


 

 

Win
Ref
Seth M

 

 

 

 

 

 

Summa
available
naming,
Window
REST en
can be lo
frequent

Categor
Applies 
Source: 
E-book 
260 pag

 

ndow
feren
Manhei

ry: The Win
e infrastruct
 and service

ws Commun
dpoints -- t
ocated beh
tly-changin

ry: Referenc
to: Window
MSDN Libr
publicatio
es            

ws Az
nce 

m and R

ndows Azur
ture for wid
e publishin

nication Fou
that would 

hind networ
ng, dynamic

ce 
ws Azure Se
rary (link to

on date: Ma

 

zure 

Ralph S

re Service B
despread co
g. The Serv

undation (W
otherwise 

rk address t
cally-assign

ervice Bus
o source con
ay 2012 

Serv

quillace

Bus provide
ommunicat
vice Bus pro
WCF) and ot
be difficult 
translation 
ed IP addre

ntent) 

vice B

e 

s a hosted, 
ion, large-s

ovides conn
ther service
or impossi
(NAT) boun
esses, or bo

Bus 

secure, and
scale event 
nectivity opt
e endpoints 
ble to reach
ndaries, or b
oth. 

d widely 
distribution
tions for 
– including

h. Endpoint
bound to 

 

n, 

g 
ts 

http://msdn.microsoft.com/en-us/library/windowsazure/ee732537.aspx


     
 

     
 

 

 

 

Copyright © 2012 by Microsoft Corporation 

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means 
without the written permission of the publisher. 

 
 
Microsoft and the trademarks listed at 
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the 
Microsoft group of companies. All other marks are property of their respective owners. 
 
The example companies, organizations, products, domain names, email addresses, logos, people, places, and events 
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address, 
logo, person, place, or event is intended or should be inferred. 
 
This book expresses the author’s views and opinions. The information contained in this book is provided without any 
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will 
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book. 

 

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx


Contents 
Service Bus ................................................................................................................................. 2 

About the Windows Azure Service Bus ........................................................................................ 5 

Release Notes for the Service Bus November 2011 Release ..................................................... 10 

Service Bus Feedback and Community Information ................................................................... 20 

Service Bus and Pricing FAQ .................................................................................................... 20 

System and Developer Requirements ........................................................................................ 28 

Managing Service Bus Service Namespaces ............................................................................. 29 
How to: Create or Modify a Service Bus Service Namespace ................................................. 30 
How to: Delete a Service Bus Service Namespace ................................................................. 31 

Windows Azure Service Bus Quotas.......................................................................................... 31 

Getting Started with the Service Bus.......................................................................................... 35 
Service Bus Relayed Messaging Tutorial................................................................................ 36 
Service Bus Brokered Messaging Tutorials ............................................................................ 64 
Service Bus Message Buffer Tutorial .................................................................................... 103 

Developing Applications that Use the Service Bus ................................................................... 121 
Overview of Service Bus Messaging Patterns....................................................................... 126 
Service Bus Programming Lifecycle ..................................................................................... 135 
Service Bus Authentication and Authorization with the Access Control Service ..................... 141 
Service Bus Bindings ........................................................................................................... 147 
Designing a WCF Contract for the Service Bus .................................................................... 153 
Configuring a WCF Service to Register with the Service Bus ................................................ 157 
Securing and Authenticating a Service Bus Connection ........................................................ 178 
Building a Service for the Service Bus .................................................................................. 190 
Building a Service Bus Client Application.............................................................................. 205 
Discovering and Exposing a Service Bus Service ................................................................. 210 
Working with a Service Bus Message Buffer......................................................................... 215 
Silverlight and Flash Support ................................................................................................ 240 

Service Bus Troubleshooting ................................................................................................... 243 
Troubleshooting the Service Bus .......................................................................................... 243 
Hosting Behind a Firewall with the Service Bus .................................................................... 246 

RelayConfigurationInstaller.exe Tool ....................................................................................... 247 

Best Practices for Performance Improvements Using Service Bus Brokered Messaging .......... 247 

Appendix: Messaging Exceptions ............................................................................................ 255 



 

 2 

Service Bus 
The Windows Azure Service Bus provides a hosted, secure, and widely available infrastructure 
for widespread communication, large-scale event distribution, naming, and service publishing. 
The Service Bus provides connectivity options for Windows Communication Foundation (WCF) 
and other service endpoints – including REST endpoints -- that would otherwise be difficult or 
impossible to reach. Endpoints can be located behind network address translation (NAT) 
boundaries, or bound to frequently-changing, dynamically-assigned IP addresses, or both. 

The Service Bus provides both “relayed” and “brokered” messaging capabilities. In the relayed 
messaging pattern, the relay service supports direct one-way messaging, request/response 
messaging, and peer-to-peer messaging. Brokered messaging provides durable, asynchronous 
messaging components such as Queues, Topics, and Subscriptions, with features that support 
publish-subscribe and temporal decoupling: senders and receivers do not have to be online at the 
same time; the messaging infrastructure reliably stores messages until the receiving party is 
ready to receive them. 

To use the Service Bus features, install the Windows Azure SDK from the SDK download 
page. 

 
Use the following links to learn more about the Service Bus. These links come from various 
content providers across Microsoft. This page will be updated periodically when new content is 
available, so check back often to see what’s new. 
 

What’s New 
• Now Available: The Service Bus September 

2011 Release (blog post) 
• Windows Azure Queues and Windows 

Azure Service Bus Queues - Compared 
and Contrasted in Windows Azure 
Developer Guidance 

• Windows Azure Libraries for Java 
Available, including support for Service Bus 
(Jan 9 2012 blog post) 

• Creating Applications that Use Service Bus 
Queues in Windows Azure Developer 
Guidance 

• Creating Applications that Use Service Bus 
Topics and Subscriptions in 

Blogs 

Windows 

• Windows Azure Team Blog 
• Windows Azure Customer Advisory Team 
Relayed Messaging 
• How to Use the Service Bus Relay Service 
• An Introduction to Service Bus Relay 

(video) 
• How to use Service Bus Relay (video and 

code sample) 
• Service Bus Relay Load Balancing–The 

Missing Feature (blog post) 
Queues 
• How to Use Service Bus Queues 
• Creating Applications that Use Service Bus 

Note  

http://go.microsoft.com/fwlink/?LinkID=212999
http://go.microsoft.com/fwlink/?LinkID=212999
http://blogs.msdn.com/b/windowsazure/archive/2011/09/16/the-service-bus-september-2011-release.aspx
http://blogs.msdn.com/b/windowsazure/archive/2011/09/16/the-service-bus-september-2011-release.aspx
http://msdn.microsoft.com/en-us/library/hh767287(VS.103).aspx
http://msdn.microsoft.com/en-us/library/hh767287(VS.103).aspx
http://msdn.microsoft.com/en-us/library/gg456500.aspx
http://msdn.microsoft.com/en-us/library/gg456500.aspx
http://msdn.microsoft.com/en-us/library/hh767287(VS.103).aspx
http://blogs.msdn.com/b/interoperability/archive/2011/12/12/windows-azure-libraries-for-java-available-including-support-for-service-bus.aspx
http://blogs.msdn.com/b/interoperability/archive/2011/12/12/windows-azure-libraries-for-java-available-including-support-for-service-bus.aspx
http://blogs.msdn.com/b/interoperability/archive/2011/12/12/windows-azure-libraries-for-java-available-including-support-for-service-bus.aspx
http://msdn.microsoft.com/en-us/library/hh689723(VS.103).aspx
http://msdn.microsoft.com/en-us/library/hh689723(VS.103).aspx
http://msdn.microsoft.com/en-us/library/gg456500.aspx
http://msdn.microsoft.com/en-us/library/gg456500.aspx
http://msdn.microsoft.com/en-us/library/hh699844(VS.103).aspx
http://msdn.microsoft.com/en-us/library/hh699844(VS.103).aspx
http://msdn.microsoft.com/en-us/library/gg456500.aspx
http://blogs.msdn.com/b/windowsazure/
http://windowsazurecat.com/index.php
http://www.windowsazure.com/en-us/develop/net/how-to-guides/service-bus-relay/
http://www.microsoft.com/showcase/en/us/details/395930db-6622-4a9f-8152-e0cb1fc5149c
http://www.microsoft.com/showcase/en/us/details/395930db-6622-4a9f-8152-e0cb1fc5149c
http://appfabricdemos.codeplex.com/releases/view/67597
http://appfabricdemos.codeplex.com/releases/view/67597
http://blogs.msdn.com/b/clemensv/archive/2011/09/20/service-bus-relay-load-balancing-the-missing-feature-but-not-for-much-longer.aspx
http://blogs.msdn.com/b/clemensv/archive/2011/09/20/service-bus-relay-load-balancing-the-missing-feature-but-not-for-much-longer.aspx
http://www.windowsazure.com/en-us/develop/net/how-to-guides/service-bus-queues/
http://msdn.microsoft.com/en-us/library/hh689723(VS.103).aspx


 

 3 

Azure Developer Guidance
• 

 
Managing and Testing Topics, Queues and 
Relay Services with the Service Bus 
Explorer Tool (Nov 11 2011 blog post) 

• Relay Load Balancing (October 31 2011 
blog post) 

• Deadlettering in Service Bus Brokered 
Messaging (October 21 2011 blog post) 

• New Service Bus Samples in CodePlex 
(Oct 16 2011) 

• Best Practices for Performance 
Improvements Using Service Bus Brokered 
Messaging 

• How to integrate a BizTalk Server 
application with Service Bus Queues and 
Topics (Oct 12 2011 blog post) 

Basics 
• Service Bus Overview 
• An Introduction to the Service Bus (video) 
• Getting Started with the Service Bus 
• System and Developer Requirements 
• Building loosely-coupled apps with 

Windows Azure Service Bus Topics and 
Queues (video) 

• Windows Azure Service Bus Brokered 
Messaging (blog post) 

Tools 
• Service Bus Explorer (article) 
• Service Bus Explorer (code) 
• RelayConfigurationInstaller.exe Tool 
Forums 
• Connectivity and Messaging - Windows 

Azure Platform 

Code Samples 
• Service Bus Samples (CodePlex) 
• Windows Azure Inter-Role Communication 

Using Service Bus Topics & Subscriptions 
(MSDN) 

• 

Queues

Hybrid Reference Implementation Using 
BizTalk Server, Windows Azure, Service 
Bus &Windows Azure SQL Database 

 in Windows Azure Developer 
Guidance. 

• An Introduction to Service Bus Queues 
(video) 

• How to use Service Bus Queues (video 
and code sample) 

• Sending large messages to Service Bus 
session-enabled queues (blog post) 

• Using Service Bus Queues with WCF (blog 
post) 

Publish-Subscribe with Topics 
• How to Use Service Bus 

Topics/Subscriptions 
• Creating Applications that Use Service Bus 

Topics and Subscriptions in Windows 
Azure Developer Guidance. 

• An Introduction to Service Bus Topics 
(video) 

• How to use Service Bus Topics (video and 
code sample) 

• Using Service Bus Topics and 
Subscriptions with WCF (blog post) 

Patterns and Best Practices 
• Service Bus Queues and Topics Advanced 

(video) 
• Securing Service Bus with ACS (video) 
• Best Practices for Leveraging Windows 

Azure Service Bus Brokered Messaging 
API (Windows Azure CAT team blog post) 

• Achieving Transactional Behavior with 
Messaging (blog post) 

• Windows Azure Service Bus & Windows 
Azure Connect: Compared & Contrasted 
(Windows Azure CAT team blog post) 

• How to Simplify & Scale Inter-Role 
Communication Using Windows Azure 
Service Bus (Windows Azure CAT team 
blog post) 

http://blogs.msdn.com/b/windowsazure/archive/2011/11/11/new-article-managing-and-testing-topics-queues-and-relay-services-with-the-service-bus-explorer-tool.aspx
http://blogs.msdn.com/b/windowsazure/archive/2011/11/11/new-article-managing-and-testing-topics-queues-and-relay-services-with-the-service-bus-explorer-tool.aspx
http://blogs.msdn.com/b/windowsazure/archive/2011/11/11/new-article-managing-and-testing-topics-queues-and-relay-services-with-the-service-bus-explorer-tool.aspx
http://blogs.msdn.com/b/windowsazure/archive/2011/10/31/now-available-relay-load-balancing-for-windows-azure-service-bus.aspx
http://blogs.msdn.com/b/windowsazure/archive/2011/10/31/now-available-relay-load-balancing-for-windows-azure-service-bus.aspx
http://geekswithblogs.net/asmith/articles/147398.aspx
http://geekswithblogs.net/asmith/articles/147398.aspx
http://servicebus.codeplex.com/
http://servicebus.codeplex.com/
http://msdn.microsoft.com/en-us/library/hh542796(VS.103).aspx
http://msdn.microsoft.com/en-us/library/hh542796(VS.103).aspx
http://msdn.microsoft.com/en-us/library/hh542796(VS.103).aspx
http://www.microsoft.com/windowsazure/features/servicebus/
http://www.microsoft.com/showcase/en/us/details/cbacfd36-e253-428c-b081-c38486d0a22a
http://channel9.msdn.com/Events/BUILD/BUILD2011/SAC-862T
http://channel9.msdn.com/Events/BUILD/BUILD2011/SAC-862T
http://channel9.msdn.com/Events/BUILD/BUILD2011/SAC-862T
http://convective.wordpress.com/2011/09/21/windows-azure-appfabric-service-bus-brokered-messaging/
http://convective.wordpress.com/2011/09/21/windows-azure-appfabric-service-bus-brokered-messaging/
http://msdn.microsoft.com/en-us/library/hh532261(VS.103).aspx
http://code.msdn.microsoft.com/Service-Bus-Explorer-f2abca5a
http://go.microsoft.com/fwlink/?LinkId=231015
http://go.microsoft.com/fwlink/?LinkId=231015
http://servicebus.codeplex.com/
http://code.msdn.microsoft.com/Windows-Azure-Inter-Role-9935c439
http://code.msdn.microsoft.com/Windows-Azure-Inter-Role-9935c439
http://code.msdn.microsoft.com/Windows-Azure-Inter-Role-9935c439
http://windowsazurecat.com/2011/08/hybrid-reference-implementation-biztalk-server-windows-azure-sql-azure/
http://windowsazurecat.com/2011/08/hybrid-reference-implementation-biztalk-server-windows-azure-sql-azure/
http://windowsazurecat.com/2011/08/hybrid-reference-implementation-biztalk-server-windows-azure-sql-azure/
http://msdn.microsoft.com/en-us/library/gg456500.aspx
http://msdn.microsoft.com/en-us/library/gg456500.aspx
http://www.microsoft.com/showcase/en/us/details/49af845e-5fcd-4b44-bd9b-52956b1c985b
http://www.microsoft.com/showcase/en/us/details/49af845e-5fcd-4b44-bd9b-52956b1c985b
http://appfabricdemos.codeplex.com/releases/view/66576
http://appfabricdemos.codeplex.com/releases/view/66576
http://blog.codit.eu/2011/06/default.aspx
http://blog.codit.eu/2011/06/default.aspx
http://blogs.msdn.com/b/tomholl/archive/2011/10/07/using-service-bus-queues-with-wcf.aspx
http://blogs.msdn.com/b/tomholl/archive/2011/10/07/using-service-bus-queues-with-wcf.aspx
http://www.windowsazure.com/en-us/develop/net/how-to-guides/service-bus-topics/
http://www.windowsazure.com/en-us/develop/net/how-to-guides/service-bus-topics/
http://msdn.microsoft.com/en-us/library/hh699844(VS.103).aspx
http://msdn.microsoft.com/en-us/library/hh699844(VS.103).aspx
http://msdn.microsoft.com/en-us/library/gg456500.aspx
http://msdn.microsoft.com/en-us/library/gg456500.aspx
http://www.microsoft.com/showcase/en/us/details/a0c4282b-9754-4ee5-a8aa-b29f15bb5bc6
http://www.microsoft.com/showcase/en/us/details/a0c4282b-9754-4ee5-a8aa-b29f15bb5bc6
http://appfabricdemos.codeplex.com/releases/view/66577
http://appfabricdemos.codeplex.com/releases/view/66577
http://blogs.msdn.com/b/tomholl/archive/2011/10/09/using-service-bus-topics-and-subscriptions-with-wcf.aspx
http://blogs.msdn.com/b/tomholl/archive/2011/10/09/using-service-bus-topics-and-subscriptions-with-wcf.aspx
http://channel9.msdn.com/posts/ServiceBusTopicsAndQueues
http://channel9.msdn.com/posts/ServiceBusTopicsAndQueues
http://channel9.msdn.com/posts/Securing-Service-Bus-with-ACS
http://windowsazurecat.com/2011/09/best-practices-leveraging-windows-azure-service-bus-brokered-messaging-api/
http://windowsazurecat.com/2011/09/best-practices-leveraging-windows-azure-service-bus-brokered-messaging-api/
http://windowsazurecat.com/2011/09/best-practices-leveraging-windows-azure-service-bus-brokered-messaging-api/
http://blogs.msdn.com/b/clemensv/archive/2011/10/06/achieving-transactional-behavior-with-messaging.aspx
http://blogs.msdn.com/b/clemensv/archive/2011/10/06/achieving-transactional-behavior-with-messaging.aspx
http://windowsazurecat.com/2011/08/windows-azure-service-bus-connect-compared-and-contrasted/
http://windowsazurecat.com/2011/08/windows-azure-service-bus-connect-compared-and-contrasted/
http://windowsazurecat.com/2011/08/windows-azure-service-bus-connect-compared-and-contrasted/
http://windowsazurecat.com/2011/08/how-to-simplify-scale-inter-role-communication-using-windows-azure-service-bus/
http://windowsazurecat.com/2011/08/how-to-simplify-scale-inter-role-communication-using-windows-azure-service-bus/
http://windowsazurecat.com/2011/08/how-to-simplify-scale-inter-role-communication-using-windows-azure-service-bus/
http://windowsazurecat.com/2011/08/how-to-simplify-scale-inter-role-communication-using-windows-azure-service-bus/


