoryServices.DirectorySearcher("(mail=" & email & ")")
 result = directory.FindOne
 Dts.Variables("name").Value = _
 result.Properties("displayname").ToString
 Dts.Variables("title").Value = _
 result.Properties("title").ToString
 Dts.TaskResult = ScriptResults.Success
 Catch ex As Exception
 Dts.Events.FireError(0, _
 "Script Task Example", _
 ex.Message & ControlChars.CrLf & ex.StackTrace, _

 String.Empty, 0)
 Dts.TaskResult = ScriptResults.Failure
 End Try

End Sub
 public void Main()
 {
 //
 DirectorySearcher directory;
 SearchResult result;
 string email;

 email = (string)Dts.Variables["email"].Value;

 try
 {
 directory = new DirectorySearcher("(mail=" + email + ")");
 result = directory.FindOne();
 Dts.Variables["name"].Value =
result.Properties["displayname"].ToString();
 Dts.Variables["title"].Value =
result.Properties["title"].ToString();
 Dts.TaskResult = (int)ScriptResults.Success;
 }
 catch (Exception ex)
 {
 Dts.Events.FireError(0, "Script Task Example", ex.Message +
"\n" + ex.StackTrace, String.Empty, 0);
 Dts.TaskResult = (int)ScriptResults.Failure;
 }

 }

Click here to view code as image

External Resources

• Technical article, Processing Active Directory Information in SSIS, on social.technet.microsoft.com

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

• Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

Monitoring Performance Counters with the Script Task

Administrators may need to monitor the performance of Integration Services packages that perform complex transformations on large amounts of data. The System.Diagnostics namespace of the Microsoft .NET Framework provides classes for using existing performance counters and for creating your own performance counters.

Performance counters store application performance information that you can use to analyze the performance of software over time. Performance counters can be monitored locally or remotely by using the Performance Monitor tool. You can store the values of performance counters in variables for later control flow branching in the package.

As an alternative to using performance counters, you can raise the M:Microsoft.SqlServer.Dts.Runtime.IDTSComponentEvents.FireProgress(System.String,System.Int3 2,System.Int32,System.Int32,System.String,System.Boolean@) event through the P:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Events property of the Dts object. The M:Microsoft.SqlServer.Dts.Runtime.IDTSComponentEvents.FireProgress(System.String,System.Int3 2,System.Int32,System.Int32,System.String,System.Boolean@) event returns both incremental progress and percentage complete information to the Integration Services runtime.

[image: image] Note
If you want to create a task that you can more easily reuse across multiple packages, consider using the code in this Script task sample as the starting point for a custom task. For more information, see Extending the Package with Custom Tasks.

Description

The following example creates a custom performance counter and increments the counter. First, the example determines whether the performance counter already exists. If the performance counter has not been created, the script calls the Create method of the PerformanceCounterCategory object to create it. After the performance counter has been created, the script increments the counter. Finally, the example follows the best practice of calling the Close method on the performance counter when it is no longer needed.

[image: image] Note
Creating a new performance counter category and performance counter requires administrative rights. Also, the new category and counter persist on the computer after creation.

[image: image] To configure this Script Task example

• Use an Imports statement in your code to import the System.Diagnostics namespace.

Example Code

Public Sub Main()

 Dim myCounter As PerformanceCounter

 Try
 'Create the performance counter if it does not already exist.
 If Not _
 PerformanceCounterCategory.Exists("TaskExample") Then
 PerformanceCounterCategory.Create("TaskExample", _
 "Task Performance Counter Example", "Iterations", _
 "Number of times this task has been called.")
 End If

 'Initialize the performance counter.
 myCounter = New PerformanceCounter("TaskExample", _
 "Iterations", String.Empty, False)

 'Increment the performance counter.
 myCounter.Increment()

 myCounter.Close()
 Dts.TaskResult = ScriptResults.Success
 Catch ex As Exception
 Dts.Events.FireError(0, _
 "Task Performance Counter Example", _
 ex.Message & ControlChars.CrLf & ex.StackTrace, _
 String.Empty, 0)
 Dts.TaskResult = ScriptResults.Failure
 End Try

End Sub

public class ScriptMain
{

public void Main()
 {

 PerformanceCounter myCounter;

 try
 {
 //Create the performance counter if it does not already
exist.
 if (!PerformanceCounterCategory.Exists("TaskExample"))
 {
 PerformanceCounterCategory.Create("TaskExample", "Task
Performance Counter Example", "Iterations", "Number of times this task has
been called.");
 }

 //Initialize the performance counter.
 myCounter = new PerformanceCounter("TaskExample",
"Iterations", String.Empty, false);

 //Increment the performance counter.
 myCounter.Increment();

 myCounter.Close();
 Dts.TaskResult = (int)ScriptResults.Success;
 }
 catch (Exception ex)
 {
 Dts.Events.FireError(0, "Task Performance Counter Example",
ex.Message + "\r" + ex.StackTrace, String.Empty, 0);
 Dts.TaskResult = (int)ScriptResults.Failure;
 }

 Dts.TaskResult = (int)ScriptResults.Success;
 }

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

Working with Images with the Script Task

A database of products or users frequently includes images in addition to text and numeric data. The System.Drawing namespace in the Microsoft .NET Framework provides classes for manipulating images.

Example 1: Convert Images to JPEG Format

Example 2: Create and Save Thumbnail Images

[image: image] Note
If you want to create a task that you can more easily reuse across multiple packages, consider using the code in this Script task sample as the starting point for a custom task. For more information, see Extending the Package with Custom Tasks.

Example 1 Description: Convert Images to JPEG Format

The following example opens an image file specified by a variable and saves it as a compressed JPEG file by using an encoder. The code to retrieve encoder information is encapsulated in a private function.

[image: image] To configure this Script Task example for use with a single image file

1. Create a string variable named CurrentImageFile and set its value to the path and file name of an existing image file.

2. On the Script page of the Script Task Editor, add the CurrentImageFile variable to the ReadOnlyVariables property.

3. In the script project, set a reference to the System.Drawing namespace.

4. In your code, use Imports statements to import the System.Drawing and System.IO namespaces.

[image: image] To configure this Script Task example for use with multiple image files

1. Place the Script task within a Foreach Loop container.

2. On the Collection page of the Foreach Loop Editor, select the Foreach File Enumerator as the enumerator, and specify the path and file mask of the source files, such as "*.bmp."

3. On the Variable Mappings page, map the CurrentImageFile variable to Index 0. This variable passes the current file name to the Script task on each iteration of the enumerator.

[image: image] Note
These steps are in addition to the steps listed in the procedure for use with a single image file.

Example 1 Code

Public Sub Main()

 'Create and initialize variables.
 Dim currentFile As String
 Dim newFile As String
 Dim bmp As Bitmap
 Dim eps As New Imaging.EncoderParameters(1)
 Dim ici As Imaging.ImageCodecInfo
 Dim supportedExtensions() As String = _
 {".BMP", ".GIF", ".JPG", ".JPEG", ".EXIF", ".PNG", _
 ".TIFF", ".TIF", ".ICO", ".ICON"}

 Try
 'Store the variable in a string for local manipulation.
 currentFile = Dts.Variables("CurrentImageFile").Value.ToString
 'Check the extension of the file against a list of
 'files that the Bitmap class supports.
 If Array.IndexOf(supportedExtensions, _
 Path.GetExtension(currentFile).ToUpper) > -1 Then
 'Load the file.
 bmp = New Bitmap(currentFile)

 'Calculate the new name for the compressed image.
 'Note: This will overwrite existing JPEGs.
 newFile = Path.Combine(_
 Path.GetDirectoryName(currentFile), _
 String.Concat(Path.GetFileNameWithoutExtension(currentFile),
_
 ".jpg"))

 'Specify the compression ratio (0=worst quality, 100=best
quality).
 eps.Param(0) = New Imaging.EncoderParameter(_
 Imaging.Encoder.Quality, 75)

 'Retrieve the ImageCodecInfo associated with the jpeg format.
 ici = GetEncoderInfo("image/jpeg")

 'Save the file, compressing it into the jpeg encoding.
 bmp.Save(newFile, ici, eps)
 Else
 'The file is not supported by the Bitmap class.
 Dts.Events.FireWarning(0, "Image Resampling Sample", _
 "File " & currentFile & " is not a supported format.", _
 "", 0)
 End If
 Dts.TaskResult = ScriptResults.Success
 Catch ex As Exception
 'An error occurred.
 Dts.Events.FireError(0, "Image Resampling Sample", _
 ex.Message & ControlChars.CrLf & ex.StackTrace, _
 String.Empty, 0)
 Dts.TaskResult = ScriptResults.Failure
 End Try

End Sub

Private Function GetEncoderInfo(ByVal mimeType As String) As
Imaging.ImageCodecInfo

 'The available image codecs are returned as an array,
 'which requires code to iterate until the specified codec is found.

 Dim count As Integer
 Dim encoders() As Imaging.ImageCodecInfo

 encoders = Imaging.ImageCodecInfo.GetImageEncoders()

 For count = 0 To encoders.Length
 If encoders(count).MimeType = mimeType Then
 Return encoders(count)
 End If
 Next

 'This point is only reached if a codec is not found.
 Err.Raise(513, "Image Resampling Sample", String.Format(_
 "The {0} codec is not available. Unable to compress file.", _
 mimeType))
 Return Nothing

End Function

Click here to view code as image

Example 2 Description: Create and Save Thumbnail Images

The following example opens an image file specified by a variable, creates a thumbnail of the image while maintaining a constant aspect ratio, and saves the thumbnail with a modified file name. The code that calculates the height and width of the thumbnail while maintaining a constant aspect ratio is encapsulated in a private subroutine.

[image: image] To configure this Script Task example for use with a single image file

1. Create a string variable named CurrentImageFile and set its value to the path and file name of an existing image file.

2. Also create the MaxThumbSize integer variable and assign a value in pixels, such as 100.

3. On the Script page of the Script Task Editor, add both variables to the ReadOnlyVariables property.

4. In the script project, set a reference to the System.Drawing namespace.

5. In your code, use Imports statements to import the System.Drawing and System.IO namespaces.

[image: image] To configure this Script Task example for use with multiple image files

1. Place the Script task within a Foreach Loop container.

2. On the Collection page of the Foreach Loop Editor, select the Foreach File Enumerator as the Enumerator, and specify the path and file mask of the source files, such as "*.jpg."

3. On the Variable Mappings page, map the CurrentImageFile variable to Index 0. This variable passes the current file name to the Script task on each iteration of the enumerator.

[image: image] Note
These steps are in addition to the steps listed in the procedure for use with a single image file.

Example 2 Code

Public Sub Main()

 Dim currentImageFile As String
 Dim currentImage As Image
 Dim maxThumbSize As Integer
 Dim thumbnailImage As Image
 Dim thumbnailFile As String
 Dim thumbnailHeight As Integer
 Dim thumbnailWidth As Integer

 currentImageFile = Dts.Variables("CurrentImageFile").Value.ToString
 thumbnailFile = Path.Combine(_
 Path.GetDirectoryName(currentImageFile), _
 String.Concat(Path.GetFileNameWithoutExtension(currentImageFile), _
 "_thumbnail.jpg"))

 Try
 currentImage = Image.FromFile(currentImageFile)

 maxThumbSize = CType(Dts.Variables("MaxThumbSize").Value, Integer)
 CalculateThumbnailSize(_
 maxThumbSize, currentImage, thumbnailWidth, thumbnailHeight)

 thumbnailImage = currentImage.GetThumbnailImage(_
 thumbnailWidth, thumbnailHeight, Nothing, Nothing)
 thumbnailImage.Save(thumbnailFile)
 Dts.TaskResult = ScriptResults.Success
 Catch ex As Exception
 Dts.Events.FireError(0, "Script Task Example", _
 ex.Message & ControlChars.CrLf & ex.StackTrace, _
 String.Empty, 0)
 Dts.TaskResult = ScriptResults.Failure
 End Try

End Sub

Private Sub CalculateThumbnailSize(_
 ByVal maxSize As Integer, ByVal sourceImage As Image, _
 ByRef thumbWidth As Integer, ByRef thumbHeight As Integer)

 If sourceImage.Width > sourceImage.Height Then
 thumbWidth = maxSize
 thumbHeight = CInt((maxSize / sourceImage.Width) *
sourceImage.Height)
 Else
 thumbHeight = maxSize
 thumbWidth = CInt((maxSize / sourceImage.Height) * sourceImage.Width)
 End If

End Sub
bool ThumbnailCallback()
 {
 return false;
 }
 public void Main()
 {

 string currentImageFile;
 Image currentImage;
 int maxThumbSize;
 Image thumbnailImage;
 string thumbnailFile;
 int thumbnailHeight = 0;
 int thumbnailWidth = 0;

 currentImageFile =
Dts.Variables["CurrentImageFile"].Value.ToString();
 thumbnailFile =
Path.Combine(Path.GetDirectoryName(currentImageFile),
String.Concat(Path.GetFileNameWithoutExtension(currentImageFile),
"_thumbnail.jpg"));

 try
 {

 currentImage = Image.FromFile(currentImageFile);

 maxThumbSize = (int)Dts.Variables["MaxThumbSize"].Value;
 CalculateThumbnailSize(maxThumbSize, currentImage, ref
thumbnailWidth, ref thumbnailHeight);
 Image.GetThumbnailImageAbort myCallback = new
Image.GetThumbnailImageAbort(ThumbnailCallback);

 thumbnailImage =
currentImage.GetThumbnailImage(thumbnailWidth, thumbnailHeight,
ThumbnailCallback, IntPtr.Zero);
 thumbnailImage.Save(thumbnailFile);
 Dts.TaskResult = (int)ScriptResults.Success;
 }
 catch (Exception ex)
 {
 Dts.Events.FireError(0, "Script Task Example", ex.Message +
"\r" + ex.StackTrace, String.Empty, 0);
 Dts.TaskResult = (int)ScriptResults.Failure;
 }

 }

 private void CalculateThumbnailSize(int maxSize, Image sourceImage,
ref int thumbWidth, ref int thumbHeight)
 {

 if (sourceImage.Width > sourceImage.Height)
 {
 thumbWidth = maxSize;
 thumbHeight = (int)(sourceImage.Height * maxSize /
sourceImage.Width);
 }
 else
 {
 thumbHeight = maxSize;
 thumbWidth = (int)(sourceImage.Width * maxSize /
sourceImage.Height);
 }

 }

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

Finding Installed Printers with the Script Task

The data that is transformed by Integration Services packages often has a printed report as its final destination. The System.Drawing.Printing namespace in the Microsoft .NET Framework provides classes for working with printers.

[image: image] Note
If you want to create a task that you can more easily reuse across multiple packages, consider using the code in this Script task sample as the starting point for a custom task. For more information, see Extending the Package with Custom Tasks.

Description

The following example locates printers installed on the server that support legal size paper (as used in the United States). The code to check supported paper sizes is encapsulated in a private function. To enable you to track the progress of the script as it checks the settings for each printer, the script uses the M:Microsoft.SqlServer.Dts.Tasks.ScriptTask.ScriptObjectModel.Log(System.String,System.Int32,Sys tem.Byte[]) method to raise an informational message for printers with legal size paper, and to raise a warning for printers without legal size paper. These messages appear in the Output window of the Microsoft Visual Studio Tools for Applications (VSTA) IDE when you run the package in the designer.

[image: image] To configure this Script Task example

1. Create the variable named PrinterList with type Object.

2. On the Script page of the Script Task Editor, add this variable to the ReadWriteVariables property.

3. In the script project, add a reference to the System.Drawing namespace.

4. In your code, use Imports statements to import the System.Collections and the System.Drawing.Printing namespaces.

Code

Public Sub Main()

 Dim printerName As String
 Dim currentPrinter As New PrinterSettings
 Dim size As PaperSize

 Dim printerList As New ArrayList
 For Each printerName In PrinterSettings.InstalledPrinters
 currentPrinter.PrinterName = printerName
 If PrinterHasLegalPaper(currentPrinter) Then
 printerList.Add(printerName)
 Dts.Events.FireInformation(0, "Example", _
 "Printer " & printerName & " has legal paper.", _
 String.Empty, 0, False)
 Else
 Dts.Events.FireWarning(0, "Example", _
 "Printer " & printerName & " DOES NOT have legal paper.", _
 String.Empty, 0)
 End If
 Next

 Dts.Variables("PrinterList").Value = printerList
 Dts.TaskResult = ScriptResults.Success

End Sub

Private Function PrinterHasLegalPaper(_
 ByVal thisPrinter As PrinterSettings) As Boolean

 Dim size As PaperSize
 Dim hasLegal As Boolean = False

 For Each size In thisPrinter.PaperSizes
 If size.Kind = PaperKind.Legal Then
 hasLegal = True
 End If
 Next

 Return hasLegal

End Function
public void Main()
 {

 PrinterSettings currentPrinter = new PrinterSettings();
 PaperSize size;
 Boolean Flag = false;

 ArrayList printerList = new ArrayList();
 foreach (string printerName in PrinterSettings.InstalledPrinters)
 {
 currentPrinter.PrinterName = printerName;
 if (PrinterHasLegalPaper(currentPrinter))
 {
 printerList.Add(printerName);
 Dts.Events.FireInformation(0, "Example", "Printer " +
printerName + " has legal paper.", String.Empty, 0, ref Flag);
 }
 else
 {
 Dts.Events.FireWarning(0, "Example", "Printer " +
printerName + " DOES NOT have legal paper.", String.Empty, 0);
 }
 }

 Dts.Variables["PrinterList"].Value = printerList;

 Dts.TaskResult = (int)ScriptResults.Success;

 }

 private bool PrinterHasLegalPaper(PrinterSettings thisPrinter)
 {

 bool hasLegal = false;

 foreach (PaperSize size in thisPrinter.PaperSizes)
 {
 if (size.Kind == PaperKind.Legal)
 {
 hasLegal = true;
 }
 }

 return hasLegal;

 }

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Script Task Examples

Sending an HTML Mail Message with the Script Task

The Integration Services SendMail task only supports mail messages in plain text format. However you can easily send HTML mail messages by using the Script task and the mail capabilities of the .NET Framework.

[image: image] Note
If you want to create a task that you can more easily reuse across multiple packages, consider using the code in this Script task sample as the starting point for a custom task. For more information, see Extending the Package with Custom Tasks.

Description

The following example uses the System.Net.Mail namespace to configure and send an HTML mail message. The script obtains the To, From, Subject, and body of the e-mail from package variables, uses them to create a new MailMessage, and sets its IsBodyHtml property to True. Then it obtains the SMTP server name from another package variable, initializes an instance of System.Net.Mail.SmtpClient, and calls its Send method to send the HTML message. The sample encapsulates the message sending functionality in a subroutine that could be reused in other scripts.

[image: image] To configure this Script Task example without an SMTP Connection Manager

1. Create string variables named HtmlEmailTo, HtmlEmailFrom, and HtmlEmailSubject and assign appropriate values to them for a valid test message.

2. Create a string variable named HtmlEmailBody and assign a string of HTML markup to it. For example:

<html><body><h1>Testing</h1><p>This is a test
message.</p></body></html>

Click here to view code as image

3. Create a string variable named HtmlEmailServer and assign the name of an available SMTP server that accepts anonymous outgoing messages.

4. Assign all five of these variables to the ReadOnlyVariables property of a new Script task.

5. Import the System.Net and System.Net.Mail namespaces into your code.

The sample code in this topic obtains the SMTP server name from a package variable. However, you could also take advantage of an SMTP connection manager to encapsulate the connection information, and extract the server name from the connection manager in your code. The M:Microsoft.SqlServer.Dts.ManagedConnections.SMTPConn.AcquireConnection(System.Object) method of the SMTP connection manager returns a string in the following format:

SmtpServer=smtphost;UseWindowsAuthentication=False;EnableSsl=False;

Click here to view code as image

You can use the String.Split method to separate this argument list into an array of individual strings at each semicolon (;) or equal sign (=), and then extract the second argument (subscript 1) from the array as the server name.

[image: image] To configure this Script Task example with an SMTP Connection Manager

1. Modify the Script task configured earlier by removing the HtmlEmailServer variable from the list of ReadOnlyVariables.

2. Replace the line of code that obtains the server name:

 Dim smtpServer As String = _
 Dts.Variables("HtmlEmailServer").Value.ToString

Click here to view code as image

with the following lines:

 Dim smtpConnectionString As String = _
 DirectCast(Dts.Connections("SMTP Connection
Manager").AcquireConnection(Dts.Transaction), String)
 Dim smtpServer As String = _
 smtpConnectionString.Split(New Char() {"="c, ";"c})(1)

Click here to view code as image

Code

 Public Sub Main()

 Dim htmlMessageTo As String = _
 Dts.Variables("HtmlEmailTo").Value.ToString
 Dim htmlMessageFrom As String = _
 Dts.Variables("HtmlEmailFrom").Value.ToString
 Dim htmlMessageSubject As String = _
 Dts.Variables("HtmlEmailSubject").Value.ToString
 Dim htmlMessageBody As String = _
 Dts.Variables("HtmlEmailBody").Value.ToString
 Dim smtpServer As String = _
 Dts.Variables("HtmlEmailServer").Value.ToString

 SendMailMessage(_
 htmlMessageTo, htmlMessageFrom, _
 htmlMessageSubject, htmlMessageBody, _
 True, smtpServer)

 Dts.TaskResult = ScriptResults.Success

 End Sub

 Private Sub SendMailMessage(_
 ByVal SendTo As String, ByVal From As String, _
 ByVal Subject As String, ByVal Body As String, _
 ByVal IsBodyHtml As Boolean, ByVal Server As String)

 Dim htmlMessage As MailMessage
 Dim mySmtpClient As SmtpClient

 htmlMessage = New MailMessage(_
 SendTo, From, Subject, Body)
 htmlMessage.IsBodyHtml = IsBodyHtml

 mySmtpClient = New SmtpClient(Server)
 mySmtpClient.Credentials = CredentialCache.DefaultNetworkCredentials
 mySmtpClient.Send(htmlMessage)

 End Sub
public void Main()
 {

 string htmlMessageTo =
Dts.Variables["HtmlEmailTo"].Value.ToString();
 string htmlMessageFrom =
Dts.Variables["HtmlEmailFrom"].Value.ToString();
 string htmlMessageSubject =
Dts.Variables["HtmlEmailSubject"].Value.ToString();
 string htmlMessageBody =
Dts.Variables["HtmlEmailBody"].Value.ToString();
 string smtpServer =
Dts.Variables["HtmlEmailServer"].Value.ToString();

 SendMailMessage(htmlMessageTo, htmlMessageFrom,
htmlMessageSubject, htmlMessageBody, true, smtpServer);

 Dts.TaskResult = (int)ScriptResults.Success;

 }

 private void SendMailMessage(string SendTo, string From, string
Subject, string Body, bool IsBodyHtml, string Server)
 {

 MailMessage htmlMessage;
 SmtpClient mySmtpClient;

 htmlMessage = new MailMessage(SendTo, From, Subject, Body);
 htmlMessage.IsBodyHtml = IsBodyHtml;

 mySmtpClient = new SmtpClient(Server);
 mySmtpClient.Credentials =
CredentialCache.DefaultNetworkCredentials;
 mySmtpClient.Send(htmlMessage);

 }

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Send Mail Task

Working with Excel Files with the Script Task

Integration Services provides the Excel connection manager, Excel source, and Excel destination for working with data stored in spreadsheets in the Microsoft Excel file format. The techniques described in this topic use the Script task to obtain information about available Excel databases (workbook files) and tables (worksheets and named ranges). These samples can easily be modified to work with any of the other file-based data sources supported by the Microsoft Jet OLE DB Provider.

Configuring a Package to Test the Samples

Example1: Check Whether an Excel File Exists

Example 2: Check Whether an Excel Table Exists

Example 3: Get a List of Excel Files in a Folder

Example 4: Get a List of Tables in an Excel File

Displaying the Results of the Samples

[image: image] Note
If you want to create a task that you can more easily reuse across multiple packages, consider using the code in this Script task sample as the starting point for a custom task. For more information, see Extending the Package with Custom Tasks.

Configuring a Package to Test the Samples

You can configure a single package to test all the samples in this topic. The samples use many of the same package variables and the same .NET Framework classes.

[image: image] To configure a package for use with the examples in this topic

1. Create a new Integration Services project in SQL Server Data Tools (SSDT) and open the default package for editing.

2. Variables. Open the Variables window and define the following variables:

• ExcelFile, of type String. Enter the complete path and filename to an existing Excel workbook.

• ExcelTable, of type String. Enter the name of an existing worksheet or named range in the workbook named in the value of the ExcelFile variable. This value is case-sensitive.

• ExcelFileExists, of type Boolean.

• ExcelTableExists, of type Boolean.

• ExcelFolder, of type String. Enter the complete path of a folder that contains at least one Excel workbook.

• ExcelFiles, of type Object.

• ExcelTables, of type Object.

3. Imports statements. Most of the code samples require you to import one or both of the following .NET Framework namespaces at the top of your script file:

• System.IO, for file system operations.

• System.Data.OleDb, to open Excel files as data sources.

4. References. The code samples that read schema information from Excel files require an additional reference in the script project to the System.Xml namespace.

5. Set the default scripting language for the Script component by using the Scripting language option on the General page of the Options dialog box. For more information, see General Page.

Example 1 Description: Check Whether an Excel File Exists

This example determines whether the Excel workbook file specified in the ExcelFile variable exists, and then sets the Boolean value of the ExcelFileExists variable to the result. You can use this Boolean value for branching in the workflow of the package.

[image: image] To configure this Script Task example

1. Add a new Script task to the package and change its name to ExcelFileExists.

2. In the Script Task Editor, on the Script tab, click ReadOnlyVariables and enter the property value using one of the following methods:

• Type ExcelFile.
-or-

• Click the ellipsis (…) button next to the property field, and in the Select variables dialog box, select the ExcelFile variable.

3. Click ReadWriteVariables and enter the property value using one of the following methods:

• Type ExcelFileExists.
-or-

• Click the ellipsis (…) button next to the property field, and in the Select variables dialog box, select the ExcelFileExists variable.

4. Click Edit Script to open the script editor.

5. Add an Imports statement for the System.IO namespace at the top of the script file.

6. Add the following code.

Example 1 Code

Public Class ScriptMain
 Public Sub Main()
 Dim fileToTest As String

 fileToTest = Dts.Variables("ExcelFile").Value.ToString
 If File.Exists(fileToTest) Then
 Dts.Variables("ExcelFileExists").Value = True
 Else
 Dts.Variables("ExcelFileExists").Value = False
 End If

 Dts.TaskResult = ScriptResults.Success
 End Sub
End Class
public class ScriptMain
{
 public void Main()
 {
 string fileToTest;

 fileToTest = Dts.Variables["ExcelFile"].Value.ToString();
 if (File.Exists(fileToTest))
 {
 Dts.Variables["ExcelFileExists"].Value = true;
 }
 else
 {
 Dts.Variables["ExcelFileExists"].Value = false;
 }

 Dts.TaskResult = (int)ScriptResults.Success;
 }
}

Click here to view code as image

Example 2 Description: Check Whether an Excel Table Exists

This example determines whether the Excel worksheet or named range specified in the ExcelTable variable exists in the Excel workbook file specified in the ExcelFile variable, and then sets the Boolean value of the ExcelTableExists variable to the result. You can use this Boolean value for branching in the workflow of the package.

[image: image] To configure this Script Task example

1. Add a new Script task to the package and change its name to ExcelTableExists.

2. In the Script Task Editor, on the Script tab, click ReadOnlyVariables and enter the property value using one of the following methods:

• Type ExcelTable and ExcelFile separated by commas.
-or-

• Click the ellipsis (…) button next to the property field, and in the Select variables dialog box, select the ExcelTable and ExcelFile variables.

3. Click ReadWriteVariables and enter the property value using one of the following methods:

• Type ExcelTableExists.
-or-

• Click the ellipsis (…) button next to the property field, and in the Select variables dialog box, select the ExcelTableExists variable.

4. Click Edit Script to open the script editor.

5. Add a reference to the System.Xml assembly in the script project.

6. Add Imports statements for the System.IO and System.Data.OleDb namespaces at the top of the script file.

7. Add the following code.

Example 2 Code

Public Class ScriptMain
 Public Sub Main()
 Dim fileToTest As String
 Dim tableToTest As String
 Dim connectionString As String
 Dim excelConnection As OleDbConnection
 Dim excelTables As DataTable
 Dim excelTable As DataRow
 Dim currentTable As String

 fileToTest = Dts.Variables("ExcelFile").Value.ToString
 tableToTest = Dts.Variables("ExcelTable").Value.ToString

 Dts.Variables("ExcelTableExists").Value = False
 If File.Exists(fileToTest) Then
 connectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & fileToTest & _
 ";Extended Properties=Excel 8.0"
 excelConnection = New OleDbConnection(connectionString)
 excelConnection.Open()
 excelTables = excelConnection.GetSchema("Tables")
 For Each excelTable In excelTables.Rows
 currentTable = excelTable.Item("TABLE_NAME").ToString
 If currentTable = tableToTest Then
 Dts.Variables("ExcelTableExists").Value = True
 End If
 Next
 End If
 Dts.TaskResult = ScriptResults.Success
 End Sub
End Class
public class ScriptMain
{
 public void Main()
 {
 string fileToTest;
 string tableToTest;
 string connectionString;
 OleDbConnection excelConnection;
 DataTable excelTables;
 string currentTable;

 fileToTest = Dts.Variables["ExcelFile"].Value.ToString();
 tableToTest = Dts.Variables["ExcelTable"].Value.ToString();

 Dts.Variables["ExcelTableExists"].Value = false;
 if (File.Exists(fileToTest))
 {
 connectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" +
 "Data Source=" + fileToTest + ";Extended Properties=Excel
8.0";
 excelConnection = new OleDbConnection(connectionString);
 excelConnection.Open();
 excelTables = excelConnection.GetSchema("Tables");
 foreach (DataRow excelTable in excelTables.Rows)
 {
 currentTable = excelTable["TABLE_NAME"].ToString();
 if (currentTable == tableToTest)
 {
 Dts.Variables["ExcelTableExists"].Value = true;
 }
 }
 }

 Dts.TaskResult = (int)ScriptResults.Success;

 }
}

Click here to view code as image

Example 3 Description: Get a List of Excel Files in a Folder

This example fills an array with the list of Excel files found in the folder specified in the value of the ExcelFolder variable, and then copies the array into the ExcelFiles variable. You can use the Foreach from Variable enumerator to iterate over the files in the array.

[image: image] To configure this Script Task example

1. Add a new Script task to the package and change its name to GetExcelFiles.

2. Open the Script Task Editor, on the Script tab, click ReadOnlyVariables and enter the property value using one of the following methods:

• Type ExcelFolder
-or-

• Click the ellipsis (…) button next to the property field, and in the Select variables dialog box, select the ExcelFolder variable.

3. Click ReadWriteVariables and enter the property value using one of the following methods:

• Type ExcelFiles.
-or-

• Click the ellipsis (…) button next to the property field, and in the Select variables dialog box, select the ExcelFiles variable.

4. Click Edit Script to open the script editor.

5. Add an Imports statement for the System.IO namespace at the top of the script file.

6. Add the following code.

Example 3 Code

Public Class ScriptMain
 Public Sub Main()
 Const FILE_PATTERN As String = "*.xls"

 Dim excelFolder As String
 Dim excelFiles As String()
 excelFolder = Dts.Variables("ExcelFolder").Value.ToString
 excelFiles = Directory.GetFiles(excelFolder, FILE_PATTERN)

 Dts.Variables("ExcelFiles").Value = excelFiles

 Dts.TaskResult = ScriptResults.Success
 End Sub
End Class
public class ScriptMain
{
 public void Main()
 {
 const string FILE_PATTERN = "*.xls";

 string excelFolder;
 string[] excelFiles;

 excelFolder = Dts.Variables["ExcelFolder"].Value.ToString();
 excelFiles = Directory.GetFiles(excelFolder, FILE_PATTERN);

 Dts.Variables["ExcelFiles"].Value = excelFiles;

 Dts.TaskResult = (int)ScriptResults.Success;
 }
}

Click here to view code as image

Alternate Solution

Instead of using a Script task to gather a list of Excel files into an array, you can also use the ForEach File enumerator to iterate over all the Excel files in a folder. For more information, see How to: Loop through Excel Files and Tables.

Example 4 Description: Get a List of Tables in an Excel File

This example fills an array with the list of worksheets and named ranges found in the Excel workbook file specified by the value of the ExcelFile variable, and then copies the array into the ExcelTables variable. You can use the Foreach from Variable Enumerator to iterate over the tables in the array.

[image: image] Note
The list of tables in an Excel workbook includes both worksheets (which have the $ suffix) and named ranges. If you have to filter the list for only worksheets or only named ranges, you may have to add additional code for this purpose.

[image: image] To configure this Script Task example

1. Add a new Script task to the package and change its name to GetExcelTables.

2. Open the Script Task Editor, on the Script tab, click ReadOnlyVariables and enter the property value using one of the following methods:

• Type ExcelFile.
-or-

• Click the ellipsis (…) button next to the property field, and in the Select variables dialog box, select the ExcelFile variable.

3. Click ReadWriteVariables and enter the property value using one of the following methods:

• Type ExcelTables.
-or-

• Click the ellipsis (…) button next to the property field, and in the Select variables dialog box, select the ExcelTables variable.

4. Click Edit Script to open the script editor.

5. Add a reference to the System.Xml namespace in the script project.

6. Add an Imports statement for the System.Data.OleDb namespace at the top of the script file.

7. Add the following code.

Example 4 Code

Public Class ScriptMain
 Public Sub Main()
 Dim excelFile As String
 Dim connectionString As String
 Dim excelConnection As OleDbConnection
 Dim tablesInFile As DataTable
 Dim tableCount As Integer = 0
 Dim tableInFile As DataRow
 Dim currentTable As String
 Dim tableIndex As Integer = 0
 Dim excelTables As String()

 excelFile = Dts.Variables("ExcelFile").Value.ToString
 connectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & excelFile & _
 ";Extended Properties=Excel 8.0"
 excelConnection = New OleDbConnection(connectionString)
 excelConnection.Open()
 tablesInFile = excelConnection.GetSchema("Tables")
 tableCount = tablesInFile.Rows.Count
 ReDim excelTables(tableCount - 1)
 For Each tableInFile In tablesInFile.Rows
 currentTable = tableInFile.Item("TABLE_NAME").ToString
 excelTables(tableIndex) = currentTable
 tableIndex += 1
 Next

 Dts.Variables("ExcelTables").Value = excelTables

 Dts.TaskResult = ScriptResults.Success
 End Sub
End Class
public class ScriptMain
{
 public void Main()
 {
 string excelFile;
 string connectionString;
 OleDbConnection excelConnection;
 DataTable tablesInFile;
 int tableCount = 0;
 string currentTable;
 int tableIndex = 0;

 string[] excelTables = new string[5];

 excelFile = Dts.Variables["ExcelFile"].Value.ToString();
 connectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" +
 "Data Source=" + excelFile + ";Extended Properties=Excel
8.0";
 excelConnection = new OleDbConnection(connectionString);
 excelConnection.Open();
 tablesInFile = excelConnection.GetSchema("Tables");
 tableCount = tablesInFile.Rows.Count;

 foreach (DataRow tableInFile in tablesInFile.Rows)
 {
 currentTable = tableInFile["TABLE_NAME"].ToString();
 excelTables[tableIndex] = currentTable;
 tableIndex += 1;
 }

 Dts.Variables["ExcelTables"].Value = excelTables;

 Dts.TaskResult = (int)ScriptResults.Success;
 }
}

Click here to view code as image

Alternate Solution

Instead of using a Script task to gather a list of Excel tables into an array, you can also use the ForEach ADO.NET Schema Rowset Enumerator to iterate over all the tables (that is, worksheets and named ranges) in an Excel workbook file. For more information, see How to: Loop through Excel Files and Tables.

Displaying the Results of the Samples

If you have configured each of the examples in this topic in the same package, you can connect all the Script tasks to an additional Script task that displays the output of all the examples.

[image: image] To configure a Script task to display the output of the examples in this topic

1. Add a new Script task to the package and change its name to DisplayResults.

2. Connect each of the four example Script tasks to one another, so that each task runs after the preceding task completes successfully, and connect the fourth example task to the DisplayResults task.

3. Open the DisplayResults task in the Script Task Editor.

4. On the Script tab, click ReadOnlyVariables and use one of the following methods to add all seven variables listed in Configuring a Package to Test the Samples:

• Type the name of each variable separated by commas.
-or-

• Click the ellipsis (…) button next to the property field, and in the Select variables dialog box, selecting the variables.

5. Click Edit Script to open the script editor.

6. Add Imports statements for the Microsoft.VisualBasic and System.Windows.Forms namespaces at the top of the script file.

7. Add the following code.

8. Run the package and examine the results displayed in a message box.

Code to Display the Results

Public Class ScriptMain
 Public Sub Main()
 Const EOL As String = ControlChars.CrLf

 Dim results As String
 Dim filesInFolder As String()
 Dim fileInFolder As String
 Dim tablesInFile As String()
 Dim tableInFile As String

 results = _
 "Final values of variables:" & EOL & _
 "ExcelFile: " & Dts.Variables("ExcelFile").Value.ToString & EOL & _
 "ExcelFileExists: " & Dts.Variables("ExcelFileExists").Value.ToString &
EOL & _
 "ExcelTable: " & Dts.Variables("ExcelTable").Value.ToString & EOL & _
 "ExcelTableExists: " & Dts.Variables("ExcelTableExists").Value.ToString
& EOL & _
 "ExcelFolder: " & Dts.Variables("ExcelFolder").Value.ToString & EOL & _
 EOL

 results &= "Excel files in folder: " & EOL
 filesInFolder = DirectCast(Dts.Variables("ExcelFiles").Value, String())
 For Each fileInFolder In filesInFolder
 results &= " " & fileInFolder & EOL
 Next
 results &= EOL

 results &= "Excel tables in file: " & EOL
 tablesInFile = DirectCast(Dts.Variables("ExcelTables").Value, String())
 For Each tableInFile In tablesInFile
 results &= " " & tableInFile & EOL
 Next

 MessageBox.Show(results, "Results", MessageBoxButtons.OK,
MessageBoxIcon.Information)

 Dts.TaskResult = ScriptResults.Success
 End Sub
End Class
public class ScriptMain
{
 public void Main()
 {
 const string EOL = "\r";

 string results;
 string[] filesInFolder;
 //string fileInFolder;
 string[] tablesInFile;
 //string tableInFile;
 results = "Final values of variables:" + EOL + "ExcelFile: " +
Dts.Variables["ExcelFile"].Value.ToString() + EOL + "ExcelFileExists: " +
Dts.Variables["ExcelFileExists"].Value.ToString() + EOL + "ExcelTable: " +
Dts.Variables["ExcelTable"].Value.ToString() + EOL + "ExcelTableExists: " +
Dts.Variables["ExcelTableExists"].Value.ToString() + EOL + "ExcelFolder: " +
Dts.Variables["ExcelFolder"].Value.ToString() + EOL + EOL;

 results += "Excel files in folder: " + EOL;
 filesInFolder = (string[])(Dts.Variables["ExcelFiles"].Value);
 foreach (string fileInFolder in filesInFolder)
 {
 results += " " + fileInFolder + EOL;
 }
 results += EOL;

 results += "Excel tables in file: " + EOL;
 tablesInFile = (string[])(Dts.Variables["ExcelTables"].Value);
 foreach (string tableInFile in tablesInFile)
 {
 results += " " + tableInFile + EOL;
 }

 MessageBox.Show(results, "Results", MessageBoxButtons.OK,
MessageBoxIcon.Information);

 Dts.TaskResult = (int)ScriptResults.Success;
 }
}

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Excel Connection Manager

How to: Loop through Excel Files and Tables

Sending to a Remote Private Message Queue with the Script Task

Message Queuing (also known as MSMQ) makes it easy for developers to communicate with application programs quickly and reliably by sending and receiving messages. A message queue may be located on the local computer or a remote computer, and may be public or private. In Integration Services, the MSMQ connection manager and Message Queue task do not support sending to a private queue on a remote computer. However, by using the Script task, it is easy to send a message to a remote private queue.

[image: image] Note
If you want to create a task that you can more easily reuse across multiple packages, consider using the code in this Script task sample as the starting point for a custom task. For more information, see Extending the Package with Custom Tasks.

Description

The following example uses an existing MSMQ connection manager, together with objects and methods from the System.Messaging namespace, to send the text contained in a package variable to a remote private message queue. The call to the M:Microsoft.SqlServer.Dts.ManagedConnections.MSMQConn.AcquireConnection(System. Object) method of the MSMQ connection manager returns a MessageQueue object whose Send method accomplishes this task.

[image: image] To configure this Script Task example

1. Create an MSMQ connection manager with the default name. Set the path of a valid remote private queue, in the following format:

FORMATNAME:DIRECT=OS:<computername>\private$\<queuename>

Click here to view code as image

2. Create an Integration Services variable named MessageText of type String to pass the message text into the script. Enter a default message as the value of the variable.

3. Add a Script Task to the design surface and edit it. On the Script tab of the Script Task Editor, add the MessageText variable to the ReadOnlyVariables property to make the variable available inside the script.

4. Click Edit Script to open the Microsoft Visual Studio Tools for Applications (VSTA) script editor.

5. Add a reference in the script project to the System.Messaging namespace.

6. Replace the contents of the script window with the code in the following section.

Code

Imports System
Imports Microsoft.SqlServer.Dts.Runtime
Imports System.Messaging

Public Class ScriptMain

 Public Sub Main()

 Dim remotePrivateQueue As MessageQueue
 Dim messageText As String

 remotePrivateQueue = _
 DirectCast(Dts.Connections("Message Queue Connection
Manager").AcquireConnection(Dts.Transaction), _
 MessageQueue)
 messageText = DirectCast(Dts.Variables("MessageText").Value, String)
 remotePrivateQueue.Send(messageText)

 Dts.TaskResult = ScriptResults.Success
 End Sub

End Class
using System;
using Microsoft.SqlServer.Dts.Runtime;
using System.Messaging;

public class ScriptMain
{

 public void Main()
 {

 MessageQueue remotePrivateQueue = new MessageQueue();
 string messageText;

 remotePrivateQueue = (MessageQueue)(Dts.Connections["Message
Queue Connection Manager"].AcquireConnection(Dts.Transaction) as
MessageQueue);
 messageText = (string)(Dts.Variables["MessageText"].Value);
 remotePrivateQueue.Send(messageText);

 Dts.TaskResult = (int)ScriptResults.Success;

 }

}

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Message Queue Task

Extending the Data Flow with the Script Component

The Script component extends the data flow capabilities of Microsoft Integration Services packages with custom code written in Microsoft Visual Basic or Microsoft Visual C# that is compiled and executed at package run time. The Script component simplifies the development of a custom data flow source, transformation, or destination when the sources, transformations, and destinations included with Integration Services do not fully satisfy your requirements. After you configure the component with the expected inputs and outputs, it writes all the required infrastructure code for you, letting you focus exclusively on the code that is required for your custom processing.

A Script component interacts with the containing package and with the data flow through the autogenerated classes in the ComponentWrapper and BufferWrapper project items, which are instances of the T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent and the T:Microsoft.SqlServer.Dts.Pipeline.ScriptBuffer classes respectively. These classes make connections, variables, and other package items available as typed objects, and manage inputs and outputs. The Script component can also use the Visual Basic namespace and the .NET Framework class library, as well as custom assemblies, to implement custom functionality.

The Script component and the infrastructure code that it generates for you simplify significantly the process of developing a custom data flow component. However, to understand how the Script component works, you may find it useful to read the section Extending the Data Flow with Custom Components to understand the steps that are involved in developing a custom data flow component.

If you are creating a source, transformation, or destination that you plan to reuse in multiple packages, you should consider developing a custom component instead of using the Script component. For more information, see Extending the Data Flow Task with Custom Components.

In This Section

The following topics provide more information about the Script component.

Configuring the Script Component

Properties that you configure in the Script Transformation Editor affect the capabilities and the performance of Script component code.

Coding the Script Component

You use the Microsoft Visual Studio Tools for Applications (VSTA) development environment to develop the scripts contained in the Script component.

Understanding the Script Component Object Model

A new Script component project contains three project items with several classes and autogenerated properties and methods.

Using Variables in the Script Component

The ComponentWrapper project item contains strongly-typed accessor properties for package variables.

Using Connections in the Script Component

The ComponentWrapper project item also contains strongly-typed accessor properties for connections defined in the package.

Raising Events in the Script Component

You can raise events to provide notification of problems and errors.

Logging in the Script Component

You can log information to log providers enabled on the package.

Developing Specific Types of Script Components

These simple examples explain and demonstrate how to use the Script component to develop data flow sources, transformations, and destinations.

Script Component Examples

These simple examples explain and demonstrate a few possible uses for the Script component.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Script Component

Comparing the Script Task and the Script Component

Configuring the Script Component in the Script Component Editor

Before you write custom code in the Script component, you must select the type of data flow component that you want to create—source, transformation, or destination—and then configure the component's metadata and properties in the Script Transformation Editor.

Selecting the Type of Component to Create

When you add a Script component to the Data Flow pane of SSIS Designer, the Select Script Component Type dialog box appears. You preconfigure the component as a source, transformation, or destination. After you make this initial selection, you can continue to configure the component in the Script Transformation Editor.

To set the default script language for the Script component, use the Scripting language option on the General page of the Options dialog box. For more information, see General Page.

Understanding the Two Design-Time Modes

In SSIS Designer, the Script component has two modes: metadata design mode and code design mode.

When you open the Script Transformation Editor, the component enters metadata design mode. In this mode, you can select input columns, and add or configure outputs and output columns, but you cannot write code. After you have configured the component's metadata, you can switch to code design mode to write the script.

When you switch to code design mode by clicking Edit Script, the Script component locks metadata to prevent additional changes, and then automatically generates base code from the metadata of the inputs and outputs. After the autogenerated code is complete, you will be able to enter your custom code. Your code uses the auto-generated base classes to process input rows, to access buffers and columns in the buffers, and to retrieve connection managers and variables from the package, all as strongly-typed objects.

After entering your custom code in code design mode, you can switch back to metadata design mode. This does not delete any code that you have entered; however, subsequent changes to the metadata cause the base class to be regenerated. Afterward, your component may fail validation because objects referenced by your custom code may no longer exist or may have been modified. In this case, you must fix your code manually so that it can be compiled successfully against the regenerated base class.

Configuring the Component in Metadata Design Mode

In metadata design mode, you can select input columns, and add and configure outputs and output columns, but you cannot write code. After you have configured the component's metadata, switch to code design mode to write the script.

The properties that you must configure in the custom editor depend on the usage of the Script component. The Script component can be configured as a source, a transformation, or a destination. Depending on how the component is used, it supports either an input or outputs or both. The custom code that you will write processes the input and output rows and columns.

Inputs Columns Page of the Script Transformation Editor

The Input Columns page of the Script Transformation Editor is displayed for transformations and destinations, but not for sources. On this page, you select the available input columns that you want to make available to your custom script, and specify read-only or read/write access to them.

In the code project that will be generated based on this metadata, the BufferWrapper project item contains a class for each input, and this class contains typed accessor properties for each input column selected. For example, if you select an integer CustomerID column and a string CustomerName column from an input named CustomerInput, the BufferWrapper project item will contain a CustomerInput class that derives from T:Microsoft.SqlServer.Dts.Pipeline.ScriptBuffer, and the CustomerInput class will expose an integer property named CustomerID and a string property named CustomerName. This convention makes it possible to write code with type-checking like the following:

Dim currentCustomerID as Integer = CustomerInput.CustomerID
Dim currentCustomerName as String = CustomerInput.CustomerName

Click here to view code as image

For more information about how to configure input columns for a specific type of data flow component, see the appropriate example under Developing Specific Types of Script Components.

Inputs and Outputs Page of the Script Transformation Editor

The Input and Outputs page of the Script Transformation Editor is displayed for sources, transformations, and destinations. On this page, you add, remove, and configure inputs, outputs, and output columns that you want to use in your custom script, within the following limitations:

• When used as a source, the Script component has no input and supports multiple outputs.

• When used as a transformation, the Script component supports one input and multiple outputs.

• When used as a destination, the Script component supports one input and has no outputs.

In the code project that will be generated based on this metadata, the BufferWrapper project item contains a class for each input and output. For example, if you create an output named CustomerOutput, the BufferWrapper project item will contain a CustomerOutput class that derives from T:Microsoft.SqlServer.Dts.Pipeline.ScriptBuffer, and the CustomerOutput class will contain typed accessor properties for each output column created.

You can configure output columns only on the Input and Outputs page. You can select input columns for transformations and destinations on the Input Columns page. The typed accessor properties created for you in the BufferWrapper project item will be write-only for output columns. The accessor properties for input columns will be read-only or read/write depending on the usage type that you have selected for each column on the Input Columns page.

For more information about configuring inputs and outputs for a specific type of data flow component see the appropriate example under Developing Specific Types of Script Components.

[image: image] Note
Although you cannot directly configure an output as an error output in the Script component for automatic handling of error rows, you can reproduce the functionality of an error output by creating an additional output and using script to direct rows to this output when appropriate. For more information, see Simulating an Error Output in the Script Component.

ExclusionGroup and SynchronousInputID Properties of Outputs

The ExclusionGroup property has a non-zero value only in transformations with synchronous outputs, where your code performs filtering or branching and directs each row to one of the outputs that share the same non-zero ExclusionGroup value. For example, the transformation can direct rows either to the default output or to an error output. When you create additional outputs for this scenario, make sure to set the value of the SynchronousInputID property to the integer that matches the ID of the component’s input.

The SynchronousInputID property has a non-zero value only in transformations with synchronous outputs. If the value of this property is zero, it means that the output is asynchronous. For a synchronous output, where rows are passed through to the selected output or outputs without adding any new rows, this property should contain the ID of the component's input.

[image: image] Note

• When the Script Transformation Editor creates the first output, the editor sets the SynchronousInputID property of the output to the ID of the component's input. However, when the editor creates subsequent outputs, the editor sets the SynchronousInputID properties of those outputs to zero.

• If you are creating a component with synchronous outputs, each output must have its SynchronousInputID property set to the ID of the component’s input. Therefore, each output that the editor creates after the first output must have its SynchronousInputID value changed from zero to the ID of the component's input.

• If you are creating a component with asynchronous outputs, each output must have its SynchronousInputID property set to zero. Therefore, the first output must have its SynchronousInputID value changed from the ID of the component’s input to zero.

For an example of directing rows to one of two synchronous outputs in the Script component, see Creating a Synchronous Transformation with the Script Component.

Object Names in Generated Script

The Script component parses the names of inputs and outputs, and parse the names of columns in the inputs and outputs, and based on these names generates classes and properties in the BufferWrapper project item. If the found names include characters that do not belong to the Unicode categories UppercaseLetter, LowercaseLetter, TitlecaseLetter, ModifierLetter, OtherLetter, or DecimalDigitLetter, the invalid characters are dropped in the generated names. For example, spaces are dropped, therefore two input columns that have the names FirstName and [First Name] are both interpreted as having the column name FirstName, with unpredictable results. To avoid this situation, the names of inputs and outputs and of input and output columns used by the Script component should contain only characters in the Unicode categories listed in this section.

Script Page of the Script Transformation Editor

On the Script page of the Script Task Editor, you assign a unique name and a description for the Script task. You can also assign values for the following properties.

[image: image] Note
In SQL Server 2008 Integration Services (SSIS) and later versions, all scripts are precompiled. In previous versions, you specified whether scripts were precompiled by setting a Precompile property for the task.

ValidateExternalMetadata Property

The Boolean value of the ValidateExternalMetadata property specifies whether the component should perform validation against external data sources at design time, or whether it should postpone validation until run time. By default, the value of this property is True; that is, the external metadata is validated both at design time and at run time. You may want to set the value of this property to False when an external data source is not available at design time: for example, when the package downloads the source or creates the destination only at run time.

ReadOnlyVariables and ReadWriteVariables Properties

You can enter comma-delimited lists of existing variables as the values of these properties to make the variables available for read-only or read/write access within the Script component code. Variables are accessed in code through the P:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.ReadOnlyVariables and P:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.ReadWriteVariables properties of the autogenerated base class. For more information, see Using Variables in the Script Component.

[image: image] Note
Variable names are case-sensitive.

ScriptLanguage

You can select either Microsoft Visual Basic or Microsoft Visual C# as the programming language for the Script component.

Edit Script Button

The Edit Script button opens the Microsoft Visual Studio Tools for Applications (VSTA) IDE in which you write your custom script. For more information, see Coding the Script Component.

Connection Managers Page of the Script Transformation Editor

On the Connection Managers page of the Script Transformation Editor, you add and remove connection managers that you want to use in your custom script. Normally you need to reference connection managers when you create a source or destination component.

In the code project that will be generated based on this metadata, the ComponentWrapper project item contains a Connections collection class that has a typed accessor property for each selected connection manager. Each typed accessor property has the same name as the connection manager itself and returns a reference to the connection manager as an instance of T:Microsoft.SqlServer.Dts.Runtime.Wrapper.IDTSConnectionManager100. For example, if you have added a connection manager named MyADONETConnection on the Connection Managers page of the editor, you can obtain a reference to the connection manager in your script by using the following code:

Dim myADONETConnectionManager As IDTSConnectionManager100 = _
 Me.Connections.MyADONETConnection

Click here to view code as image

For more information, see Connecting to Data Sources in the Script Component.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Coding and Debugging the Script Component

Coding and Debugging the Script Component

In SSIS Designer, the Script component has two modes: metadata design mode and code design mode. When you open the Script Transformation Editor, the component enters metadata design mode, in which you configure metadata and set component properties. After you have set the properties of the Script component and configured the input and outputs in metadata design mode, you can switch to code design mode to write your custom script. For more information about metadata design mode and code design mode, see Configuring the Script Component.

Writing the Script in Code Design Mode

Script Component Development Environment

To write your script, click Edit Script on the Script page of the Script Transformation Editor to open the Microsoft Visual Studio Tools for Applications (VSTA) IDE. The VSTA IDE includes all the standard features of the Visual Studio .NET environment, such as the color-coded Visual Studio editor, IntelliSense, and Object Browser.

Script code is written in Microsoft Visual Basic or Microsoft Visual C#. You specify the script language by setting the ScriptLanguage property in the Script Transformation Editor. If you prefer to use another programming language, you can develop a custom assembly in your language of choice and call its functionality from the code in the Script component.

The script that you create in the Script component is stored in the package definition. There is no separate script file. Therefore, the use of the Script component does not affect package deployment.

[image: image] Note
While you design the package, the script code is temporarily written to a project file. Because storing sensitive information in a file is a potential security risk, we recommended that you do not include sensitive information such as passwords in the script code.

By default, Option Strict is disabled in the IDE.

Script Component Project Structure

The power of the Script component is that it can generate infrastructure code that reduces the amount of code that you must write. This feature relies on the fact that inputs and outputs and their columns and properties are fixed and known in advance. Therefore, any subsequent changes that you make to the component's metadata may invalidate the code that you have written. This causes compilation errors during execution of the package.

Project Items and Classes in the Script Component Project

When you switch to code design mode, the VSTA IDE opens and displays the ScriptMain project item. The ScriptMain project item contains the editable ScriptMain class, which serves as the entry point for the script and which is where you write your code. The code elements in the class vary depending on the programming language that you selected for the Script task. The script project contains two additional auto-generated read-only project items:

• The ComponentWrapper project item contains three classes:

• The UserComponent class, which inherits from T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent and contains the methods and properties that you will use to process data and to interact with the package. The ScriptMain class inherits from the UserComponent class.

• A Connections collection class that contains references to the connections selected on the Connection Manager page of the Script Transformation Editor.

• A Variables collection class that contains references to the variables entered in the ReadOnlyVariable and ReadWriteVariables properties on the Script page of the Script Transformation Editor.

• The BufferWrapper project item contains a class that inherits from T:Microsoft.SqlServer.Dts.Pipeline.ScriptBuffer for each input and output configured on the Inputs and Outputs page of the Script Transformation Editor. Each of these classes contains typed accessor properties that correspond to the configured input and output columns, and the data flow buffers that contain the columns.

For information about how to use these objects, methods, and properties, see Using the Script Component Object Model. For information about how to use the methods and properties of these classes in a particular type of Script component, see the section Examples of Specific Types of Script Components. The example topics also contain complete code samples.

When you configure the Script component as a transformation, the ScriptMain project item contains the following autogenerated code. The code template also provides an overview of the Script component, and additional information on how to retrieve and manipulate SSIS objects, such as variables, events, and connections.

' Microsoft SQL Server Integration Services Script Component
' Write scripts using Microsoft Visual Basic 2008.
' ScriptMain is the entry point class of the script.

Imports System
Imports System.Data
Imports System.Math
Imports Microsoft.SqlServer.Dts.Pipeline.Wrapper
Imports Microsoft.SqlServer.Dts.Runtime.Wrapper

<Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute> _
<CLSCompliant(False)> _
Public Class ScriptMain
 Inherits UserComponent

 Public Overrides Sub PreExecute()
 MyBase.PreExecute()
 '
 ' Add your code here for preprocessing or remove if not needed
 '
 End Sub

 Public Overrides Sub PostExecute()
 MyBase.PostExecute()
 '
 ' Add your code here for postprocessing or remove if not needed
 ' You can set read/write variables here, for example:
 ' Me.Variables.MyIntVar = 100

 '
 End Sub

 Public Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)
 '
 ' Add your code here
 '
 End Sub

End Class
/* Microsoft SQL Server Integration Services user script component
* Write scripts using Microsoft Visual C# 2008.
* ScriptMain is the entry point class of the script.*/

using System;
using System.Data;
using Microsoft.SqlServer.Dts.Pipeline.Wrapper;
using Microsoft.SqlServer.Dts.Runtime.Wrapper;

[Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute]
public class ScriptMain : UserComponent
{

 public override void PreExecute()
 {
 base.PreExecute();
 /*
 Add your code here for preprocessing or remove if not needed
 */
 }

 public override void PostExecute()
 {
 base.PostExecute();
 /*
 Add your code here for postprocessing or remove if not needed
 You can set read/write variables here, for example:
 Variables.MyIntVar = 100
 */
 }

 public override void Input0_ProcessInputRow(Input0Buffer Row)
 {
 /*
 Add your code here
 */
 }

}

Click here to view code as image

Additional Project Items in the Script Component Project

The Script component project can include items other than the default ScriptMain item. You can add classes, modules, code files, and folders to the project, and you can use folders to organize groups of items.

All the items that you add are persisted inside the package.

References in the Script Component Project

You can add references to managed assemblies by right-clicking the Script task project in Project Explorer, and then clicking Add Reference. For more information, see Referencing Other Assemblies in Scripting Solutions.

[image: image] Note
You can view project references in the VSTA IDE in Class View or in Project Explorer. You open either of these windows from the View menu. You can add a new reference from the Project menu, from Project Explorer, or from Class View.

Interacting with the Package in the Script Component

The custom script that you write in the Script component can access and use variables and connection managers from the containing package through strongly-typed accessors in the auto-generated base classes. However, you must configure both variables and connection managers before entering code-design mode if you want to make them available to your script. You can also raise events and perform logging from your Script component code.

The autogenerated project items in the Script component project provide the following objects, methods, and properties for interacting with the package.

	Package Feature

	Access Method

	Variables

	Use the named and typed accessor properties in the Variables collection class in the ComponentWrapper project item, exposed through the Variables property of the ScriptMain class.
The PreExecute method can access only read-only variables. The PostExecute method can access both read-only and read/write variables.

	Connectio ns

	Use the named and typed accessor properties in the Connections collection class in the ComponentWrapper project item, exposed through the Connections property of the ScriptMain class.

	Events

	Raise events by using the P:Microsoft.SqlServer.Dts.
Pipeline.ScriptComponent.ComponentMetaData property of the ScriptMain class and the Fire<X> methods of the T:Microsoft.SqlServer.Dts.Pipeline.
Wrapper.IDTSComponentMetaData100 interface.

	Logging

	Perform logging by using the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.Log(System.String,System.Int32, System.Byte[]) method of the ScriptMain class.

Click here to view table as image

Debugging the Script Component

To debug the code in your Script component, set at least one breakpoint in the code, and then close the VSTA IDE to run the package in SQL Server Data Tools (SSDT). When package execution enters the Script component, the VSTA IDE reopens and displays your code in read-only mode. After execution reaches your breakpoint, you can examine variable values and step through the remaining code.

[image: image] Note
You cannot debug a Script component when you run the Script component as part of a child package that is run from an Execute Package task. Breakpoints that you set in the Script component in the child package are disregarded in these circumstances. You can debug the child package normally by running it separately.

[image: image] Note
When you debug a package that contains multiple Script components, the debugger debugs one Script component. The system can debug another Script component if the debugger completes, as in the case of a Foreach Loop or For Loop container.

You can also monitor the execution of the Script component by using the following methods:

• Interrupt execution and display a modal message by using the MessageBox.Show method in the System.Windows.Forms namespace. (Remove this code after you complete the debugging process.)

• Raise events for informational messages, warnings, and errors. The FireInformation, FireWarning, and FireError methods display the event description in the Visual Studio Output window. However, the FireProgress method, the Console.Write method, and Console.WriteLine method do not display any information in the Output window. Messages from the FireProgress event appear on the Progress tab of SSIS Designer. For more information, see Raising Events in the Script Component.

• Log events or user-defined messages to enabled logging providers. For more information, see Logging in the Script Component.

If you just want to examine the output of a Script component configured as a source or as a transformation, without saving the data to a destination, you can stop the data flow with a Row Count Transformation and attach a data viewer to the output of the Script component. For information about data viewers, see Debugging Data Flow.

In This Section

For more information about coding the Script component, see the following topics in this section.

Using the Script Component Object Model

Explains how to use the objects, methods, and properties available in the Script component.

Referencing Other Assemblies in Scripting Solutions

Explains how to reference objects from the .NET Framework class library in the Script component.

Simulating an Error Output for the Script Component

Explains how to simulate an error output for rows that raise errors during processing by the Script component.