 

 4 

 

In this section 
About the Windows Azure Service Bus 

Provides a conceptual introduction to the Service Bus. 

 

Release Notes for the Service Bus November 2011 Release 

Contains important late-breaking information about the Service Bus. 

 

Service Bus Feedback and Community Informatio  n
Contains links to resources for community information and ways to provide feedback. 

 

Service Bus and Pricing FAQ 

Contains a list of frequently-asked questions about the Service Bus and pricing model. 

 

System and Developer Requirements 

Describes the requirements that you must have in order to build and run a connected 
application that communicates using the Service Bus. 

 

Managing Service Bus Service Namespaces 

Describes how to create and manage Service Bus service namespaces. 

 

Windows Azure Service Bus Quotas 

Describes quotas allowed in the Service Bus. 

 

Getting Started with the Service Bus 

Contains a set of tutorials that demonstrate using a SOAP-based WCF service as well 
as a REST WCF service to build a service that is registered by using the Service Bus 
and a client application that invokes the service that uses the Service Bus. A 
corresponding set of tutorials demonstrate the new Service Bus “brokered” messaging 
features using both the .NET managed and the REST API. 

 

Developing Applications that Use the Service Bus 

Describes the complete Service Bus development cycle. This includes design, 
implementation, hosting, and configuration of the service; the management of the 
Service Bus service namespaces, endpoints, and security claims; and the development 



 

 5 

of SOAP and REST-based clients. It also contains an overview of the new Service Bus 
“brokered” messaging features, including Queues, Topics, and Subscriptions. This 
overview discusses the differences between the original “relayed” and the new brokered 
messaging patterns. 

 

Troubleshooting 

Describes common problems building applications that use the Service Bus and 
solutions that may address those situations. 

 

RelayConfigurationInstaller.exe Tool 

Describes the usage of this tool, which adds the necessary configuration information to 
the machine or application configuration file. 

 

Best Practices for Performance Improvements Using Service Bus Brokered 
Messaging 

Describes how to use the Service Bus to optimize performance when exchanging 
brokered messages. 

 

Windows Azure Service Bus REST API Reference 

A listing of the Service Bus API available over the REST protocol. 

 

Appendix: Messaging Exceptions 

A list of messaging exception types and their causes, and suggested actions you can 
take. 

 

 

About the Windows Azure Service Bus 

The Service Bus components are now included with the “Windows Azure Libraries for 
.NET.” To install, visit the Windows Azure SDK download page. 

The Windows Azure Libraries for .NET consist of three services that provide important 
capabilities for your Windows Azure applications:  
• The Service Bus securely relays messages to and from any Web service regardless of the 

device or computer on which they are hosted, or whether that device is behind a firewall or 

Note  

http://go.microsoft.com/fwlink/?LinkID=212999


 

 6 

NAT router. It provides direct one-way or request/response (relayed) messaging as well as 
brokered, or asynchronous, messaging patterns. 

• The Access Control Service is an interoperable, claims-based service that provides 
federated authentication and authorization solutions for any resource, whether in the cloud, 
behind a firewall, or on a smart device.  

• The Windows Azure Caching Service provides a distributed, in-memory cache that helps 
Windows Azure applications to achieve increased performance and scalability. 

The Service Bus and Access Control together make hybrid, connected applications—applications 
that communicate from behind firewalls, across the Internet, from hosted cloud servers, between 
rich desktops and smart devices—easier to build, secure, and manage. Although you can build 
hybrid, connected applications today, doing this often means you have to build important 
infrastructure components before you can build the applications themselves. The Service Bus 
and Access Control provide several important infrastructure elements so that you can more easily 
begin making your connected applications work now. 

Software, Services, Clouds, and Devices 
Today’s business infrastructure is more feature-rich, connected, and interoperable than ever. 
People access applications and data through stunning graphical programs running on traditional 
operating systems; powerful Web applications that are running in browsers; and very small, 
intelligent computers such as cell phones, netbooks, and other smart devices. Applications run 
locally, often on powerful servers and server farms, and critical data is stored in performant 
databases, on desktops, and in the cloud.  

The Internet connects people, applications, devices, and data across the world. Clouds of 
computing power—such as Windows Azure—can help us reduce costs and increase scalability 
and manageability. Web services can expose functionality to any caller safely and securely.  

With these technologies, platforms, and devices, you can build significantly distributed, interactive 
applications that can reach almost anyone, use almost any useful data, and do both securely and 
robustly regardless of where the user is at the moment. Such hybrid, connected programs – 
including those often referred to as “Software plus Services” -- could use proprietary or private 
data behind a firewall and return only the appropriate results to a calling device, or notify that 
device when a particular event occurs. 

Fulfilling the Potential 
However, building these distributed applications currently is very, very hard—and it should not be. 
There are many reasons why, without a platform that solves these problems for you, it remains 
difficult to take advantage of these wonderful technologies that could make a business more 
efficient, more productive, and your customers happier. 
• Operating systems are still located—trapped is often a better word—on a local computer, 

typically behind a firewall and perhaps network address translation (NAT) of some sort. This 
problem is true of smart devices and phones, too. 



 

 7 

• As ubiquitous as Web browsers are, their reach into data is limited to an interactive exchange 
in a format they understand. 

• Heterogeneous platforms, such as server applications, desktop or portable computers, smart 
devices, and advanced cell phones, often interoperate at a rudimentary level, if at all. They 
can rarely share the same code base or benefit from feature or component reuse.  

• Much of the most valuable data is stored in servers and embedded in applications that will 
not be replaced immediately—sometimes referred to as “legacy” systems. The data in these 
systems are trapped by technical limitations, security concerns, or privacy restrictions.  

• The Internet is not always the network being used. Private networks are an important part of 
the application environment, and their insulation from the Internet is a simple fact of 
information technology (IT) life. 

Service Bus and Access Control are built to overcome these kinds of obstacles; they provide the 
“fabric” that you can use to build, deploy, and manage the distributed applications that can help 
make the promise of “Software + Services” become real. The Service Bus and Access Control 
services together are highly-scalable services that are running in Microsoft data centers that can 
be used by applications anywhere to securely bridge the gap between local applications behind a 
firewall, applications that are running in the cloud, and client applications of any kind around the 
world. Another way of saying this is that the Service Bus and Access Control are the glue that 
makes “Software” and “Services” work together. 

Feature Overview 
The Service Bus connects local, firewalled applications and data with applications in the cloud, 
rich desktop applications, and smart, Web-enabled devices anywhere in the world. 

Access Control Service is a claims-based access control service that can be used on most 
Web-enabled devices to build interoperable, federated authentication and authorization into any 
connected application. The following diagram illustrates this architecture. 

 
 



 

 8 

The Windows Azure Caching Service provides a distributed, in-memory cache that helps 
Windows Azure applications to achieve increased performance and scalability. 

Service Bus Features 
 
• Securely exposes to external callers Windows Communication Foundation (WCF)-based 

Web services that are running behind firewalls and NAT routers -- without requiring you to 
open any inbound ports or otherwise change firewall and router configurations.  

• Enables secure inbound communication from devices outside the firewall. 
• Provides a global namespace system that is location-independent: the name of a service in 

the Service Bus provides no information about the final destination of the communication. 
• Provides a service registry for publishing and discovering service endpoint references in a 

service namespace. 
• Provides relayed messaging capabilities: the relay service supports direct one-way 

messaging, request/response messaging, and peer-to-peer messaging. 
• Provides brokered (or asynchronous) messaging capabilities: Senders and receivers do not 

have to be online at the same time. The messaging infrastructure reliably stores messages 
until the receiving party is ready to receive them. The core components of the brokered 
messaging infrastructure are Queues, Topics, and Subscriptions. 

• Builds and hosts service endpoints that support: 
• Exposing a Web service to remote users. Expose and secure a local Web service in the 

cloud without managing any firewall or NAT settings. 
• Eventing behavior. Listen for notifications on any device, anywhere in the world. 
• Tunneling between any two endpoints to enable bidirectional streams. 

The following diagram illustrates the capabilities of the Service Bus.  



 

 9 

 
 

Access Control Features 
The Access Control service provides claims-based authentication and authorization for REST 
Web services.  
• Usable from any platform. 
• Low friction way to onboard new clients. 
• Integrates with AD FS v2. 
• Implements OAuth Web Resource Authorization Protocol (WRAP)and Simple Web Tokens 

(SWT). 
• Enables simple delegation. 
• Trusted as an identity provider by the Service Bus. 
• Extensible to provide integration with any identity provider. 

Caching Features 
Windows Azure Caching enables applications to cache activity and reference data for .NET 
applications running in Windows Azure. This includes the following features. 
• Usable from any .NET application hosted in Windows Azure. 
• Provides automatic management of the caching infrastructure in the cloud. 
• Provides ASP.NET session state and output caching providers. 
• Configurable through application configuration files or programmatically. 
• Provides a API centered around cache access with key-value pairs. 
• Usable with optimistic or pessimistic concurrency. 
• Supports the local cache feature for additional performance and scalability benefits. 



 

 10 

Release Notes for the Service Bus November 
2011 Release 

The Service Bus components are now included with the “Windows Azure Libraries for 
.NET.” To install, visit the Windows Azure SDK download page. 

The release notes for the Windows Azure Service Bus November 2011 release contain the 
following topics: 
1. Prerequisites 
2. What’s New 
3. Changes 
4. Known Issues 
These release notes will be updated periodically. For the latest update, please click here. 

See the Service Bus and Pricing FAQ topic for a list of Service Bus FAQs. 

Prerequisites 
 

Account Requirements 
Before running Windows Azure Service Bus applications, you must create one or more service 
namespaces. To create and manage your service namespaces, log on to the Windows Azure 
Management portal, click Service Bus, Access Control & Caching, then click Service Bus. In 
the left-hand tree, click the service namespace you want to manage. For more information, 
see Managing Service Bus Service Namespaces. 

SDK Samples 

By default, the Service Bus samples are no longer installed with the SDK. To obtain the 
samples, visit the Windows Azure SDK samples page.  

Most SDK samples and applications contain three authentication requirements: 
1. Service Namespace: You can use the service namespace you created in your project on the 

portal. The service namespace is used to construct Service Bus endpoints (for example, 
sb://<domain>.servicebus.windows.net/Echo/) 

2. Issuer Name: You can use owner, which is an issuer that is created by default for you.  
3. Issuer Key/Secret: You can use the Default Issuer Key option listed on the Service 

Namespace management page on the portal. 

Note  

Note  

http://go.microsoft.com/fwlink/?LinkID=212999
http://go.microsoft.com/fwlink/?LinkID=131583
http://go.microsoft.com/fwlink/?LinkID=129428
http://go.microsoft.com/fwlink/?LinkID=129428
http://go.microsoft.com/fwlink/?LinkID=230972


 

 11 

Runtime Requirements 
The November 2011 release of the Service Bus includes reliable, or “brokered’ messaging 
enhancements and is commercially available today. This release is fully backward compatible 
and you can continue to use your existing applications. Windows Azure Access Control Service 
(ACS) integration has been updated from ACS v1 to ACS v2. You can obtain updated client 
assemblies for these features by installing the Windows Azure SDK version 1.6. 

The .NET Framework managed APIs for accessing all Service Bus functionality including the 
existing relayed messaging and new brokered messaging features are included in a single 
assembly: Microsoft.ServiceBus.dll (version 1.6.0.0). This assembly targets the .NET Framework 
version 4 and is backward compatible with both Microsoft.ServiceBus.dll v1.0.0.0 and v1.5.0.0. 

The Service Bus assemblies are no longer installed in the .NET Global Assembly Cache 
(GAC) by default. The updated default locations for these assemblies are: 

• Service Bus assemblies: C:\Program Files\Windows Azure SDK\v1.6\ServiceBus\ref. 
• Service Bus tools (RelayConfigurationInstaller.exe): C:\Program Files\Windows Azure 

SDK\v1.6\ ServiceBus\bin. 

Any existing applications that target the .NET Framework 3.5 can continue to use 
Microsoft.ServiceBus.dll (version 1.0.0.0), which includes the previously shipped relayed 
messaging APIs and QFE fixes. 

There are three versions of the SDK now available: 
• Windows Azure SDK version 1.6: Includes Microsoft.ServiceBus.dll version 1.6.0.0, which is 

an updated version of Microsoft.ServiceBus.dll version 1.5.0.0 that includes all the same 
brokered and relayed messaging features. Previously these assemblies shipped as part of 
the Windows Azure AppFabric SDK. 

• Windows Azure AppFabric SDK version 1.5: Includes Microsoft.ServiceBus.dll version 
1.5.0.0, which first introduced the new Service Bus Topics and Queues brokered messaging 
features (and includes the existing relayed messaging features), and updated Caching client 
assemblies. This SDK is targeted at the .NET Framework 4. 