External Resources

• Blog entry, VSTA setup and configuration troubles for SSIS 2008 and R2 installations, on blogs.msdn.com.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

• Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Configuring the Script Component in the Script Component Editor

Understanding the Script Component Object Model

As discussed in Coding the Script Component, the Script component project contains three project items:

1. The ScriptMain item, which contains the ScriptMain class in which you write your code. The ScriptMain class inherits from the UserComponent class.

2. The ComponentWrapper item, which contains the UserComponent class, an instance of T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent that contains the methods and properties that you will use to process data and to interact with the package. The ComponentWrapper item also contains Connections and Variables collection classes.

3. The BufferWrapper item, which contains classes that inherits from T:Microsoft.SqlServer.Dts.Pipeline.ScriptBuffer for each input and output, and typed properties for each column.

As you write your code in the ScriptMain item, you will use the objects, methods, and properties discussed in this topic. Each component will not use all the methods listed here; however, when used, they are used in the sequence shown.

The T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent base class does not contain any implementation code for the methods discussed in this topic. Therefore it is unnecessary, but harmless, to add a call to the base class implementation to your own implementation of the method.

For information about how to use the methods and properties of these classes in a particular type of Script component, see the section Examples of Specific Types of Script Components. The example topics also contain complete code samples.

AcquireConnections Method

Sources and destinations generally must connect to an external data source. Override the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.AcquireConnections(System.Object) method of the T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent base class to retrieve the connection or the connection information from the appropriate connection manager.

The following example returns a System.Data.SqlClient.SqlConnection from an ADO.NET connection manager.

 Dim connMgr As IDTSConnectionManager100
 Dim sqlConn As SqlConnection

 Public Overrides Sub AcquireConnections(ByVal Transaction As Object)

 connMgr = Me.Connections.MyADONETConnection
 sqlConn = CType(connMgr.AcquireConnection(Nothing), SqlConnection)

 End Sub

Click here to view code as image

The following example returns a complete path and file name from a Flat File Connection Manager, and then opens the file by using a System.IO.StreamReader.

Private textReader As StreamReader
Public Overrides Sub AcquireConnections(ByVal Transaction As Object)

 Dim connMgr As IDTSConnectionManager100 = _
 Me.Connections.MyFlatFileSrcConnectionManager
 Dim exportedAddressFile As String = _
 CType(connMgr.AcquireConnection(Nothing), String)
 textReader = New StreamReader(exportedAddressFile)

End Sub

Click here to view code as image

PreExecute Method

Override the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.PreExecute method of the T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent base class whenever you have processing that you must perform one time only before you start processing rows of data. For example, in a destination, you may want to configure the parameterized command that the destination will use to insert each row of data into the data source.

 Dim sqlConn As SqlConnection
 Dim sqlCmd As SqlCommand
 Dim sqlParam As SqlParameter
...
 Public Overrides Sub PreExecute()

 sqlCmd = New SqlCommand("INSERT INTO Person.Address2(AddressID, City)
" & _
 "VALUES(@addressid, @city)", sqlConn)
 sqlParam = New SqlParameter("@addressid", SqlDbType.Int)
 sqlCmd.Parameters.Add(sqlParam)
 sqlParam = New SqlParameter("@city", SqlDbType.NVarChar, 30)
 sqlCmd.Parameters.Add(sqlParam)

 End Sub
 SqlConnection sqlConn;
 SqlCommand sqlCmd;
 SqlParameter sqlParam;

 public override void PreExecute()
 {

 sqlCmd = new SqlCommand("INSERT INTO Person.Address2(AddressID, City)
" + "VALUES(@addressid, @city)", sqlConn);
 sqlParam = new SqlParameter("@addressid", SqlDbType.Int);
 sqlCmd.Parameters.Add(sqlParam);
 sqlParam = new SqlParameter("@city", SqlDbType.NVarChar, 30);
 sqlCmd.Parameters.Add(sqlParam);

 }

Click here to view code as image

Processing Inputs and Outputs

Processing Inputs

Script components that are configured as transformations or destinations have one input.

What the BufferWrapper Project Item Provides

For each input that you have configured, the BufferWrapper project item contains a class that derives from T:Microsoft.SqlServer.Dts.Pipeline.ScriptBuffer and has the same name as the input. Each input buffer class contains the following properties, functions, and methods:

• Named, typed accessor properties for each selected input column. These properties are read-only or read/write depending on the Usage Type specified for the column on the Input Columns page of the Script Transformation Editor.

• A <column>_IsNull property for each selected input column. This property is also read-only or read/write depending on the Usage Type specified for the column.

• A DirectRowTo<outputbuffer> method for each configured output. You will use these methods when filtering rows to one of several outputs in the same ExclusionGroup.

• A NextRow function to get the next input row, and an EndOfRowset function to determine whether the last buffer of data has been processed. You typically do not need these functions when you use the input processing methods implemented in the UserComponent base class. The next section provides more information about the UserComponent base class.

What the ComponentWrapper Project Item Provides

The ComponentWrapper project item contains a class named UserComponent that derives from T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent. The ScriptMain class in which you write your custom code derives in turn from UserComponent. The UserComponent class contains the following methods:

• An overridden implementation of the ProcessInput method. This is the method that the data flow engine calls next at run time after the PreExecute method, and it may be called multiple times. ProcessInput hands off processing to the <inputbuffer>_ProcessInput method. Then the ProcessInput method checks for the end of the input buffer and, if the end of the buffer has been reached, calls the overridable FinishOutputs method and the private MarkOutputsAsFinished method. The MarkOutputsAsFinished method then calls SetEndOfRowset on the last output buffer.

• An overridable implementation of the <inputbuffer>_ProcessInput method. This default implementation simply loops through each input row and calls <inputbuffer>_ProcessInputRow.

• An overridable implementation of the <inputbuffer>_ProcessInputRow method. The default implementation is empty. This is the method that you will normally override to write your custom data processing code.

What Your Custom Code Should Do

You can use the following methods to process input in the ScriptMain class:

• Override <inputbuffer>_ProcessInputRow to process the data in each input row as it passes through.

• Override <inputbuffer>_ProcessInput only if you have to do something additional while looping through input rows. (For example, you have to test for EndOfRowset to take some other action after all rows have been processed.) Call <inputbuffer>_ProcessInputRow to perform the row processing.

• Override FinishOutputs if you have to do something to the outputs before they are closed.

The ProcessInput method ensures that these methods are called at the appropriate times.

Processing Outputs

Script components configured as sources or transformations have one or more outputs.

What the BufferWrapper Project Item Provides

For each output that you have configured, the BufferWrapper project item contains a class that derives from T:Microsoft.SqlServer.Dts.Pipeline.ScriptBuffer and has the same name as the output. Each input buffer class contains the following properties and methods:

• Named, typed, write-only accessor properties for each output column.

• A write-only <column>_IsNull property for each selected output column that you can use to set the column value to null.

• An AddRow method to add an empty new row to the output buffer.

• A SetEndOfRowset method to let the data flow engine know that no more buffers of data are expected. There is also an EndOfRowset function to determine whether the current buffer is the last buffer of data. You generally do not need these functions when you use the input processing methods implemented in the UserComponent base class.

What the ComponentWrapper Project Item Provides

The ComponentWrapper project item contains a class named UserComponent that derives from T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent. The ScriptMain class in which you write your custom code derives in turn from UserComponent. The UserComponent class contains the following methods:

• An overridden implementation of the PrimeOutput method. The data flow engine calls this method before ProcessInput at run time, and it is only called one time. PrimeOutput hands off processing to the CreateNewOutputRows method. Then, if the component is a source (that is, the component has no inputs), PrimeOutput calls the overridable FinishOutputs method and the private MarkOutputsAsFinished method. The MarkOutputsAsFinished method calls SetEndOfRowset on the last output buffer.

• An overridable implementation of the CreateNewOutputRows method. The default implementation is empty. This is the method that you will normally override to write your custom data processing code.

What Your Custom Code Should Do

You can use the following methods to process outputs in the ScriptMain class:

• Override CreateNewOutputRows only when you can add and populate output rows before processing input rows. For example, you can use CreateNewOutputRows in a source, but in a transformation with asynchronous outputs, you should call AddRow during or after the processing of input data.

• Override FinishOutputs if you have to do something to the outputs before they are closed.

The PrimeOutput method ensures that these methods are called at the appropriate times.

PostExecute Method

Override the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.PostExecute method of the T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent base class whenever you have processing that you must perform one time only after you have processed the rows of data. For example, in a source, you may want to close the System.Data.SqlClient.SqlDataReader that you have used to load data into the data flow.

[image: image] Important
The collection of ReadWriteVariables is available only in the PostExecute method. Therefore you cannot directly increment the value of a package variable as you process each row of data. Instead, increment the value of a local variable, and set the value of the package variable to the value of the local variable in the PostExecute method after all data has been processed.

ReleaseConnections Method

Sources and destinations typically must connect to an external data source. Override the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.ReleaseConnections method of the T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent base class to close and release the connection that you have opened previously in the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.AcquireConnections(System.Object) method.

 Dim connMgr As IDTSConnectionManager100
...
 Public Overrides Sub ReleaseConnections()

 connMgr.ReleaseConnection(sqlConn)

 End Sub
 IDTSConnectionManager100 connMgr;

 public override void ReleaseConnections()
 {

 connMgr.ReleaseConnection(sqlConn);

 }

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Configuring the Script Component in the Script Component Editor

Coding the Script Component

Using Variables in the Script Component

Variables store values that a package and its containers, tasks, and event handlers can use at run time. For more information, see Integration Services Variables.

You can make existing variables available for read-only or read/write access by your custom script by entering comma-delimited lists of variables in the ReadOnlyVariables and ReadWriteVariables fields on the Script page of the Script Transformation Editor. Keep in mind that variable names are case-sensitive. Use the Value property to read from and write to individual variables. The Script component handles any required locking behind the scenes as your script manipulates the variables at run time.

[image: image] Important
The collection of ReadWriteVariables is only available in the PostExecute method to maximize performance and minimize the risk of locking conflicts. Therefore you cannot directly increment the value of a package variable as you process each row of data. Increment the value of a local variable instead, and set the value of the package variable to the value of the local variable in the PostExecute method after all data has been processed. You can also use the P:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.VariableDispenser property to work around this limitation, as described later in this topic. However, writing directly to a package variable as each row is processed will negatively impact performance and increase the risk of locking conflicts.

For more information about the Script page of the Script Transformation Editor, see Configuring the Script Component and Script Transformation Editor (Script Page).

The Script component creates a Variables collection class in the ComponentWrapper project item with a strongly-typed accessor property for the value of each preconfigured variable where the property has the same name as the variable itself. This collection is exposed through the Variables property of the ScriptMain class. The accessor property provides read-only or read/write permission to the value of the variable as appropriate. For example, if you have added an integer variable named MyIntegerVariable to the ReadOnlyVariables list, you can retrieve its value in your script by using the following code:

Dim myIntegerVariableValue As Integer = Me.Variables.MyIntegerVariable

Click here to view code as image

You can also use the P:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.VariableDispenser property, accessed by calling Me.VariableDispenser, to work with variables in the Script component. In this case you are not using the typed and named accessor properties for variables, but accessing the variables directly. When using the P:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.VariableDispenser, you must handle both the locking semantics and the casting of data types for variable values in your own code. You have to use the P:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.VariableDispenser property instead of the named and typed accessor properties if you want to work with a variable that is not available at design time but is created programmatically at run time.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Integration Services Variables

Using Variables in Packages

Connecting to Data Sources in the Script Component

A connection manager is a convenient unit that encapsulates and stores the information that is required to connect to a data source of a particular type. For more information, see Integration Services Connections.

You can make existing connection managers available for access by the custom script in the source or destination component by clicking the Add and Remove buttons on the Connection Managers page of the Script Transformation Editor. However, you must write your own custom code to load or save your data, and possibly to open and close the connection to the data source. For more information about the Connection Managers page of the Script Transformation Editor, see Configuring the Script Component and Script Transformation Editor (Connection Managers Page).

The Script component creates a Connections collection class in the ComponentWrapper project item that contains a strongly-typed accessor for each connection manager that has the same name as the connection manager itself. This collection is exposed through the Connections property of the ScriptMain class. The accessor property returns a reference to the connection manager as an instance of T:Microsoft.SqlServer.Dts.Runtime.Wrapper.IDTSConnectionManager100. For example, if you have added a connection manager named MyADONETConnection on the Connection Managers page of the dialog box, you can obtain a reference to it in your script by adding the following code:

Dim myADONETConnectionManager As IDTSConnectionManager100 = _
 Me.Connections.MyADONETConnection

Click here to view code as image

[image: image] Note
You must know the type of connection that is returned by the connection manager before you call AcquireConnection. Because the Script task has Option Strict enabled, you must cast the connection, which is returned as type Object, to the appropriate connection type before you can use it.

Next, you call the AcquireConnection method of the specific connection manager to obtain either the underlying connection or the information that is required to connect to the data source. For example, you obtain a reference to the System.Data.SqlConnection wrapped by an ADO.NET connection manager by using the following code:

Dim myADOConnection As SqlConnection = _
 CType(MyADONETConnectionManager.AcquireConnection(Nothing),
SqlConnection)

Click here to view code as image

In contrast, the same call to a flat file connection manager returns only the path and file name of the file data source.

Dim myFlatFile As String = _
 CType(MyFlatFileConnectionManager.AcquireConnection(Nothing), String)

Click here to view code as image

You then must provide this path and file name to a System.IO.StreamReader or Streamwriter to read or write the data in the flat file.

[image: image] Important

• When you write managed code in a Script component, you cannot call the AcquireConnection method of connection managers that return unmanaged objects, such as the OLE DB connection manager and the Excel connection manager. However, you can read the ConnectionString property of these connection managers, and connect to the data source directly in your code by using the connection string of an OLEDB connection from the System.Data.OleDb namespace.

• If you need to call the AcquireConnection method of a connection manager that returns an unmanaged object, use an ADO.NET connection manager. When you configure the ADO.NET connection manager to use an OLE DB provider, it connects by using the .NET Framework Data Provider for OLE DB. In this case, the AcquireConnection method returns a System.Data.OleDb.OleDbConnection instead of an unmanaged object. To configure an ADO.NET connection manager for use with an Excel data source, select the Microsoft OLE DB Provider for Jet, specify an Excel workbook, and then enter Excel 8.0 (for Excel 97 and later) as the value of Extended Properties on the All page of the Connection Manager dialog box.

For more information about how to use connection managers with the script component, see Creating a Source with the Script Component and Creating a Destination with the Script Component.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Integration Services Connections

Creating Connection Managers

Raising Events in the Script Component

Events provide a way to report errors, warnings, and other information, such as task progress or status, to the containing package. The package provides event handlers for managing event notifications. The Script component can raise events by calling methods on the P:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.ComponentMetaData property of the ScriptMain class. For more information about how Integration Services packages handle events, see DTS Event Handlers.

Events can be logged to any log provider that is enabled in the package. Log providers store information about events in a data store. The Script component can also use the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.Log(System.String,System.Int32,System.Byte[]) method to log information to a log provider without raising an event. For more information about how to use the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.Log(System.String,System.Int32,System.Byte[]) method, see the following section.

To raise an event, the Script task calls one of the following methods of the T:Microsoft.SqlServer.Dts.Pipeline.Wrapper.IDTSComponentMetaData100 interface exposed by the P:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.ComponentMetaData property:

	Event

	Description

	M:Microsoft.SqlServer.Dts.Pipeline.
Wrapper.IDTSComponentMetaData100.
FireCustomEvent(System.String,System.String,
System.Object[]@,System.String,System.Boolean@)

	Raises a user-defined custom event in the package.

	M:Microsoft.SqlServer.Dts.Pipeline.
Wrapper.IDTSComponentMetaData100.FireError(Syste
m.Int32,System.String,System.String,
System.String,System.Int32,System.Boolean@)

	Informs the package of an error condition.

	M:Microsoft.SqlServer.Dts.Pipeline.
Wrapper.IDTSComponentMetaData100.FireInformation
(System.Int32,System.String,System.String,
System.String,System.Int32,System.Boolean@)

	Provides information to the user.

	M:Microsoft.SqlServer.Dts.Pipeline.
Wrapper.IDTSComponentMetaData100.FireProgress(Sy
stem.String,System.Int32,System.
Int32,System.Int32,System.String,System.Boolean@)

	Informs the package of the progress of the component.

	M:Microsoft.SqlServer.Dts.Pipeline.
Wrapper.IDTSComponentMetaData100.FireWarning(Sy
stem.Int32,System.String,System.
String,System.String,System.Int32)

	Informs the package that the component is in a state that warra nts user notification, but is not an error condition.

Click here to view table as image

Here is a simple example of raising an Error event:

Dim myMetadata as IDTSComponentMetaData100
myMetaData = Me.ComponentMetaData
myMetaData.FireError(...)

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Integration Services Event Handlers

Add an Event Handler to a Package

Logging in the Script Component

Logging in Integration Services packages lets you save detailed information about execution progress, results, and problems by recording predefined events or user-defined messages for later analysis. The Script component can use the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.Log(System.String,System.Int32,System.Byte[]) method of the ScriptMain class to log user-defined data. If logging is enabled, and the ScriptComponentLogEntry event is selected for logging on the Details tab of the Configure SSIS Logs dialog box, a single call to the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.Log(System.String,System.Int32,System.Byte[]) method stores the event information in all the log providers that have been configured for the data flow task.

Here is a simple example of logging:

Dim bt(0) As Byte
Me.Log("Test Log Event", _
 0, _
 bt)

Click here to view code as image

[image: image] Note
Although you can perform logging directly from your Script component, you may want to consider implementing events rather than logging. When using events, not only can you enable the logging of event messages, but you can respond to the event with default or user-defined event handlers.

For more information about logging, see Integration Services Logging.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Integration Services Logging

Developing Specific Types of Script Components

The Script component is a configurable tool that you can use in the data flow of a package to fill almost any requirement that is not met by the sources, transformations, and destinations that are included with Integration Services. This section contains Script component code samples that demonstrate the four options for configuring the Script component:

• As a source.

• As a transformation with synchronous outputs.

• As a transformation with asynchronous outputs.

• As a destination.

For additional examples of the Script component, see Script Component Examples.

In This Section

Creating a Source with the Script Component

Explains and demonstrates how to create a data flow source by using the Script component.

Creating a Synchronous Transformation with the Script Component

Explains and demonstrates how to create a data flow transformation with synchronous outputs by using the Script component. This kind of transformation modifies rows of data in place as they pass through the component.

Creating an Asynchronous Transformation with the Script Component

Explains and demonstrates how to create a data flow transformation with asynchronous outputs by using the Script component. This kind of transformation has to read all rows of data before it can add more information, such as calculated aggregates, to the data that passes through the component.

Creating a Destination with the Script Component

Explains and demonstrates how to create a data flow destination by using the Script component.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Comparing Scripting Solutions and Custom Objects

Developing Specific Types of Data Flow Components

Creating a Source with the Script Component

You use a source component in the data flow of an Integration Services package to load data from a data source to pass on to downstream transformations and destinations. Ordinarily you connect to the data source through an existing connection manager.

For an overview of the Script component, see Programming the Script Component.

The Script component and the infrastructure code that it generates for you simplify significantly the process of developing a custom data flow component. However, to understand how the Script component works, you may find it useful to read through the steps that are involved in developing a custom data flow component. See the section Extending the Data Flow with Custom Components, especially the topic Creating a Source Component.

Getting Started with a Source Component

When you add a Script component to the Data Flow pane of SSIS Designer, the Select Script Component Type dialog box opens and prompts you to select a Source, Destination, or Transformation script. In this dialog box, select Source.

Configuring a Source Component in Metadata-Design Mode

After selecting to create a source component, you configure the component by using the Script Transformation Editor. For more information, see Configuring the Script Component.

A data flow source component has no inputs and supports one or more outputs. Configuring the outputs for the component is one of the steps that you must complete in metadata design mode, by using the Script Transformation Editor, before you write your custom script.

You can also specify the script language by setting the ScriptLanguage property on the Script page of the Script Transformation Editor.

[image: image] Note
To set the default script language for Script components and Script Tasks, use the Scripting language option on the General page of the Options dialog box. For more information, see General Page.

Adding Connection Managers

Ordinarily a source component uses an existing connection manager to connect to the data source from which it loads data into the data flow. On the Connection Managers page of the Script Transformation Editor, click Add to add the appropriate connection manager. However, a connection manager is only a convenient unit that encapsulates and stores the information that it must have to connect to a data source of a particular type. You must write your own custom code to load or save your data, and possibly to open and close the connection to the data source also.

For general information about how to use connection managers with the Script component, see Connecting to Data Sources in the Script Component.

For more information about the Connection Managers page of the Script Transformation Editor, see Script Transformation Editor (Connection Managers Page).

Configuring Outputs and Output Columns

A source component has no inputs and supports one or more outputs. On the Inputs and Outputs page of the Script Transformation Editor, a single output has been created by default, but no output columns have been created. On this page of the editor, you may need or want to configure the following items.

• You must add and configure output columns manually for each output. Select the Output Columns folder for each output, and then use the Add Column and Remove Column buttons to manage the output columns for each output of the source component. Later, you will refer to the output columns in your script by the names that you assign here, by using the typed accessor properties created for you in the auto-generated code.

• You may want to create one or more additional outputs, such as a simulated error output for rows that contain unexpected values. Use the Add Output and Remove Output buttons to manage the outputs of the source component. All input rows are directed to all available outputs unless you also specify an identical non-zero value for the ExclusionGroup property of those outputs where you intend to direct each row to only one of the outputs that share the same ExclusionGroup value. The particular integer value selected to identify the ExclusionGroup is not significant.

[image: image] Note
You can also use a non-zero ExclusionGroup property value with a single output when you do not want to output all rows. In this case, however, you must explicitly call the DirectRowTo<outputbuffer> method for each row that you want to send to the output.

• You may want to assign a friendly name to the outputs. Later, you will refer to the outputs by their names in your script, by using the typed accessor properties created for you in the auto-generated code.

• Ordinarily multiple outputs in the same ExclusionGroup have the same output columns. However, if you are creating a simulated error output, you may want to add more columns to store error information. For information about how the data flow engine processes error rows, see Creating and Using Error Outputs. In the Script component, however, you must write your own code to fill the additional columns with appropriate error information. For more information, see Simulating an Error Output for the Script Component.

For more information about the Inputs and Outputs page of the Script Transformation Editor, see Script Transformation Editor (Inputs and Outputs Page).

Adding Variables

If there are any existing variables whose values you want to use in your script, you can add them in the ReadOnlyVariables and ReadWriteVariables property fields on the Script page of the Script Transformation Editor.

When you enter multiple variables in the property fields, separate the variable names by commas. You can also enter multiple variables by clicking the ellipsis (…) button next to the ReadOnlyVariables and ReadWriteVariables property fields and selecting variables in the Select variables dialog box.

For general information about how to use variables with the Script component, see Using Variables in the Script Component.

For more information about the Script page of the Script Transformation Editor, see Script Transformation Editor (Script Page).

Scripting a Source Component in Code-Design Mode

After you have configured the metadata for your component, open the Microsoft Visual Studio Tools for Applications (VSTA) IDE to code your custom script. To open VSTA, click Edit Script on the Script page of the Script Transformation Editor. You can write your script by using either Microsoft Visual Basic or Microsoft Visual C#, depending on the script language selected for the ScriptLanguage property.

For important information that applies to all kinds of components created by using the Script component, see Coding the Script Component.

Understanding the Auto-generated Code

When you open the VSTA IDE after creating and configuring a source component, the editable ScriptMain class appears in the code editor. You write your custom code in the ScriptMain class.

The ScriptMain class includes a stub for the CreateNewOutputRows method. The CreateNewOutputRows is the most important method in a source component.

If you open the Project Explorer window in VSTA, you can see that the Script component has also generated read-only BufferWrapper and ComponentWrapper project items. The ScriptMain class inherits from UserComponent class in the ComponentWrapper project item. At run time, the data flow engine invokes the PrimeOutput method in the UserComponent class, which overrides the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.PrimeOutput(System.Int32,System.Int32[],Mi crosoft.SqlServer.Dts.Pipeline.PipelineBuffer[]) method of the T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent parent class. The PrimeOutput method in turn calls the following methods:

1. The CreateNewOutputRows method, which you override in ScriptMain to add rows from the data source to the output buffers, which are empty at first.

2. The FinishOutputs method, which is empty by default. Override this method in ScriptMain to perform any processing that is required to complete the output.

3. The private MarkOutputsAsFinished method, which calls the M:Microsoft.SqlServer.Dts.Pipeline.ScriptBuffer.SetEndOfRowset method of the T:Microsoft.SqlServer.Dts.Pipeline.ScriptBuffer parent class to indicate to the data flow engine that the output is finished. You do not have to call SetEndOfRowset explicitly in your own code.

Writing Your Custom Code

To finish creating a custom source component, you may want to write script in the following methods available in the ScriptMain class.

1. Override the AcquireConnections method to connect to the external data source. Extract the connection object, or the required connection information, from the connection manager.

2. Override the PreExecute method to load data, if you can load all the source data at the same time. For example, you can execute a SqlCommand against an ADO.NET connection to a SQL Server database and load all the source data at the same time into a SqlDataReader. If you must load the source data one row at a time (for example, when reading a text file), you can load the data as you loop through rows in CreateNewOutputRows.

3. Use the overridden CreateNewOutputRows method to add new rows to the empty output buffers and to fill in the values of each column in the new output rows. Use the AddRow method of each output buffer to add an empty new row, and then set the values of each column. Typically you copy values from the columns loaded from the external source.

4. Override the PostExecute method to finish processing the data. For example, you can close the SqlDataReader that you used to load data.

5. Override the ReleaseConnections method to disconnect from the external data source, if required.

Examples

The following examples demonstrate the custom code that is required in the ScriptMain class to create a source component.

[image: image] Note
These examples use the Person.Address table in the AdventureWorks sample database and pass its first and fourth columns, the int AddressID and nvarchar(30) City columns, through the data flow. The same data is used in the source, transformation, and destination samples in this section. Additional prerequisites and assumptions are documented for each example.

ADO.NET Source Example

This example demonstrates a source component that uses an existing ADO.NET connection manager to load data from a SQL Server table into the data flow.

If you want to run this sample code, you must configure the package and the component as follows:

1. Create an ADO.NET connection manager that uses the SqlClient provider to connect to the AdventureWorks database.

2. Add a new Script component to the Data Flow designer surface and configure it as a source.

3. Open the Script Transformation Editor. On the Inputs and Outputs page, rename the default output with a more descriptive name such as MyAddressOutput, and add and configure the two output columns, AddressID and City.

[image: image] Note
Be sure to change the data type of the City output column to DT_WSTR.

4. On the Connection Managers page, add or create the ADO.NET connection manager and give it a name such as MyADONETConnection.

5. On the Script page, click Edit Script and enter the script that follows. Then close the script development environment and the Script Transformation Editor.

6. Create and configure a destination component, such as a SQL Server destination, or the sample destination component demonstrated in Creating a Destination with the Script Component, that expects the AddressID and City columns. Then connect the source component to the destination. (You can connect a source directly to a destination without any transformations.) You can create a destination table by running the following Transact-SQL command in the AdventureWorks database:

CREATE TABLE [Person].[Address2](
 [AddressID] [int] NOT NULL,
 [City] [nvarchar](30) NOT NULL
)

Click here to view code as image

7. Run the sample.

Imports System.Data.SqlClient
...
Public Class ScriptMain
 Inherits UserComponent

 Dim connMgr As IDTSConnectionManager100
 Dim sqlConn As SqlConnection
 Dim sqlReader As SqlDataReader

 Public Overrides Sub AcquireConnections(ByVal Transaction As
Object)

 connMgr = Me.Connections.MyADONETConnection
 sqlConn = CType(connMgr.AcquireConnection(Nothing),
SqlConnection)

 End Sub

 Public Overrides Sub PreExecute()

 Dim cmd As New SqlCommand("SELECT AddressID, City,
StateProvinceID FROM Person.Address", sqlConn)
 sqlReader = cmd.ExecuteReader

 End Sub
 Public Overrides Sub CreateNewOutputRows()

 Do While sqlReader.Read
 With MyAddressOutputBuffer
 .AddRow()
 .AddressID = sqlReader.GetInt32(0)
 .City = sqlReader.GetString(1)
 End With
 Loop

 End Sub

 Public Overrides Sub PostExecute()

 sqlReader.Close()

 End Sub

 Public Overrides Sub ReleaseConnections()

 connMgr.ReleaseConnection(sqlConn)

 End Sub

End Class

using System.Data.SqlClient;
public class ScriptMain:
 UserComponent

{
 IDTSConnectionManager100 connMgr;
 SqlConnection sqlConn;
 SqlDataReader sqlReader;

 public override void AcquireConnections(object Transaction)
 {
 connMgr = this.Connections.MyADONETConnection;
 sqlConn = (SqlConnection)connMgr.AcquireConnection(null);

 }

 public override void PreExecute()
 {

 SqlCommand cmd = new SqlCommand("SELECT AddressID, City,
StateProvinceID FROM Person.Address", sqlConn);
 sqlReader = cmd.ExecuteReader();

 }

 public override void CreateNewOutputRows()
 {

 while (sqlReader.Read())
 {
 {
 MyAddressOutputBuffer.AddRow();
 MyAddressOutputBuffer.AddressID =
sqlReader.GetInt32(0);
 MyAddressOutputBuffer.City = sqlReader.GetString(1);
 }
 }

 }

 public override void PostExecute()
 {

 sqlReader.Close();

 }

 public override void ReleaseConnections()
 {

 connMgr.ReleaseConnection(sqlConn);

 }

}

Click here to view code as image

Flat File Source Example

This example demonstrates a source component that uses an existing Flat File connection manager to load data from a flat file into the data flow. The flat file source data is created by exporting it from SQL Server.

If you want to run this sample code, you must configure the package and the component as follows:

1. Use the SQL Server Import and Export Wizard to export the Person.Address table from the AdventureWorks sample database to a comma-delimited flat file. This sample uses the file name ExportedAddresses.txt.

2. Create a Flat File connection manager that connects to the exported data file.

3. Add a new Script component to the Data Flow designer surface and configure it as a source.

4. Open the Script Transformation Editor. On the Inputs and Outputs page, rename the default output with a more descriptive name such as MyAddressOutput. Add and configure the two output columns, AddressID and City.

5. On the Connection Managers page, add or create the Flat File connection manager, using a descriptive name such as MyFlatFileSrcConnectionManager.

6. On the Script page, click Edit Script and enter the script that follows. Then close the script development environment and the Script Transformation Editor.

7. Create and configure a destination component, such as a SQL Server destination, or the sample destination component demonstrated in Creating a Destination with the Script Component. Then connect the source component to the destination. (You can connect a source directly to a destination without any transformations.) You can create a destination table by running the following Transact-SQL command in the AdventureWorks database:

CREATE TABLE [Person].[Address2](
 [AddressID] [int] NOT NULL,
 [City] [nvarchar](30) NOT NULL
)

Click here to view code as image

8. Run the sample.

Imports System.IO
...
Public Class ScriptMain
 Inherits UserComponent

 Private textReader As StreamReader
 Private exportedAddressFile As String

 Public Overrides Sub AcquireConnections(ByVal Transaction As
Object)

 Dim connMgr As IDTSConnectionManager100 = _
 Me.Connections.MyFlatFileSrcConnectionManager
 exportedAddressFile = _
 CType(connMgr.AcquireConnection(Nothing), String)

 End Sub

 Public Overrides Sub PreExecute()
 MyBase.PreExecute()
 textReader = New StreamReader(exportedAddressFile)
 End Sub

 Public Overrides Sub CreateNewOutputRows()

 Dim nextLine As String
 Dim columns As String()

 Dim delimiters As Char()
 delimiters = ",".ToCharArray

 nextLine = textReader.ReadLine
 Do While nextLine IsNot Nothing
 columns = nextLine.Split(delimiters)
 With MyAddressOutputBuffer
 .AddRow()
 .AddressID = columns(0)
 .City = columns(3)
 End With
 nextLine = textReader.ReadLine
 Loop

 End Sub

 Public Overrides Sub PostExecute()
 MyBase.PostExecute()
 textReader.Close()

 End Sub

End Class

using System.IO;
public class ScriptMain:
 UserComponent

{
 private StreamReader textReader;
 private string exportedAddressFile;

 public override void AcquireConnections(object Transaction)
 {

 IDTSConnectionManager100 connMgr =
this.Connections.MyFlatFileSrcConnectionManager;
 exportedAddressFile = (string)connMgr.AcquireConnection(null);

 }

 public override void PreExecute()
 {
 base.PreExecute();
 textReader = new StreamReader(exportedAddressFile);
 }

 public override void CreateNewOutputRows()
 {

 string nextLine;
 string[] columns;

 char[] delimiters;
 delimiters = ",".ToCharArray();

 nextLine = textReader.ReadLine();
 while (nextLine != null)
 {
 columns = nextLine.Split(delimiters);
 {
 MyAddressOutputBuffer.AddRow();
 MyAddressOutputBuffer.AddressID = columns[0];
 MyAddressOutputBuffer.City = columns[3];
 }
 nextLine = textReader.ReadLine();
 }
 }

 public override void PostExecute()
 {

 base.PostExecute();
 textReader.Close();

 }

}

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Creating a Destination with the Script Component

Developing a Custom Source Component

Creating a Synchronous Transformation with the Script Component

You use a transformation component in the data flow of an Integration Services package to modify and analyze data as it passes from source to destination. A transformation with synchronous outputs processes each input row as it passes through the component. A transformation with asynchronous outputs waits until it has received all input rows to complete its processing. This topic discusses a synchronous transformation. For information about asynchronous transformations, see Creating an Asynchronous Transformation with the Script Component. For more information about the difference between synchronous and asynchronous components, see Understanding Synchronous and Asynchronous Transformations.

For an overview of the Script component, see Programming the Script Component.

The Script component and the infrastructure code that it generates for you simplify significantly the process of developing a custom data flow component. However, to understand how the Script component works, you may find it useful to read the steps that you must follow in developing a custom data flow component in the section on Extending the Data Flow with Custom Components, and especially Creating a Transformation Component with Synchronous Outputs.

Getting Started with a Synchronous Transformation Component

When you add a Script component to the Data Flow pane of SSIS Designer, the Select Script Component Type dialog box opens and prompts you to select a Source, Destination, or Transformation component type. In this dialog box, select Transformation.

Configuring a Synchronous Transformation Component in Metadata-Design Mode

After you select the option to create a transformation component, you configure the component by using the Script Transformation Editor. For more information, see Configuring the Script Component.

To set the script language for the Script component, you set the ScriptLanguage property on the Script page of the Script Transformation Editor.

[image: image] Note
To set the default scripting language for the Script component, use the Scripting language option on the General page of the Options dialog box. For more information, see General Page.

A data flow transformation component has one input, and supports one or more outputs. Configuring the input and outputs for the component is one of the steps that you must complete in metadata design mode, by using the Script Transformation Editor, before you write your custom script.

Configuring Input Columns

A transformation component has one input.

On the Input Columns page of the Script Transformation Editor, the column list shows the available columns from the output of the upstream component in the data flow. Select the columns that you want to transform or pass through. Mark any columns that you want to transform in place as Read/Write.

For more information about the Input Columns page of the Script Transformation Editor, see Script Transformation Editor (Input Columns Page).

Configuring Inputs, Outputs, and Output Columns

A transformation component supports one or more outputs.

On the Inputs and Outputs page of the Script Transformation Editor, you can see that a single output has been created, but the output has no columns. On this page of the editor, you may need or want to configure the following items.

• Create one or more additional outputs, such as a simulated error output for rows that contain unexpected values. Use the Add Output and Remove Output buttons to manage the outputs of your synchronous transformation component. All input rows are directed to all available outputs unless you indicate that you intend to redirect each row to one output or the other. You indicate that you intend to redirect rows by specifying a non-zero integer value for the ExclusionGroup property on the outputs. The specific integer value entered in ExclusionGroup to identify the outputs is not significant, but you must use the same integer consistently for the specified group of outputs.

[image: image] Note
You can also use a non-zero ExclusionGroup property value with a single output when you do not want to output all rows. However, in this case, you must explicitly call the DirectRowTo<outputbuffer> method for each row that you want to send to the output.

• Assign a more descriptive name to the input and outputs. The Script component uses these names to generate the typed accessor properties that you will use to refer to the input and outputs in your script.

• Leave columns as is for synchronous transformations. Typically a synchronous transformation does not add columns to the data flow. Data is modified in place in the buffer, and the buffer is passed on to the next component in the data flow. If this is the case, you do not have to add and configure output columns explicitly on the transformation's outputs. The outputs appear in the editor without any explicitly defined columns.

• Add new columns to simulated error outputs for row-level errors. Ordinarily multiple outputs in the same ExclusionGroup have the same set of output columns. However, if you are creating a simulated error output, you may want to add more columns to contain error information. For information about how the data flow engine processes error rows, see Creating and Using Error Outputs. Note that in the Script component you must write your own code to fill the additional columns with appropriate error information. For more information, see Simulating an Error Output for the Script Component.

For more information about the Inputs and Outputs page of the Script Transformation Editor, see Script Transformation Editor (Inputs and Outputs Page).

Adding Variables

If you want to use existing variables in your script, you can add them in the ReadOnlyVariables and ReadWriteVariables property fields on the Script page of the Script Transformation Editor.

When you add multiple variables in the property fields, separate the variable names by commas. You can also select multiple variables by clicking the ellipsis (…) button next to the ReadOnlyVariables and ReadWriteVariables property fields, and then selecting the variables in the Select variables dialog box.

For general information about how to use variables with the Script component, see Using Variables in the Script Component.

For more information about the Script page of the Script Transformation Editor, see Script Transformation Editor (Script Page).

Scripting a Synchronous Transformation Component in Code-Design Mode

After you have configured the metadata for your component, you can write your custom script. In the Script Transformation Editor, on the Script page, click Edit Script to open the Microsoft Visual Studio Tools for Applications (VSTA) IDE where you can add your custom script. The scripting language that you use depends on whether you selected Microsoft Visual Basic or Microsoft Visual C# as the script language for the ScriptLanguage property on the Script page. For important information that applies to all kinds of components created by using the Script component, see Coding the Script Component.

Understanding the Auto-generated Code

When you open the VSTA IDE after you create and configuring a transformation component, the editable ScriptMain class appears in the code editor with a stub for the ProcessInputRow method. The ScriptMain class is where you will write your custom code, and ProcessInputRow is the most important method in a transformation component.

If you open the Project Explorer window in VSTA, you can see that the Script component has also generated read-only BufferWrapper and ComponentWrapper project items. The ScriptMain class inherits from the UserComponent class in the ComponentWrapper project item.

At run time, the data flow engine invokes the ProcessInput method in the UserComponent class, which overrides the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.ProcessInput(System.Int32,Microsoft.SqlServ er.Dts.Pipeline.PipelineBuffer) method of the T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent parent class. The ProcessInput method in turn loops through the rows in the input buffer and calls the ProcessInputRow method one time for each row.

Writing Your Custom Code

A transformation component with synchronous outputs is the simplest of all data flow components to write. For example, the single-output example shown later in this topic consists of the following custom code:

Row.City = UCase(Row.City)
Row.City = (Row.City).ToUpper();

Click here to view code as image

To finish creating a custom synchronous transformation component, you use the overridden ProcessInputRow method to transform the data in each row of the input buffer. The data flow engine passes this buffer, when full, to the next component in the data flow.

Depending on your requirements, you may also want to write script in the PreExecute and PostExecute methods, available in the ScriptMain class, to perform preliminary or final processing.

Working with Multiple Outputs

Directing input rows to one of two or more possible outputs does not require much more custom code than the single-output scenario discussed earlier. For example, the two-output example shown later in this topic consists of the following custom code:

Row.City = UCase(Row.City)
If Row.City = "REDMOND" Then
 Row.DirectRowToMyRedmondAddresses()
Else
 Row.DirectRowToMyOtherAddresses()
End If
 Row.City = (Row.City).ToUpper();

 if (Row.City=="REDMOND")
 {
 Row.DirectRowToMyRedmondAddresses();
 }
 else
 {
 Row.DirectRowToMyOtherAddresses();
 }

Click here to view code as image

In this example, the Script component generates the DirectRowTo<OutputBufferX> methods for you, based on the names of the outputs that you configured. You can use similar code to direct error rows to a simulated error output.

Examples

The examples here demonstrate the custom code that is required in the ScriptMain class to create a synchronous transformation component.

[image: image] Note
These examples use the Person.Address table in the AdventureWorks sample database and pass its first and fourth columns, the int AddressID and nvarchar(30) City columns, through the data flow. The same data is used in the source, transformation, and destination samples in this section. Additional prerequisites and assumptions are documented for each example.

Single Output Synchronous Transformation Example

This example demonstrates a synchronous transformation component with a single output. This transformation passes through the AddressID column and converts the City column to uppercase.

If you want to run this sample code, you must configure the package and the component as follows:

1. Add a new Script component to the Data Flow designer surface and configure it as a transformation.

2. Connect the output of a source or of another transformation to the new transformation component in SSIS Designer. This output should provide data from the Person.Address table of the AdventureWorks sample database that contains the AddressID and City columns.

3. Open the Script Transformation Editor. On the Input Columns page, select the AddressID and City columns. Mark the City column as Read/Write.

4. On the Inputs and Outputs page, rename the input and output with more descriptive names, such as MyAddressInput and MyAddressOutput. Notice that the SynchronousInputID of the output corresponds to the ID of the input. Therefore you do not have to add and configure output columns.

5. On the Script page, click Edit Script and enter the script that follows. Then close the script development environment and the Script Transformation Editor.

6. Create and configure a destination component that expects the AddressID and City columns, such as a SQL Server destination, or the sample destination component demonstrated in Creating a Destination with the Script Component. Then connect the output of the transformation to the destination component. You can create a destination table by running the following Transact-SQL command in the AdventureWorks database:

CREATE TABLE [Person].[Address2](
 [AddressID] [int] NOT NULL,
 [City] [nvarchar](30) NOT NULL
)

Click here to view code as image

7. Run the sample.

Public Class ScriptMain
 Inherits UserComponent

 Public Overrides Sub MyAddressInput_ProcessInputRow(ByVal Row As
MyAddressInputBuffer)

 Row.City = UCase(Row.City)

 End Sub

End Class
public class ScriptMain:
 UserComponent

{
 public override void MyAddressInput_ProcessInputRow(MyAddressInputBuffer
Row)
 {

 Row.City = (Row.City).ToUpper();

 }

}

Click here to view code as image

Two-Output Synchronous Transformation Example

This example demonstrates a synchronous transformation component with two outputs. This transformation passes through the AddressID column and converts the City column to uppercase. If the city name is Redmond, it directs the row to one output; it directs all other rows to another output.

If you want to run this sample code, you must configure the package and the component as follows:

1. Add a new Script component to the Data Flow designer surface and configure it as a transformation.

2. Connect the output of a source or of another transformation to the new transformation component in SSIS Designer. This output should provide data from the Person.Address table of the AdventureWorks sample database that contains at least the AddressID and City columns.

3. Open the Script Transformation Editor. On the Input Columns page, select the AddressID and City columns. Mark the City column as Read/Write.

4. On the Inputs and Outputs page, create a second output. After you add the new output, make sure that you set its SynchronousInputID to the ID of the input. This property is already set on the first output, which is created by default. For each output, set the ExclusionGroup property to the same non-zero value to indicate that you will split the input rows between two mutually exclusive outputs. You do not have to add any output columns to the outputs.

5. Rename the input and outputs with more descriptive names, such as MyAddressInput, MyRedmondAddresses, and MyOtherAddresses.

6. On the Script page, click Edit Script and enter the script that follows. Then close the script development environment and the Script Transformation Editor.

7. Create and configure two destination components that expect the AddressID and City columns, such as a SQL Server destination, a Flat File destination, or the sample destination component demonstrated in Creating a Destination with the Script Component. Then connect each of the outputs of the transformation to one of the destination components. You can create destination tables by running a Transact-SQL command similar to the following (with unique table names) in the AdventureWorks database:

CREATE TABLE [Person].[Address2](
 [AddressID] [int] NOT NULL,
 [City] [nvarchar](30) NOT NULL

Click here to view code as image

8. Run the sample.

Public Class ScriptMain
 Inherits UserComponent

 Public Overrides Sub MyAddressInput_ProcessInputRow(ByVal Row As
MyAddressInputBuffer)

 Row.City = UCase(Row.City)

 If Row.City = "REDMOND" Then
 Row.DirectRowToMyRedmondAddresses()
 Else
 Row.DirectRowToMyOtherAddresses()
 End If

 End Sub

End Class
public class ScriptMain:
 UserComponent

public override void MyAddressInput_ProcessInputRow(MyAddressInputBuffer Row)
 {

 Row.City = (Row.City).ToUpper();

 if (Row.City == "REDMOND")
 {
 Row.DirectRowToMyRedmondAddresses();
 }
 else
 {
 Row.DirectRowToMyOtherAddresses();
 }

 }
}

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Understanding Synchronous and Asynchronous Outputs

Creating an Asynchronous Transformation with the Script Component

Developing a Custom Transformation Component with Synchronous Outputs

Creating an Asynchronous Transformation with the Script Component

You use a transformation component in the data flow of an Integration Services package to modify and analyze data as it passes from source to destination. A transformation with synchronous outputs processes each input row as it passes through the component. A transformation with asynchronous outputs may wait to complete its processing until the transformation has received all input rows, or the transformation may output certain rows before it has received all input rows. This topic discusses an asynchronous transformation. If your processing requires a synchronous transformation, see Developing a Custom Transformation Component with Asynchronous Outputs. For more information about the differences between synchronous and asynchronous components, see Understanding Synchronous and Asynchronous Transformations.

For an overview of the Script component, see Programming the Script Component.

The Script component and the infrastructure code that it generates for you simplify the process of developing a custom data flow component. However, to understand how the Script component works, you may find it useful to read through the steps that you must follow in developing a custom data flow component in the Extending the Data Flow with Custom Components section, and especially Creating a Transformation Component with Synchronous Outputs.

Getting Started with an Asynchronous Transformation Component

When you add a Script component to the Data Flow tab of SSIS Designer, the Select Script Component Type dialog box appears, prompting you to preconfigure the component as a source, transformation, or destination. In this dialog box, select Transformation.

Configuring an Asynchronous Transformation Component in Metadata-Design Mode

After you select the option to create a transformation component, you configure the component by using the Script Transformation Editor. For more information, see Configuring the Script Component.

To select the script language that the Script component will use, you set the ScriptLanguage property on the Script page of the Script Transformation Editor dialog box.

[image: image] Note
To set the default scripting language for the Script component, use the Scripting language option on the General page of the Options dialog box. For more information, see General Page.

A data flow transformation component has one input and supports one or more outputs. Configuring the input and outputs of your component is one of the steps that you must complete in metadata design mode, by using the Script Transformation Editor, before you write your custom script.

Configuring Input Columns

A transformation component created by using the Script component has a single input.

On the Input Columns page of the Script Transformation Editor, the columns list shows the available columns from the output of the upstream component in the data flow. Select the columns that you want to transform or pass through. Mark any columns that you want to transform in place as Read/Write.

For more information about the Input Columns page of the Script Transformation Editor, see Script Transformation Editor (Input Columns Page).

Configuring Inputs, Outputs, and Output Columns

A transformation component supports one or more outputs.

Frequently a transformation with asynchronous outputs has two outputs. For example, when you count the number of addresses located in a specific city, you may want to pass the address data through to one output, while sending the result of the aggregation to another output. The aggregation output also requires a new output column.

On the Inputs and Outputs page of the Script Transformation Editor, you see that a single output has been created by default, but no output columns have been created. On this page of the editor, you can configure the following items:

• You may want to create one or more additional outputs, such as an output for the result of an aggregation. Use the Add Output and Remove Output buttons to manage the outputs of your asynchronous transformation component. Set the SynchronousInputID property of each output to zero to indicate that the output does not simply pass through data from an upstream component or transform it in place in the existing rows and columns. It is this setting that makes the outputs asynchronous to the input.

• You may want to assign a friendly name to the input and outputs. The Script component uses these names to generate the typed accessor properties that you will use to refer to the input and outputs in your script.

• Frequently an asynchronous transformation adds columns to the data flow. When the SynchronousInputID property of an output is zero, indicating that the output does not simply pass through data from an upstream component or transform it in place in the existing rows and columns, you must add and configure output columns explicitly on the output. Output columns do not have to have the same names as the input columns to which they are mapped.

• You may want to add more columns to contain additional information. You must write your own code to fill the additional columns with data. For information about reproducing the behavior of a standard error output, see Simulating an Error Output for the Script Component.

For more information about the Inputs and Outputs page of the Script Transformation Editor, see Script Transformation Editor (Inputs and Outputs Page).

Adding Variables

If there are any existing variables whose values you want to use in your script, you can add them in the ReadOnlyVariables and ReadWriteVariables property fields on the Script page of the Script Transformation Editor.

When you add multiple variables in the property fields, separate the variable names by commas. You can also select multiple variables by clicking the ellipsis (…) button next to the ReadOnlyVariables and ReadWriteVariables property fields, and then selecting the variables in the Select variables dialog box.

For general information about how to use variables with the Script component, see Using Variables in the Script Component.

For more information about the Script page of the Script Transformation Editor, see Script Transformation Editor (Script Page).

Scripting an Asynchronous Transformation Component in Code-Design Mode

After you have configured all the metadata for your component, you can write your custom script. In the Script Transformation Editor, on the Script page, click Edit Script to open the Microsoft Visual Studio Tools for Applications (VSTA) IDE where you can add your custom script. The scripting language that you use depends on whether you selected Microsoft Visual Basic or Microsoft Visual C# as the script language for the ScriptLanguage property on the Script page. For important information that applies to all kinds of components created by using the Script component, see Coding the Script Component.

Understanding the Auto-generated Code

When you open the VSTA IDE after creating and configuring a transformation component, the editable ScriptMain class appears in the code editor with stubs for the ProcessInputRow and the CreateNewOutputRows methods. The ScriptMain class is where you will write your custom code, and ProcessInputRow is the most important method in a transformation component. The CreateNewOutputRows method is more typically used in a source component, which is like an asynchronous transformation in that both components must create their own output rows.

If you open the VSTA Project Explorer window, you can see that the Script component has also generated read-only BufferWrapper and ComponentWrapper project items. The ScriptMain class inherits from the UserComponent class in the ComponentWrapper project item.

At run time, the data flow engine calls the PrimeOutput method in the UserComponent class, which overrides the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.PrimeOutput(System.Int32,System.Int32[],Mi crosoft.SqlServer.Dts.Pipeline.PipelineBuffer[]) method of the T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent parent class. The PrimeOutput method in turn calls the CreateNewOutputRows method.

Next, the data flow engine invokes the ProcessInput method in the UserComponent class, which overrides the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.ProcessInput(System.Int32,Microsoft.SqlServ er.Dts.Pipeline.PipelineBuffer) method of the T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent parent class. The ProcessInput method in turn loops through the rows in the input buffer and calls the ProcessInputRow method one time for each row.

Writing Your Custom Code

To finish creating a custom asynchronous transformation component, you must use the overridden ProcessInputRow method to process the data in each row of the input buffer. Because the outputs are not synchronous to the input, you must explicitly write rows of data to the outputs.

In an asynchronous transformation, you can use the AddRow method to add rows to the output as appropriate from within the ProcessInputRow or ProcessInput methods. You do not have to use the CreateNewOutputRows method. If you are writing a single row of results, such as aggregation results, to a particular output, you can create the output row beforehand by using the CreateNewOutputRows method, and fill in its values later after processing all input rows. However it is not useful to create multiple rows in the CreateNewOutputRows method, because the Script component only lets you use the current row in an input or output. The CreateNewOutputRows method is more important in a source component where there are no input rows to process.

You may also want to override the ProcessInput method itself, so that you can do additional preliminary or final processing before or after you loop through the input buffer and call ProcessInputRow for each row. For example, one of the code examples in this topic overrides ProcessInput to count the number of addresses in a specific city as ProcessInputRow loops through rows. The example writes the summary value to the second output after all rows have been processed. The example completes the output in ProcessInput because the output buffers are no longer available when PostExecute is called.

Depending on your requirements, you may also want to write script in the PreExecute and PostExecute methods available in the ScriptMain class to perform any preliminary or final processing.

[image: image] Note
If you were developing a custom data flow component from scratch, it would be important to override the PrimeOutput method to cache references to the output buffers so that you could add rows of data to the buffers later. In the Script component, this is not necessary because you have an automatically generated class representing each output buffer in the BufferWrapper project item.

Example

This example demonstrates the custom code that is required in the ScriptMain class to create an asynchronous transformation component.

[image: image] Note
These examples use the Person.Address table in the AdventureWorks sample database and pass its first and fourth columns, the int AddressID and nvarchar(30) City columns, through the data flow. The same data is used in the source, transformation, and destination samples in this section. Additional prerequisites and assumptions are documented for each example.

This example demonstrates an asynchronous transformation component with two outputs. This transformation passes through the AddressID and City columns to one output, while it counts the number of addresses located in a specific city (Redmond, Washington, U.S.A.), and then outputs the resulting value to a second output.

If you want to run this sample code, you must configure the package and the component as follows:

1. Add a new Script component to the Data Flow designer surface and configure it as a transformation.

2. Connect the output of a source or of another transformation to the new transformation component in the designer. This output should provide data from the Person.Address table of the AdventureWorks sample database that contains at least the AddressID and City columns.

3. Open the Script Transformation Editor. On the Input Columns page, select the AddressID and City columns.

4. On the Inputs and Outputs page, add and configure the AddressID and City output columns on the first output. Add a second output, and add an output column for the summary value on the second output. Set the SynchronousInputID property of the first output to 0, because this example copies each input row explicitly to the first output. The SynchronousInputID property of the newly-created output is already set to 0.

5. Rename the input, the outputs, and the new output column to give them more descriptive names. The example uses MyAddressInput as the name of the input, MyAddressOutput and MySummaryOutput for the outputs, and MyRedmondCount for the output column on the second output.

6. On the Script page, click Edit Script and enter the script that follows. Then close the script development environment and the Script Transformation Editor.

7. Create and configure a destination component for the first output that expects the AddressID and City columns, such as a SQL Server destination, or the sample destination component demonstrated in Creating a Destination with the Script Component, . Then connect the first output of the transformation, MyAddressOutput, to the destination component. You can create a destination table by running the following Transact-SQL command in the AdventureWorks database:

CREATE TABLE [Person].[Address2](
 [AddressID] [int] NOT NULL,
 [City] [nvarchar](30) NOT NULL
)

Click here to view code as image

8. Create and configure another destination component for the second output. Then connect the second output of the transformation, MySummaryOutput, to the destination component. Because the second output writes a single row with a single value, you can easily configure a destination with a Flat File connection manager that connects to a new file that has a single column. In the example, this destination column is named MyRedmondCount.

9. Run the sample.

Public Class ScriptMain
 Inherits UserComponent

 Private myRedmondAddressCount As Integer

 Public Overrides Sub CreateNewOutputRows()

 MySummaryOutputBuffer.AddRow()

 End Sub

 Public Overrides Sub MyAddressInput_ProcessInput(ByVal Buffer As
MyAddressInputBuffer)

 While Buffer.NextRow()
 MyAddressInput_ProcessInputRow(Buffer)
 End While

 If Buffer.EndOfRowset Then
 MyAddressOutputBuffer.SetEndOfRowset()
 MySummaryOutputBuffer.MyRedmondCount = myRedmondAddressCount
 MySummaryOutputBuffer.SetEndOfRowset()
 End If

 End Sub

 Public Overrides Sub MyAddressInput_ProcessInputRow(ByVal Row As
MyAddressInputBuffer)

 With MyAddressOutputBuffer
 .AddRow()
 .AddressID = Row.AddressID
 .City = Row.City
 End With

 If Row.City.ToUpper = "REDMOND" Then
 myRedmondAddressCount += 1
 End If

 End Sub

End Class
public class ScriptMain:
 UserComponent

{
 private int myRedmondAddressCount;

 public override void CreateNewOutputRows()
 {

 MySummaryOutputBuffer.AddRow();

 }

 public override void MyAddressInput_ProcessInput(MyAddressInputBuffer
Buffer)
 {

 while (Buffer.NextRow())
 {
 MyAddressInput_ProcessInputRow(Buffer);
 }

 if (Buffer.EndOfRowset())
 {
 MyAddressOutputBuffer.SetEndOfRowset();
 MySummaryOutputBuffer.MyRedmondCount = myRedmondAddressCount;

 MySummaryOutputBuffer.SetEndOfRowset();
 }

 }

 public override void MyAddressInput_ProcessInputRow(MyAddressInputBuffer
Row)
 {

 {
 MyAddressOutputBuffer.AddRow();
 MyAddressOutputBuffer.AddressID = Row.AddressID;
 MyAddressOutputBuffer.City = Row.City;
 }

 if (Row.City.ToUpper() == "REDMOND")
 {
 myRedmondAddressCount += 1;
 }

 }

}

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Understanding Synchronous and Asynchronous Outputs

Creating a Synchronous Transformation with the Script Component

Developing a Custom Transformation Component with Asynchronous Outputs

Creating a Destination with the Script Component

You use a destination component in the data flow of an Integration Services package to save data received from upstream sources and transformations to a data source. Ordinarily the destination component connects to the data source through an existing connection manager. For an overview of the Script component, see Developing a Custom Destination Component. The Script component and the infrastructure code that it generates for you simplify significantly the process of developing a custom data flow component. However, to understand how the Script component works, you may find it useful to read through the steps for developing a custom data flow components in the Extending the Data Flow with Custom Components section, and especially Creating a Destination Component.

Getting Started with a Destination Component

When you add a Script component to the Data Flow tab of SSIS Designer, the Select Script Component Type dialog box opens and prompts you to select a Source, Destination, or Transformation script. In this dialog box, select Destination.

Next, connect the output of a transformation to the destination component in SSIS Designer. For testing, you can connect a source directly to a destination without any transformations.

Configuring a Destination Component in Metadata-Design Mode

After you select the option to create a destination component, you configure the component by using the Script Transformation Editor. For more information, see Configuring the Script Component.

To select the script language that the Script destination will use, you set the ScriptLanguage property on the Script page of the Script Transformation Editor dialog box.

[image: image] Note
To set the default scripting language for the Script component, use the Scripting language option on the General page of the Options dialog box. For more information, see General Page.

A data flow destination component has one input and no outputs. Configuring the input for the component is one of the steps that you must complete in metadata design mode, by using the Script Transformation Editor, before you write your custom script.

Adding Connection Managers

Ordinarily a destination component uses an existing connection manager to connect to the data source to which it saves data from the data flow. On the Connection Managers page of the Script Transformation Editor, click Add to add the appropriate connection manager. However, a connection manager is just a convenient unit that encapsulates and stores the information that is required to connect to a data source of a particular type. You must write your own custom code to load or save your data, and possibly to open and close the connection to the data source.

For general information about how to use connection managers with the Script component, see Connecting to Data Sources in the Script Component.

For more information about the Connection Managers page of the Script Transformation Editor, see Script Transformation Editor (Connection Managers Page).

Configuring Inputs and Input Columns

A destination component has one input and no outputs.

On the Input Columns page of the Script Transformation Editor, the column list shows the available columns from the output of the upstream component in the data flow. Select the columns that you want to save.

For more information about the Input Columns page of the Script Transformation Editor, see Script Transformation Editor (Input Columns Page).

The Inputs and Outputs page of the Script Transformation Editor shows a single input, which you can rename. You will refer to the input by its name in your script by using the accessor property created in the auto-generated code.

For more information about the Inputs and Outputs page of the Script Transformation Editor, see Script Transformation Editor (Inputs and Outputs Page).

Adding Variables

If you want to use existing variables in your script, you can add them in the ReadOnlyVariables and ReadWriteVariables property fields on the Script page of the Script Transformation Editor.

When you add multiple variables in the property fields, separate the variable names by commas. You can also select multiple variables by clicking the ellipsis (…) button next to the ReadOnlyVariables and ReadWriteVariables property fields, and then selecting the variables in the Select variables dialog box.

For general information about how to use variables with the Script component, see Using Variables in the Script Component.

For more information about the Script page of the Script Transformation Editor, see Script Transformation Editor (Script Page).

Scripting a Destination Component in Code-Design Mode

After you have configured the metadata for your component, you can write your custom script. In the Script Transformation Editor, on the Script page, click Edit Script to open the Microsoft Visual Studio Tools for Applications (VSTA) IDE where you can add your custom script. The scripting language that you use depends on whether you selected Microsoft Visual Basic or Microsoft Visual C# as the script language for the ScriptLanguage property on the Script page. For important information that applies to all kinds of components created by using the Script component, see Coding the Script Component.

Understanding the Auto-generated Code

When you open the VSTA IDE after you create and configuring a destination component, the editable ScriptMain class appears in the code editor with a stub for the ProcessInputRow method. The ScriptMain class is where you will write your custom code, and ProcessInputRow is the most important method in a destination component.

If you open the Project Explorer window in VSTA, you can see that the Script component has also generated read-only BufferWrapper and ComponentWrapper project items. The ScriptMain class inherits from UserComponent class in the ComponentWrapper project item. At run time, the data flow engine invokes the ProcessInput method in the UserComponent class, which overrides the M:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.ProcessInput(System.Int32,Microsoft.SqlServ er.Dts.Pipeline.PipelineBuffer) method of the T:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent parent class. The ProcessInput method in turn loops through the rows in the input buffer and calls the ProcessInputRow method one time for each row.

Writing Your Custom Code

To finish creating a custom destination component, you may want to write script in the following methods available in the ScriptMain class.

1. Override the AcquireConnections method to connect to the external data source. Extract the connection object, or the required connection information, from the connection manager.

2. Override the PreExecute method to prepare to save the data. For example, you may want to create and configure a SqlCommand and its parameters in this method.

3. Use the overridden ProcessInputRow method to copy each input row to the external data source. For example, for a SQL Server destination, you can copy the column values into the parameters of a SqlCommand and execute the command one time for each row. For a flat file destination, you can write the values for each column to a StreamWriter, separating the values by the column delimiter.