• Windows Azure AppFabric SDK version 1.0: Includes Microsoft.ServiceBus.dll version 
1.0.0.0, which contains only the existing relayed messaging features and targets the .NET 
Framework 3.5. 

Installing the current Windows Azure 1.6 SDK does not uninstall the 1.0 Windows Azure 
SDK. You must uninstall it manually. 

The Windows Azure SDK samples are available as Visual Studio 2010 solutions (C# and Visual 
Basic), and require either Microsoft .NET Framework 3.5 SP1 or .NET Framework 4 to run. The 
SDK is supported on the Windows Server 2008, Windows°7, Windows Vista, Windows Server 
2003, and Windows XP operating systems. Additionally, some of the samples require the 
Windows Azure SDK version 1.6 and Windows Azure tools for Visual Studio version 1.6. 

Windows Identity Foundation (WIF) is required for Active Directory Federation Services V2 
(ADFS) integration. For WIF system requirements, click here. 

Note  

Note  

http://go.microsoft.com/fwlink/?LinkID=178877
http://go.microsoft.com/fwlink/?LinkID=228910
http://go.microsoft.com/fwlink/?LinkID=226941
http://go.microsoft.com/fwlink/?LinkID=212999


 

 12 

If a sample has both a service and a client application, please use the credentials from 
the same service namespace in the both the service and the client. 

What’s New 
 
• Relay load balancing: when using the Microsoft.ServiceBus.NetTcpRelayBinding, 

Microsoft.ServiceBus.RelayedOnewayTransportBindingElement, 
Microsoft.ServiceBus.NetOnewayRelayBinding, 
Microsoft.ServiceBus.TcpRelayTransportBindingElement bindings, or any of the HTTP 
bindings (Microsoft.ServiceBus.WebHttpRelayBinding, and so on), if you previously 
opened more than one listener on a particular relay endpoint, you would receive an 
System.ServiceModel.AddressAlreadyInUseException exception. For example: 

Uri address = ServiceBusEnvironment.CreateServiceUri("sb", 

serviceNamespace, "MyService"); 

 

ServiceHost host = new ServiceHost(typeof(MyService), address); 

host.Open(); 

This behavior has now changed, and you can open multiple listeners (up to 25) on the same 
endpoint. When the Service Bus receives a request for your endpoints, the system load 
balances which of the connected listeners receives the request or connection/session. Note 
that if you have multiple listeners on the same endpoint that are mismatched (for example, if 
one listener has enabled Access Control and another has not), you will still receive the 
System.ServiceModel.AddressAlreadyInUseException exception.  

Please note that this new behavior can potentially change the behavior of existing 
applications. If your application relies on the existence of one listener on an endpoint, you 
should make sure that your code limits the number of listeners per endpoint to one. To take 
advantage of the new relay load balancing feature, your code should be updated to manage 
the number of concurrent listeners per endpoint and provide limits to your desired number of 
listeners per endpoint. 

There are no explicit guarantees about order or fairness across the load balanced endpoints. 
The service makes a best-effort attempt at fairness by choosing listeners at random using a 
strategy that ensures reasonably good distribution. 

If you exceed the limit of 25 concurrent listeners, you will receive a 
System.ServiceModel.QuotaExceededException exception. 

• Support for ports in messaging operations: you must now explicitly set the 
Microsoft.ServiceBus.ConnectivityMode enumeration to 
Microsoft.ServiceBus.ConnectivityMode.Http, in order to get messaging operations to use 

Note  

Note  



 

 13 

port 80/443. Using the Microsoft.ServiceBus.ConnectivityMode.AutoDetect mode does 
not achieve this result. 

Changes 
This section lists important changes in the Service Bus November 2011 release. 

 
• There is no longer a separate SDK installer for the Windows Azure SDK. The Service Bus 

and cache components are now included with the “Windows Azure Libraries for .NET.” To 
install, visit the Windows Azure SDK download page. 

• The Service Bus and cache assemblies are no longer installed in the .NET Global Assembly 
Cache (GAC) by default. The updated default locations for these assemblies are: 
• cache assemblies: C:\Program Files\Windows Azure SDK\v1.6\Cache\ref. 
• Service Bus assemblies: C:\Program Files\Windows Azure SDK\v1.6\ServiceBus\ref. 
• Service Bus tools (RelayConfigurationInstaller.exe): C:\Program Files\Windows Azure 

SDK\v1.6\ ServiceBus\bin. 
• The current Message Buffers feature, including their management protocol, will remain 

supported for backwards compatibility. However, the general recommendation is that you 
explicitly change client code to use the new Service Bus Queues feature. For more 
information, see Queues, Topics, and Subscriptions. 

• The Service Bus no longer adds entries to the Machine.config file. When running code 
developed with previous versions of the Windows Azure SDK, you may see errors such as 
the following: 

Configuration binding extension 

'system.serviceModel/bindings/netTcpRelayBinding' could not be found. Verify 

that this binding extension is properly registered in 

system.serviceModel/extensions/bindingExtensions and that it is spelled 

correctly. 

It is recommended that you add these extensions to the App.config files for your projects or 
use the Relayconfiginstaller.exe tool in the SDK to add these bindings. For example: 

<configuration> 

<system.serviceModel> 

<extensions> 

<!-- Adding all known service bus extensions. You can remove the 

ones you don't need. --> 

<behaviorExtensions> 

<add name="connectionStatusBehavior" 

type="Microsoft.ServiceBus.Configuration.ConnectionStatusElement

, Microsoft.ServiceBus, Version=1.6.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35" /> 

http://go.microsoft.com/fwlink/?LinkID=212999


 

 14 

<add name="transportClientEndpointBehavior" 

type="Microsoft.ServiceBus.Configuration.TransportClientEndpoint

BehaviorElement, Microsoft.ServiceBus, Version=1.6.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="serviceRegistrySettings" 

type="Microsoft.ServiceBus.Configuration.ServiceRegistrySettings

Element, Microsoft.ServiceBus, Version=1.6.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35" /> 

</behaviorExtensions> 

<bindingElementExtensions> 

<add name="netMessagingTransport" 

type="Microsoft.ServiceBus.Messaging.Configuration.NetMessagingT

ransportExtensionElement, Microsoft.ServiceBus, Version=1.6.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="tcpRelayTransport" 

type="Microsoft.ServiceBus.Configuration.TcpRelayTransportElemen

t, Microsoft.ServiceBus, Version=1.6.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35" /> 

<add name="httpRelayTransport" 

type="Microsoft.ServiceBus.Configuration.HttpRelayTransportEleme

nt, Microsoft.ServiceBus, Version=1.6.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35" /> 

<add name="httpsRelayTransport" 

type="Microsoft.ServiceBus.Configuration.HttpsRelayTransportElem

ent, Microsoft.ServiceBus, Version=1.6.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35" /> 

<add name="onewayRelayTransport" 

type="Microsoft.ServiceBus.Configuration.RelayedOnewayTransportE

lement, Microsoft.ServiceBus, Version=1.6.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35" /> 

</bindingElementExtensions> 

<bindingExtensions> 

<add name="basicHttpRelayBinding" 

type="Microsoft.ServiceBus.Configuration.BasicHttpRelayBindingCo

llectionElement, Microsoft.ServiceBus, Version=1.6.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="webHttpRelayBinding" 

type="Microsoft.ServiceBus.Configuration.WebHttpRelayBindingColl



 

 15 

ectionElement, Microsoft.ServiceBus, Version=1.6.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="ws2007HttpRelayBinding" 

type="Microsoft.ServiceBus.Configuration.WS2007HttpRelayBindingC

ollectionElement, Microsoft.ServiceBus, Version=1.6.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="netTcpRelayBinding" 

type="Microsoft.ServiceBus.Configuration.NetTcpRelayBindingColle

ctionElement, Microsoft.ServiceBus, Version=1.6.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="netOnewayRelayBinding" 

type="Microsoft.ServiceBus.Configuration.NetOnewayRelayBindingCo

llectionElement, Microsoft.ServiceBus, Version=1.6.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="netEventRelayBinding" 

type="Microsoft.ServiceBus.Configuration.NetEventRelayBindingCol

lectionElement, Microsoft.ServiceBus, Version=1.6.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="netMessagingBinding" 

type="Microsoft.ServiceBus.Messaging.Configuration.NetMessagingB

indingCollectionElement, Microsoft.ServiceBus, Version=1.6.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

</bindingExtensions> 

</extensions> 

</system.serviceModel> 

</configuration> 

• If you perform management operations using the Access Control version 1.0 Acm.exe tool, 
this tool is no longer shipped with the version Windows Azure 1.6 SDK. If you require access 
to this tool, you will have to roll back to the Windows Azure version 1.0 SDK. 

Known Issues 
The following section lists known issues in this release of the Service Bus: 
• After installing the Windows Azure 1.6 SDK, any application that uses the Machine.config file 

may encounter the following error: 

Exception type:   

System.Configuration.ConfigurationErrorsException 

Message:          Configuration binding extension 

'system.serviceModel/bindings/netTcpRelayBinding' could not be 



 

 16 

found. Verify that this binding extension is properly registered 

in system.serviceModel/extensions/bindingExtensions and that it 

is spelled correctly. 

InnerException:   <none> 

StackTrace (generated): 

    SP       IP       Function 

    0F1DE230 5F22EA4C 

System_Configuration_ni!System.Configuration.BaseConfigurationRe

cord.EvaluateOne(System.String[], 

System.Configuration.SectionInput, Boolean, 

System.Configuration.FactoryRecord, 

System.Configuration.SectionRecord, System.Object)+0xc8 

 

    0F1DE30C 5F22E86E 

System_Configuration_ni!System.Configuration.BaseConfigurationRe

cord.Evaluate(System.Configuration.FactoryRecord, 

System.Configuration.SectionRecord, System.Object, Boolean, 

Boolean, System.Object ByRef, System.Object ByRef)+0x482 

    0F1DE3CC 5F226F8D 

System_Configuration_ni!System.Configuration.BaseConfigurationRe

cord.GetSectionRecursive(System.String, Boolean, Boolean, 

Boolean, Boolean, System.Object ByRef, System.Object 

ByRef)+0x5bd 

    0F1DE454 5F226F8D 

System_Configuration_ni!System.Configuration.BaseConfigurationRe

cord.GetSectionRecursive(System.String, Boolean, Boolean, 

Boolean, Boolean, System.Object ByRef, System.Object 

ByRef)+0x5bd 

    0F1DE4DC 5F226F8D 

System_Configuration_ni!System.Configuration.BaseConfigurationRe

cord.GetSectionRecursive(System.String, Boolean, Boolean, 

Boolean, Boolean, System.Object ByRef, System.Object 

ByRef)+0x5bd 

    0F1DE564 5F226F8D 

System_Configuration_ni!System.Configuration.BaseConfigurationRe

cord.GetSectionRecursive(System.String, Boolean, Boolean, 

Boolean, Boolean, System.Object ByRef, System.Object 

ByRef)+0x5bd 



 

 17 

    0F1DE5EC 5F2269BA 

System_Configuration_ni!System.Configuration.BaseConfigurationRe

cord.GetSection(System.String)+0x2a 

    0F1DE5FC 5F22A7D5 

System_Configuration_ni!System.Configuration.ClientConfiguration

System.System.Configuration.Internal.IInternalConfigSystem.GetSe

ction(System.String)+0x55 

    0F1DE610 5F2210EF 

System_Configuration_ni!System.Configuration.ConfigurationManage

r.GetSection(System.String)+0x4f 

This is caused by a known issue in the upgrade from the Windows Azure 1.0 SDK to the 
Windows Azure 1.6 SDK. The following workaround resolves the issue: 
a. Uninstall the Windows Azure SDK version 1.6. 
b. Install the Windows Azure SDK version 1.0 

from http://go.microsoft.com/fwlink/?LinkID=228910. On the Add/Remove Programs 
Control Panel applet, this appears as version 1.0.1471. 

c. Reinstall the Windows Azure SDK version 1.6 
from http://go.microsoft.com/fwlink/?LinkID=226941. 

This will remove all Service Bus bindings from the Machine.config file. For more information, 
see the second Service Bus bullet in the “Changes” section of these release notes. 

• It is currently not possible to use the Windows Communication Foundation (WCF) Service 
Model Metadata Tool (Svcutil.exe) to generate a proxy from a service that uses 
Microsoft.ServiceBus. 

• Microsoft.ServiceBus.BasicHttpRelayBinding limitation: The size of each individual 
attribute value cannot exceed 16k. If it exceeds this threshold, an exception is generated 
indicating that the MaxNameTableCharCount has been exceeded. The 
MaxNameTableCharCount value of the ReaderQuotas property is set to the default value 
of 16K, and this is the value which indicates the maximum size of each of the attribute values. 

• Message Buffer characters: If you use certain non-alphanumeric characters in the name of a 
message buffer, such as a question mark (encoded as %3F), or an equal sign (encoded as 
%3D), you may experience an authorization failure 
(RelayedHttpServiceAuthorizationFailure) and be unable to send messages to the buffer. 
Be sure to use alphanumeric characters in your message buffer names. 

• ProtocolException when closing a service while it is receiving multicast messages: When you 
end a multicast service while it is still receiving messages, you may receive a 
System.ServiceModel.ProtocolException with the message “Unhandled Exception: 
System.ServiceModel.ProtocolException: The channel received an unexpected input 
message …” The error will not interfere with the closing of the channel and can be safely 
ignored. 

• Listener recovery delay: Under rare hardware failure conditions, listeners constructed using 
the Microsoft.ServiceBus.NetOnewayRelayBinding binding can require up to five minutes 

http://go.microsoft.com/fwlink/?LinkID=228910
http://go.microsoft.com/fwlink/?LinkID=226941


 

 18 

to recover. During this period, an attempt to re-create a failed listener may be unsuccessful 
and generate an AddressAlreadyInUseException message. 

• When authenticating with SAML tokens, clients must send a new token to the Service Bus 
before the SAML token expires. Doing so avoids an interruption in connectivity with the 
Service Bus. Assign the new token to the same 
Microsoft.ServiceBus.TransportClientEndpointBehavior behavior you used to establish 
the original connection. 

• In a Retrieve/Peeklock operation, a client may generate a  
System.ServiceModel.FaultException (“Message could not be retrieved”) instead of a 
System.TimeoutException (“Message could not be retrieved: NoContent, No message 
available within the specified timeout.”). This may occur when the server closes the keepalive 
connection if no request is received within 1 minute of the first request. To work around this 
issue, set the retrieve time-out to a value less than 1 minute (for example, 55 seconds). 

• Message Buffer expiration: When you create a message buffer, you can specify a time after 
which the message buffer will expire if there are no requests to receive a message within that 
time interval. The default is five minutes. When you request a message from the message 
buffer, you can specify the number of seconds the request will wait for a message to arrive at 
an empty buffer before the request times out. The default is one minute. When a request to 
receive a message reaches a buffer, the expiration timer is reset and starts counting down 
again. Therefore, if you specify a longer receive request time-out than the expiration time on 
the buffer, and no messages are received, the buffer can actually expire while a receive 
request is still pending. In that case, the buffer will disappear and the receive request throws 
an exception. To avoid this behavior, accept the default message buffer settings, or make 
sure that you specify an expiration interval for the buffer that is longer than the receive time-
out interval. 