4. Override the PostExecute method to disconnect from the external data source, if required, and to perform any other required cleanup.

Examples

The examples that follow demonstrate code that is required in the ScriptMain class to create a destination component.

[image: image] Note
These examples use the Person.Address table in the AdventureWorks sample database and pass its first and fourth columns, the int AddressID and nvarchar(30) City columns, through the data flow. The same data is used in the source, transformation, and destination samples in this section. Additional prerequisites and assumptions are documented for each example.

ADO.NET Destination Example

This example demonstrates a destination component that uses an existing ADO.NET connection manager to save data from the data flow into a SQL Server table.

If you want to run this sample code, you must configure the package and the component as follows:

1. Create an ADO.NET connection manager that uses the SqlClient provider to connect to the AdventureWorks database.

2. Create a destination table by running the following Transact-SQL command in the AdventureWorks database:

CREATE TABLE [Person].[Address2](
 [AddressID] [int] NOT NULL,
 [City] [nvarchar](30) NOT NULL
)

Click here to view code as image

3. Add a new Script component to the Data Flow designer surface and configure it as a destination.

4. Connect the output of an upstream source or transformation to the destination component in SSIS Designer. (You can connect a source directly to a destination without any transformations.) This output should provide data from the Person.Address table of the AdventureWorks sample database that contains at least the AddressID and City columns.

5. Open the Script Transformation Editor. On the Input Columns page, select the AddressID and City input columns.

6. On the Inputs and Outputs page, rename the input with a more descriptive name such as MyAddressInput.

7. On the Connection Managers page, add or create the ADO.NET connection manager with a name such as MyADONETConnectionManager.

8. On the Script page, click Edit Script and enter the script that follows. Then close the script development environment.

9. Close the Script Transformation Editor and run the sample.

Imports System.Data.SqlClient
...
Public Class ScriptMain
 Inherits UserComponent

 Dim connMgr As IDTSConnectionManager100
 Dim sqlConn As SqlConnection
 Dim sqlCmd As SqlCommand
 Dim sqlParam As SqlParameter

 Public Overrides Sub AcquireConnections(ByVal Transaction As Object)

 connMgr = Me.Connections.MyADONETConnectionManager
 sqlConn = CType(connMgr.AcquireConnection(Nothing), SqlConnection)

 End Sub

 Public Overrides Sub PreExecute()

 sqlCmd = New SqlCommand("INSERT INTO Person.Address2(AddressID, City)
" & _
 "VALUES(@addressid, @city)", sqlConn)
 sqlParam = New SqlParameter("@addressid", SqlDbType.Int)
 sqlCmd.Parameters.Add(sqlParam)
 sqlParam = New SqlParameter("@city", SqlDbType.NVarChar, 30)
 sqlCmd.Parameters.Add(sqlParam)

 End Sub

 Public Overrides Sub MyAddressInput_ProcessInputRow(ByVal Row As
MyAddressInputBuffer)
 With sqlCmd
 .Parameters("@addressid").Value = Row.AddressID
 .Parameters("@city").Value = Row.City
 .ExecuteNonQuery()
 End With
 End Sub

 Public Overrides Sub ReleaseConnections()

 connMgr.ReleaseConnection(sqlConn)

 End Sub

End Class
using System.Data.SqlClient;
public class ScriptMain:
 UserComponent

{
 IDTSConnectionManager100 connMgr;
 SqlConnection sqlConn;
 SqlCommand sqlCmd;
 SqlParameter sqlParam;

 public override void AcquireConnections(object Transaction)
 {

 connMgr = this.Connections.MyADONETConnectionManager;
 sqlConn = (SqlConnection)connMgr.AcquireConnection(null);

 }

 public override void PreExecute()
 {

 sqlCmd = new SqlCommand("INSERT INTO Person.Address2(AddressID, City)
" +
 "VALUES(@addressid, @city)", sqlConn);
 sqlParam = new SqlParameter("@addressid", SqlDbType.Int);
 sqlCmd.Parameters.Add(sqlParam);
 sqlParam = new SqlParameter("@city", SqlDbType.NVarChar, 30);
 sqlCmd.Parameters.Add(sqlParam);

 }

 public override void MyAddressInput_ProcessInputRow(MyAddressInputBuffer
Row)
 {
 {
 sqlCmd.Parameters["@addressid"].Value = Row.AddressID;
 sqlCmd.Parameters["@city"].Value = Row.City;
 sqlCmd.ExecuteNonQuery();
 }
 }

 public override void ReleaseConnections()
 {

 connMgr.ReleaseConnection(sqlConn);

 }

}

Click here to view code as image

Flat File Destination Example

This example demonstrates a destination component that uses an existing Flat File connection manager to save data from the data flow to a flat file.

If you want to run this sample code, you must configure the package and the component as follows:

1. Create a Flat File connection manager that connects to a destination file. The file does not have to exist; the destination component will create it. Configure the destination file as a comma-delimited file that contains the AddressID and City columns.

2. Add a new Script component to the Data Flow designer surface and configure it as a destination.

3. Connect the output of an upstream source or transformation to the destination component in SSIS Designer. (You can connect a source directly to a destination without any transformations.) This output should provide data from the Person.Address table of the AdventureWorks sample database, and should contain at least the AddressID and City columns.

4. Open the Script Transformation Editor. On the Input Columns page, select the AddressID and City columns.

5. On the Inputs and Outputs page, rename the input with a more descriptive name, such as MyAddressInput.

6. On the Connection Managers page, add or create the Flat File connection manager with a descriptive name such as MyFlatFileDestConnectionManager.

7. On the Script page, click Edit Script and enter the script that follows. Then close the script development environment.

8. Close the Script Transformation Editor and run the sample.

Imports System.IO
...
Public Class ScriptMain
 Inherits UserComponent

 Dim copiedAddressFile As String
 Private textWriter As StreamWriter
 Private columnDelimiter As String = ","

 Public Overrides Sub AcquireConnections(ByVal Transaction As Object)

 Dim connMgr As IDTSConnectionManager100 = _
 Me.Connections.MyFlatFileDestConnectionManager
 copiedAddressFile = CType(connMgr.AcquireConnection(Nothing), String)

 End Sub

 Public Overrides Sub PreExecute()

 textWriter = New StreamWriter(copiedAddressFile, False)

 End Sub

 Public Overrides Sub MyAddressInput_ProcessInputRow(ByVal Row As
MyAddressInputBuffer)

 With textWriter
 If Not Row.AddressID_IsNull Then
 .Write(Row.AddressID)
 End If
 .Write(columnDelimiter)
 If Not Row.City_IsNull Then
 .Write(Row.City)
 End If
 .WriteLine()
 End With

 End Sub

 Public Overrides Sub PostExecute()

 textWriter.Close()

 End Sub

End Class
using System.IO;
public class ScriptMain:
 UserComponent

{
 string copiedAddressFile;
 private StreamWriter textWriter;
 private string columnDelimiter = ",";

 public override void AcquireConnections(object Transaction)
 {

 IDTSConnectionManager100 connMgr =
this.Connections.MyFlatFileDestConnectionManager;
 copiedAddressFile = (string) connMgr.AcquireConnection(null);

 }

 public override void PreExecute()
 {

 textWriter = new StreamWriter(copiedAddressFile, false);

 }

 public override void MyAddressInput_ProcessInputRow(MyAddressInputBuffer
Row)
 {

 {
 if (!Row.AddressID_IsNull)
 {
 textWriter.Write(Row.AddressID);
 }
 textWriter.Write(columnDelimiter);

 if (!Row.City_IsNull)
 {
 textWriter.Write(Row.City);
 }
 textWriter.WriteLine();
 }

 }

 public override void PostExecute()
 {

 textWriter.Close();

 }

}

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Creating a Source with the Script Component

Developing a Custom Destination Component

Additional Script Component Examples

The Script component is a configurable tool that you can use in the data flow of a package to fill almost any requirement that is not met by the sources, transformations, and destinations that are included with Integration Services. This section contains Script component code samples that demonstrate the various types of functionality that are available.

For samples that demonstrate how to configure the Script component as a basic source, transformation, or destination, see Developing Specific Types of Script Components.

[image: image] Note
If you want to create components that you can more easily reuse across multiple Data Flow tasks and multiple packages, consider using the code in these Script component samples as the starting point for custom data flow components. For more information, see Extending the Data Flow with Custom Components.

In This Section

Simulating an Error Output for the Script Component

The Script component does not support a standard error output, but you can simulate a standard error output with very little additional configuration and coding.

Enhancing an Error Output by Using the Script Component

Explains and demonstrates how to add additional information to a standard error output by using the Script component.

Creating an ODBC Destination with the Script Component

Explains and demonstrates how to create an ODBC data flow destination by using the Script component.

Parsing Non-Standard Text File Formats with the Script Component

Explains and demonstrates how to parse two different non-standard text file formats into destination tables.

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

Simulating an Error Output for the Script Component

Although you cannot directly configure an output as an error output in the Script component for automatic handling of error rows, you can reproduce the functionality of a built-in error output by creating an additional output and using conditional logic in your script to direct rows to this output when appropriate. You may want to imitate the behavior of a built-in error output by adding two additional output columns to receive the error number and the ID of the column in which an error occurred.

If you want to add the error description that corresponds to a specific predefined Integration Services error code, you can use the M:Microsoft.SqlServer.Dts.Pipeline.Wrapper.IDTSComponentMetaData100.GetErrorDescription(Sys tem.Int32) method of the T:Microsoft.SqlServer.Dts.Pipeline.Wrapper.IDTSComponentMetaData100 interface, available through the Script component’s P:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.ComponentMetaData property.

Example

The example shown here uses a Script component configured as a transformation that has two synchronous outputs. The purpose of the Script component is to filter error rows from address data in the AdventureWorks sample database. This fictitious example assumes that we are preparing a promotion for North American customers and need to filter out addresses that are not located in North America.

[image: image] To configure the example

1. Before creating the new Script component, create a connection manager and configure a data flow source that selects address data from the AdventureWorks sample database. For this example, which only looks at the CountryRegionName column, you can simply use the Person.vStateCountryProvinceRegion view, or you can select data by joining the Person.Address, Person.StateProvince, and Person.CountryRegion tables.

2. Add a new Script component to the Data Flow designer surface and configure it as a transformation. Open the Script Transformation Editor.

3. On the Script page, set the ScriptLanguage property to the script language that you want to use to code the script.

4. Click Edit Script to open Microsoft Visual Studio Tools for Applications (VSTA).

5. In the Input0_ProcessInputRow method, type or paste the sample code shown below.

6. Close VSTA.

7. On the Input Columns page, select the columns that you want to process in the Script transformation. This example uses only the CountryRegionName column. Available input columns that you leave unselected will simply be passed through unchanged in the data flow.

8. On the Inputs and Outputs page, add a new, second output, and set its SynchronousInputID value to the ID of the input, which is also the value of the SynchronousInputID property of the default output. Set the ExclusionGroup property of both outputs to the same non-zero value (for example, 1) to indicate that each row will be directed to only one of the two outputs. Give the new error output a distinctive name, such as "MyErrorOutput."

9. Add additional output columns to the new error output to capture the desired error information, which may include the error code, the ID of the column in which the error occurred, and possibly the error description. This example creates the new columns, ErrorColumn and ErrorMessage. If you are catching predefined Integration Services errors in your own implementation, make sure to add an ErrorCode column for the error number.

10. Note the ID value of the input column or columns that the Script component will check for error conditions. This example uses this column identifier to populate the ErrorColumn value.

11. Close the Script Transformation Editor.

12. Attach the outputs of the Script component to suitable destinations. Flat file destinations are the easiest to configure for ad hoc testing.

13. Run the package.

Public Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)

 If Row.CountryRegionName <> "Canada" _
 And Row.CountryRegionName <> "United States" Then
 Row.ErrorColumn = 68 ' ID of CountryRegionName column
 Row.ErrorMessage = "Address is not in North America."
 Row.DirectRowToMyErrorOutput()

 Else

 Row.DirectRowToOutput0()

 End If

End Sub
public override void Input0_ProcessInputRow(Input0Buffer Row)
{

 if (Row.CountryRegionName!="Canada"&&Row.CountryRegionName!="United
States")

 {
 Row.ErrorColumn = 68; // ID of CountryRegionName column
 Row.ErrorMessage = "Address is not in North America.";
 Row.DirectRowToMyErrorOutput();

 }
 else
 {

 Row.DirectRowToOutput0();

 }

}

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Handling Errors in Data

Using Error Outputs

Creating a Synchronous Transformation with the Script Component

Enhancing an Error Output with the Script Component

By default, the two extra columns in an Integration Services error output, ErrorCode and ErrorColumn, contain only numeric codes that represent an error number, and the ID of the column in which the error occurred. These numeric values may be of limited use without the corresponding error description.

This topic describes how to add an error description column to existing error output data in the data flow by using the Script component. The example adds the error description that corresponds to a specific predefined Integration Services error code by using the M:Microsoft.SqlServer.Dts.Pipeline.Wrapper.IDTSComponentMetaData100.GetErrorDescription(Sys tem.Int32) method of the T:Microsoft.SqlServer.Dts.Pipeline.Wrapper.IDTSComponentMetaData100 interface, available through the P:Microsoft.SqlServer.Dts.Pipeline.ScriptComponent.ComponentMetaData property of the Script component.

[image: image] Note
If you want to create a component that you can more easily reuse across multiple Data Flow tasks and multiple packages, consider using the code in this Script component sample as the starting point for a custom data flow component. For more information, see Extending the Data Flow with Custom Components.

Example

The example shown here uses a Script component configured as a transformation to add an error description column to existing error output data in the data flow.

For more information about how to configure the Script component for use as a transformation in the data flow, see Creating a Synchronous Transformation with the Script Component and Creating an Asynchronous Transformation with the Script Component.

[image: image] To configure this Script Component example

1. Before creating the new Script component, configure an upstream component in the data flow to redirect rows to its error output when an error or truncation occurs. For testing purposes, you may want to configure a component in a manner that ensures that errors will occur—for example, by configuring a Lookup transformation between two tables where the lookup will fail.

2. Add a new Script component to the Data Flow designer surface and configure it as a transformation.

3. Connect the error output from the upstream component to the new Script component.

4. Open the Script Transformation Editor, and on the Script page, for the ScriptLanguage property, select the script language.

5. Click Edit Script to open the Microsoft Visual Studio Tools for Applications (VSTA) IDE and add the sample code shown below.

6. Close VSTA.

7. In the Script Transformation Editor, on the Input Columns page, select the ErrorCode column.

8. On the Inputs and Outputs page, add a new output column of type String named ErrorDescription. Increase the default length of the new column to 255 to support long messages.

9. Close the Script Transformation Editor.

10. Attach the output of the Script component to a suitable destination. A Flat File destination is the easiest to configure for ad hoc testing.

11. Run the package.

Public Class ScriptMain
 Inherits UserComponent
 Public Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)

 Row.ErrorDescription = _
 Me.ComponentMetaData.GetErrorDescription(Row.ErrorCode)
 End Sub
End Class
public class ScriptMain:
 UserComponent
{
 public override void Input0_ProcessInputRow(Input0Buffer Row)
 {

 Row.ErrorDescription =
this.ComponentMetaData.GetErrorDescription(Row.ErrorCode);

 }
}

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Handling Errors in Data

Using Error Outputs

Creating a Synchronous Transformation with the Script Component

Creating an ODBC Destination with the Script Component

In SQL Server Integration Services, you typically save data to an ODBC destination by using an ADO.NET destination and the .NET Framework Data Provider for ODBC. However, you can also create an ad hoc ODBC destination for use in a single package. To create this ad hoc ODBC destination, you use the Script component as shown in the following example.

[image: image] Note
If you want to create a component that you can more easily reuse across multiple Data Flow tasks and multiple packages, consider using the code in this Script component sample as the starting point for a custom data flow component. For more information, see Extending the Data Flow with Custom Components.

Example

The following example demonstrates how to create a destination component that uses an existing ODBC connection manager to save data from the data flow into a Microsoft SQL Server table.

This example is a modified version of the custom ADO.NET destination that was demonstrated in the topic, Creating a Destination with the Script Component. However, in this example, the custom ADO.NET destination has been modified to work with an ODBC connection manager and save data to an ODBC destination. These modifications also include the following changes:

• You cannot call the AcquireConnection method of the ODBC connection manager from managed code, because it returns a native object. Therefore, this sample uses the connection string of the connection manager to connect to the data source directly by using the managed ODBC .NET Framework Data Provider.

• The OdbcCommand expects positional parameters. The positions of the parameters are indicated by the question marks (?) in the text of the command. (In contrast, a SqlCommand expects named parameters.)

This example uses the Person.Address table in the AdventureWorks sample database. The example passes the first and fourth columns, the int AddressID and nvarchar(30) City columns, of this table through the data flow. This same data is used in the source, transformation, and destination samples in the topic, Developing Specific Types of Script Components.

[image: image] To configure this Script Component example

1. Create an ODBC connection manager that connects to the AdventureWorks database.

2. Create a destination table by running the following Transact-SQL command in the AdventureWorks database:

CREATE TABLE [Person].[Address2](
 [AddressID] [int] NOT NULL,
 [City] [nvarchar](30) NOT NULL
)

Click here to view code as image

3. Add a new Script component to the Data Flow designer surface and configure it as a destination.

4. Connect the output of an upstream source or transformation to the destination component in SSIS Designer. (You can connect a source directly to a destination without any transformations.) To ensure that this sample works, the output of the upstream component must include at least the AddressID and City columns from the Person.Address table of the AdventureWorks sample database.

5. Open the Script Transformation Editor. On the Input Columns page, select the AddressID and City columns.

6. On the Inputs and Outputs page, rename the input with a more descriptive name such as MyAddressInput.

7. On the Connection Managers page, add or create the ODBC connection manager with a descriptive name such as MyODBCConnectionManager.

8. On the Script page, click Edit Script, and then enter the script shown below in the ScriptMain class.

9. Close the script development environment, close the Script Transformation Editor, and then run the sample.

Imports System.Data.Odbc
...
Public Class ScriptMain
 Inherits UserComponent

 Dim odbcConn As OdbcConnection
 Dim odbcCmd As OdbcCommand
 Dim odbcParam As OdbcParameter

 Public Overrides Sub AcquireConnections(ByVal Transaction As
Object)

 Dim connectionString As String
 connectionString =
Me.Connections.MyODBCConnectionManager.ConnectionString
 odbcConn = New OdbcConnection(connectionString)
 odbcConn.Open()

 End Sub

 Public Overrides Sub PreExecute()

 odbcCmd = New OdbcCommand("INSERT INTO
 Person.Address2(AddressID, City) " & _
 "VALUES(?, ?)", odbcConn)
 odbcParam = New OdbcParameter("@addressid", OdbcType.Int)
 odbcCmd.Parameters.Add(odbcParam)
 odbcParam = New OdbcParameter("@city", OdbcType.NVarChar,
30)
 odbcCmd.Parameters.Add(odbcParam)

 End Sub

 Public Overrides Sub MyAddressInput_ProcessInputRow(ByVal Row
As MyAddressInputBuffer)

 With odbcCmd
 .Parameters("@addressid").Value = Row.AddressID
 .Parameters("@city").Value = Row.City
 .ExecuteNonQuery()
 End With

 End Sub

 Public Overrides Sub ReleaseConnections()

 odbcConn.Close()

 End Sub

End Class

using System.Data.Odbc;
...
public class ScriptMain :
 UserComponent
{
 OdbcConnection odbcConn;
 OdbcCommand odbcCmd;
 OdbcParameter odbcParam;

 public override void AcquireConnections(object Transaction)
 {

 string connectionString;
 connectionString =
this.Connections.MyODBCConnectionManager.ConnectionString;
 odbcConn = new OdbcConnection(connectionString);
 odbcConn.Open();

 }

 public override void PreExecute()
 {

 odbcCmd = new OdbcCommand("INSERT INTO
Person.Address2(AddressID, City) " +
 "VALUES(?, ?)", odbcConn);
 odbcParam = new OdbcParameter("@addressid",
OdbcType.Int);
 odbcCmd.Parameters.Add(odbcParam);
 odbcParam = new OdbcParameter("@city", OdbcType.NVarChar,
30);
 odbcCmd.Parameters.Add(odbcParam);

 }
 public override void
MyAddressInput_ProcessInputRow(MyAddressInputBuffer Row)
 {

 {
 odbcCmd.Parameters["@addressid"].Value =
Row.AddressID;
 odbcCmd.Parameters["@city"].Value = Row.City;
 odbcCmd.ExecuteNonQuery();
 }

 }

 public override void ReleaseConnections()
 {

 odbcConn.Close();

 }
}

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Creating a Destination with the Script Component

Parsing Non-Standard Text File Formats with the Script Component

When your source data is arranged in a non-standard format, you may find it more convenient to consolidate all your parsing logic in a single script than to chain together multiple Integration Services transformations to achieve the same result.

Example 1: Parsing Row-Delimited Records

Example 2: Splitting Parent and Child Records

[image: image] Note
If you want to create a component that you can more easily reuse across multiple Data Flow tasks and multiple packages, consider using the code in this Script component sample as the starting point for a custom data flow component. For more information, see Extending the Data Flow with Custom Components.

Example 1: Parsing Row-Delimited Records

This example shows how to take a text file in which each column of data appears on a separate line and parse it into a destination table by using the Script component.

For more information about how to configure the Script component for use as a transformation in the data flow, see Creating a Synchronous Transformation with the Script Component and Creating an Asynchronous Transformation with the Script Component.

[image: image] To configure this Script Component example

1. Create and save a text file named rowdelimiteddata.txt that contains the following source data:

FirstName: Nancy
LastName: Davolio
Title: Sales Representative
City: Seattle
StateProvince: WA

FirstName: Andrew
LastName: Fuller
Title: Vice President, Sales
City: Tacoma
StateProvince: WA

FirstName: Steven
LastName: Buchanan
Title: Sales Manager
City: London
StateProvince:

Click here to view code as image

2. Open Management Studio and connect to an instance of SQL Server.

3. Select a destination database, and open a new query window. In the query window, execute the following script to create the destination table:

create table RowDelimitedData
(
FirstName varchar(32),
LastName varchar(32),
Title varchar(32),
City varchar(32),
StateProvince varchar(32)
)

Click here to view code as image

4. Open SQL Server Data Tools and create a new Integration Services package named ParseRowDelim.dtsx.

5. Add a Flat File connection manager to the package, name it RowDelimitedData, and configure it to connect to the rowdelimiteddata.txt file that you created in a previous step.

6. Add an OLE DB connection manager to the package and configure it to connect to the instance of SQL Server and the database in which you created the destination table.

7. Add a Data Flow task to the package and click the Data Flow tab of SSIS Designer.

8. Add a Flat File Source to the data flow and configure it to use the RowDelimitedData connection manager. On the Columns page of the Flat File Source Editor, select the single available external column.

9. Add a Script Component to the data flow and configure it as a transformation. Connect the output of the Flat File Source to the Script Component.

10. Double-click the Script component to display the Script Transformation Editor.

11. On the Input Columns page of the Script Transformation Editor, select the single available input column.

12. On the Inputs and Outputs page of the Script Transformation Editor, select Output 0 and set its SynchronousInputID to None. Create 5 output columns, all of type string [DT_STR] with a length of 32:

• FirstName

• LastName

• Title

• City

• StateProvince

13. On the Script page of the Script Transformation Editor, click Edit Script and enter the code shown in the ScriptMain class of the example. Close the script development environment and the Script Transformation Editor.

14. Add a SQL Server Destination to the data flow. Configure it to use the OLE DB connection manager and the RowDelimitedData table. Connect the output of the Script Component to this destination.

15. Run the package. After the package has finished, examine the records in the SQL Server destination table.

Public Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)

 Dim columnName As String
 Dim columnValue As String

 ' Check for an empty row.
 If Row.Column0.Trim.Length > 0 Then
 columnName = Row.Column0.Substring(0, Row.Column0.IndexOf(":"))
 ' Check for an empty value after the colon.
 If Row.Column0.Substring(Row.Column0.IndexOf(":")).TrimEnd.Length
> 1 Then
 ' Extract the column value from after the colon and space.
 columnValue = Row.Column0.Substring(Row.Column0.IndexOf(":")
+ 2)
 Select Case columnName
 Case "FirstName"
 ' The FirstName value indicates a new record.
 Me.Output0Buffer.AddRow()
 Me.Output0Buffer.FirstName = columnValue
 Case "LastName"
 Me.Output0Buffer.LastName = columnValue
 Case "Title"
 Me.Output0Buffer.Title = columnValue
 Case "City"
 Me.Output0Buffer.City = columnValue
 Case "StateProvince"
 Me.Output0Buffer.StateProvince = columnValue
 End Select
 End If
 End If

 End Sub
public override void Input0_ProcessInputRow(Input0Buffer Row)
 {

 string columnName;
 string columnValue;

 // Check for an empty row.
 if (Row.Column0.Trim().Length > 0)
 {
 columnName = Row.Column0.Substring(0, Row.Column0.IndexOf(":"));
 // Check for an empty value after the colon.
 if
(Row.Column0.Substring(Row.Column0.IndexOf(":")).TrimEnd().Length > 1)
 // Extract the column value from after the colon and space.
 {
 columnValue = Row.Column0.Substring(Row.Column0.IndexOf(":")
+ 2);
 switch (columnName)
 {
 case "FirstName":
 // The FirstName value indicates a new record.
 this.Output0Buffer.AddRow();
 this.Output0Buffer.FirstName = columnValue;
 break;
 case "LastName":
 this.Output0Buffer.LastName = columnValue;
 break;
 case "Title":
 this.Output0Buffer.Title = columnValue;
 break;
 case "City":
 this.Output0Buffer.City = columnValue;
 break;
 case "StateProvince":
 this.Output0Buffer.StateProvince = columnValue;
 break;
 }
 }
 }

 }

Click here to view code as image

Example 2: Splitting Parent and Child Records

This example shows how to take a text file, in which a separator row precedes a parent record row that is followed by an indefinite number of child record rows, and parse it into properly normalized parent and child destination tables by using the Script component. This simple example could easily be adapted for source files that use more than one row or column for each parent and child record, as long as there is some way to identify the beginning and end of each record.

[image: image] Caution
This sample is intended for demonstration purposes only. If you run the sample more than once, it inserts duplicate key values into the destination table.

For more information about how to configure the Script component for use as a transformation in the data flow, see Creating a Synchronous Transformation with the Script Component and Creating an Asynchronous Transformation with the Script Component.

[image: image] To configure this Script Component example

1. Create and save a text file named parentchilddata.txt that contains the following source data:

PARENT 1 DATA
child 1 data
child 2 data
child 3 data
child 4 data

PARENT 2 DATA
child 5 data
child 6 data
child 7 data
child 8 data

Click here to view code as image

2. Open SQL Server Management Studio and connect to an instance of SQL Server.

3. Select a destination database, and open a new query window. In the query window, execute the following script to create the destination tables:

CREATE TABLE [dbo].[Parents](
[ParentID] [int] NOT NULL,
[ParentRecord] [varchar](32) NOT NULL,
 CONSTRAINT [PK_Parents] PRIMARY KEY CLUSTERED
([ParentID] ASC)
)
GO
CREATE TABLE [dbo].[Children](
[ChildID] [int] NOT NULL,
[ParentID] [int] NOT NULL,
[ChildRecord] [varchar](32) NOT NULL,
 CONSTRAINT [PK_Children] PRIMARY KEY CLUSTERED
([ChildID] ASC)
)
GO
ALTER TABLE [dbo].[Children] ADD CONSTRAINT [FK_Children_Parents]
FOREIGN KEY([ParentID])
REFERENCES [dbo].[Parents] ([ParentID])

Click here to view code as image

4. Open SQL Server Data Tools (SSDT) and create a new Integration Services package named SplitParentChild.dtsx.

5. Add a Flat File connection manager to the package, name it ParentChildData, and configure it to connect to the parentchilddata.txt file that you created in a previous step.

6. Add an OLE DB connection manager to the package and configure it to connect to the instance of SQL Server and the database in which you created the destination tables.

7. Add a Data Flow task to the package and click the Data Flow tab of SSIS Designer.

8. Add a Flat File Source to the data flow and configure it to use the ParentChildData connection manager. On the Columns page of the Flat File Source Editor, select the single available external column.

9. Add a Script Component to the data flow and configure it as a transformation. Connect the output of the Flat File Source to the Script Component.

10. Double-click the Script component to display the Script Transformation Editor.

11. On the Input Columns page of the Script Transformation Editor, select the single available input column.

12. On the Inputs and Outputs page of the Script Transformation Editor, select Output 0, rename it to ParentRecords, and set its SynchronousInputID to None. Create 2 output columns:

• ParentID (the primary key), of type four-byte signed integer [DT_I4]

• ParentRecord, of type string [DT_STR] with a length of 32.

13. Create a second output and name it ChildRecords. The SynchronousInputID of the new output is already set to None. Create 3 output columns:

• ChildID (the primary key), of type four-byte signed integer [DT_I4]

• ParentID (the foreign key), also of type four-byte signed integer [DT_I4]

• ChildRecord, of type string [DT_STR] with a length of 50

14. On the Script page of the Script Transformation Editor, click Edit Script. In the ScriptMain class, enter the code shown in the example. Close the script development environment and the Script Transformation Editor.

15. Add a SQL Server Destination to the data flow. Connect the ParentRecords output of the Script Component to this destination.Configure it to use the OLE DB connection manager and the Parents table.

16. Add another SQL Server Destination to the data flow. Connect the ChildRecords output of the Script Component to this destination. Configure it to use the OLE DB connection manager and the Children table.

17. Run the package. After the package has finished, examine the parent and child records in the two SQL Server destination tables.

 Public Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)

 Static nextRowIsParent As Boolean = False
 Static parentCounter As Integer = 0
 Static childCounter As Integer = 0

 ' If current row starts with separator characters,
 ' then following row contains new parent record.
 If Row.Column0.StartsWith("***") Then
 nextRowIsParent = True
 Else
 If nextRowIsParent Then
 ' Current row contains parent record.
 parentCounter += 1
 Me.ParentRecordsBuffer.AddRow()
 Me.ParentRecordsBuffer.ParentID = parentCounter
 Me.ParentRecordsBuffer.ParentRecord = Row.Column0
 nextRowIsParent = False
 Else
 ' Current row contains child record.
 childCounter += 1
 Me.ChildRecordsBuffer.AddRow()
 Me.ChildRecordsBuffer.ChildID = childCounter
 Me.ChildRecordsBuffer.ParentID = parentCounter
 Me.ChildRecordsBuffer.ChildRecord = Row.Column0
 End If
 End If

 End Sub
public override void Input0_ProcessInputRow(Input0Buffer Row)
 {

 int static_Input0_ProcessInputRow_childCounter = 0;
 int static_Input0_ProcessInputRow_parentCounter = 0;
 bool static_Input0_ProcessInputRow_nextRowIsParent = false;

 // If current row starts with separator characters,
 // then following row contains new parent record.
 if (Row.Column0.StartsWith("***"))
 {
 static_Input0_ProcessInputRow_nextRowIsParent = true;
 }
 else
 {
 if (static_Input0_ProcessInputRow_nextRowIsParent)
 {
 // Current row contains parent record.
 static_Input0_ProcessInputRow_parentCounter += 1;
 this.ParentRecordsBuffer.AddRow();
 this.ParentRecordsBuffer.ParentID =
static_Input0_ProcessInputRow_parentCounter;
 this.ParentRecordsBuffer.ParentRecord = Row.Column0;
 static_Input0_ProcessInputRow_nextRowIsParent = false;
 }
 else
 {
 // Current row contains child record.
 static_Input0_ProcessInputRow_childCounter += 1;
 this.ChildRecordsBuffer.AddRow();
 this.ChildRecordsBuffer.ChildID =
static_Input0_ProcessInputRow_childCounter;
 this.ChildRecordsBuffer.ParentID =
static_Input0_ProcessInputRow_parentCounter;
 this.ChildRecordsBuffer.ChildRecord = Row.Column0;
 }
 }

 }

Click here to view code as image

Stay Up to Date with Integration Services

For the latest downloads, articles, samples, and videos from Microsoft, as well as selected solutions from the community, visit the Integration Services page on MSDN:

Visit the Integration Services page on MSDN

For automatic notification of these updates, subscribe to the RSS feeds available on the page.

See Also

Creating a Synchronous Transformation with the Script Component

Creating an Asynchronous Transformation with the Script Component

Appendix: Code and Table Images

[image: image]

Click here to view table as text

[image: image]

[image: image]

[image: image]

Click here to view table as text

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view table as text

[image: image]

Click here to view table as text

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view table as text

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view table as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

Click here to view table as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

Click here to view code as text

[image: image]

[image: image]

[image: image]

[image: image]

Click here to view code as text

OEBPS/html/graphics/play.jpg

OEBPS/html/graphics/c0060-04.jpg
//Increment the performance counter.

myCounter . Increment () ;

myCounter.Close (

Dts.TaskResult = (int)ScriptResults.Success;
}
catch (Exception ex)
{

Dts.Events.FireError (0, "Task Performance Counter Example",
ex.Message + "\r" + ex.StackTrace, String.Eupty, 0);

Dts.TaskResult = (int)ScriptResults.Failure;

Dts.TaskResult = (int)ScriptResults.Success;

OEBPS/html/page-template.xpgt

	

	

	
	

	

	
	

OEBPS/html/graphics/c0060-03.jpg
public void Main()

&
PerformanceCounter myCounter;
try
{
//Create the performance counter if it does not already
exist.
if (iPerformanceCounterCategory.Exists ("TaskExample"))
{
PerformanceCounterCategory .Create ("TaskExample”, "Task
Performance Counter Example”, "Iterations", "Number of times this task has

been called.”);
i
//Initialize the performance counter.

myCounter = new PerformanceCounter ("TaskExample",
"Iterations", String.Empty, false);

OEBPS/html/graphics/c0060-02.jpg
‘Increment the performance counter.

myCounter . Increment ()

myCounter.Close ()
Dts.TaskResult = ScriptResults.Success
Catch ex As Exception

Dts.Events.FireError (0,
"Task Performance Counter Example",
ex.Message & ControlChars.CrLf & ex.StackTrace,
String.Empty, 0)

Dts.TaskResult = ScriptResults.Failure

End Try

End Sub

public class ScriptMain

{

OEBPS/html/graphics/c0060-01.jpg
Public Sub Main()

Dim myCounter As PerformanceCounter

Try

‘Create the performance counter if it does mot already exist.
¢ Not _
PerformanceCounterCategory Exists ("TaskExample") Then
PerformanceCounterCategory. Create ("TaskExample" ,
"Task Performance Counter Example", 'Iterations",

"Number of times this task has been called."

End Tf

'Initialize the performance counter.
myCounter = New PerformanceCounter (*TaskExample",

"Iterations", String.Empty, False)

OEBPS/html/graphics/c0071-01a.jpg
Dts.Variables ("PrinterList") .Value

Dts.

End Sub

TaskResult

printerList

ScriptResults.Success

Private Function PrinterHasLegalPaper(_

ByVal thisPrinter As PrinterSettings) As Boolean

Dim size As PaperSize

Dim hasLegal As Boolean = False

For

Next

Each size In
It size.Kind

nasLegal
End If

thisPrinter.PaperSizes

Paperkind.Legal Then

True

OEBPS/html/graphics/c0111-01.jpg
Dim sqlConn As SqlConnection
Dim sqlCmd As SqlCommand

Dim sqlParam As SqlParameter

Bublic Overrides Sub Premxecute ()

sqlCnd = New SqlCommand ("INSERT INTO Person.Address2 (AddressID, City)

"VALUES (saddressid, @city)", sqlConn)
sqlParam = New SqlParameter ("saddressid", SqlDbType.Int)
sq1Cnd. Parameters . Add (sqlParam)
sqlParam = New SglParameter("scity", SqlDbType.NVarChar, 30)
sq1Cnd. Parameters . Add (sqlParam)

OEBPS/html/graphics/t0005-01.jpg
Feature

Description

Two design-time modes

In both the task and the component, you
begin by specifying properties n the editor,
and then switch to the development
environment to wiite code.

Microsolft VisualStudio Tools for
Applications (VSTA)

Both the task and the component use the
same VSTA IDE, and support code written
in either Microsoft Visual Basic or Microsoft
Visual C#.

Precompiled scripts

Beginning in SQL Server 2008 Integration
Services (SSIS), al scripts are precompied.
In earlier versions, you could specify
whether scrpts were precompied.

The script i precompiled into binary code,
‘permitting faster execution, but at the cost
of increased package size.

Debugging

Both the task and the component support

breakpoints and stepping through code

while debugging i the design

environment. For more information, see-

Coding and Debugging the Scipt Task and
ing and Debugging the Scr

Component.

OEBPS/html/graphics/c0063-02a.jpg
'An error occurred.

Dts.Events.FireError (0, "Image Resampling Sample’,
ex.Message & ControlChars.CrLf & ex.StackTrace,
String.Empty, 0)

Dts.TaskResult = ScriptResults.Failure

End Try

End Sub

Private Function GetBncoderInfo(ByVal mimeType As String) As
Imaging. ImageCodecInfo

'The available image codecs are returned as an array,

‘which requires code to iterate until the specified codec is found.

OEBPS/html/graphics/c0177-02.jpg
create table RowDelimitedData
«

FirstName varchar (32),
LastName varchar(32),

Title varchar(32),

city varchar(32),
StateProvince varchar (32)

)

OEBPS/html/graphics/c0177-01.jpg
FAxRtlangy Seoty
LastName: Davolio

Title: Sales Representative
City: Seattle

StateProvince: WA

PirstName: Andrew
LastName: Fuller

Title: Vice President, Sales
City: Tacoma

StateProvince: WA

FirstName: Steven
LastName: Buchanan
Title: Sales Manager
City: London

G DY

OEBPS/html/graphics/c0150-01a.jpg
If Buffer.EndOfRowset Then
MyAddressOutputBuf fer . SetEndOfRowset ()
MySummaryOutputBuf fer .MyRedmondCount = myRedmondAddressCount
MySummaryOutputBuf fer . SetEndOfRowset ()

End If

End Sub

Public Overrides Sub MyAddressInput_ProcessInputRow(ByVal Row As
MyAddressInputBuf fer)

With MyAddressOutputBuffer
~2ddRow ()

.AddressID

Row.AddressID
.City = Row.City
End With

If Row.City.ToUpper = "REDMOND" Then

myRedmondAddressCount += 1

End If

End Sub

OEBPS/html/graphics/c0140-01.jpg
Row.City = UCase(Row.City)

If Row.City = "REDMOND" Then

Row.DirectRowToMyRednondAddresses ()
Blse

Row.DirectRowToMyOtherAddresses ()
End If

Row.City = (Row.City) .ToUpper () ;

Row.DirectRowToMyotheraddresses () ;

OEBPS/html/graphics/c0034-03.jpg
(D11Import ("wininet")]

private extern static long InternetGetConnectedState (ref long
aurlags, long dureserved) ;

private enum Connectedstates

{

Lan - ox2,

Moden = 0x1,

proxy - Ox4,
offline = 0x20,

Configured = 0x40,
RasInstalled = 0x10

Yi

public void Main()
{
7"
long awrlags = 0;
long connectedstate;
bool firengain = true;

ine state;

OEBPS/html/graphics/c0034-02.jpg
If connectedState <> 0 Then
It (duFlags And ConnectedStates.Modem) = ConnectedStates.Modem Then
Dts.Events.FireWarning(0, "Script Task Example",
"Volatile Internet comnection detected.’, String.Empty, 0)
slse
Dts.Bvents. FireInfornation(0, "Script Task Example’,
"Internet connection detected.”, String.Empty, 0, fireAgain)
Ena 1%
slse
" If not comnected to the Internet, raise am error.
Dts.Events.FireError (0, "Script Task Example’,
“Internet connection not available.”, String.Empty, 0)

snd 1€

Dts.TaskResult = ScriptResults.Success

end Sub
using System;

using System.Data;

using Microsoft .SqlServer .Dts.Runtine;
using System.Windows.Forms;

using System.Runtime.InteropServices;

public class ScriptMain

{

OEBPS/html/graphics/c0034-01.jpg
Fravate DECLaRe-FURREAn ACEIHEECCLEDNPRRERUEEALE LA TIILENEE"

(ByRef dwFlags As Long, ByVal dwReserved As Long) As Long

Private Enum ConnectedStates

AN - a2
Moden = &H1
Proxy = aHi

offline = &H20
Configured = &H40
RasInstalled = &H10

nd Enum
Public Sub Main()

Dim quFlags As Long

Dim connectedState As Long

Dim fireAgain as Boolean

connectedstate - InternetGetConnectedState (dwFlags, 0)

OEBPS/html/graphics/t0008-01.jpg
Seript Task

Script Component

Connect ion®) . AcquireConnect ion (

Dts.Transaction) as String):

Raising | The Script task uses the The Script component raises errors,

events. P:Microsoft.SqiServer.Dts.Tasks.SeriptT | warnings, and informational messages by
ask ScriptObjectModel.Events property | using the methods of the
of the Dts object to raise events. For | T:Microsoft.SqlServer.Ots.Pipeline. Wrappe
example: £IDTSComponentMetaDatal00 interface
Dts.Events.FireError(0, “Event |fetumed by the
Snippots, P:Microsoft.SalServer.Dts Pipeline ScriptCo

- mponent.ComponentMetaData property.
ex.Hessax For example:
controlchars
ex.StackTrace, Dim Mtlecedace se
- IDTSComponentMetadatalo0
ae myMetaData = Me.ComponentMetaData
myMetaData.FireError(...)
Dte.Events. PireError(0, “Event
Snippet, ex.Message + "\r* +
ex.StackTrace, "=, 0);

Logging | The Script task uses the The Script component uses the
M:Microsoft SalServer.Dts Tasks ScriptT | M:MicrosoftSqlServer.ts.Pipeline.ScriptC
askScriptObjectModel.Log(System.Stri | omponent.Log(System String,System.Int32
ng.System.Int32,System.Byte(]) method | System.Byte(]) method of the
of the Dts object to log information to | autogenerated base class to log
enabled log providers. For example: | information to enabled log providers. For
Dim bt(0) As Byte example:

Dts.Log("Test Log Event*, _ Visual Basc)
o Dim be(0) As Byte
o ¥e.Log(*Test Log Event®, _
byte() bt = new byte(0): :‘)-
Dts.Log("Te Event®, 0, i
e on(CTent g BYRESL 61 b e byt
this.Log("Test Log Bvent®, 0,
b

Returning | The Script task uses both the The Script component runs as a part of

results. P:Microsoft.SqiServer.Dts.Tasks.ScriptT | the Data Flow task and does not report
ask.SeriptObjectModel TaskResult results using either of these properties.
property and the optional
P:Microsoft.SqlServer.Dts.Tasks.ScriptT
ask.ScriptObjectModel.ExecutionValue
property of the Dts object to notify

the runtime of its results.

OEBPS/html/graphics/c0040-02.jpg
Dim rowsAffected as Integer

rowshffected = 1000

T —

OEBPS/html/graphics/c0116-01.jpg
Dim myIntegerVariableValue As Integer = Me.Variables.MyIntegerVariable

OEBPS/html/graphics/t0119-01a.jpg
M:Microsoft.SqlServer.Dts.Pipeline. Wrapper IDTSComponentMetaData100.FireProgress(Sy
stem.String,System.Int32.System.Int32,System Int32,System.String System Boolean@)

Infor.
ms
the
packa
geof
the
progr
ess of
the
comp
onent

M:Microsoft.SqlServer.Dts.Pipeline.Wrapper IDTSComponentMetaDatal00.FireWarning(Sy
stem.Int32,System.String,System.String,System String,System Int32)

Infor
ms
the
packa
ge
that
the
comp
onent
isina
state
that
warra
nts
user
notifi
catio
n but
is not
an
error
condi
tion.

OEBPS/html/graphics/IS_Extending_Packages_with_Scripting.jpg
Integration Services:
Extending Packages with Scripting

SQL Server 2012 Books Online

OEBPS/html/graphics/c0040-01.jpg
Dts.TaskResult = ScriptResults.Success

OEBPS/html/graphics/c0048-04.jpg
GetFilesInFolder (FILE_ROOT) ;

// Return the list of files to the variable
// for later use by the Foreach from Variable enumerator

System.Windows . Forms .MessageBox . Show ("Matching files: "+
ListForBnunerator .Count, "Results”,

MessageBoxButtons.OK, MessageBoxIcon.Information) ;

Dts.Variables ["FileList"] .Value = listForEnumerator;

Dts.TaskResult = (int)ScriptResults.Success;

private void GetFilesInFolder (string folderpath)

{

string() localFiles;
DateTime fileChangeDate;

Timespan fileAge;
int £ilengeTnpays;

OEBPS/html/graphics/c0048-05.jpg
cateh

// 1gnore exceptions on special folders, such as System
Volume Informacion.

)

private void CheckAgeOfFile(string localFile, int fileAgeTnDays)

1
if (isCheckForNewer)
{
if (£ileAgeTnDays <= fileAgeLimit)
{
ListForEnunerator .Add (localFile) ;
i
)
else
3
if (fileAgelndays > fileAgeLimit]
.
ListForBnunerator .2ad (localFile) ;
)
i
i

OEBPS/html/graphics/c0048-02.jpg
Dts.TaskResult = ScriptResults.Success

snd sub
Private Sub GetFilesInFolder(ByVal folderPath As String)

Din localfiles() As String
Dim localFile As String

Din fileChangeDate As Date
Din £ileAge As Timespan

Din fileageInDays As Integer
Dim childFolder As String

ey
localFiles = Directory.GetFiles(folderPath, FILE_FILTER)
For Zach localFile In localfiles
fileChangeDate = File.GetLastWriteTime (localFile)
filenge
filengeInbays = filehge.Days

DateTime.Now. Subtract (£ileChangeDate)

CheckAgeofFile (localFile, fileAgeInDays)

Next.

OEBPS/html/graphics/c0048-03.jpg
End Class
using Systen;

using System.Data;

using System.Math;

using Microsoft.SqlServer.Dts.Runtime;
using System.Collections;

using System.10;

public partial class ScriptMain
Microsoft .SqlServer .Dts.Tasks.ScriptTask.VSTARTSCriptobjectiodelBase

{

private const int FILE_AGE = -50;

private const string FILE_ROOT = "C:\\";

private const string FILE FILTER - "+.xls"

OEBPS/html/graphics/c0063-01a.jpg
'files that the Bitmap class supports.

1f Array.IndexOf (supportedExtensions,

Path.GetExtension (currentFile).ToUpper) > -1 Then

'Load the file.
bump = New Bitmap(currentFile)

'Calculate the new name for the compressed image.
'Note: This will overwrite existing JPEGs.

newFile = Path.Combine(_
Path.GetDirectoryName (currentFile),
String.Concat (Path.GetFileNaneWithoutExtension (currentFile),

".3pg")

10

'Specify the compression ratio (0=worst quality, est

quality) .
eps.Param(0) = New Imaging.EncoderParameter(_

Imaging.Encoder .Quality, 75)

OEBPS/html/graphics/c0086-02.jpg
Dts.TaskResult

End Sub
End Class

public class ScriptMain

{

public void Main()

ScriptResults.Success

{

string excelFile;

string connectionStrin

OleDbConnection excelConnect ior

DataTable tablesInFile;

int tableCount

0

OEBPS/html/graphics/c0181-01.jpg
PARENT 1 DATA
child 1 data
child 2 data
child 3 data
child 4 data
PARENT 2 DATA
child 5 data
child 6 data
child 7 data
child 8 data

OEBPS/html/graphics/c0048-01.jpg
AMports System
Inports System.Data

Tports System.Math

Inports Microsoft.SqlServer.Dts.Runtime
Inports System.Collections

Inports system.10

Puplic Class Scriptiain
Private Const FILE_AGE As Integer - -50
Private Const FILE_ROOT As String - "C:\"
Private Const FILE_FILTER As String - "*.xls"
Private isCheckForiiewer As Boolean = True
Din filengeLinit As Integer

Private listForEnumerator As ArrayList

Public Sub Main()

OEBPS/html/graphics/c0086-03.jpg
foreach (DataRow tableInFile in tablesInFile.Rows)

i}
currentTable = tableInFile["TABLE_NAME"] .ToString();
excelTables [tableIndex] = currentTable;

tableIndex += 1;

Dts.Variables ["ExcelTables"] .Value = excelTables;

Dts.TaskResult = (int)ScriptResults.Success;

OEBPS/html/graphics/c0143-01.jpg
ESRATR. TROLE. [XRTRanL . tiieagail s
[AddressID] [int] NOT NULL,
[City] [nvarchar] (30) NOT NULL

OEBPS/html/graphics/c0086-01.jpg
PURLISL CEARN PrxiOshen
Public Sub Main()
Dim excelFile As String
Dim connectionString As String
Dim excelConnection As OleDbComnection
Dim tablesInFile As DataTable
Dim tableCount As Integer = 0
Dim tableInFile As DataRow
Dim currentTable As String
Dim tableIndex As Integer = 0
Dim excelTables As String()

excelFile = Dts.Variables("BxcelFile").Value.ToString

connectionString = "Provider-Microsoft.Jet.OLEDB.4.0;" & _

OEBPS/html/graphics/c0181-02.jpg
CHERTE TRRLE [oDg!.. Lysrenty]
[ParentID] [int] NOT NULL,

[ParentRecord] [varchar] (32) NOT NULL,
CONSTRAINT [PK_Parents] PRIMARY KEY CLUSTERED
((parent1D] ASC)

)

co

CREATE TABLE [dbol . [Children] (

[Chi1dID] [int] NOT NULL,

{ParentID] [int] NOT NULL,

[ChildRecord] [varchar] (32) NOT NULL,
CONSTRAINT [PK_Children] PRIMARY KEY CLUSTERED
([ChildIp] ASC)

)

co

ALTER TABLE [dbo] . [Children] ADD CONSTRAINT [FK_Children_Parent:
FOREIGN KEY ([ParentID])

REFERENCES [dbo] . [Parents] ([ParentID])

OEBPS/html/graphics/c0160-01.jpg
Imports System.IO

Public Class ScriptMain

Inherits UserComponent

Dim copiedAddressFile As String
Private textWriter As StreamWriter

Private columnDelimiter As String = *,"

Public Overrides Sub AcquireConnections(ByVal Transaction As Object)

Dim connMgr As IDTSConnectionManagerl00 = _

Me .Connections . MyFlatFileDestConnectionManager

copiedAddressFile = CType (connMgr .AcquireConnection (Nothing), String)

End Sub
Public Overrides Sub PreExecute ()

textWriter = New StreamWriter (copiedAddressFile, False)

End Sub

Public Overrides Sub MyAddressInput_ProcessInputRow(ByVal Row As
MyAddressInputBuf fer)

With textWriter
If Not Row.AddressID_IsNull Then

.Write (Row.AddressID)
End If

OEBPS/html/graphics/c0143-02.jpg
Public Class ScriptMain

Inherits UserComponent

Public Overrides Sub MyAddressInput_ProcessInputRow(ByVal Row As
MyAddressInputBut fer)

Row.City = UCase (Row.City)

If Row.City = "REDMOND" Then
Row. DirectRowToMyRednondAddresses ()
Else
Row. DirectRouToMyOtheraddresses ()

End If

End Sub

End Class

public class ScriptMain:

UserComponent.

OEBPS/html/graphics/c0160-02.jpg
.Write (columnDelimiter)

If Not Row.City_IsNull Then
.Write (Row.City)

End 1f

.WriteLine ()

End With

End Sub

Public Overrides Sub PostExecute ()

textWriter.Close ()

End Sub

public class ScriptMain:

UserComponent

string copiedAddressFile;
private StreamWriter textWriter;

private string columnbelimiter = ","

OEBPS/html/graphics/c0122-01.jpg
Dim bt (0} As Byte

Me.Log("Test Log Event", _

e
bt)

OEBPS/html/graphics/c0160-03.jpg
public override void AcquireConnections(object Transaction)

{

IDTSConnect ionManager100 connMgr
this.Connections.MyFlatFileDestConnectionManager;

copiedAddressFile = (string) connMgr.AcquireConnection(null);

)
public override void PreBxecute ()
{
textWriter = new StreamWriter (copiedAddressFile, false);
)

public override void MyAddressInput_ProcessInputRow (MyAddressInputBuffer
Row)

OEBPS/html/graphics/c0133-04a.jpg
MyAddressOutputBuf fer . AddRow () ;
MyAddressOutputBuf fer . AddressID = columns (0] ;

MyAddressOutputBuffer.City = colums(3];

}

nextLine = textReader.ReadLine();

public override void PostExecute ()

{

base.PostExecute () ;

textReader.Close () ;

OEBPS/html/graphics/c0160-04.jpg
if (!Row.AddressID_IsNull)
{

textWriter.Write (Row.AddressID) ;

}

textWriter.Write (columnDelimiter) ;

if (tRow.City_IsNull)

{

textWriter.Write (Row.City) ;

)

textWriter.WriteLine () ;

public override void PostExecute ()

{

textwriter.Close () ;

OEBPS/html/graphics/c0104-01a.jpg
Puplic Overrides Sub PreExecute ()

MyBase . PreExecute ()

' Add your code here for preprocessing or remove if not needed

End Sub

Public Overrides Sub PostExecute ()

MyBase . PostExecute ()

' Add your code here for postprocessing or remove if not needed

' You can set read/write variables here, for example:

Me.Variables.MyIntVar = 100

End Sub

OEBPS/html/graphics/c0172-01a.jpg
Public Overrides Sub MyAddressInput_ProcessInputRow(ByVal Row
As MyAddressInputBuffer)

With odbcCmd

.Parameters("gaddressid") .Value = Row.AddressID

.Parameters("acity”) .Value = Row.City

-BxecuteNonQuery ()

End with

End Sub

Bublic Overrides Sub ReleaseConnections ()

odbeconn. Close ()

End Sub

End Class

using System.Data.Odbe;

public class ScriptMain :

UserComponent.

Odbccennection odbeConn;

OdbeCommand odbeCmd;

OdbcParameter odbcParam;

OEBPS/html/graphics/c0172-01b.jpg
public override void AcquireConnections(cbject Transaction)

{

string connectionString

connectionstring =

this.Connect ions . MyODBCConnect ionManager . Connect ionString;
odbcConn = new OdbcConnect ion (connectionString) ;
odbcConn. Open () ;

public override void PreExecute ()

{

odbcCmd = new OdbcCommand ("INSERT INTO
Person.Address2 (AddressID, City) " +

"VALUES (?, ?)", odbcComn) ;

odbcParam = new OdbcParameter ("@addressid”,
OdbeType . Tnt) ;

odbocd. Parameters . Add (odbcParam) ;

odbcparam = new OdbcParameter ("@city”, OdbcType.NVarChar,
30);

odbcCnd. Paraneters. Add (odbcParam) ;

}

public override void
MyAddressTnput_ProcessInputRow (MyAddressInputBuffer Row)

{

OEBPS/html/graphics/c0075-05b.jpg
private void SendMailMessage (string SemdTo, string From,
Subject, string Body, bool IsBodyHtml, string Server)

{

string

MailMessage htmlMessage;

smtpClient mySmtpClient;

htmlMessage = new MailMessage (SendTo, From, Subject, Body);
htmlMessage. IsBodyHtml = TsBodyHeml;

mySmtpClient

= new SmtpClient (Server) ;
mySmtpClient.Credentials =
CredentialCache.DefaultNetworkCredentials;

mySmtpClient . Send (ntmlMessage) ;

OEBPS/html/graphics/c0172-01c.jpg
odbcCmd . Parameters ["@addressid"] .Value =
Row.AddressID;

odbeCmd . Parameters ["@city"] .Value = Row.City;

odbeCmd . ExecuteNonQuery () ;

public override void ReleaseConnections ()

{

odbcConn. Close () ;

OEBPS/html/graphics/c0075-05a.jpg
mySmepClient

New SmepClient (Server)
mySmtpClient .Credentials = CredentialCache.DefaultNetworkCredentials

mySmepClient .Send (htmiMessage)

End Sub

public void Main()

{

string htmlMessageTo =
Dts.Variables ["HtmlEmailTo"] .Value.ToString () ;

string htmlMessageFrom
Dts.Variables ["HtmlEmailFron"] .Value.ToString () ;

string htmlMessageSubject
Dts.Variables ["HtmlEmailSubject®] .Value.ToString () ;

string htmlMessageBody
Dts.Variables ["HtmlEmailBody"] .Value.ToString() ;

string smtpServer =
Dts.Variables ["HtmlEmailServer”) .Value.ToString () ;

SendiailMessage (htmlMessageTo, htmlMessageFrom,
htmlMessageSubject, htmlMessageBody, true, smtpServer);

Dts.TaskResult = (int)ScriptResults.Success;

OEBPS/html/graphics/t0007-01.jpg
ask.ScriptObjectModel.Variables
property of the Ds object to access
variables that are available through
the task's
P:Microsoft.SqlServer.Dts.Tasks.ScriptT
askScriptTask. ReadOnlyVariables and
P:Microsoft.SqlServer.Dts.Tasks.ScriptT
askScriptTask ReadWriteVariables
propertes. For example:

bim myvar

sering
myvar -

Dts.Variables (*MyScringVariable
%) .Valve Tostring

string myvar;

myvar =

bts.Variables (*MyStringVariable
") .Value Tostring () ;

based class, created from the
component's

P:Microsoft SalServer.Dts.Pipeline ScriptCo
‘mponent ReadOnlyVariables and
P:Microsoft SalServer.Dts.Pipeline ScriptCo
‘mponent ReadWriteVariables properties
For example:

Din myvar as String

myvar =
Me.Variables Mystringvariable

string myvar;

yvar =
this.Variables MystringVariable;

Using
connections

The Script task uses the
P:MicrosoftSalServer.Dts Tasks. ScrptT
ask SciptObjectModel Connections
property o the Dts object to access
connection managers defined in the
package. For example:

Dim ayPlatpileconnection As
Sering

myPlacFileconnection = _

Directcast (dts.Connect ions (*Tes
© Plat pile

Connection®) .AcquireConnect ion(
Des. Transaction), _

String)

string myPlatFileConnection;
ryFlacFileconnection =
(Dts.Connections (*Test. Flat
R

The Script component uses typed
accessor properties of the autogenerated
base class, created from the list of
connection managers entered by the user
‘on the Connection Managers page of the
editor. For example:
Din conntgr As
IDTSConnect donvas

ger100
conntigr =
Me. Connect fons . MyADONETConnection
IDTSConnect ionManager100 conniigr;
conniigr =
this.Connect ions. MyADONETConnect s

OEBPS/html/graphics/c0171-01.jpg
CREATE TABLE [Person] . [Address2] {
[AddressID] [int] NOT NULL,
[City] [nvarchar] (30) NOT NULL

OEBPS/html/graphics/c0117-02.jpg
Dim myADOConnection As SqlConnection = _

CType (MyADONETConnect ionManager . AcquireConnection (Nothing)
S CEHRE L)

OEBPS/html/graphics/c0117-01.jpg
Dim myADONETConnectionManager As IDTSConnectionManagerl00

Me . Connect ions . MyADONETConnect ion

OEBPS/html/graphics/c0066-01.jpg
Public Sub Main()

Dim currentImageFile As String
Dim currentImage As Image

Dim maxThunbSize As Integer
Dim thunbnaillmage As Image
Dim thunbnailFile As String
Dim thunbnailHeight As Integer
Dim thumbnailWidth As Integer

currentImageFile = Dts.Variables("CurrentImageFile").Value.ToString

thumbnailFile = Path.Combine(_
Path.GetDirectoryName (current ImageFile),
String.Concat (Path.GetFileNameWithoutExtension (currentInageFile)

"_thumbnail.jpg"))

Try
currentInage = Image.FromFile (currentInageFile)

OEBPS/html/graphics/c0018-03.jpg
* Moepsoft B BRxybe Tabegrablon BAXviced Beelph Tamk
" Write scripts using Microsoft Visual Basic 2008.

' The ScriptMain is the entry point class of the script.

Inports System
Imports System.Data
Imports System.Math

Imports Microsoft.SqlServer.Dts.Runtime.VSTAProxy
<System.AddIn.AddIn("ScriptMain®, Version:="1.0", Publisher
Description:="")> _

Partial Class ScriptMain

Private Sub ScriptMain_Startup(Byval sender As Object, ByVal e As
System.Eventhrgs) Handles Me.Startup

End Sub

Private Sub ScriptMain_Shutdown (ByVal sender As Object, ByVal e As
Systen.EventArgs) Handles Me.Shutdown

Try
' Unlock variables from the read-only and read-write variable collection
properties

If (Dts.Variables.Count <> 0) Then
Dts.Variables.Unlock ()
End 1f
Catch ex As Exception
End Try
End Sub

Enun ScriptResults
Success = DISExecResult.Success
Failure = DISExecResult.Failure

End Enun

' The execution engine calls this method when the task executes

' To access the object model, use the Dts property. Comnections, variables,
events,

' and logging features are available as members of the Dts property as shown
in the following examples.