• Because of a bug in Windows Communication Foundation (WCF), when WCF activity tracing 
is on, a call to Channel.Open when you are using the NetTcpRelayBinding binding 
generates a NullReferenceException. This bug has been fixed in WCF 4.0. 

• ATOM feed always comes back empty when a GET request is made against an HTTP URI 
unless the Cache-Control max-age=0 header is set. A GET against HTTPS URIs works fine 
without the need for this header. 

• When using the Ws2007HttpRelayBinding binding protocol, a time-out can occur during 
periods of moderate to high system load. Because of this behavior, we recommend that for 
solutions requiring a high degree of reliability, you use the WebHttpRelayBinding binding 
instead. 

• The following operations will not work with Flash clients that are trying to use message buffer 
in the Service Bus: 
a. PeekLock 
b. Unlock locked message 
c. Delete locked message 

• The following are known issues in the Windows Azure portal while managing Service Bus 
entities: 
• The maximum number of queues or topics that can be displayed per service namespace 

is 25. The maximum number of displayed subscriptions per topic is 5. They are sorted 



 

 19 

alphabetically. It is strongly recommended that you use the Service Bus managed APIs to 
create or delete queues, topics, or subscriptions if you intend to manage more entities 
than the current portal limitations. 

• The topic length is always set to zero. However, the size of the topic reflects the number 
of bytes currently occupied by messages still in the queue. 

• The default timeout on the System.Net.ServicePointManager.MaxServicePointIdleTime 
property (an Http library that maintains a pool of connections) is 100secs. The timeout for 
Windows Azure server keepalive timeouts is 60 seconds. Therefore, if you have a connection 
that is idle for more than 60 seconds, it is disconnected by Windows Azure, and the next time 
you try to use the connection it returns an error. The workaround is to set the 
System.Net.ServicePointManager.MaxServicePointIdleTime property to a value less than 
the Windows Azure server keepalive timeout. This way, the connection is removed before 
Windows Azure disconnects it 

• If you are upgrading from the Windows Azure SDK version 1.0, you may see the following 
behavior: 
a. Warning messages due to obsolete classes: 

'Microsoft.ServiceBus.TransportClientCredentialType' is obsolete  

 

'Microsoft.ServiceBus.TransportClientEndpointBehavior.CredentialT

ype' is obsolete: '"This property is deprecated. Please use 

TransportClientEndpointBehavior.TokenProvider instead."'  

 

'Microsoft.ServiceBus.TransportClientEndpointBehavior.Credentials

' is obsolete: '"This property is deprecated. Please use 

TransportClientEndpointBehavior.TokenProvider instead."'  

 

'Microsoft.ServiceBus.TransportClientEndpointBehavior.Credentials

' is obsolete: '"This property is deprecated. Please use 

TransportClientEndpointBehavior.TokenProvider instead."' 

b. Exceptions when running your application due to missing entries in Machine.config 
(please add entries to the App.config file, as described in the “Changes” section): 

System.Configuration.ConfigurationErrorsException was unhandled  

 

Message=Configuration binding extension 

'system.serviceModel/bindings/netTcpRelayBinding' could not be 

found. Verify that this binding extension is properly registered 

in system.serviceModel/extensions/bindingExtensions and that it 

is spelled correctly. 



 

 20 

Quotas 
For information about quotas for the Service Bus, see the Windows Azure Platform pricing FAQ. 

Service Bus Feedback and Community 
Information 
We appreciate your comments and concerns about the Windows Azure Service Bus. For more 
information, or to share techniques with others who are interested in the SDK, visit 
the Connectivity and Messaging - Windows Azure Platform or Windows Azure Platform 
Development forums. 

For technical support, visit the Windows Azure Platform Support page. 

Supplementary technical information is available at the TechNet Wiki site. This site is frequently 
updated, so be sure to check back regularly for new content. 

The Windows Azure and Windows Azure SQL Database documentation teams maintain a 
presence on Twitter. For more information, follow us at http://twitter.com/MsftCloudUETeam. 

Service Bus and Pricing FAQ 
If you have questions about the Windows Azure Service Bus pricing structure, see the FAQ in the 
following section. You can also visit the Windows Azure Platform pricing FAQ for general 
Windows Azure pricing information. 

Service Bus FAQ 
• What is the Windows Azure Service Bus? 
• What are typical usage scenarios for the Service Bus? 
• What are the main capabilities and benefits of the Service Bus? 
• How do you currently charge for the Service Bus? 
• How will you charge for the Service Bus once the promotional period ends? 
• What usage of the Service Bus is subject to data transfer? What is not? 
• What exactly is a Service Bus “relay”? 
• How is the Relay Hours meter calculated? 
• What if I have more than one listener connected to a given relay? 
• What happened to the “Service Bus Connections” billing meter? 
• How is the Messages meter calculated for queues, topics/subscriptions, and message 

buffers? 
• How is the Messages meter calculated for relays? 
• Are management operations and control messages counted as billable Messages? 

http://twitter.com/MsftCloudUETeam
http://go.microsoft.com/fwlink/?LinkID=185083
http://go.microsoft.com/fwlink/?LinkId=210686
http://go.microsoft.com/fwlink/?LinkId=231015
http://go.microsoft.com/fwlink/?LinkId=190443
http://go.microsoft.com/fwlink/?LinkId=202150
http://go.microsoft.com/fwlink/?LinkID=185083
http://go.microsoft.com/fwlink/?LinkId=210686


 

 21 

• Does the Service Bus charge for storage? 
• How much billable usage will I see if I operate 100 queues for 24 hours, each processing one 

128 KB message per minute? 
• How much billable usage will I see if I operate 1 topic with 4 subscriptions for 24 hours, 

processing one 45 KB message per second? 
• How much billable usage will I see if I operate 10 non-netTCP relays for 24 hours, each 

processing one 8KB message per second? 
• How much billable usage will I see if I operate 10 netTCP relays for 24 hours, each 

processing one 8KB message per second? 
• Does the Service Bus have any usage quotas? 

What is the Windows Azure Service Bus? 
The Windows Azure Service Bus provides secure messaging and relay capabilities that enable 
building distributed and loosely-coupled applications in the cloud. The Windows Azure Service 
Bus also enables developing hybrid applications that span private clouds, public clouds and 
clients running on PCs, mobile devices, or in the browser. It supports multiple messaging 
protocols and patterns and handles delivery assurance, reliable messaging and scale for your 
applications. The Service Bus is a managed service that is operated by Microsoft and has a 
99.9% monthly SLA. 

What are typical usage scenarios for the Service Bus? 
Some common applications of the Service Bus include: 
• Hybrid applications: Enables you to securely connect and integrate enterprise systems 

running in your private cloud with applications running on Windows Azure. This makes it 
easier to extend solutions to the cloud without having to port or migrate all of your data or 
code from an existing enterprise datacenter to Windows Azure. 

• Mobile applications: Enables you to easily build applications that can distribute event 
notifications and data to occasionally connected clients, such as smartphones or tablets. You 
can expose notifications or events from an application running either in Windows Azure or in 
your private cloud environment, and ensure that they are ultimately delivered to mobile 
devices. 

• Loosely coupled architectures: Enables you to build loosely coupled systems that are 
more resilient to network failure and can more easily scale out based on demand. The 
Service Bus can act as the connecting broker between the different components of a system, 
eliminating direct dependencies between different components. Easily leverage the Service 
Bus to architect applications that support application load balancing. 

What are the main capabilities and benefits of the Service Bus? 
 

Service Bus Messaging 
 



 

 22 

• Service Bus queues offer a reliable, highly scalable way to store messages as they travel 
between systems without losing messages in the event of connectivity failure. 

• Service Bus topics and subscriptions implement a publish/subscribe pattern that delivers a 
highly scalable, flexible, and cost-effective way to publish messages from an application and 
deliver them to multiple subscribers. 

Service Bus Connectivity 
 
• The Service Bus relay enables applications hosted in Windows Azure to securely call back to 

private cloud-based applications hosted in your own datacenter behind a firewall, and vice 
versa. The relay service avoids the need to instantiate and set up a new connection on each 
call and makes connectivity faster and more reliable. It also supports the ability to integrate 
applications across existing NATs and firewalls. The relay service supports a variety of 
different transport protocols and Web services standards, including REST, SOAP, and WS-*. 

• Companies can use the Service Bus relay to expose just the information they want from their 
private cloud environment, which creates an architecture more secure than opening up a 
VPN. Enterprises can use a SOA-based architecture and expose just the services they want 
to deliver from their on-premise data centers. 

How do you currently charge for the Service Bus? 
We are currently not charging for any of the Service Bus capabilities. This promotional period will 
end for all billing months beginning May 31, 2012. 

How will you charge for the Service Bus once the promotional period 
ends? 
At the end of the promotional period, these meters will be billed as follows: 
1. Messages – Messages sent to or delivered by the Service Bus will be billed at $0.01 per 

10,000 messages. Messages are charged based on the number of messages sent to, or 
delivered by, the Service Bus during the billing month. This includes delivery of “null” 
messages in response to receive requests against empty queues/subscriptions. Messages 
over 64KB in size will be charged an additional message for each additional 64KB of data 
(rounded up). This meter applies to relays as well as queues, topics, subscriptions, and 
message buffers. 

2. Relay Hours – This meter applies only when using the Service Bus relay capability. There is 
no relay hour charge if you are only using Service Bus queues, topics/subscriptions, or 
message buffers. Relay hours will be billed at $0.10 per 100 relay hours, and charged from 
the time the relay is opened (the first listener connect on a given relay address) to the close 
of the relay (the last listener disconnect from that relay address), and rounded up to the next 
whole hour. 

In addition to the prices noted above for the Service Bus, you will be charged for associated data 
transfers for egress outside of the data center in which your application is provisioned. You can 
find more details in the What usage of the Service Bus is subject to data transfer? What is not? 
section below. 



 

 23 

What usage of the Service Bus is subject to data transfer? What is not? 
Any data transfer within a given Windows Azure sub-region is provided at no charge. Any data 
transfer outside a sub-region is subject to egress charges at the rate of $0.15 per GB from the 
North America and Europe regions, and $0.20 per GB from the Asia-Pacific region. Any inbound 
data transfer is provided at no charge. 

What exactly is a Service Bus “relay”? 
A relay is a Service Bus entity that relays messages between clients and Web services. The relay 
provides the service with a persistent, discoverable Service Bus address, reliable connectivity 
with firewall/NAT traversal capabilities, and additional features such as automatic load balancing. 
A relay is implicitly instantiated and opened at a given Service Bus address (namespace URL) 
whenever a relay-enabled WCF service, or “relay listener,” first connects to that address. 
Applications create relay listeners by using the Service Bus .NET managed API, which provides 
special relay-enabled versions of the standard WCF bindings. 

How is the Relay Hours meter calculated? 
Relay hours are billed for the cumulative amount of time during which each Service Bus relay is 
“open” during a given billing period. A relay is implicitly instantiated and opened at a given 
Service Bus address (service namespace URL) when a relay-enabled WCF service, or “Relay 
listener,” first connects to that address. The relay is closed only when the last listener disconnects 
from its address. Therefore, for billing purposes a relay is considered “open” from the time the 
first relay listener connects, to the time the last relay listener disconnects from the Service Bus 
address of that relay. In other words, a relay is considered “open” whenever one or more relay 
listeners are connected to its Service Bus address. 

What if I have more than one listener connected to a given relay? 
In some cases, a single relay in the Service Bus may have multiple connected listeners. This can 
occur with load-balanced services that use the netTCPRelay or *HttpRelay WCF bindings, or 
with broadcast event listeners that use the netEventRelay WCF binding. A relay in the Service 
Bus is considered “open” when at least one relay listener is connected to it. Adding additional 
listeners to an open relay does not change the status of that relay for billing purposes. The 
number of relay senders (clients that invoke or send messages to relays) connected to a relay 
also has no effect on the calculation of relay hours. 

What happened to the “Service Bus Connections” billing meter? 
The Service Bus no longer charges for connections. However, there are quotas limiting the 
number of simultaneous connections that can be open against any single Service Bus entity. See 
the Does the Service Bus have any usage quotas? section below. 



 

 24 

How is the Messages meter calculated for queues, topics/subscriptions, 
and message buffers? 
Each message sent to or delivered by the Service Bus counts as a billable message. This applies 
to all Service Bus entity types, including queues, topics/subscriptions, message buffers, and 
relays.  

A message is defined as a unit of data which is 64KB or less in size. In the case of brokered 
entities (queues, topics/subscriptions, message buffers), any message that is less than or equal 
to 64KB in size is considered as one billable message. If the message is greater than 64KB in 
size, the number of billable messages is calculated according to the message size in multiples of 
64KB. For example, an 8 KB message sent to the Service Bus will be billed as one message, but 
a 96 KB message sent to the Service Bus will be billed as two messages. In most cases, the 
same method of determining billable messages is applicable to relays as well. See the How is the 
Messages meter calculated for relays? section for details about the exception cases for relays. 

Multiple deliveries of the same message (for example, message fan out to multiple listeners or 
message retrieval after abandon, deferral, or dead lettering) will be counted as independent 
messages. For example, in the case of a topic with three subscriptions, a single 64 KB message 
sent and subsequently received will generate four billable messages (one “in” plus three “out”, 
assuming all messages are delivered to all subscriptions). 

In general, management operations and “control messages,” such as completes and deferrals, 
are not counted as billable messages. There are two exceptions: 
1. Null messages delivered by the Service Bus in response to requests against an empty 

queue, subscription, or message buffer, are also billable. Thus, applications that poll against 
Service Bus entities will effectively be charged one message per poll. 

2. Setting and getting state on a MessageSession will also result in billable messages, using 
the same message size-based calculation described above. 

How is the Messages meter calculated for relays? 
In general, billable messages are calculated for relays using the same method as described 
above for brokered entities (queues, topics/subscriptions and message buffers). However, there 
are several notable differences: 
1. Sending a message to a Service Bus relay is treated as a “full through” send to the relay 

listener that receives the message, rather than a send to the Service Bus relay followed by a 
delivery to the relay listener. Therefore, a request-reply style service invocation (of up to 64 
KB) against a relay listener will result in two billable messages: one billable message for the 
request and one billable message for the response (assuming the response is also <= 64 
KB). This differs from using a queue to mediate between a client and a service. In the latter 
case, the same request-reply pattern would require a request send to the queue, followed by 
a dequeue/delivery from the queue to the service, followed by a response send to another 
queue, and a dequeue/delivery from that queue to the client. Using the same (<= 64 KB) size 
assumptions throughout, the mediated queue pattern would thus result in four billable 
messages, twice the number billed to implement the same pattern using relay. Of course, 
there are benefits to using queues to achieve this pattern, such as durability and load 
leveling. These benefits may justify the additional expense. 



 

 25 

2. Relays that are opened using the NetTCPRelay WCF binding treat messages not as 
individual messages but as a stream of data flowing through the system. In other words, only 
the sender and listener have visibility into the framing of the individual messages 
sent/received using this binding. Thus, for relays using the netTCPRelay bindng, all data is 
treated as a stream for the purpose of calculating billable messages. In this case, the Service 
Bus will calculate the total amount of data sent or received via each individual relay on an 
hourly basis and divide that total by 64 KB in order to determine the number of billable 
messages for the relay in question during that hour. 

Are management operations and control messages counted as billable 
Messages? 
Management operations, such as enumerating subscriptions on a topic or determining queue 
depth, and “control messages,” such as completes and deferrals, are not generally counted as 
billable messages. There are two exceptions:  
1. “Null” messages delivered by the Service Bus in response to requests against an empty 

queue, subscription or message buffer are billable. Therefore, applications that poll against 
Service Bus entities will effectively be charged one message per poll. 

2. Setting and getting state on a MessageSession will also result in billable messages, using 
the same message size based calculation described above. 

Does the Service Bus charge for storage? 
No, the Service Bus does not charge for storage. However, there is a quota limiting the maximum 
amount of data that can be persisted per queue/topic. See the Does the Service Bus have any 
usage quotas? section below. 

How much billable usage will I see if I operate 100 queues for 24 hours, 
each processing one 128 KB message per minute? 
• Assume all messages in each queue are delivered exactly once. 
• 1 message of 128 KB = 2 billable messages (128 KB/64 KB). 
• 2 billable messages sent per minute + 2 billable messages delivered per minute = 4 billable 

messages per queue per minute. 
• 4 messages per queue per minute * 1,440 minutes per day = 5,760 messages per queue per 

day. 
• Total billable messages per day sent to/delivered by the Service Bus = 5,760 messages per 

queue per day * 100 queues = 576,000 messages per day. 
• 576,000 Service Bus messages cost 576,000/10,000 * $0.01 = 58 * $0.01 = $0.58 per day. 

How much billable usage will I see if I operate 1 topic with 4 subscriptions 
for 24 hours, processing one 48 KB message per second? 
• Assume all subscriptions receive all messages, and all messages in each subscription are 

delivered exactly once. 



 

 26 

• 1 message of 48 KB = 1 billable message. 
• 1 billable message per second * 86,400 seconds per day = 86,400 billable messages per day 

sent to the topic. 
• 86,400 messages per day * 4 subscriptions = 345,600 messages per day delivered to 

subscription clients. 
• Total billable messages per day sent to/delivered by the Service Bus = 86,400 + 345,600 = 

432,000 messages per day. 
• 432,000 Service Bus messages cost 432,000/10,000 * $0.01 = 44 * $0.01 = $0.44 per day. 

How much billable usage will I see if I operate 10 non-netTCP relays for 24 
hours, each processing one 8KB message per second? 
• Assume a request/reply pattern and all requests receive replies <= 64 KB in size. 
• 1 message of 8 KB = 1 billable message. 
• 1 billable message per second * 86,400 seconds per day = 86,400 billable messages per day 

for request messages sent via each relay. 
• Since all requests receive replies, also have 86,400 billable messages per day for reply 

messages sent via each relay. 
• Total billable messages per day per relay = 86,400 * 2 = 172,800. 
• Total billable messages per day sent to/received by the Service Bus = 172,800 * 10 Relays = 

1,728,000. 
• 1,728,000 Service Bus messages cost 1,728,000/10,000 * $0.01 = 173 * $0.01 = $1.73. 
• 10 relays open 24 hours = 240 relay hours. 
• 240 relay hours cost 240/100 * $0.10 = 3 * $0.10 = $0.30. 
• Total cost = $1.73 + $0.30 = $2.03 per day. 

How much billable usage will I see if I operate 10 netTCP relays for 24 
hours, each processing one 8KB message per second? 
• Assume a request/reply pattern and all requests receive replies <= 64 KB in size. 
• 8 KB per second * 3,600 seconds per hour = 28,800 KB per hour for request messages sent 

via each relay. 
• Since all requests receive replies, also have 28,800 KB per hour for reply messages sent via 

each relay. 
• Total message data per hour per relay = 57,600 KB. 
• 57,600 KB = 57,600/64 or 900 billable messages per hour per relay = 900 * 24 or 21,600 

billable messages per day per relay. 
• Total billable messages per day sent to/received by the Service Bus = 21,600 messages * 10 

relays = 216,000. 
• 216,000 Service Bus messages cost 216,000/10,000 * $0.01 = 22 * $0.01 = $0.22. 
• 10 relays open 24 hours = 240 relay hours. 
• 240 relay hours cost 240/100 * $0.10 = 3 * $0.10 = $0.30. 



 

 27 

• Total cost = $0.22 + $0.30 = $0.52 per day. 

Does the Service Bus have any usage quotas? 
By default, for any cloud service Microsoft sets an aggregate monthly usage quota that is 
calculated across all of a customer’s subscriptions. Because we understand that you may need 
more than these limits, please contact customer service at any time so that we can understand 
your needs and adjust these limits appropriately. For the Service Bus, the aggregate usage 
quotas are as follows: 
• 5 billion messages 
• 2 million relay hours 

While we do reserve the right to disable a customer's account that has exceeded its usage 
quotas in a given month, we will provide e-mail notification and make multiple attempts to contact 
a customer before taking any action. Customers exceeding these quotas will still be responsible 
for charges that exceed the quotas. 

As with other services on Windows Azure, the Service Bus enforces a set of specific quotas to 
ensure that there is fair usage of resources. The following are the usage quotas that the service 
enforces: 
• Queue/topic size – You specify the maximum queue or topic size upon creation of the queue 

or topic. This quota can have a value of 1, 2, 3, 4, or 5 GB. If the maximum size is reached, 
additional incoming messages will be rejected and an exception will be received by the 
calling code. 

• Number of concurrent connections 
• Queue/Topic/Subscription - The number of concurrent TCP connections on a 

queue/topic/subscription is limited to 100. If this quota is reached, subsequent requests 
for additional connections will be rejected and an exception will be received by the calling 
code. For every messaging factory, the Service Bus maintains one TCP connection if any 
of the clients created by that messaging factory have an active operation pending, or 
have completed an operation less than 60 seconds ago. REST operations do not count 
towards concurrent TCP connections. 

• Message Buffer - The Service Bus only supports REST operations for message buffers. 
Therefore, a connection quota does not apply. 

• Number of concurrent listeners on a relay – The number of concurrent NetTcpRelay and 
NetHttpRelay listeners on a relay is limited to 25 (1 for a NetOneway relay). 

• Number of concurrent relay listeners per service namespace – The Service Bus enforces 
a limit of 2000 concurrent relay listeners per service namespace. If this quota is reached, 
subsequent requests to open additional relay listeners will be rejected and an exception will 
be received by the calling code. 

• Number of topics/queues per service namespace – The maximum number of 
topics/queues (durable storage-backed entities) on a service namespace is limited to 10,000. 
If this quota is reached, subsequent requests for creation of a new topic/queue on the service 
namespace will be rejected. In this case, the management portal will display an error 
message or the calling client code will receive an exception, depending on whether the create 
attempt was done via the portal or in client code. 



 

 28 

• Message size quotas 
• Queue/Topic/Subscription 

• Message size – Each message is limited to a total size of 256KB, including message 
headers. 

• Message header size – Each message header is limited to 64KB. 
• Message Buffer - Each message is limited to a total size of 64KB, including message 

headers. 
• NetOneway and NetEvent relays - Each message is limited to a total size of 64KB, 

including message headers. 
• Http and NetTcp relays – The Service Bus does not enforce an upper bound on the size 

of these messages. 

Messages that exceed these size quotas will be rejected and an exception will be received by 
the calling code. 

• Number of subscriptions per topic – The maximum number of subscriptions per topic is 
limited to 2,000. If this quota is reached, subsequent requests for creating additional 
subscriptions to the topic will be rejected. In this case, the management portal will display an 
error message or the calling client code will receive an exception, depending on whether the 
create attempt was done via the portal or in client code. 

• Number of SQL filters per topic – the maximum number of SQL filters per topic is limited to 
2,000. If this quota is reached, any subsequent requests for creation of additional filters on 
the topic will be rejected and an exception will be received by the calling code. 

• Number of correlation filters per topic – the maximum number of correlation filters per 
topic is limited to 100,000. If this quota is reached, any subsequent requests for creation of 
additional filters on the topic will be rejected and an exception will be received by the calling 
code. 

For more information about quotas, see Windows Azure Service Bus Quotas. 

System and Developer Requirements 

Requirements 
The following topic describes the developer and system requirements for running a Windows 
Azure application that uses the Service Bus. 

Developer Requirements 
In order to develop and run an Windows Azure application, you should have a basic level of 
familiarity with either C# or Visual Basic .NET. You should also be familiar with the following 
technologies: 
• Service Bus 



 

 29 

If you are developing an Service Bus basic service or client application, you should be 
generally familiar with the Windows Communication Foundation (WCF) programming 
framework. It is possible to use this documentation without knowing WCF programming. 
However, many of the topics here reference WCF as a source of additional information, or 
use the WCF documentation as a base from which to expand.  

• Windows Azure and Service Bus 

Creating a Windows Azure application that uses the Service Bus is very similar to a basic 
Service Bus application: the main additions are mainly around configuration and setup. 
Therefore, you should be generally familiar with the Windows Azure programming 
environment, so that you can reasonably create a basic Windows Azure application. 

• REST and the Service Bus 

As with Windows Azure, creating a REST-based service or client application is very similar to 
the basic Service Bus programming model: other than the choice of bindings and some 
tagging, the actual differences are relatively minor. Therefore, you should be generally 
familiar with the REST protocol and Web programming. If you want to use the message 
buffer feature to create a purely HTTP-based application (for example, one that does not use 
the Service Bus and the Service Bus service), you should be much more experienced with 
the Web programming and messaging models. 

System Requirements 
In order to run an Service Bus client or service application, you must have the following: 
• Windows XP Service Pack 3 or higher, Windows Vista, Windows Server 2008, Windows 

Server 2008 R2, or Windows°7.  
• .NET Framework 3.5, Service Pack 1. 
• Windows Azure SDK. 
• HTTP/S connectivity to the Internet. 
• To use TCP connectivity, your computer must be able to open outbound connections to the 

Service Bus using ports 808 and 828. 
• To establish direct connections to clients (hybrid mode), your computer must be able to 

connect to the Service Bus using port 819. 

For more information about port settings, see Service Bus Port Settings. 

Managing Service Bus Service Namespaces 
The following topics describe how to create and manage Windows Azure Service Bus service 
namespaces using the Windows Azure management portal. 

In This Section 
How to: Create or Modify a Service Bus Service Namespace 



 

 30 

How to: Delete a Service Bus Service Namespace 

How to: Create or Modify a Service Bus Service 
Namespace 
The following topic describes how to create a new Service Bus service namespace using the 
Windows Azure management portal, and how to modify and existing service namespace. You 
can create one or more service namespaces in your Service Bus subscription. 

1. Open an Internet browser and visit the Windows Azure Management Portal. 
2. Log on to the Web site using a Windows Live ID. If you do not have a Windows Live ID, 

click Sign up to create one for yourself. 

After you are signed in with your Live ID, you are redirected to the Management Portal 
page. On the lower-left-hand side of this page, click Service Bus, Access Control & 
Caching. 

3. To create a new service namespace at the global (Windows Azure) level, click Services 
in the tree on the left-hand side. Then click New from the Service Namespace area of 
the toolbar at the top of the page. 

OR 
4. Click the name of the service in the tree. Then click New from the Service Namespace 

area of the toolbar. In the resulting dialog, you can select the service or services for 
which you want to create the service namespace. 

5. In the Create a new Service Namespace box, type a name for your new service 
namespace. Note that each service namespace must be globally unique so that it can be 
identified by the service. 

Note  
You do not have to use the same service namespace for both client and service 
applications.  

6. Click Check Availability. This will check that the name that you selected for your service 
namespace is valid and available. If it is not, you can enter a different name. 

7. Choose a region and in the available dropdown. Then click OK. 
8. The system now creates your service namespace and enables it. 

You might have to wait several minutes as the system provisions resources for your 
account. 

1. To modify a service namespace, click the service namespace you want to change. Then 
click Modify in the toolbar at the top of the page. 

2. In the Available Services pane of the Modify a Service Namespace dialog, you can 

To create a Service Bus service namespace 

To modify a service namespace 

http://go.microsoft.com/fwlink/?LinkId=213161


 

 31 

add or remove the services for which this namespace is valid. You can only customize 
the service properties for services being added. At this time you cannot modify the 
properties of service namespaces for existing services. 

3. Note that if you clear the checkboxes for all services in the Available Services pane, the 
service namespace is deleted. 

4. When you are finished, click Modify Namespace to commit the changes and close the 
Modify a Service Namespace dialog. 

 

How to: Delete a Service Bus Service Namespace 
The following topic describes how to delete a service namespace from a Windows Azure Service 
Bus subscription. 

1. In the tree on the left-hand side of the Windows Azure Management Portal, click the 
service that contains the service namespace you want to delete. 

2. Click the service namespace. Then click Delete in the Service Namespace area of the 
toolbar at the top of the page. 

OR 
3. Click the service namespace you want to delete. Then click Modify in the toolbar at the 

top of the page. 
4. Clear the checkboxes for all services in the Available Services pane, then click Modify 

Namespace. The service namespace is deleted. 

 

Windows Azure Service Bus Quotas 
This section enumerates basic quotas and throttling thresholds in Windows Azure Service Bus 
messaging.  

General Quotas 
The maximum number of service namespaces allowed per Windows Azure account is 50.  

For information about other quotas for the Windows Azure Service Bus, see the Windows Azure 
Platform pricing FAQ. 

Messaging Quotas 
The following table lists quota information specific to the Service Bus: 
 

To delete a service namespace 

http://go.microsoft.com/fwlink/?LinkID=213161
http://go.microsoft.com/fwlink/?LinkID=185083
http://go.microsoft.com/fwlink/?LinkID=185083


 

 32 

Quota Name Scope Type Behavior when exceeded Value 

Queue/Topic size Entity Defined 
upon 
creation 
of the 
queue/t
opic. 

Incoming messages will be rejected 
and an exception will be received by 
the calling code. 

1,2,3,4 or 5 
Gigabytes. 

Number of 
concurrent 
connections on a 
queue/topic/subsc
ription entity 

Entity Static Subsequent requests for additional 
connections will be rejected and an 
exception will be received by the calling 
code. REST operations do not count 
towards concurrent TCP connections. 

100 

Number of 
concurrent 
listeners on a 
relay 

Entity Static Subsequent requests for additional 
connections will be rejected and an 
exception will be received by the calling 
code. 

25 

Number of 
concurrent relay 
listeners 

System-
wide 

Static Subsequent requests for additional 
connections will be rejected and an 
exception will be received by the calling 
code. 

2000 

Number of 
topics/queues per 
service 
namespace 

System-
wide 

Static Subsequent requests for creation of a 
new topic or queue on the service 
namespace will be rejected. As a 
result, if configured through the 
management portal, an error message 
will be generated. If called from the 
management API, an exception will be 
received by the calling code. 

10,000 

Message size for 
a 
queue/topic/subsc
ription entity 

System-
wide 

Static Incoming messages that exceed these 
quotas will be rejected and an 
exception will be received by the calling 
code. 

Maximum 
message 
size: 256KB 

Maximum 
header size: 
64KB 

Maximum 
number of 
header 
properties in 
property bag: 



 

 33 

Quota Name Scope Type Behavior when exceeded Value 

MaxValue  

Maximum 
size of 
property in 
property bag: 
No explicit 
limit. Limited 
by maximum 
header size. 

Message size for 
Message Buffer 

System-
wide 

Static Incoming messages that exceed these 
quotas will be rejected and an 
exception will be received by the calling 
code. 