' To reference a variable, call
Dts.Variables ("MyCaseSensitiveVariableName®) .Value

OEBPS/html/graphics/c0071-02.jpg
Return hasLegal

End Function

public void Main()

{

PrinterSettings currentPrinter = new PrinterSettings();
Papersize size;

Boolean Flag = false;

ArrayList printerList = new ArrayList();

foreach (string printerName in PrinterSettings.InstalledPrinters)

{

currentPrinter.PrinterName = printerNam

if (PrinterHasLegalPaper (currentPrinter))

{

OEBPS/html/graphics/c0071-03.jpg
private bool PrinterHaslegalPaper (PrinterSettings thisPrinter)

{

bool hasLegal

false;

foreach (PaperSize size in thisPrinter.PaperSizes)
{

if (size.Kind

{

PaperKind. Legal)

hasLegal = true;

return hasLega

OEBPS/html/graphics/c0066-02.jpg
Private Sub CalculateThumbnailSize(_
ByVal maxsize As Integer, ByVal sourcelmage As Image,

ByRef thumbliidth As Integer, ByRef thumbHeight As Integer)

If sourcelmage.Width > sourceImage.Height Then

thumbWidth = maxSize

thumbHeight = CInt ((maxSize / sourceImage.Width) *
sourceImage .Height)
Else
thumbHeight = maxSize

thumbWidth = CInt((maxSize / sourcelmage.Height) * sourceImage.Width)

End If

End Sub
bool ThumbnailCallback ()

{

return false;

OEBPS/html/graphics/c0066-03.jpg
currentImage

Image.FromFile (currentImageFile) ;

maxThunbSize = (int)Dts.Variables ["MaxThumbSize"].Value;

CalculateThunbnailSize (naxThumbSize, currentImage,

thumbnailWidth, ref thumbnailHeight);

Inage.GetThunbnaillmageAbort myCallback = new
Image .Get ThumbnailImageAbort (ThumbnailCallback) ;

thumbnaillmage =
currentImage.GetThurbnail Image (thunbnailWidth, thumbnailHeight,
ThumbnailCallback, IntPtr.Zero);

thumbnailImage.Save (thumbnailFile) ;
Dts.TaskResult = (int)ScriptResults.Success;
}
catch (Exception ex)

{

Dts.Events.FireBrror (0, "Script Task Example®, ex.Message +

"\r" + ex.StackTrace, String.Empty, 0);

Dts.TaskResult = (int)ScriptResults.Failure;

ref

OEBPS/html/graphics/c0071-01.jpg
Public S

Dim

Dim

Dinm

Dim

For

Next

ub Main ()

printerName As String
currentPrinter As New PrinterSettings

size As PaperSize

printerList As New ArrayList
Each printerName In PrinterSettings.InstalledPrinters
currentPrinter.PrinterName = printerName
Tt PrinterHasLegalPaper (currentPrinter) Then
printerList.Add (printerName)
Dts.Events.FireInformation(0, "Example",
"Printer " & printerName & " has legal paper.",
String.Empty, 0, False)
Else
Dts.Events. FireWarning (0, "Example”,
"Printer " & printerName & " DOES NOT have legal paper.
String.Empty, 0)
End 1f

OEBPS/html/graphics/c0066-01a.jpg
maxThunbSize = CType (Dts.Variables ("MaxThumbSize").Value, Integer)
CalculateThunbnailSize(_

maxThumbSize, currentImage, thumbnailWidth, thumbnailHeight)

thunbnaillnage = currentImage.GetThunbnaillmage (_
thunbnailWidth, thumbnailleight, Nothing, Nothing)
thumbnailImage.Save (thumbnailFile)

Dts.TaskResult = ScriptResults.Success

Catch ex As Exception

End

End Sub

Dts.Events.FireError (0, "Script Task Example’,
ex.Message & ControlChars.CrLf & ex.StackTrace,
String.Empty, 0)

Dts.TaskResult = ScriptResults.Failure

Try

OEBPS/html/graphics/caution.jpg
4B

OEBPS/html/graphics/c0080-01.jpg
Public Class ScriptMain
Public Sub Main()

Dim fileToTest As String

fileToTest = Dts.Variables("ExcelFile").Value.ToString
If File.Exists(fileToTest) Then

Dts.Variables ("ExcelFileExists") .Value = True

Else

Dts.Variables ("ExcelFileExists"

.Value = False

End If

Dts.TaskResult = ScriptResults.Success
End Sub

End Class

public class Scriptiain

{

public void Main()

OEBPS/html/graphics/c0114-01.jpg
Dim connMgr As IDISConnectionManagerl00

Public Overrides Sub ReleaseConnections ()

connMgr . ReleaseConnect ion (sqlConn)

End Sub

IDTSConnect ionManager100 connMgr;

public override void ReleaseConnections ()

{

connMgr . ReleaseConnection (sqlConn) ;

OEBPS/html/graphics/c0104-02a.jpg
[Microsoft.SqlServer.Dts. Pipeline.SSISScriptComponentEntryPointAttribute]
public class ScriptMain : UserComponent

{

public override void PreExecute ()

{

base. PreExecute () ;
/e

Add your code here for preprocessing or remove if mot needed
*

public override void PostExecute ()

{

base.PostExecute () ;
/e

OEBPS/html/graphics/c0183-01a.jpg
nextRowIsParent = False

Else

End
End 1f

End Sub

public override

{

! Current row contains child record.

childCounter += 1

Me.ChildRecordsBut fer . AddRow ()
Me.ChildRecordsBut fer.ChildID = childCounter

Me.ChildRecordsBut fer. ParentID = parentCounter
Me.ChildRecordsBut fer . ChildRecord = Row.Columno

13

void Inputo_ProcessInputRow (InputOBuffer Row)

OEBPS/html/graphics/c0139-01.jpg
Row.City = UCase(Row.City)

e D . (o OLET AT eEt)

OEBPS/html/graphics/c0034-03a.jpg
connectedstate

InternetGetConnectedstate (ref dwrlags, 0);

state = (int)Connectedstates.Modem;
if (connectedstate 1= 0)
{
if ((awFlags & state) == state)
{
Dts.Bvents.FireWarning(0, "Script Task Example",
"Volatile Internet connection detected.”, String.Empty, 0);
i
else
{

Dts.Events.FireInformation(0, "Script Task Example",
"Internet connection detected.”, String.Empty, 0, ref fireAgain);

i

)

else

{
// 1f ot connected to the Internet, raise an error.
Ds.Events.FireError(0, "Script Task Example”, 'Internet

connection not available.", String.Empty, 0);
}
Dts.TaskResult = (int)ScriptResults.Success;

OEBPS/html/graphics/c0080-02.jpg
{

string fileToTest;

fileToTest = Dts.Variables["ExcelFile"] .Value.ToString();
if (File.Exists(fileToTest))

{

Dts.Variables ["ExcelFileBxists"] .Value = true;

else

Dts.Variables ["ExcelFileExists"] .Value = false;

Dts.TaskResult = (int)ScriptResults.Success;

OEBPS/html/graphics/c0063-03.jpg
Dim count As Integer

Dim encoders() As Imaging.ImageCodecInto

encoders = Imaging.ImageCodecInfo.GetImageEncoders ()

For count = 0 To encoders.Length
If encoders (count) .MimeType = mimeType Then
Return encoders (count)
End If

Next

'This point is only reached if a codec is not found.
Err.Raise(513, "Image Resampling Sample", String.Format(_
"The {0} codec is not available. Unable to compress file."
mimeType))

Return Nothing

Bnd Function

OEBPS/html/graphics/c0156-01.jpg
CREATE TABLE (Person] . [Address2] (
[AddressID] [int] NOT NULL,
[city] [nvarchar] (30) NOT NULL

OEBPS/html/graphics/c0156-03.jpg
-Parameters ("@addressid") .Value

Row.AddressID

.Parameters ("@city") .Value = Row.City

-ExecuteNonQuery ()

End with

End Sub

Public Overrides Sub ReleaseConnections ()

connMgr . ReleaseConnection (sglConn)

End Sub

End Class

using System.Data.SqlClient;

public class ScriptMai

UserComponent.

IDTSConnectionManager100 connMgr;

SqlConnection sqlConn;

SqlCommand sqlCmd;

SqlParameter sqlParam;

public override void AcquireConnections (object Transaction)

{

connMgr

sqlconn

this.Connect ions .MyADONETConnect ionManager ;

(SqlConnection) connMgr . AcquireConnection (null) ;

OEBPS/html/graphics/c0156-02.jpg
Imports System.Data.SqlClient

Public Class ScriptMain

Inherits UserComponent
Dim connMgr As IDTSConnectionManager100
Dim sqlConn As SqlConnection

Dim sqlCnd As SqlCommand

Dim sqlParam As SqlParameter

Public Overrides Sub AcquireConnections (Byval Transaction As Object)

connigr = Me.Connections .MyADONETConnect ionManager
sqlConn = CType (connMgr .AcquireConnection (Nothing), SqlConnection)

End Sub

Bublic Overrides Sub PreExecute ()

sqlcnd = New SqlCommand ("INSERT INTO Person.Address2 (AddressID, City)

"
"VALUES (saddressid, acity)", sqlConn)
sqlParam = New SqlParameter ("eaddressid", SqlDbType.Int)
5q1Cnd. Parameters . Add (sqlParam)
sqlParam = New SqlParameter("Gcity", SqlDbType.NVarChar, 30)
sqlCnd. Parameters . Add (sqlParam)
End sub

Public Overrides Sub MyAddressInput_ProcessInputRow(ByVal Row As
MyAddressInputBuffer)

With sglOnd

OEBPS/html/graphics/c0156-04.jpg
public override vold PreExecute()

{

sqlCmd = new SqlCommand ("INSERT INTO Person.Address2 (AddressID, City)

"VALUES (@addressid, acity)", sqlConn);
sqlParam = new SglParameter ("@addressid", SqlDbType.Int);
sq1Cmd. Parameters .Add (sqlParam) ;
sqlParam = new SglParameter ("@city", SqlDbType.NVarChar, 30);

sq1Cmd. Parameters .Add (sqlParam) ;

)
public override void MyAddressInput_ProcessInputRow (MyAddressInputBuffer
Row)
{
{
sqlCnd. Parameters ["@Gaddressid"] .Value = Row.AddressID;
sqlend. Parameters ["acity"] .Value = Row.City;
sqlmd. ExecuteNonQuery () ;
)
]

public override void ReleaseConnections ()

{

connMgr . ReleaseConnection (sglConn) ;

OEBPS/html/graphics/c0038-01a.jpg
Des.Log("Rows processed: " + rowsProcessed.ToString(), 0

emptyBytes) ;
Dts.TaskResult = (int)ScriptResults.Success;

i

cateh (Exception ex)

{

//Bn error occurred

Dts.Bvents.FireBrror (0, "Script Task Example”, ex.Message +
"\£" + ex.StackTrace, String.Empty, 0);

Dts.TaskResult = (int)ScriptResults.Failure;

OEBPS/html/graphics/c0021-01.jpg
Y T poas § Mg eaRry, oall DEw.Jog (TN A e o Teatt, S23, Nocogh

' To fire an event, call Dts.Events.FireInformation(99, "test”, "hit the help
message”, "", 0, True)

' To use the connections collection use something like the following:

' ConnectionManager cm = Dts.Connections.Add ("OLEDB")

' cm.Connectionstring = "Data Source=localhost;Initial
Catalog=Adventuretiorks; Provider=SQLNCLI10; Integrated Security=SSPI;Auto

TranslatesFalse;"

' Before returning from this method, set the value of Dts.TaskResult to
indicate success or failure.

' To open Help, press F1.

Public Sub Main()

' Add your code here
Dts.TaskResult = ScriptResults.Success
End Sub

End Class
/e

Microsoft SQL Server Integration Services Script Task

Write scripts using Microsoft Visual CH 2008.

The ScriptMain is the entry point class of the script
7

using System;
using System.Data;
using Microsoft.SqlServer.Dts.Runtime. VSTAProxy;
using System.Windows.Forms;
namespace ST_1bcfdbad36d94£8basf23al0375abes3 . caproj
{
(System.AddIn.AddIn ("ScriptMain®, Version = "1.0", Publisher = ",
Description = "*)]
public partial class ScriptMain
{

private void ScriptMain_Startup(object sender, EventArgs e)

{

OEBPS/html/graphics/c0128-01.jpg
CREATE TABLE [Person] . [Address2] {
[AddressID] [int] NOT NULL,
[City] [nvarchar] (30) NOT NULL

OEBPS/html/graphics/c0063-01.jpg
FOOLIR G090 T Ly

‘Create and initialize variables.

Dim
Dim
Dim
Dim
Dim

Dpim

Try

currentFile As String
newFile As String

bmp As Bitmap

eps As New Imaging.EncoderParameters (1)
ici As Inaging.ImageCodecInfo
supportedExtensions () As String = _

{*.BME", ".GIFY, ".JPG", ".JPEG", ".EXLF", ".PNG',

".TIFE", ®.TIFY, *.ICO", ".ICON"}

'Store the variable in a string for local manipulation.
currentFile = Dts.Variables("CurrentImageFile").Value.ToString

'Check the extension of the file against a list of

OEBPS/html/graphics/c0063-02.jpg
'Retrieve the ImageCodecInfo associated with the jpeg format.

ici = GetEncoderInfo("image/jpeg")

‘Save the file, compressing it into the jpeg encoding.
bmp. Save (newFile, ici, eps)
slse
"The file is not supported by the Bitmap class.
Dts.Events.FireWarning (0, "Inage Resampling Sample”,
"File ' & currentFile & " is mot a supported format.
- 0

End Tf
Dts.TaskResult = ScriptResults.Success

Catch ex As Exception

OEBPS/html/graphics/c0066-02a.jpg
public void Main()

{

string currentImageFil

Image currentImage;
int maxThumbSize;

Inage thumbnailImage;
string thumbnailfile;

int thumbnailHeight

int thuwbnailwidth = 0

currentInageFile =
Dts.Variables ["CurrentImageFile"] .Value.Tostring() ;

thumbnailFile
Path.Combine (Path.GetDirectoryName (currentInageFile) ,
String.Concat (Path.GetFileNameWithout Extension (current TnageFile) ,
"_thumbnail.jpg")) ;

try

{

OEBPS/html/graphics/t0024-01.jpg
Member

P:Microsoft SqlServer.Dts.Tasks ScriptTa
skScriptObjectModel.VariableDispenser

Description
The

Microsoft SalServer.Dts.Tasks. ScriptTask ScriptObject
ModelVariables property provides more convenient
access to variables. Although you can use the
P:Microsoft. SqlServer.Dts.Tasks.ScriptTask ScriptObject
Model.VariableDispenser, you must explicitly call
methods to lock and unlock variables for reading and
writing. The Script task handles locking semantics for
you when you use the

P:Microsoft SqlServer.Dts.Tasks.ScriptTask.ScriptObject
Model.Variables property.

OEBPS/html/graphics/c0150-02.jpg
End Class

public class ScriptMais

UserComponent.

private int myRedmondAddressCount ;

public override void CreateNewOutputRows ()

{

MySummaryOutputBuf fer . AddRow () ;

OEBPS/html/graphics/c0150-03.jpg
public override void MyhddressInput_ProcessInputRow (MyAddressInputBuffer
Row)

{
MyAddressOutputBuffer.AddRow () ;
MyAddressOutputBuffer.AddressID = Row.AddressID;
MyAddressOutputBuffer.City = Row.City;

J

if (Row.City.ToUpper () "REDMOND")

{
myRedmondAddressCount += 1;

}

OEBPS/html/graphics/c0044-01c.jpg
FileInfo flatFileInfo = new FileInfo(ffConnection);

/1 Tt £ile size is 0 bytes, flat file does not contain data.
long filesize - flatFileInfo.Length;

if (filesize » 0)

{

int lineCount = 0;
string line;
StreanReader fsFlatFile = new StreamReader (ffConnection);
while (1 (fsFlatFile EndOfStrean))
{
Congole.WriteLine (fsFlatFile ReadLine());
lineCount += 1;
// If line count > expected number of non-data rows,
// flat file contains data (default value).
if (lineCount > nomDataRows)
{

break;

OEBPS/html/graphics/c0082-02a.jpg
fileToTest = Dts.Variables["ExcelFile"].Value.ToString();

tableToTest = Dts.Variables["BxcelTable'].Value.ToString();

Dts.Variables ["ExcelTableExists"].Value = false;
if (File.Exists(fileToTest))
{
connectionString = "Provider-Microsoft.Jet.OLEDB.4.0;" +

"Data Sourc

" + fileToTest + ";Extended Properties=Excel

excelConnection = new OleDbConnection (connectionString) ;
excelConnection.Open () ;
excelTables = excelConnection.GetSchema ("Tables") ;

foreach (DataRow excelTable in excelTables.Rows)

{

OEBPS/html/graphics/c0150-01.jpg
Public Class ScriptMain

Inherits UserComponent

Private myRedmondAddressCount As Integer

Bublic Overrides Sub CreateNewOutputRows ()

MySummaryOutputBuf fer .AddRow ()

End Sub

Public Overrides Sub MyAddressInput_ProcessInput (ByVal Buffer As
yAddressInputBut fer)

While Buffer.NextRow ()
MyAddressInput_ProcessInputRow (Buffer)

End While

OEBPS/html/graphics/c0178-02a.jpg
if
(Row. Column0 . Substring (Row.Column0 . IndexOf (*:")) . TrimEnd () .Length > 1)

// Extract the column value from after the colon and space.

{

columValue = Row.Column0.Substring (Row.Columno. IndexOf (*
v 2);

switch (columnName)
{
case "FirstName":
// The FirstName value indicates a new record.
this.OutputOBuffer.AddRow () ;
this.OutputOBuffer.FirstName = columnValue;

break;

o

OEBPS/html/graphics/c0089-02a.jpg
string(] tablesInFile;
//string tableInFile;

results = "Final values of variables:" + EOL + "ExcelFile: " +
Dts.Variables["ExcelFile"] .Value.ToString() + EOL + "ExcelFileExists: " +
Dts.Variables ["ExcelFileExists"] .Value.ToString() + EOL + "ExcelTable: " +
Dts.Variables ["ExcelTable"] .Value.ToString() + EOL + "ExcelTableExists: " +
Dts.Variables ["ExcelTableBxists'] .Value.Tostring() + EOL + "ExcelFolder: " +

Dts.Variables ["ExcelFolder"] .Value.ToString() + EOL + EOL;

results += "Excel files in folder: " + EOL;
filesInFolder = (stringl]) (Dts.Variables("ExcelFiles"].Value);

foreach (string fileInFolder in filesInFolder)

OEBPS/html/graphics/c0143-02a.jpg
public override void MyAddressInput_ProcessInputRow (MyAddressInputBuffer Row)

{

Row.City = (Row.City) .ToUpper ();

if (Row.City == "REDMOND")
{
Row.DirectRowTolMyRedmondAddresses () ;
}
else
if
Row.DirectRowToMyOtheraddresses () ;
}

OEBPS/html/graphics/c0129-03a.jpg
public override void PostExecute ()

sqlReader.Close () ;

public override void ReleaseConnections ()

{

connMgr . ReleaseConnect ion (sqlConn) ;

OEBPS/html/graphics/c0048-03a.jpg
private bool isCheckForNewer - true;

int fileAgeLimit;

private ArrayList listForEnumerator;

public void Main()

fileAgeLimit = (int) (Dts.Variables["FileAge"] Value);

// Tf value provided is positive, we want files NEWER THAN n days.
// 1f megative, we want files OLDER THAN n days.
i€ (£ileAgeLimit<0)

{

isCheckForNever = false;

i
// Extract number of days as positive integer.
fileAgeLimit = Math.Abs (fileAgeLimit);

ArrayList listPorEnumerator = new ArrayList();

OEBPS/html/graphics/t0033-01.jpg
Event

M:Microsoft.SqlServer.Dts. Runtime IDTSC
‘omponentEvents FireCustomEvent(Syste
m String,System String,System.Objectl]@,
System.String,System.Boolean@)
M:Microsoft.SqlServer.Dts.RuntimeIDTSC
‘omponentEvents FireError(System.Int32.5
ystem.String,System.String,System.String,
System.Int32)

M:Microsoft.SqlServer.Dts.Runtime.IDTSC

‘omponentEvents Firelnformation(System.
Int32,System.String,System.String,System
String,System.Int32,System.Boolean@)

Raises a user-defined custom event in the package.

Informs the package of an error condition.

Provides information to the user.

M:Microsoft.SqlServer.Dts.Runtime.IDTSC
‘omponentEvents.FireProgress(System.Stri
32,System.Int32, System.Int3
. System.Boolean@)

M:Microsoft.SqlServer.Dts.Runtime IDTSC

QueryCancel

Informs the package of the progress of the task.

Returns a value that indicates whether the package
needs the task to shut down prematurely.

M:Microsoft.SqlServer.Dts Runtime.IDTSC
‘omponentEvents FireWarning(System.Int
32,5ystem.String,System.String,System.t
ring,System Int32)

Informs the package that the task is in a state that
warrants user notification, but is not an error
condition.

OEBPS/html/graphics/warning.jpg

OEBPS/html/graphics/c0066-03a.jpg
private void CalculateThumbnailSize (int maxSize, Image sourceImage,
ref int thumbWidth, ref int thumbHeight)

{
if (sourceImage.Width > sourceImage.Height)
{
thurbWidth = maxSize;
thunbHeight = (int) (sourcelmage.Height * maxSize /
sourcelInage.Width) ;
i
else
{
thunbHeight = maxSize;
thumbWidth = (int) (sourceImage .Width * maxSize /
sourceInage Height) ;
i

OEBPS/html/graphics/c0129-01.jpg
Imports System.Data.SqglClient

Public Class ScriptMain

Inherits UserComponent
Dim connMgr As IDTSConnectionManager100
Dim sqlConn As SglConnection

Dim sqlReader As SglDataReader

Public Overrides Sub AcquireConnections(ByVal Transaction As
object)

connMgr = Me.Connect ions.MyADONETConnection

sqlConn
SqlConnect ion)

CType (connMgr . AcquireConnect ion (Nothing) ,

End Sub

OEBPS/html/graphics/c0129-02.jpg
Public Overrides Sub PostExecute ()

sqlReader.Close ()

End Sub

Puplic Overrides Sub ReleaseConnections ()

connMgr . ReleaseConnect ion (sglConn)

End Sub

End Class

OEBPS/html/graphics/c0129-03.jpg
public override void PreExecute ()

{

SqlCommand cmd = new SglCommand ("SELECT AddressID, City,
StateProvinceID FROM Person.Address", sqlConn);

sqlReader = cmd.ExecuteReader (

public override void CreateNewOutputRows ()

{

while (sqlReader.Read())

{

MyAddressOutputBuf fer . AddRow () ;

MyAddressoutputBuf fer . AddressID
sqlReader.GetInt32(0) ;

MyAddressOutputBuffer.City = sqlReader.GetString(1);

OEBPS/html/graphics/c0044-01a.jpg
Do Until fsPlatFile.EndofStream
line - fsFlatFile.Readhine
lineCount += 1
' If line count > expected number of non-data rows,
' flat file contains data (default value)
£ lineCount > nonDataRows Then
Exit Do

Ena 12

' If line count <

expected number of non-data rows,
" flat file does not contain data.
¢ lineCount <= nonDataRows Then
Dts.Variables ("FFIsEmpty") .Value = True
End 1t
Loop
slse
Dts.Variables ("FFIsEmpty") .Value = True
Bnd 1¢

OEBPS/html/graphics/c0044-01b.jpg
Din irergain As Boolean - False

Dts.Bvents. FirsInfornation(0, "Script Task", _
String.Format ("(0}: {1}", ffConnection, _
Dts.Variables ("FFIsEmpty”) .Value.Tostring), _
String.Bmpty, 0, fireagain)

Dts.TaskResult = ScriptResults.Success

snd Sub
public void Main()

{

int nonDataRows = (int) (Dts.Variables ["FFNonDataRows"] .Value) ;

string frComnection =
(string) (Dts.Connect ions ["EmptyFlatFileTest"] .AcquireConnection (null) as
String);

OEBPS/html/graphics/c0121-01.jpg
Dim myMetadata as IDTSComponentMetaDatalO0
myMetabata = Me.ComponentMetaData

T

OEBPS/html/graphics/c0021-01a.jpg
FEAVAES Wi SerlphNain StuCoom (ODJect sencer, Freotiage o)
{

ery

{

// Unlock variables from the read-only and read-write
variable collection properties

if (Dts.Variables.Count != 0)
{
Dts.Variables.Unlock () ;
}
}
catch
{
}

#region VSTA generated code

private void InternalStartup()

{
this.Startup += new System.EventHandler (ScriptMain_Startup) ;
this.Shutdown += new System.EventHandler (ScriptMain_Shutdown) ;
i
enun ScriptResults
{

Success = DTSExecResult.Success,

Failure = DTSExecResult.Failure

#endregion

/%
The execution engine calls this method when the task executes.

To access the object model, use the Dts property. Connections, variables,
events,

and logging features are available as members of the Dts property as shown in
the following examples.

OEBPS/html/graphics/c0030-01.jpg
ENEAAE U MR L
Dim myADONETConnection As SqlClient.SqlConnection

myADONETConnect ion

DirectCast (Dts.Connect ions ("Test ADO.NET
Connection") .AcquireConnection (Dts. Transaction) ,

SqlClient.SqlConnection)
MsgBox (myADONETCOnnect ion . Connect ionstring,

MsgBoxStyle. Information, "ADO.NET Connection”)

Dim myFlatFileConnection As String
myFlatFileconnection = _

DirectCast (Dts.Connections ("Test Flat File
Connection") .AcquireConnection (Dts. Transaction) ,

string)
MegBox (myFlatFileConnection, MegBoxStyle.Information, "Flat File
Connection")

Dts.TaskResult - ScriptResults.Success

£nd Sub
using systen;

using System.Data.SqlClient;

using Microsoft.SqlServer.Dts.Runtime;

using System.Windows.Forns;

public class ScriptMain

{

OEBPS/html/graphics/c0082-01.jpg
L E RIARR Berpuietn
Public Sub Main()
Dim fileToTest As String
Dim tableToTest As String
Dim connectionString As String
Dim excelConnection As OleDbComnection
Dim excelTables As DataTable
Dim excelTable As DataRow

Dim currentTable As String

fileToTest = Dts.Variables("ExcelFile").Value.ToString

tableToTest = Dts.Variables ("ExcelTable).Value.ToString

Dts.Variables ("ExcelTableExists") .Value = False

1f File.Exists(fileToTest) Then

OEBPS/html/graphics/c0082-02.jpg
Dts.TaskResult = ScriptResults.Success

End Sub
End Class
public class ScriptMain

{
public void Main()
it
string fileToTest;
string tableToTest;

string connectionString;

OleDbConnection excelConnection;

DataTable excelTables;

string currentTable;

OEBPS/html/graphics/c0082-03.jpg
currentTable = excelTable["TABLE NAME"].ToString();
if (currentTable =

{

tableToTest)

Dts.Variables ["ExcelTableBxists"] .Value = true;

Dts.TaskResult = (int)ScriptResults.Success;

OEBPS/html/graphics/c0133-02.jpg
Imports System.l0
Public Class ScriptMain

Inherits UserComponent

Private textReader As StreamReader

Private exportedAddressFile As String

Public Overrides Sub AcquireConnections(ByVal Transaction As
Object)

Dim connMgr As IDTSConnectionManagerl00
Me.Connect ions . MyFlatFileSrcConnect ionManager
exportedaddressFile

CType (connigr . AcquireConnect ion (Nothing) , String)

OEBPS/html/graphics/c0133-01.jpg
CREATE TABLE [Person]. [Address2] (
[AddressTD] [int] NOT NULL,
[City] [nvarchar] (30) NOT NULL

OEBPS/html/graphics/c0133-04.jpg
public override void PreExecute ()

{
base.PreExecute () ;

textReader = new StreamReader (exportedAddressFile);

public override void CreateNewOutputRows ()

{

string nextLine;

stringl] columns;

char(] delimiters;

delimiters = ",".ToCharArray!();

nextLine = textReader.ReadLine();
while (nextLine

{

null)

columns = nextLine.Split (delimiters);

{

OEBPS/html/graphics/c0082-01a.jpg
connectionString = "Provide:
"Data Source=" & fileToTest & _
";Extended Properties-Excel 8.0%
excelConnection = New OleDbConnect ion (connectionString)
excelConnection.Open ()
excelTables = excelConnection.GetSchema ("Tables")
For Each excelTable In excelTables.Rows
currentTable = excelTable.Item("TABLE NAME") .ToString
If currentTable = tableToTest Then

Dts.Variables ("ExcelTableExists") .Value

True
End If
Next.

End If

licrosoft.Jet.OLEDB.4.0;" & _

OEBPS/html/graphics/c0133-03.jpg
nextLine = textReader.ReadLine
Do While nextLine IsNot Nothing
columns = nextLine.Split (delimiters)
With MyhddressOutputBuffer
.AddRow ()
.AddressID = columns (0)
.City = columns (3)
End With
nextLine = textReader.ReadLine

Loop

End Sub

Public Overrides Sub PostExecute ()

MyBase . PostExecute ()

textReader.Close ()

End Sub

OEBPS/html/graphics/c0093-03.jpg
End Sub

End Class
using System;
using Microsoft.SqlServer.Dts.Runtime;

using System.Messaging;

public class ScriptMain

{

public void Main()

{
new
string messageText;
(Ds. ("Message
Queue Manager"] (Dts. as

MessageQueue) ;
messageText = (string) (Dts.Variables"MessageText"] .Value);

remoteprivateQueue . Send (messageText) ;

Dts.TaskResult = (int)ScriptResults.Success;

OEBPS/html/graphics/important.jpg

OEBPS/html/graphics/c0044-02.jpg
i

// Tf line count <= expected number of non-data rows,

// flat file does mot contain data.

if (lineCount <= nonbataRows)
{
Dts.variables ["FFIsEupty"] .Value = true;
i
)
i
else
{
Dts.variables ["FFIsEmpty"] .Value = true;
i

bool fireAgain = false;

Dts. Events.FireInformation(0, "Script Task", String.Format("(0):
(1)", £fConnection, Dts.Variables('FFIsEmpty’].Value), String.Empty, 0, ref
fireAgain) ;

Dts.TaskResult = (int)ScriptResults.Success;

OEBPS/html/graphics/c0093-02.jpg
S L BT
Imports Microsoft.SqlServer.Dts.Runtime

Imports System.Messaging
Public Class ScriptMain
Public Sub Main()

Dinm remotePrivateQueue As MessageQueue

Dim messageText As String

remoteprivateQueue = _
DirectCast (Dts.Connections ("Message Queue Connection
Manager) . AcquireConnection (Dts.Transaction), _

MessageQueue)

- (Dts.variables .Value, String)
remotePrivateQueue. Send (messageText)

Dt ToakResnit o SoriviResc) e Socosse

OEBPS/html/graphics/c0101-01.jpg
Dim myADONETConnectionManager As IDTSConnectionManagerl00 = _

Me . Connect ions . MyADONETConnect ion

OEBPS/html/graphics/c0093-01.jpg
FORMATNAME : DIRECT=0S: <computername>\privates$\<gueuename>

OEBPS/html/graphics/c0178-02.jpg
End Sub

public override void Input0_ProcessInputRow(InputOBuffer Row)

{

string columnName;

string columnvValue;

// Check for an empty row.
if (Row.Column0.Trim().Length > 0)

{

columnName = Row.Column0.Substring(0, Row.Column0.IndexOf (":"));

// Check for an empty value after the colon.