64KB 

Message size for 
Microsoft.Servic
eBus.NetOnewa
yRelayBinding 
and 
Microsoft.Servic
eBus.NetEventR
elayBinding 
relays 

System-
wide 

Static Incoming messages that exceed these 
quotas will be rejected and an 
exception will be received by the calling 
code. 

64KB 

Message size for 
Microsoft.Servic
eBus.HttpRelayT
ransportBinding
Element and 
Microsoft.Servic
eBus.NetTcpRel
ayBinding relays 

System-
wide 

Static  Unlimited 

Message property 
size for a 
queue/topic/subsc
ription entity 

System-
wide 

Static A SerializationException exception is 
generated. 

Maximum 
message 
property size 
for each 
property is 
32K. 
Cumulative 
size of all 
properties 



 

 34 

Quota Name Scope Type Behavior when exceeded Value 

cannot 
exceed 64K. 
This applies 
to the entire 
header of the 
Microsoft.Se
rviceBus.Me
ssaging.Bro
keredMessa
ge, which has 
both user 
properties as 
well as 
system 
properties 
(such as 
Microsoft.Se
rviceBus.Me
ssaging.Bro
keredMessa
ge.Sequence
Number, 
Microsoft.Se
rviceBus.Me
ssaging.Bro
keredMessa
ge.Label, 
Microsoft.Se
rviceBus.Me
ssaging.Bro
keredMessa
ge.MessageI
d, and so on). 

Number of 
subscriptions per 
topic 

System-
wide 

Static Subsequent requests for creating 
additional subscriptions for the topic will 
be rejected. As a result, if configured 
through the management portal, an 
error message will be shown. If called 
from the management API an 
exception will be received by the calling 
code. 

2,000 



 

 35 

Quota Name Scope Type Behavior when exceeded Value 

Number of SQL 
filters per topic 

System-
wide 

Static Subsequent requests for creation of 
additional filters on the topic will be 
rejected and an exception will be 
received by the calling code. 

2,000 

Number of 
correlation filters 
per topic 

System-
wide 

Static Subsequent requests for creation of 
additional filters on the topic will be 
rejected and an exception will be 
received by the calling code. 

100,000 

Size of SQL 
filters/actions 

System-
wide 

Static Subsequent requests for creation of 
additional filters will be rejected and an 
exception will be received by the calling 
code. 

Maximum 
length of filter 
condition 
string: 4K 

Maximum 
length of rule 
action string: 
4K 

Maximum 
number of 
expressions 
per rule 
action: 64 

 

Getting Started with the Service Bus 
The following topics contain tutorials for the Windows Azure Service Bus. 

The Service Bus Relayed Messaging Tutorial topics create a basic Windows Communication 
Foundation (WCF) service application that is configured to register an endpoint for publication 
with the Service Bus and a WCF client application that invokes it through the Service Bus 
endpoint. In this tutorial, both the host and client applications are executed on a Windows server 
or desktop computer (that is, they are not hosted in Windows Azure) and use a common standard 
protocol and security measures to access the Service Bus. Read through this tutorial to see how 
to use the Service Bus to securely expose a WCF service to a WCF client application by using 
standard SOAP-based WCF bindings. 

The Service Bus Brokered Messaging Tutorials contain both REST-based and managed API-
based tutorials that demonstrate how to use the new Service Bus brokered messaging features, 
such as Queues, Topics, and Subscriptions. 



 

 36 

The Service Bus Message Buffer Tutorial topics show how to securely use REST message 
exchanges to register a REST endpoint with the Service Bus and build a REST client that 
communicates with the REST service through the Service Bus endpoint. This tutorial 
demonstrates one programming approach, by using the WCF Web HTTP Programming Model 
to create a service application that registers an HTTP/GET endpoint securely through the Service 
Bus, by using the standard WCF bindings that are available with Windows Azure. The client can 
then use any Web browser to start the service by using the URL of the Service Bus endpoint. 

You can of course also use REST-style communication to register a REST endpoint with the 
Service Bus, although the REST tutorial does not demonstrate this.  

In This Section 
Service Bus Relayed Messaging Tutorial 

Includes topics that describe how to build a simple Service Bus client application and 
service. 

 

Service Bus Brokered Messaging Tutorials 

Includes topics that describe how to build applications that use the new Service Bus 
brokered messaging features. 

 

Service Bus Message Buffer Tutoria  l
Includes topics that describe how to build a simple Service Bus host application that 
exposes a REST interface. 

 

 

Service Bus Relayed Messaging Tutorial 
The following topics describe how to build a simple Windows Azure Service Bus client application 
and service using the Service Bus “relay” messaging capabilities. For a corresponding tutorial 
that describes how to build an application that uses the Service Bus “brokered,” or asynchronous 
messaging capabilities, see the Service Bus Brokered Messaging .NET Tutorial. 

The topics that are contained in this section are intended to give you quick exposure to the 
Service Bus programming experience. They are designed to be completed in the order listed at 
the bottom of this topic. Working through this tutorial gives you an introductory understanding of 
the steps that are required to create an Service Bus client and service application. Like their WCF 
counterparts, a service is a construct that exposes one or more endpoints, each of which exposes 
one or more service operations. The endpoint of a service specifies an address where the service 
can be found, a binding that contains the information that a client must communicate with the 
service, and a contract that defines the functionality provided by the service to its clients. The 



 

 37 

main difference between a WCF and an Service Bus service is that the endpoint is exposed in the 
cloud instead of locally on your computer.  

After you work through the sequence of topics in this tutorial, you will have a running service, and 
a client that can invoke the operations of the service. The first topic describes how to set up an 
account. The next three topics describe how to define a service that uses a contract, how to 
implement the service, and how to configure the service in code. They also describe how to host 
and run the service. The service that is created is self-hosted and the client and service run on 
the same computer. You can configure the service by using either code or a configuration file. For 
more information, see Configuring a WCF Service to Register with the Service Bus and Building a 
Service for the Service Bus. 

The next three topics describe how to create a client application, configure the client application, 
and create and use a client that can access the functionality of the host. For more information, 
see Building a Service Bus Client Application and Discovering and Exposing a Service Bus 
Service. 

All of the topics in this section assume that you are using Visual Studio 2010 as the development 
environment. If you are using another development environment, ignore the Visual Studio-specific 
instructions. 

For more in-depth information about how to create Service Bus client applications and hosts, see 
the Developing Applications that Use the Service Bus section. 

In This Section 
Step 1: Sign up for an Account 

Step 2: Define a WCF Service Contract to use with Service Bus 

Step 3: Implement the WCF Contract to use Service Bus 

Step 4: Host and Run a Basic Web Service to Register with Service Bus 

Step 5: Create a WCF Client for the Service Contract 

Step 6: Configure the WCF Client 

Step 7: Implement WCF Client to Call the Service Bus 

See Also 
Service Bus Brokered Messaging .NET Tutorial 

Step 1: Sign up for an Account 
This is the first of seven tasks required to create a basic Windows Communication Foundation 
(WCF) service and a client that can call the service that uses the Windows Azure Service Bus. 
For an overview of all seven of the tasks, see the Service Bus Relayed Messaging Tutorial 
overview. The next task is Step 2: Define a WCF Service Contract to use with Service Bus. 

The first step is to create a Windows Azure service namespace, and to obtain a shared secret 
key. A service namespace provides an application boundary for each application exposed 



 

 38 

through the Service Bus. A shared secret key is automatically generated by the system when a 
service namespace is created. The combination of service namespace and shared secret key 
provides a credential for the Service Bus to authenticate access to an application.  

Expected time to complete: 5 minutes 

1. To create a service namespace, follow the steps outlined in How to: Create or Modify a 
Service Bus Service Namespace. 

Note  
You do not have to use the same service namespace for both client and service 
applications. 

 

Step 2: Define a WCF Service Contract to use with Service Bus 
This is the second of seven tasks required to create a basic Windows Communication Foundation 
(WCF) service and a client that can call the service that uses the Windows Azure Service Bus. 
For an overview of all seven of the tasks, see the Service Bus Relayed Messaging Tutorial. The 
previous step is Step 1: Sign up for an Account; the subsequent step is Step 3: Implement the 
WCF Contract to use Service Bus. 

When creating a basic WCF service (whether for the Service Bus or not), you must define the 
service contract, which specifies what operations (the Web service terminology for methods or 
functions) the service supports. Contracts are created by defining a C++, C#, or Visual Basic 
interface. This tutorial demonstrates how to create such a contract using C#. Each method in the 
interface corresponds to a specific service operation. Each interface must have the 
System.ServiceModel.ServiceContractAttribute attribute applied to it, and each operation 
must have the System.ServiceModel.OperationContractAttribute applied to it. If a method in 
an interface that has the System.ServiceModel.ServiceContractAttribute does not have the 
System.ServiceModel.OperationContractAttribute, that method is not exposed. The code for 
these tasks is provided in the example following the procedure. For more information about how 
to define a contract, see Designing a WCF Contract for the Service Bus. For a larger discussion 
of contracts and services, see Designing and Implementing Services in the WCF 
documentation. 

Expected time to completion: 10 minutes. 

1. Open Visual Studio 2010 as an administrator by right-clicking the program in the Start 
menu and selecting Run as administrator. 

2. Create a new console application project. Click the File menu and select New, then click 
Project. In the New Project dialog, click Visual C# (if Visual C# does not appear, look 
under Other Languages), click the Console Application template, and name it 

To create a service namespace 

To create a Service Bus contract with an interface 



 

 39 

EchoService. Use the default Location. Click OK to create the project. 

 
 

3. Note that the following two steps (4 and 5) are not necessary if you are running Visual 
Studio 2008. 

4. In the Solution Explorer, right-click the name of your project (in this example, 
EchoService), and click Properties. 

5. Click the Application tab on the left, then select .NET Framework 4 from the Target 
framework: dropdown. Click Yes when prompted to reload the project. 

6. For a C# project, Visual Studio creates a file that is named Program.cs. This class will 
contain an empty method called Main(). This method is required for a console application 
project to build correctly. Therefore, you can safely leave it in the project. 

7. Add a reference to System.ServiceModel.dll to the project: 
a. In the Solution Explorer, right-click the References folder under the project folder 

and then click Add Reference…. 
b. Select the .NET tab in the Add Reference dialog and scroll down until you see 

System.ServiceModel, select it, and then click OK. 



 

 40 

 
 

Note  
When using a command-line compiler (for example, Csc.exe), you must also 
provide the path of the assemblies. By default, for example on a computer that is 
running Windows°7, the path is: 
Windows\Microsoft.NET\Framework\v3.0\Windows Communication Foundation. 

8. In the Solution Explorer, double-click the Program.cs file to open it in the editor. 
9. Add a using statement for the System.ServiceModel namespace. 

using System.ServiceModel; 

System.ServiceModel is the namespace that lets you programmatically access the 
basic features of WCF. Service Bus uses many of the objects and attributes of WCF to 
define service contracts. You will most likely use this namespace in most of your Service 
Bus applications. 

10. Change the namespace name from its default name of EchoService to 
Microsoft.ServiceBus.Samples. 

Important  
This tutorial uses the C# namespace Microsoft.ServiceBus.Samples, which is 
the namespace of the contract managed type that is used in the configuration file 
in Step 6: Configure the WCF Client. You can specify any namespace you want 
when you build this sample; however, the tutorial will not work unless you then 
modify the namespaces of the contract and service accordingly, in the application 
configuration file. The namespace specified in the App.config file must be the 
same as the namespace specified in your C# files. 

11. Directly after the Microsoft.ServiceBus.Samples namespace declaration, but within the 
namespace, define a new interface named IEchoContract and apply the 
ServiceContractAttribute attribute to the interface with a namespace value of 
http://samples.microsoft.com/ServiceModel/Relay/. The namespace value differs from 
the namespace that you use throughout the scope of your code. Instead, the namespace 

http://samples.microsoft.com/ServiceModel/Relay/


 

 41 

value is used as a unique identifier for this contract. Specifying the namespace explicitly 
prevents the default namespace value from being added to the contract name. 

[ServiceContract(Name = "IEchoContract", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

public interface IEchoContract 

{ 

} 

 

Note  
Typically, the service contract namespace contains a naming scheme that 
includes version information. Including version information in the service contract 
namespace enables services to isolate major changes by defining a new service 
contract with a new namespace and exposing it on a new endpoint. In in this 
manner, clients can continue to use the old service contract without having to be 
updated. Version information can consist of a date or a build number. For more 
information, seeService Versioning. For the purposes of this tutorial, the naming 
scheme of the service contract namespace does not contain version information. 

12. Within the IEchoContract interface, declare a method for the single operation the 
IEchoContract contract exposes in the interface and apply the 
OperationContractAttribute attribute to the method that you want to expose as part of 
the public Service Bus contract. 

[OperationContract] 

string Echo(string text); 

13. Outside the contract, declare a channel that inherits from both IEchoChannel and also to 
the IClientChannel interface, as shown here: 

 

 

    [ServiceContract(Name = "IEchoContract", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

    public interface IEchoContract 

    { 

        [OperationContract] 

        String Echo(string text); 

    } 

 

    public interface IEchoChannel : IEchoContract, 

IClientChannel { } 

http://go.microsoft.com/fwlink/?LinkID=180498
http://samples.microsoft.com/ServiceModel/Relay/
http://samples.microsoft.com/ServiceModel/Relay/


 

 42 

 

A channel is the WCF object through which the host and client pass information to each 
other. Later, you will write code against the channel to echo information between the two 
applications. 

14. From the Build menu, select Build Solution or press F6 to confirm the accuracy of your 
work. 

Example 

Description 
The following code example shows a basic interface that defines an Service Bus contract. 

Code 

using System; 

using System.ServiceModel; 

 

namespace Microsoft.ServiceBus.Samples 

{ 

    [ServiceContract(Name = "IEchoContract", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

    public interface IEchoContract 

    { 

        [OperationContract] 

        String Echo(string text); 

    } 

 

    public interface IEchoChannel : IEchoContract, IClientChannel { } 

 

 

    class Program 

    { 

        static void Main(string[] args) 

        { 

        } 

    } 

} 

http://samples.microsoft.com/ServiceModel/Relay/


 

 43 

Comments 
Now that the interface is created, you can implement the interface, as described in Step 3: 
Implement the WCF Contract to use Service Bus. 

Step 3: Implement the WCF Contract to use Service Bus 
This is the third of seven tasks required to create a basic Windows Communication Foundation 
(WCF) service and a client that can call the service that uses the Windows Azure Service Bus. 
For an overview of all seven tasks, see the Service Bus Relayed Messaging Tutorial topic. The 
previous task is Step 2: Define a WCF Service Contract to use with Service Bus; the following 
task is Step 4: Host and Run a Basic Web Service to Register with Service Bus. Creating an 
Service Bus service requires that you first create the contract, which is defined by using an 
interface. For more information about creating the interface, see Step 2: Define a WCF Service 
Contract to use with Service Bus. The next step, shown in this topic, is to implement the interface. 
This involves creating a class named EchoService that implements the user-defined 
IEchoContract interface. After you implement the interface, you then configure the interface using 
an App.config configuration file. The configuration file contains necessary information for the 
application, such as the name of the service, the name of the contract, and the type of protocol 
that is used to communicate with the Service Bus. The code used for these tasks is provided in 
the example following the procedure. For a more general discussion about how to implement a 
service contract, see Implementing Service Contracts in the Windows Communication 
Foundation (WCF) documentation. 

Expected time to completion: 10 minutes 

1. Create a new class named EchoService directly underneath the definition of the 
IEchoContract interface. The EchoService class implements the IEchoContract interface.  

class EchoService : IEchoContract 

{ 

} 

Similar to other interface implementations, you can implement the definition in a different 
file. However, for this tutorial, the implementation is located in the same file as the 
interface definition and the Main method.  

2. Apply the System.ServiceModel.ServiceBehaviorAttribute attribute that indicates the 
service name and namespace. 

[ServiceBehavior(Name = "EchoService", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

class EchoService : IEchoContract 

{ 

} 

To implement a Service Bus contract 

http://samples.microsoft.com/ServiceModel/Relay/


 

 44 

 

3. Implement the Echo method defined in the IEchoContract interface in the EchoService 
class.  

public string Echo(string text) 

{ 

    Console.WriteLine("Echoing: {0}", text); 

    return text; 

} 

4. Click Build. Then click Build Solution to confirm the accuracy of your work. 

1.  

Note  
Steps 1 and 2 are not necessary if you are using Visual Studio 2010 , because 
by default, the App.config file is already present in the project. 

In Solution Explorer, right-click the EchoService project, select Add. Then click New 
Item. 

2. In the Add New Item dialog, in the Visual Studio installed templates pane, select 
Application Configuration file, and then click Add. 

The configuration file is very similar to a WCF configuration file, and includes the service 
name, endpoint (that is, the location Service Bus exposes for clients and hosts to 
communicate with each other), and the binding (the type of protocol that is used to 
communicate). The main difference is that this configured service endpoint refers to a 
netTcpRelayBinding, which is not part of the .NET Framework 3.5. 
Microsoft.ServiceBus.NetTcpRelayBinding is one of the new bindings introduced with 
the Service Bus.  

3. In Solution Explorer, click App.config, which currently contains the following XML 
elements: 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

</configuration> 

4. Add a <system.serviceModel> XML element to the App.config file. This is a WCF element 
that defines one or more services. This example uses it to define the service name and 
endpoint. 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

<system.serviceModel> 

 

To define the configuration for the service host 



 

 45 

</system.serviceModel> 

 

</configuration> 

5. Within the <system.serviceModel> tags, add a <services> element. You can define 
multiple Service Bus applications in a single configuration file. However, this tutorial 
defines only one. 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

<system.serviceModel> 

<services> 

 

</services> 

</system.serviceModel> 

</configuration> 

6. Within the <services> element, add a <service> element to define the name of the 
service. 

<service name="Microsoft.ServiceBus.Samples.EchoService"> 

</service> 

 

7. Within the <service> element, define the location of the endpoint contract, and also the 
type of binding for the endpoint. 

<endpoint 

contract="Microsoft.ServiceBus.Samples.IEchoContract" 

binding="netTcpRelayBinding" /> 

The endpoint defines where the client will look for the host application. Later, the tutorial 
uses this step to create a URI that fully exposes the host through the Service Bus. The 
binding declares that we are using TCP as the protocol to communicate with the Service 
Bus.  

8. Directly after the <services> element, add the following binding extension: 

<extensions> 

<bindingExtensions> 

<add name="netTcpRelayBinding" 

type="Microsoft.ServiceBus.Configuration.NetTcpRelayBindingCo

llectionElement, Microsoft.ServiceBus, Version=1.5.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

</bindingExtensions> 

</extensions> 



 

 46 

9. Click Build, and then click Build Solution to confirm the accuracy of your work. 

Example 

Description 
The following code example shows the implementation of the service contract. 

Code 

[ServiceBehavior(Name = "EchoService", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

 

    class EchoService : IEchoContract 

    { 

        public string Echo(string text) 

        { 

            Console.WriteLine("Echoing: {0}", text); 

            return text; 

        } 

    } 

 

Example 

Description 
The following example shows the basic format of the App.config file associated with the service 
host. 

Code 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

<system.serviceModel> 

<services> 

<service name="Microsoft.ServiceBus.Samples.EchoService"> 

<endpoint contract="Microsoft.ServiceBus.Samples.IEchoContract" 

binding="netTcpRelayBinding" /> 

</service> 

</services> 

<extensions> 

http://samples.microsoft.com/ServiceModel/Relay/


 

 47 

<bindingExtensions> 

<add name="netTcpRelayBinding" 

type="Microsoft.ServiceBus.Configuration.NetTcpRelayBindingCollectionElement, 

Microsoft.ServiceBus, Version=1.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" 

/> 

</bindingExtensions> 

</extensions> 

</system.serviceModel> 

</configuration> 

Comments 
Now that you have implemented the Service Bus contract and configured your endpoints, 
proceed to Step 4: Host and Run a Basic Web Service to Register with Service Bus.  

Step 4: Host and Run a Basic Web Service to Register with 
Service Bus 
This is the fourth of seven tasks required to create a basic Service Bus service application and a 
client that can call the service. For an overview of all six of the tasks, see the Service Bus 
Relayed Messaging Tutorial topic. This topic describes how to run a basic Service Bus service.  

A complete listing of the code written in this task is provided in the example following the 
procedure.  

Estimated time to completion: 10 minutes 

1. Add a reference to Microsoft.ServiceBus.dll to the project: 
a. In Solution Explorer, right-click References under the project folder and then click 

Add Reference. 
b. Select the .NET tab in the Add Reference dialog and scroll down until you see 

Microsoft.ServiceBus. Or, click Browse and navigate to the assembly on your hard 
drive. Typically, this is located in Program 
Files\<sdkInstallDirectory>\v1.0\Assemblies\NET4.0. Select the 
Microsoft.ServiceBus assembly, then click OK. 

Note  
When using a command-line compiler (for example, Csc.exe), you must also 
provide the path to the assemblies. 

2. In Program.cs, add a using statement for the Microsoft.ServiceBus namespace. 

using Microsoft.ServiceBus; 

Microsoft.ServiceBus is the namespace that lets you programmatically access many of 
the core features of the Service Bus. You will most likely use this namespace in all your 

To create the Service Bus credentials 



 

 48 

Service Bus applications. 
3. In the Main() method, create three variables in which to store the service namespace, 

issuer name, and issuer secret (a name/password credential) that are read from the 
console window. 

Console.Write("Your Service Namespace: "); 

string serviceNamespace = Console.ReadLine(); 

Console.Write("Your Issuer Name: "); 

string issuerName = Console.ReadLine(); 

Console.Write("Your Issuer Secret: "); 

string issuerSecret = Console.ReadLine(); 

The issuer name and issuer secret will be used later to access your Service Bus project. 
The service namespace is passed as a parameter to CreateServiceUri to create a 
service URI.  

4. Using a Microsoft.ServiceBus.TransportClientEndpointBehavior object, declare that 
you will be using a shared secret as the credential type. Add the following code directly 
underneath the code added in the last step. 

TransportClientEndpointBehavior 

sharedSecretServiceBusCredential = new 

TransportClientEndpointBehavior(); 

sharedSecretServiceBusCredential.TokenProvider = 

TokenProvider.CreateSharedSecretTokenProvider(issuerName, 

issuerSecret); 

1. Following the code you added in the last step, create a Uri instance for the base address 
of the service. This URI specifies the Service Bus scheme, the service namespace, and 
the path of the service interface.  

Uri address = ServiceBusEnvironment.CreateServiceUri("sb", 

serviceNamespace, "EchoService"); 

“sb” is an abbreviation for the Service Bus scheme, and indicates that we are using TCP 
as the protocol. This was also previously indicated in the configuration file, when 
Microsoft.ServiceBus.NetTcpRelayBinding was specified as the binding. 

For this tutorial, the URI is sb://putServiceNamespaceHere.windows.net/EchoService. 

1. Set the connectivity mode to  AutoDetect. 

ServiceBusEnvironment.SystemConnectivity.Mode = 

ConnectivityMode.AutoDetect; 

To create a base address for the service 

To create and configure the service host 



 

 49 

The connectivity mode describes the protocol the service uses to communicate with the 
Service Bus; either HTTP or TCP. Using the default setting AutoDetect, the service will 
attempt to connect to the Service Bus over TCP, if it is available, and HTTP if TCP is not 
available. Note that this differs from the protocol the service specifies for client 
communication. That protocol is determined by the binding used. For example, a service 
can use the Microsoft.ServiceBus.BasicHttpRelayBinding binding, which specifies 
that its endpoint (exposed on the Service Bus) communicates with clients over HTTP. 
That same service could specify ConnectivityMode.AutoDetect so that the service 
communicates with the Service Bus over TCP.  

2. Create the service host, using the URI created earlier in this section. 

ServiceHost host = new ServiceHost(typeof(EchoService), 

address); 

The service host is the WCF object that instantiates the service. Here, you pass it the 
type of service you want to create (an EchoService type), and also to the address at which 
you want to expose the service. 

3. At the top of the Program.cs file, add references to System.ServiceModel.Description 
and Microsoft.ServiceBus.Description. 

using System.ServiceModel.Description; 

using Microsoft.ServiceBus.Description; 

4. Back in Main(), configure the endpoint to enable public access. 

IEndpointBehavior serviceRegistrySettings = new 

ServiceRegistrySettings(DiscoveryType.Public); 

This step informs the Service Bus that your application can be found publicly by 
examining the Service Bus ATOM feed for your project. If you set DiscoveryType to 
private, a client would still be able to access the service. However, the service would not 
appear when it searches the Service Bus namespace. Instead, the client would have to 
know the endpoint path beforehand. For more information, see Discovering and Exposing 
a Service Bus Service. 

5. Apply the service credentials to the service endpoints defined in the App.config file: 

foreach (ServiceEndpoint endpoint in 

host.Description.Endpoints) 

{ 

    endpoint.Behaviors.Add(serviceRegistrySettings); 

    endpoint.Behaviors.Add(sharedSecretServiceBusCredential); 

} 

As stated in the previous step, you could have declared multiple services and endpoints 
in the configuration file. If you had, this code would traverse the configuration file and 
search for every endpoint to which it should apply your credentials. However, for this 
tutorial, the configuration file has only one endpoint. 



 

 50 

1. Open the service. 

host.Open(); 

2. Inform the user that the service is running, and explain how to shut down the service. 

Console.WriteLine("Service address: " + address); 

Console.WriteLine("Press [Enter] to exit"); 

Console.ReadLine(); 

3. When finished, close the service host. 

host.Close(); 

4. Press F6 to build the project. 

Example 

Description 
The following example includes the service contract and implementation from previous steps in 
the tutorial, and hosts the service in a console application. Compile the following into an 
executable named EchoService.exe. 

Code 

using System; 

using System.ServiceModel; 

using System.ServiceModel.Description; 

using Microsoft.ServiceBus; 

using Microsoft.ServiceBus.Description; 

 

namespace Microsoft.ServiceBus.Samples 

{ 

    [ServiceContract(Name = "IEchoContract", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

 

    public interface IEchoContract 

    { 

        [OperationContract] 

        String Echo(string text); 

    } 

 

To open the service host 

http://samples.microsoft.com/ServiceModel/Relay/


 

 51 

    public interface IEchoChannel : IEchoContract, IClientChannel { }; 

 

    [ServiceBehavior(Name = "EchoService", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

 

    class EchoService : IEchoContract 

    { 

        public string Echo(string text) 

        { 

            Console.WriteLine("Echoing: {0}", text); 

            return text; 

        } 

    } 

 

    class Program 

    { 

        static void Main(string[] args) 

        { 

 

            ServiceBusEnvironment.SystemConnectivity.Mode = ConnectivityMode.AutoDetect; 

 

 

 

            Console.Write("Your Service Namespace: "); 

            string serviceNamespace = Console.ReadLine(); 

            Console.Write("Your Issuer Name: "); 

            string issuerName = Console.ReadLine(); 

            Console.Write("Your Issuer Secret: "); 

            string issuerSecret = Console.ReadLine(); 

 

           // Create the credentials object for the endpoint. 

            TransportClientEndpointBehavior sharedSecretServiceBusCredential = new 

TransportClientEndpointBehavior(); 

http://samples.microsoft.com/ServiceModel/Relay/


 

 52 

            sharedSecretServiceBusCredential.TokenProvider = 

TokenProvider.CreateSharedSecretTokenProvider(issuerName, issuerSecret); 

 

 

            // Create the service URI based on the service namespace. 

            Uri address = ServiceBusEnvironment.CreateServiceUri("sb", serviceNamespace, 

"EchoService"); 

 

            // Create the service host reading the configuration. 

            ServiceHost host = new ServiceHost(typeof(EchoService), address); 

 

            // Create the ServiceRegistrySettings behavior for the endpoint. 

            IEndpointBehavior serviceRegistrySettings = new 

ServiceRegistrySettings(DiscoveryType.Public); 

 

            // Add the Service Bus credentials to all endpoints specified in 

configuration. 

            foreach (ServiceEndpoint endpoint in host.Description.Endpoints) 

            { 

                endpoint.Behaviors.Add(serviceRegistrySettings); 

                endpoint.Behaviors.Add(sharedSecretServiceBusCredential); 

            } 

 

            // Open the service. 

            host.Open(); 

 

            Console.WriteLine("Service address: " + address); 

            Console.WriteLine("Press [Enter] to exit"); 

            Console.ReadLine(); 

 

            // Close the service. 

            host.Close(); 

        } 

    } 



 

 53 

} 

Comments 
Now that the interface is created, proceed to Step 5: Create a WCF Client for the Service 
Contract to implement the interface.  

Step 5: Create a WCF Client for the Service Contract 
This is the fifth of seven tasks required to create a basic Service Bus service and a client 
application that can call the service. For an overview of all seven of the tasks, see the Service 
Bus Relayed Messaging Tutorial topic. This topic describes how to create a basic Service Bus 
client application and define the service contract you will be implementing in later steps. Note that 
many of these steps resemble the steps used to create a service: defining a contract, editing an 
App.config file, using credentials to connect to the Service Bus, and so on. The code used for 
these tasks is provided in the example following the procedure.  

For the purposes of this tutorial, both the client and the service run on the same network 
and computer. However, this is not required. The advantage of using the Service Bus is 
to enable applications across network boundaries to seamlessly communicate.  

Time to completion: 10 minutes 

1. Create a new project in the current Visual Studio solution for the client by doing the 
following: 
a. In Solution Explorer, in the same solution that contains the service, right-click the 

current solution (not the project), and select Add. Then click New Project. 
b. In the Add New Project dialog, click Visual C# (if Visual C# does not appear, look 

under Other Languages), select the Console Application template, and name it 
EchoClient. 

c. Click OK. 
2. Note that the following two steps (3 and 4) are not necessary if you are running Visual 

Studio 2008. 
3. In the Solution Explorer, right-click the name of your project (in this example, 

EchoClient), and click Properties. 
4. Click the Application tab on the left, then select .NET Framework 4 from the Target 

framework: dropdown. Click Yes when prompted to reload the project. 
5. In the Solution Explorer, double-click the Program.cs file in the EchoClient project to 

open it in the editor. 
6. Change the namespace name from its default name of EchoClient to 

Microsoft.ServiceBus.Samples. 
7. Add a reference to System.ServiceModel.dll for the project:  

a. Right-click References under the EchoClient project in Solution Explorer. Then 

Note  

To create the Service Bus client application 



 

 54 

click Add Reference. 
b. Because you already added a reference to this assembly in the first step of this 

tutorial, it is now listed in the Recent tab. Click the Recent tab, select 
System.ServiceModel.dll from the list. Then click OK. If you do not see 
System.ServiceModel.dll in the Recent tab, click the Browse tab and move to 
C:\Windows\Microsoft.NET\Framework\v3.0\Windows Communication 
Foundation. Then select the assembly from there. 