OEBPS/html/graphics/c0178-03.jpg
case "LastName":
this.OutputOButfer.LastName = columValue;
break;

case "Title":
this.OutputOButfer.Title = columnValue;
break;

case "City”
this.OutputOButfer.City = columnValue;
break;

case "StateProvince"
this.OutputoButfer . StateProvince = columnValue;

break;

OEBPS/html/graphics/c0038-01.jpg
vl ol o LU

Dim rowsProcessed As Integer = 100

Dim emptyBytes(0) As Byte

ey
Dts.Log ("Rows processed: " & rowsProcessed.ToString, _
o
enptyBytes)

Dts.TaskResult - ScriptResults.Success
Catch ex As Exception

‘hn error occurred,

Dts.Bvents.FireError (0, "Script Task Example’, _
ex.Message & ControlChars.CrLf & ex.StackTrace, _
String.Empty, 0)

Dts.TaskResult - ScriptResults.Failure

End Try

End Sub
using System;
using System.Data;

using Microsoft.Sqlgerver.Dts.Runtine;

public class ScriptMain

{

public void Main()

{
7"
int rowsProcessed = 100;
bytel) emptyBytes = new byrelol;

OEBPS/html/graphics/c0044-01.jpg
bt B

Dim nonbataRows As Integer

DirectCast (Dts.Variables ("FRNonDataRows"] .Value, Integer)

Dim £fConnection As String

DirectCast (Dts.Connect ions ("EmptyFlatFileTest") . AcquireConnection (Nothing)
string)
Dim flatFileInfo As New FileInfo(ffConnection)
' If file size is 0 bytes, flat file does not contain data
Dim fileSize As Long = flatFileInfo.Length
If filesize > 0 Then
Dim lineCount As Integer = 0
Dim line As String

Dim £6FlatFile As New StreamReader (EfConnection)

OEBPS/html/graphics/c0048-04a.jpg
localFiles = Directory.GetFiles (folderPath, FILE_FILTER);

foreach (string localfile in localFiles)

{
fileChangeDate = File.GetLastWriteTime(localFile) ;
fileAge = DateTime.Now.Subtract (£ileChangeDate) ;
fileAgeIndays = fileAge.Days;
CheckAgeOfFile (localFile, fileAgeInDays);

i

if (Directory.GetDirectories (folderpath) .Length > 0)

{

foreach (string childFolder in
Directory.GetDirectories (folderpath)

{

GetFilesInFolder (childFolder) ;

OEBPS/html/graphics/c0178-01.jpg
FURTIL DRUTE 008 BObG DR CLITOCRAR IR ROM LRy Ve BON A8 TORUEORATTeT

Dim columnName As String

Dim columnValue As String

' Check for an empty row.
If Row.Column0.Trim.Length > 0 Then
columnlName = Row.Column0.Substring (0, Row.Column0.IndexOf (":"))

Check for an empty value after the colon.

1f Row.Column0.Substring (Row.Column0. IndexOf (*:")) .Triménd.Length

> 1 Then

' Extract the column value from after the colon and space.

columValue = Row.Column0.Substring (Row.Column.IndexOf (*:")

+2)

Select Case columnName

OEBPS/html/graphics/t0107-01.jpg
Package | Access Method
Feature
Variables | Use the named and typed accessor properties in the Variables collection class in
the ComponentWrapper project tem, exposed through the Variables property of
the ScriptMain class
The PreExecute method can access only read-only variables. The Postéxecute
method can access both read-only and readwrite variables.
Connectio | Use the named and typed accessor properties in the Connections collection class in
ns the ComponentWrapper project item, exposed through the Connections property
of the ScriptMain class.
Events | Raise events by using the
P:Microsoft SalServer.Dts.Pipeline ScriptComponent ComponentMetaData property
of the ScriptMain class and the Fire<X> methods of the
T:Microsoft SalServer.Dts.Pipeline.Wrapper IDTSComponentMetaDatalo interface.
Logging | Perform logging by using the

M:Microsoft SqiServer.Dts.Pipeline.ScriptComponent Log(System String,System.Int32,
System.Bytel]) method of the ScriptMain class.

OEBPS/html/graphics/c0027-06a.jpg
public class ScriptMain

{

public void Main()
{
int customerCount;

int maxRecordCount;

if
(Dts.Variables.Contains ("CustomerCount "
cordCount ") ==true)

ruessDts. Variables. Contains ("MaxRe

customerCount = (int) Dts.Variables ["CustomerCount"

.value;

maxRecordCount = (int) Dts.Variables ["MaxRecordCount"].Value;

if (customerCount>maxRecordCount)

{

Dts.TaskResult = (int)ScriptResults.Failure;

—

OEBPS/html/graphics/c0027-06b.jpg
Dts.TaskResult = (int)ScriptResults.Success;

OEBPS/html/graphics/note.jpg

OEBPS/html/graphics/c0086-02a.jpg
Seoel

string currentTabl

int tableIndex = 0;
stringl] excelTables = new string[s];

excelFile = Dts.Variables["ExcelFile"].Value.ToString();

connectionString = "Provider:

icrosoft.Jet .OLEDB.4.0;" +

"Data Source=" + excelFile + ";Extended Properties=Excel

excelConnection = new OleDbConnection (connectionString) ;
excelConnection.Open () ;
tablesInFile = excelConnection.GetSchema ("Tables") ;

tableCount = tablesInFile.Rows.Count;

OEBPS/html/graphics/c0056-01.jpg
Public Sub Main()

Dim directory As DirectoryServices.DirectorySearcher

Dim result As DirectoryServices.SearchResult

Dim email As String

email = Dts.Variables("email").Value.ToString

Try
directory

New _
DirectoryServices.DirectorySearcher (" (nail=" & email & ")")
result = directory.Findone
Dts.Variables ("name") .Value = _
result.Properties ("displayname”) .ToString

Dts.Variables ("title") .Value

result.Properties("title") .Tostring
Dts.TaskResult = ScriptResults.Success
Catch ex As Exception
Dts.Events.FireError (0,
"Script Task Example",
ex.Message & ControlChars.CrLf & ex.StackTrace,
string.Bmpty, 0)
Dts.TaskResult = ScriptResults.Failure

End Try

OEBPS/html/graphics/c0056-02.jpg
End Sub
public void Main()
{
/"
DirectorySearcher directory;
SearchResult result;

string email;

email = (string)Dts.Variables["email"].Value;
try
{
directory = new DirectorySearcher ("(mail=" + email + ")");

result = directory.FindOne();
Dts.Variables["name"] .Value =
result.Properties ["displayname"] .ToString () ;

Dts.Variables["title"] .Value
result.Properties["title] .ToString();

Dts.TaskResult = (int)ScriptResults.Success;

}

catch (Exception ex)

{

Dts.Events.FireError (0, "Script Task Example’, ex.Message s
"\n" + ex.StackTrace, String.Empty, 0);

Dts.TaskResult = (int)ScriptResults.Failure;

OEBPS/html/graphics/c0075-03.jpg
Dim smtpServer As String = _

Dts.Variables ("HtmlEmailServer”) .Value.ToString

OEBPS/html/graphics/c0027-06.jpg
THALIS SR PRt

Dim customerCount As Integer

Dim maxRecordCount As Integer

If Dts.Variables.Contains("CustomerCount") = True AndAlso _

Dts.Variables.Contains ("MaxRecordCount") = True Then

customercount

CType (Dts.Variables ("CustomerCount") .Value, Integer)

maxRecordCount

CType (Dts.Variables ("MaxRecordCount") .Value, Integer)

End If

1f customerCount > maxRecordCount Then

Dts.TaskResult = ScriptResults.Failure

Else

Dts.TaskResult = ScriptResults.Success
End If

End Sub
using System;
using System.Data;

using Microsoft.SqlServer.Dts.Runtime;

OEBPS/html/graphics/c0075-02.jpg

OEBPS/html/graphics/c0084-01a.jpg
End Class

public class ScriptMain

{

public void Main()

{
const string FILE_PATTERN = "+.xls";
string excelFolder;
string(] excelFiles;
excelFolder = Dts.Variables ["ExcelFolder"] .Value.Tostring() ;
excelFiles = Directory.GetFiles (excelFolder, FILE_PATTERN);
Dts.Variables ["ExcelFiles'] .Value = excelFiles;
Dts.TaskResult = (int)ScriptResults.Success;

}

OEBPS/html/graphics/c0098-01.jpg
Dim currentCustomerID as Integer

CustomerInput.CustomerIlD

Dim currentCustomerName as String = CustomerInput.CustomerName

OEBPS/html/graphics/c0075-01.jpg
<html><body><hl>Testing</hl><p>This is a test
R — oY oo .

OEBPS/html/graphics/c0104-03.jpg
Add your code here for postprocessing or remove if not needed
You can set read/write variables here, for example:
Variables.MyIntvar = 100

./

public override void Input0_ProcessInputRow (InputOBuffer Row)
{
/e
Add your code here
-/

OEBPS/html/graphics/c0111-01a.jpg
End Sub
SqlConnection sqlConn;
SqlCommand sqlCud;

sqlparameter sglParam;

public override void PreExecute ()

{

sqlCnd = new SglCommand ("INSERT INTO Person.Address2 (AddressID, City)
" + "VALUES (saddressid, acity)”, sqlConn);

sqlParam = new SqlParameter ("saddressid", SqlDbType.Int):
sqlCnd . Parameters.Add (sqlParam) ;

sqlparam

new SqlParameter ("ecity", SqlDbType.NVarChar, 30);

sqlcnd. Parameters . Add (sqlParan) ;

OEBPS/html/graphics/c0075-06.jpg
Dts.TaskResult = ScriptResults.Success

End Sub

Private Sub SendiailMessage(_
ByVal SendTo As String, ByVal From As String,
Byval Subject As String, ByVal Body As String,
Byval IsBodyHtml As Boolean, ByVal Server As String)

Dim htmlMessage As MailMessage

Dim mySmtpClient As SmtpClient

htmlMessage = New MailMessage (_
SendTo, From, Subject, Body)
htmlMessage. IsBodyktml = IsBodyHeml

OEBPS/html/graphics/c0129-01a.jpg
Bublic Overrides Sub Prefxecute ()

Dim cmd As New SglCommand ("SELECT AddressID, City,
StateprovinceID FROM Person.Address”, sqlConn)

sqlReader = cmd.ExecuteReader

End Sub

Bublic Overrides Sub CreateNewOutputRows ()

Do While sqlReader.Read
With MyAddressOutputBuffer
- AddRow ()
.AddressID = sqlReader.GetInt32(0)

.City = sqlReader.GetString(1)
End With

Loop.

End Sub

OEBPS/html/graphics/c0075-05.jpg
SRR P ANy

Dim htmlMessageTo As String
Dts.Variables ("HtmlEmailTo") .Value.ToString

Dim htmlMessageFrom As String = _
Dts.Variables ("HtmlEmailFron') .Value.ToString

Dim htmlMessageSubject As String = _
Dts.Variables ("HtmlEmailSubject") .Value.ToString

Dim htmlMessageBody As String

Dts.Variables ("HtmlEmailBody") .Value.ToString
Dim smtpServer As String = _

Dts.Variables ("HtmlEmailerver") .Value.ToString

SendMailMessage (_
htmiMessageTo, htmlMessageFrom, _
htmiMessagesubject, htmlMessageBody,

True, smtpsServer)

OEBPS/html/graphics/c0075-04.jpg
Dim smtpConnectionString As String

DirectCast (Dts.Connections ("STP Connection
Manager") .AcquireConnection (Dts.Transaction), String)

Dim smtpServer As String = _

S EtGR Gt Pk BRLAt (e CHAE . ["avey wima by

OEBPS/html/graphics/c0169-01.jpg
Fuhiza Llaak berlipihialn
Inherits UserComponent

Bublic Overrides Sub Input0_ProcessInputRow(ByVal Row As Input0Buffer)

Row.ErrorDescription
Me.Componentietabata . Get ErrorDescription (Row. BrrorCode)
End Sub

End Class

public class ScriptMain:

UserComponent.

public override void Input0_ProcessInputRow (InputOBuffer Row)

{

Row. ErrorDescription
this.ComponentMetaData.GetErrorDescript ion (Row.ExrrorCode) ;

OEBPS/html/graphics/c0048-01a.jpg
fileAgeLimit = DirectCast (Dts.vVariables("Filege") .Value, Integer)

* If value provided is positive, we want files NEWER THAN n days.
' If negative, we want files OLDER THAN n days.
¢ £ilehgeLimit < 0 Then

isCheckForNever = False
Ena 1t

Extract number of days as positive integer

£ileAgeLimit = Math.Abs (£ileAgeLimit)

listForEnunerator = New ArrayList

GetFilesInFolder (FILE_ROOT)

' Return the list of files to the variable
! for later use by the Foreach from Variable emumerator.

System.Windows . Forms . MessageBox. Show ("Matching files: " &
1istForEnumerator . Count ToString, "Results",
Windows . Forms .MessageBoxButtons .OK, Windows.Forms.MessageBoxIcon. Information)

Ds.variables ("FileList") .Value = listForEnumerator

OEBPS/html/graphics/c0089-03.jpg
results += " " + fileInFolder + EOL;

i

results += EOL;

results += "Excel tables in file: " + EOL;
tablesInFile = (string[]) (Dts.Variables["ExcelTables"].Value);

foreach (string tablelnFile in tablesInFile)

{

results += " " + tableInFile + EOL;

MessageBox.Show (results, "Results", MessageBoxButtons.OK,
MessageBoxIcon . Information) ;

Dts.TaskResult = (int)ScriptResults.Success;

OEBPS/html/graphics/c0089-02.jpg
MessageBox.Show (results, "Results", MessageBoxButtons.OK,
MessageBoxIcon. Information)

Dts.TaskResult = ScriptResults.Success
End Sub

End Class

public class ScriptMain

{

public void Main()
{

const string EOL = "\r';

string results;
string[] filesInFolder;

//string fileInFolder;

OEBPS/html/graphics/c0089-01.jpg
Public Class ScriptMain
Public Sub Main()
Const EOL As String = ControlChars.CrLf

Dim results As String
Dim £ilesInFolder As String()
Dim £ileInFolder As String

Dim tablesInFile As String()

Dim tableInFile As String

results
"Final values of variables:" & EOL & _
"ExcelFile: " & Dts.Variables ("ExcelFile").Value.ToString & EOL & _
"ExcelFileExists: " & Dts.Variables("ExcelPileExista").Value.ToString &
EOL & _
"ExcelTable: " & Dts.Variables('ExcelTable") .Value.ToString & EOL & _
"ExcelTableExists: " & Dts.Variables ("ExcelTableExists") .Value.ToString
& BOL & _
"ExcelFolder: " & Dts.Variables ("ExcelFolder").Value ToString & EOL & _
EoL
results & "Excel files in folder: " & EOL

filesInFolder = DirectCast (Dts.Variables ("ExcelFiles').Value, String())
For Each fileInFolder In filesInFolder
results &= " " & fileInFolder & EOL
Next
results &= EOL

results &= "Excel tables in file: " & EOL

tablesInFile = DirectCast (Dts.Variables ("ExcelTables").Value, String())
For Each tableInFile In tablesInFile
results & " ' & tableInFile & EOL

Next

OEBPS/html/graphics/c0104-02.jpg
Bublic Overrides Sub Input0_ProcessInputRow(ByVal Row As InputOBuffer)

' Add your code here

End Sub

End Class
/* Microsoft SQL Server Integration Services user script component
+ Write scripts using Microsoft Visual CH 2008.

+ ScriptMain is the entry point class of the script.+/

using System;
using System.Data;
using Microsoft.SqlServer.Dts.Pipeline.lirapper;

using Microsoft.SglServer.Dts.Runtime.Wrapper;

OEBPS/html/graphics/c0133-03a.jpg
End Class

using System.I0;
public class ScriptMain:

UserComponent.

private StreamReader textReader;

private string exportedAddressFile;

public override void AcquireConnections (object Transaction)
{

IDTSConnect ionManager100 connMgr =
this.Connections.MyFlatFilesrcConnect ionManager;

exportedhddressFile = (string)connMgr.AcquireConnection (null) ;

OEBPS/html/graphics/c0104-01.jpg
* BEETCTE S SGEICT THIRITRCAEL ERVNEse BTk CERINReO.
' Write scripts using Microsoft Visual Basic 2008.

' ScriptMain is the entry point class of the script.

Inports System
Inports System.Data
Inports System.Math
Inports Microsoft.SqlServer.Dts.Pipeline.Wrapper

Imports Microsoft.SglServer.Dts.Runtime.Wrapper

<Microsoft.SqlServer.Dts. Pipeline.SSISScriptConponentEntryPointAttributes
<CLsCompliant (False)> _
Public Class ScriptMain

Inherits UserComponent

OEBPS/html/graphics/c0086-01a.jpg
"Data Source=" & excelFile & _
";Extended Properties=Excel 8.0"

excelConnection = New OleDbConnection(connectionString)

excelConnection.Open ()

tablesInFile = excelConnection.GetSchema ("Tables")

tableCount.

tablesInFile.Rows.Count
ReDim excelTables (tableCount - 1)
For Bach tableInFile In tablesInFile.Rows
currentTable = tableInFile.Item("TABLE_NAME") .ToString
excelTables (tableIndex) = currentTable

tableIndex += 1

Next

Dts.Variables ("ExcelTables") .Value = excelTables

OEBPS/html/graphics/c0166-01.jpg
PUBSES. SRIE AR RNYY SODUL_FEOGRSETOLRONIEYVEL NOW A LIDVEN AL 20X

If Row.CountryRegionName <> "Canada’ _
And Row.CountryRegionName <> "United States® Then
Row.ErrorColum = 68 ' ID of CountryRegionName column
Row.ErrorMessage = "Address is not in North America."

Row.DirectRowToMyErroroutput ()

Else

Row.DirectRowTooutputo ()

End If

End Sub

public override void Input0_ProcessInputRow (InputOBuffer Row)

{

if (Row.CountryRegionName!="Canada"&&Row.CountryRegionName!="United

states")

Row.ErrorColumn = 68; // ID of CountryRegionName column

Row.ErrorMessage = "Address is not in North America.

Row.DirectRowToMyErroroutput () ;

else

Row.DirectRowTooutputo () ;

OEBPS/html/graphics/c0183-01.jpg
ZUDLAL SEAT L AER D O S aE e L DL o L. oM AR L e

Static nextRowIsParent As Boolean = False
Static parentCounter As Integer = 0

Static childCounter As Integer = 0

' If current row starts with separator characters,
' then following row contains new parent record.
If Row.Column0.StartsWith(vs++") Then
nextRowIsParent = True
Else
If nextRowlsParent Then
! Current row contains parent record.

parentCounter += 1

Me. ParentRecordsBuf fer . AddRow ()
Me.ParentRecordsBuffer.ParentiD = parentCounter

Me.ParentRecordsBuffer.ParentRecord = Row.Columnd

OEBPS/html/graphics/c0030-01a.jpg
public void Main()

{
SqlConnection myADONETConnection = new SqlConnection();

myADONETConnection = (SqlConnection) (Dts.Connections ["Test
ADO.NET Connection"] .AcquireConnection (Dts.Transaction)as SqlConnection) ;

MessageBox . Show (myADONETCoRnect ion . Connect ionString, "ADO.NET
connection®) ;

string myFlatFileConnection;

myFlatFileConnection = (string) (Dts.Connections[*Test Flat File
Connection”] . AcquireConnect ion (Dts . Transaction) as String);

MessageBox . Show (myFlatFileConnection, "Flat File Connection');

Dts.TaskResult = (int)ScriptResults.Success;

OEBPS/html/graphics/c0110-02.jpg
Private textReader As StreamReader

Bublic Overrides Sub AcquireConnections (ByVal Transaction As Object)

Dim connMgr As IDTSConnecticnManagerl00 = _
Me.Connect ions .MyFlatFileSrcConnect ionManager
Dim exportedaddressFile As String
CType (connMgr . AcquireConnect ion (Nothing) , String)

textReader = New StreamReader (exportedAddressFile)

End Sub

OEBPS/html/graphics/c0118-01.jpg
Dim myFlatFile As String = _
TG R T A LR LT ConaRGE S RS e OOttt oG INGE R EY, . SEELi]

OEBPS/html/graphics/c0022-01.jpg
To reference a variable, calil
Dts.Variables ["MyCaseSensitiveVariableName] .Value;

To post a log entry, call Dts.Log("This is my log text", 999, null);

To fire an event, call Dts.Events.FireInformation(99, "test”, "hit the help
message", "", 0, true);

To use the comnections collection use something like the following:
ConnectionManager cm = Dts.Connections.Add("OLEDB") ;

cm.ConnectionString = "Data Source=localhost;Initial
Catalog=Adventuretorks; Provider=SQLNCLI10; Integrated Security=SSPI;Auto
Translate-False;";

Before returning from this method, set the value of Dts.TaskResult to
indicate success or failure.

To open Help, press F1.
"

public void Main()

{

// TODO: Add your code here

Dts.TaskResult = (int)ScriptResults.Success;

OEBPS/html/graphics/t0119-01.jpg
Event Descri
ption

M:MicrosoftSalServer.ts Pipeine WrapperDTSComponeniMetaDatal00 FireCustomEven | Raise
(System String System.String System.Object[|@.System StringSystem Boolean@) |sa
user-
defin
ed
| custo
m
event
|inthe
| packa
ge.
M:Microsoft SqlServer.Dts.Pipeline. Wrapper IDTSComponentMetaData100.Fire€rror(Syste }lmor
m.Int32,System.Sting,System.String System.String System Int32,System.Boolean®@) ms
the
| packa
geof
an
ermor
| condi
tion.

MiMicrosoftSafServer Dts Pipeline Wrapper DTSCamponentetaData100 Firelnformation | Provi
(System.Int32Sysem Sting.System String,System Sting System Int32 System Soolean@) | des
infor
matio
|nto
the
user.

OEBPS/html/graphics/t0006-01.jpg
Featwre | Script Task Script Component

Control The Script task is configured on the | The Script component is configured on

flow/ Data | Control Flow tab of the designer and | the Data Flow page of the designer and

flow runs outside the data flow of the represents a source, transformation, or
package. destination in the Data Flow task.

Purpose | A Script task can accomplish almost | You must specify whether you want to
any general-purpose task. create a source, transformation, or

destination with the Script component.

Execution | A Script task runs custom code at A Script component also runs once, but
some point in the package workflow. | typically it uns its main processing

Unless you put it in a loop container | routine once for each row of data in the

or an event handler, it only runs once. | data flow.

ditor The Seript Task Editor has three The Script Transformation Editor has
pages: General, Script, and up to four pages: Input Columns, Inputs

Expressions. Only the and Outputs, Script, and Connection

ReadOnlyVariables and Managers. The metadata and properties

ReadWriteVariables, and that you configure on each of these

ScriptLanguage properties directly | pages determines the members of the

affect the code that you can write. base classes that are autogenerated for
your use in coding.

Interaction | In the code written for a Script task, | In Script component code, you use typed

withthe | you use the Dts property to access accessor properties to access certain

package | other features of the package. The Dts | package features such as variables and
property is a member of the connection managers.

ScriptMain class. The PreExecute method can access only
read-only variables. The PostExecute
method can access both read-only and
readwrite variables
For more information about these
methods, see Coding and Debugging the
Script Component.

Using The Script task uses the The Script component uses typed
variables P:Microsoft.SqlServer.Dts.Tasks.ScriptT | accessor properties of the autogenerated

OEBPS/html/graphics/t0023-01.jpg
Member

P:Microsoft.SqlServer.Dts.Tasks.SeriptTa
skScriptObjectModel.Connections

P:Microsoft.SqlServer.Dts.Tasks.ScriptTa
skSeriptObjectModelEvents

P:Microsoft SqlServer.Dts.Tasks ScriptTa
skScriptObjectModel ExecutionValue

[purpose
| Provides access to connection managers defined in
| the package.

| Provides an events interface to let the Script task raise
errors, warnings, and informational messages.

| Provides a simple way to retum a single object to the
runtime (in addition to the Task~Result) that can also
| be used for workflow branching.

M:Microsoft.SalServer.Dts.Tasks.ScriptTa | Logs information such as task progress and results to
skScriptObjectModel.Log(System.String, | enabled log providers.

System.Int32,System.Byte(])

P:Microsoft SqlServer.Dts.Tasks.ScriptTa
skScriptObjectModel TaskResult

‘ Reports the success or failue of the task.

P:Microsoft SqlServer.Dts.Tasks.ScriptTa
skScriptObjectModel Transaction

P:Microsoft SqlServer.Dts.Tasks.SeriptTa
skScriptObjectModel Variables

Provides the transaction, if any, within which the task's
| container is running

Provides access to the variables listed in the,
ReadOnlyVariables and ReadWriteVariables task
propertis for use within the script.

OEBPS/html/graphics/c0110-01.jpg
Dim connMgr As IDTSConnectionManagerl00

Dim sqlConn As SqlConnection

Public Overrides Sub AcquireConnections (ByVal Transaction As Object)

connMgr = Me.Connect ions.MyADONETConnection

sqlconn

CType (connigr . AcquireConnect ion (Nothing) , SqlConnection)

P Gl

OEBPS/html/graphics/c0149-01.jpg
FEERTR TARLE. [Feredn],. [hedragead] |
[AddressID] [int] NOT NULL,

[city] [nvarchar] (30) NOT NULL

OEBPS/html/graphics/c0071-02a.jpg
printerList .Add (printerName) ;

Dts.Events.FireInformation(0, "Example’, "Printer * +
printerName + " has legal paper.", String.Empty, 0, ref Flag);

}

else

Dts.Events.FireWarning (0, "Example", "Printer " +
printerName + " DOES NOT have legal paper.”, String.Empty, 0);

}

Dts.Variables ["PrinterList"] .Value = printerList;

Dts.TaskResult = (int)ScriptResults.Success;

OEBPS/html/graphics/c0172-01.jpg
FEporte Dysten. Deth. Sane

Public Class ScriptMain

Inherits UserComponent

Dim odbeConn As OdbcConnect ion
Dim odbeCmd As OdbeCommand

Dim odbcParam As OdbcParameter

Public Overrides Sub AcquireConnections(ByVal Transaction As
object)

Dim connectionString As String

connectionString =

Me .Connect ions .MyODECConnect ionManager . Connect ionString
odbcConn = New OdbcConnect ion (connectionString)

odbcconn . Open ()

End Sub

Bublic Overrides Sub Prefxecute ()

odbeCnd = New OdbeCommand ("INSERT INTO
Person.Address2 (AddressID, City) " & _

"VALUES (?, ?)", odbcConn)
odbcParam = New OdbcParameter ("@addressid", OdbcType.Int)
odbcCnd. Parameters . Add (odbcParam)

odbcParam = New OdbcParameter ("@city", OdbcType.NVarChar,
30)

odboCnd. Parameters . Add (odbcParam)

End Sub

OEBPS/html/graphics/c0129-02a.jpg
using System.Data.SqlClient;

public class ScriptMai

UserComponent.

IDTSConnect ionManager100 connMgr;

SqlConnection sqlConn;

SqlDataReader sqlReader;

public override void AcquireConnections(cbject Transaction)

{

connMgr = this.Connections.MyADONETConnection;

sqlConn = (SqlConnection)connigr.AcquireConnection (null);

OEBPS/html/graphics/c0183-03.jpg
else

// Current row contains child record.

static_Input0_ProcessInputRow_childCounter
this.ChildRecordsBuffer.AddRow () ;
this.ChildRecordsBuffer.ChildID =
static_Input0_ProcessInputRow_childCounter;
this.ChildRecordsBuffer.ParentID =
static_Input0_ProcessInputRow_parentCounter;
this.ChildRecordsBuffer.ChildRecord = Row.Column0;

OEBPS/html/graphics/c0048-02a.jpg
If Directory.GetDirectories (folderpath) .Length > 0 Then
For Each childFolder In Directory.GetDirectories (folderpath)
GetFilesInFolder (childFolder]
Fext
Ena 1%

cateh

' Tgnore exceptions on special folders such as System Volume
Information

End Try

End Sub

Private Sub CheckAgeOfFile(ByVal localFile As String, ByVal fileAgeInbays
s Integer)
If isCheckForNewer Then
If filengeInDays <= fileAgeLimit Then
ListForBnunerator .Aad (localFile)
sna 1€
Else
If filengeTnDays > filegeLimit Then
ListForBnunerator .Aad (localFile)
snd TE
Ena 1f

End sub

OEBPS/html/graphics/c0183-02.jpg
int static_Input0_ProcessInputRow_childCounter

int static_Input0_ProcessInputRow_parentCounter

bool static_Input0_ProcessInputRow_nmextRowlsParent = false;

// If current row starts with separator characters,
// then following row contains new parent record.
if (Row.Column0.StartsWith("=++"))

{

static_Input0_ProcessInputRow_mextRowIsParent = true;
else
if (static_Input0_ProcessInputRow_nextRowIsParent)

{

// Current row contains parent record.

static_Input0_ProcessInputRow_parentCounter +
this.ParentRecordsBuffer.AddRow () ;

this.ParentRecordsBuffer.ParentID =
static_Input0_ProcessInputRow_parentCounter;

this.ParentRecordsBuffer. ParentRecord = Row.Column0;

static_Input0_ProcessInputRow_nextRowIsParent = false;

OEBPS/html/graphics/c0084-01.jpg
Public Class ScriptMain
Public Sub Main()

Const FILE_PATTERN As String = "+.xls"

Dim excelFolder As String
Dim excelFiles As String()
excelFolder = Dts.Variables ("ExcelFolder") .Value.ToString

excelFiles = Directory.GetFiles (excelFolder, FILE_PATTERN)

Dts.Variables ("ExcelFiles") .Value = excelFiles

Dts.TaskResult = ScriptResults.Success

End Sub

OEBPS/html/graphics/c0150-02a.jpg
public override void MyAddressInput_ProcessInput (MyAddressInputBuffer
Buffer)

{

while (Buffer.NextRow())
{

MyAddressInput_ProcessInputRow (Buffer) ;

if (Buffer.EndOfRowset())
{
MyAddressOutputBuffer. SetEndOfRowset () ;

MySummaryOutputBuf fer .MyRedmondCount = myRedmondAddressCount ;

MySummaryOutputBuf fer . SetEndOfRowset () ;

OEBPS/html/graphics/pub.jpg
=t Microsoft

OEBPS/html/graphics/c0133-02a.jpg
End Sub

Public Overrides Sub PreExecute ()
NyBase. PreExecute ()
textReader = New StreanReader (exportedAddressFile)
End sub

Bublic Overrides Sub CreateNewOutputRows ()

Dim nextLine As String

Dim columns As String()

Dim delimiters As Char()

delimiters

,".ToCharhrray

OEBPS/html/graphics/c0141-01.jpg
SRR TRBLE [ParRonl - Rgixaued &
[AddressTD] [int] NOT NULL,
[City] [nvarchar] (30) NOT NULL

OEBPS/html/graphics/c0178-01a.jpg
Case "FirstName"

Me.OutputoButfer .

Me.OutputoButfer
Case "LastName"
Me.OutputoButfer
Case "Title"
Me.OutputoButfer
Case "City"
Me.OutputoButfer
Case "StateProvince"

Me.OutputOBuf fer

End Select

End Tf
End Tf

.FirstName =

-LastName

.Title

.city

.StateProvince

The FirstName value indicates a new record.

AddRow ()

columnvalue

columvalue

= columValue

columvalue

= columnvalue

OEBPS/html/graphics/c0141-02.jpg
Public Class ScriptMain

Inherits UserComponent

Public Overrides Sub MyAddressInput_ProcessInputRow(ByVal Row As
MyAddressTnputBuf fer)

Row.City = UCase (Row.City)

End Sub

End Class
public class ScriptMain:

UserComponent.

public override void MyhddressInput_ProcessInputRow (MyAddressInputBuffer
Row)

Row.City = (Row.City).ToUpper (