8. Add a using statement for the System.ServiceModel namespace in the Program.cs file.  

using System.ServiceModel; 

9. Repeat steps two and three to add a reference to the Microsoft.ServiceBus.dll and 
Microsoft.ServiceBus namespace to your project. 

10. Add the service contract definition to the namespace, as shown in the following example. 
Note that this definition is identical to the definition used in the Service project. You 
should add this code at the top of the Microsoft.ServiceBus.Samples namespace. 

[ServiceContract(Name = "IEchoContract", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

public interface IEchoContract 

{ 

    [OperationContract] 

    string Echo(string text); 

} 

 

public interface IEchoChannel : IEchoContract, IClientChannel 

{ } 

11. Press F6 to build the client. 

Example 

Description 
The following code shows the current status of the Program.cs file in the EchoClient project.  

Code 

using System; 

using Microsoft.ServiceBus; 

using System.ServiceModel; 

 

namespace Microsoft.ServiceBus.Samples 

{ 

http://samples.microsoft.com/ServiceModel/Relay/


 

 55 

 

[ServiceContract(Name = "IEchoContract", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

    public interface IEchoContract 

    { 

        [OperationContract] 

        string Echo(string text); 

    } 

 

    public interface IEchoChannel : IEchoContract, IClientChannel { } 

 

 

    class Program 

    { 

        static void Main(string[] args) 

        { 

        } 

    } 

} 

Comments 
Now that the interface is created, proceed to Step 6: Configure the WCF Client to implement the 
interface. 

Step 6: Configure the WCF Client 
This is the sixth of seven tasks required to create a basic Service Bus service and a client that 
calls the service. For an overview of all seven tasks, see Service Bus Relayed Messaging 
Tutorial. This topic describes how to create an App.config file for a basic client application that 
accesses the service created previously in this tutorial. This App.config file defines the contract, 
binding, and name of the endpoint. The code used for these tasks is provided in the example 
following the procedure. 

Time to completion: 10 minutes 

1.  

Note  

To configure the client 

http://samples.microsoft.com/ServiceModel/Relay/


 

 56 

Steps 1 and 2 are not necessary if you are using Visual Studio 2010 , because 
by default, the App.config file is already present in the project. 

Right-click the client project, select Add, New Item. 
2. In the Add New Item dialog, in the Templates pane, select Application Configuration 

File. Then click Add. 
3. In Solution Explorer, in the client project, double-click App.config to open the file, 

which currently contains the following XML elements: 

<?xml version="1.0"?> 

<configuration> 

<startup><supportedRuntime version="v4.0" 

sku=".NETFramework,Version=v4.0"/></startup></configuration> 

4. Add an XML element to the App.config file for system.serviceModel. 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

<system.serviceModel> 

 

</system.serviceModel> 

 

</configuration> 

This element declares that your application uses WCF-style endpoints. As stated 
previously, much of the configuration of an Service Bus application is identical to a WCF 
application; the main difference is the location to which the configuration file points. 

5. Within the system.serviceModel element, add a <client> element. 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

<system.serviceModel> 

<client> 

 

</client> 

</system.serviceModel> 

</configuration> 

This step declares that you are defining a WCF-style client application. 
6. Within the client element, define the name, contract, and binding type for the endpoint. 

<endpoint name="RelayEndpoint" 

                

contract="Microsoft.ServiceBus.Samples.IEchoContract" 



 

 57 

                binding="netTcpRelayBinding"/> 

This step defines the name of the endpoint, the contract defined in the service, and the 
fact that the client application uses TCP to communicate with the Service Bus. The 
endpoint name will be used in the next step, to link this endpoint configuration with the 
service URI.  

7. Directly after the <client> element, add the following binding extension: 

<extensions> 

<bindingExtensions> 

<add name="netTcpRelayBinding" 

type="Microsoft.ServiceBus.Configuration.NetTcpRelayBindingCo

llectionElement, Microsoft.ServiceBus, Version=1.5.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

</bindingExtensions> 

</extensions> 

8. Click File. Then click Save All. 

Example 

Description 
The following code sample shows the App.config file for the Echo client. 

Code 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

<system.serviceModel> 

<client> 

<endpoint name="RelayEndpoint" 

                      contract="Microsoft.ServiceBus.Samples.IEchoContract" 

                      binding="netTcpRelayBinding"/> 

</client> 

<extensions> 

<bindingExtensions> 

<add name="netTcpRelayBinding" 

type="Microsoft.ServiceBus.Configuration.NetTcpRelayBindingCollectionElement, 

Microsoft.ServiceBus, Version=1.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" 

/> 

</bindingExtensions> 



 

 58 

</extensions> 

</system.serviceModel> 

</configuration> 

 

Comments 
Now that you have configured the client application, proceed to Step 7: Implement WCF Client to 
Call the Service Bus to implement the rest of the application.  

Step 7: Implement WCF Client to Call the Service Bus 
This is the last of seven tasks required to create a basic Service Bus service and a client that can 
call the service. For an overview of all seven of the tasks, see Service Bus Relayed Messaging 
Tutorial.  

This topic describes how to implement a basic client application that accesses the service you 
created previously in this tutorial. Similar to the service, the client performs many of the same 
operations to access the Service Bus: 
1. Sets the connectivity mode. 
2. Creates the URI that locates the host service. 
3. Defines the security credentials. 
4. Applies the credentials to the connection. 
5. Opens the connection. 
6. Performs the application-specific tasks. 
7. Closes the connection. 

However, one of the main differences is that the client application uses a channel to connect to 
the Service Bus, whereas the service uses a call to ServiceHost. The code used for these tasks 
is provided in the example following the procedure. 

Time to completion: 15 minutes 

1. Set the connectivity mode to AutoDetect. 
Add the following code inside the Main() method of the client application. 

ServiceBusEnvironment.SystemConnectivity.Mode = 

ConnectivityMode.AutoDetect; 

2. Define variables to hold the values for the service namespace, issuer name, and issuer 
secret that are read from the console. 

 

Console.Write("Your Service Namespace: "); 

string serviceNamespace = Console.ReadLine(); 

To implement a client application 



 

 59 

Console.Write("Your Issuer Name: "); 

string issuerName = Console.ReadLine(); 

Console.Write("Your Issuer Secret: "); 

string issuerSecret = Console.ReadLine(); 

 

 

3. Create the URI that defines the location of the host in your Service Bus project. 

Uri serviceUri = ServiceBusEnvironment.CreateServiceUri("sb", 

serviceNamespace, "EchoService"); 

 

4. Create the credential object for your service namespace endpoint. 

TransportClientEndpointBehavior 

sharedSecretServiceBusCredential = new 

TransportClientEndpointBehavior(); 

sharedSecretServiceBusCredential.TokenProvider = 

TokenProvider.CreateSharedSecretTokenProvider(issuerName, 

issuerSecret); 

5. Create the channel factory that loads the configuration described in the App.config file. 

ChannelFactory<IEchoChannel> channelFactory = new 

ChannelFactory<IEchoChannel>("RelayEndpoint", new 

EndpointAddress(serviceUri)); 

A channel factory is a WCF object that creates a channel through which the service and 
client applications communicate.  

6. Apply the Service Bus credentials. 

channelFactory.Endpoint.Behaviors.Add(sharedSecretServiceBusC

redential); 

7. Create and open the channel to the service. 

IEchoChannel channel = channelFactory.CreateChannel(); 

channel.Open(); 

8. Write the basic user interface and functionality for the echo. 

Console.WriteLine("Enter text to echo (or [Enter] to 

exit):"); 

string input = Console.ReadLine(); 

while (input != String.Empty) 

{ 

    try 



 

 60 

    { 

        Console.WriteLine("Server echoed: {0}", 

channel.Echo(input)); 

    } 

    catch (Exception e) 

    { 

        Console.WriteLine("Error: " + e.Message); 

    } 

    input = Console.ReadLine(); 

} 

Note that the code uses the instance of the channel object as a proxy for the service.  
9. Close the channel, and close the factory. 

channel.Close(); 

channelFactory.Close(); 

1. Press F6 to build the solution. 

This builds both the client project and the service project that you created in a previous 
step of this tutorial and creating an executable file for each. 

2. Before running the client application, make sure that the service application is running. 

You should now have an executable file for the Echo service application named 
EchoService.exe, located under your service project folder at 
\bin\Debug\EchoService.exe (for the debug configuration) or 
\bin\Release\EchoService.exe (for the release configuration). Double-click this file to start 
the service application. 

3. A console window opens and prompts you for the service namespace. In this console 
window, enter the service namespace and press ENTER. 

4. Next, you are prompted for your issuer name. Enter the issuer name and press ENTER. 
5. After entering your issuer name, enter the issuer secret and press ENTER. 

Here is an example output from the console window. Note that the values provided here 
are for example purposes only. 

Your Service Namespace: myNamespace 

 

Your Issuer Name: owner 

 

Your Issuer Secret: 1deCBMEhx/RV3bgwIhCohqdtzj/ZG2WnyC1cLhHTpk4= 

 

To run the client application 



 

 61 

The service application starts and prints the address it is listening on to the console 
window as seen in the following example. 

Service address: sb://mynamespace.servicebus.windows.net/EchoService/ 

 

Press [Enter] to exit 

6. Run the client application. 

You should now have an executable for the Echo client application named 
EchoClient.exe that is located under the client project directory at 
.\bin\Debug\EchoClient.exe (for the debug configuration) or .\bin\Release\EchoClient.exe 
(for the release configuration). Double-click this file to start the client application. 

7. A console window opens and prompts you for the same information that you entered 
previously for the service application. Follow the previous steps to enter the same values 
for the client application for the service namespace, issuer name, and issuer secret. 

8. After entering these values, the client opens a channel to the service and prompts you to 
enter some text as seen in the following console output example. 

Enter text to echo (or [Enter] to exit):  

Enter some text to send to the service application and press ENTER. 

This text is sent to the service through the Echo service operation and appears in the 
service console window as in the following example output. 

Echoing: My sample text 

The client application receives the return value of the Echo operation, which is the original 
text, and prints it to its console window. The following is an example output from the client 
console window. 

Server echoed: My sample text 

9. You can continue sending text messages from the client to the service in this manner. 
When you are finished, press ENTER in the client and service console windows to end 
both applications. 

Example 

Description 
The following example shows how to create a client application, how to call the operations of the 
service, and how to close the client after the operation call is finished. 

Code 

using System; 

using Microsoft.ServiceBus; 

using System.ServiceModel; 

 



 

 62 

namespace Microsoft.ServiceBus.Samples 

{ 

    [ServiceContract(Name = "IEchoContract", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

    public interface IEchoContract 

    { 

        [OperationContract] 

        String Echo(string text); 

    } 

 

    public interface IEchoChannel : IEchoContract, IClientChannel { } 

 

    class Program 

    { 

        static void Main(string[] args) 

        { 

            ServiceBusEnvironment.SystemConnectivity.Mode = ConnectivityMode.AutoDetect; 

 

 

            Console.Write("Your Service Namespace: "); 

            string serviceNamespace = Console.ReadLine(); 

            Console.Write("Your Issuer Name: "); 

            string issuerName = Console.ReadLine(); 

            Console.Write("Your Issuer Secret: "); 

            string issuerSecret = Console.ReadLine(); 

 

            Uri serviceUri = ServiceBusEnvironment.CreateServiceUri("sb", 

serviceNamespace, "EchoService"); 

 

            TransportClientEndpointBehavior sharedSecretServiceBusCredential = new 

TransportClientEndpointBehavior(); 

            sharedSecretServiceBusCredential.TokenProvider = 

TokenProvider.CreateSharedSecretTokenProvider(issuerName, issuerSecret); 

 

http://samples.microsoft.com/ServiceModel/Relay/


 

 63 

            ChannelFactory<IEchoChannel> channelFactory = new 

ChannelFactory<IEchoChannel>("RelayEndpoint", new EndpointAddress(serviceUri)); 

 

            channelFactory.Endpoint.Behaviors.Add(sharedSecretServiceBusCredential); 

 

            IEchoChannel channel = channelFactory.CreateChannel(); 

            channel.Open(); 

 

            Console.WriteLine("Enter text to echo (or [Enter] to exit):"); 

            string input = Console.ReadLine(); 

            while (input != String.Empty) 

            { 

                try 

                { 

                    Console.WriteLine("Server echoed: {0}", channel.Echo(input)); 

                } 

                catch (Exception e) 

                { 

                    Console.WriteLine("Error: " + e.Message); 

                } 

                input = Console.ReadLine(); 

            } 

 

            channel.Close(); 

            channelFactory.Close(); 

 

        } 

    } 

} 

Comments 
Ensure that the service is running before you start the client. For more information, see Step 4: 
Host and Run a Basic Web Service to Register with Service Bus.  



 

 64 

Security 
 

Service Bus Brokered Messaging Tutorials 
This section contains two tutorials that use the Service Bus brokered messaging pattern. The 
tutorials cover both the managed API (.NET) and REST programming models. 

In This Section 
Service Bus Brokered Messaging .NET Tutorial 

 

 

Service Bus Brokered Messaging REST Tutorial 
 

 

 

Service Bus Brokered Messaging .NET Tutorial 
The Windows Azure Service Bus provides two comprehensive messaging solutions – one, 
through a centralized “relay” service running in the cloud that supports a variety of different 
transport protocols and Web services standards, including SOAP, WS-*, and REST. The client 
does not need a direct connection to the on-premises service nor does it need to know where the 
service resides, and the on-premises service does not need any inbound ports open on the 
firewall.  

The second messaging solution, new in the latest release of the Service Bus, enables “brokered” 
messaging capabilities. These can be thought of as asynchronous, or decoupled messaging 
features that support publish-subscribe, temporal decoupling, and load balancing scenarios using 
the Service Bus messaging infrastructure. Decoupled communication has many advantages; for 
example, clients and servers can connect as needed and perform their operations in an 
asynchronous fashion. 

The topics in this section are intended to give you an overview and hands-on experience with one 
of the core components of the brokered messaging capabilities of the Service Bus, a feature 
called Queues. After you work through the sequence of topics in this tutorial, you will have an 
application that populates a list of messages, creates a queue, and sends messages to that 
queue. Finally, the application receives and displays the messages from the queue, then cleans 
up its resources and exits. For a corresponding tutorial that describes how to build an application 
that uses the Service Bus “relayed” messaging capabilities, see the Service Bus Relayed 
Messaging Tutorial.  



 

 65 

In This Section 
Step 1: Introduction and Prerequsites 

Step 2: Create Management Credentials 

Step 3: Send Messages to the Queue 

Step 4: Receive Messages from the Queue 

Step 5: Build and Run the QueueSample Application 

See Also 
Service Bus Relayed Messaging Tutorial 

Step 1: Introduction and Prerequsites 
Queues offer First In, First Out (FIFO) message delivery to one or more competing consumers. 
That is, messages are typically expected to be received and processed by the receivers in the 
temporal order in which they were enqueued, and each message will be received and processed 
by only one message consumer. A key benefit of using queues is to achieve “temporal 
decoupling” of application components: in other words, the producers and consumers do not 
need to be sending and receiving messages at the same time, since messages are stored 
durably in the queue. A related benefit is “load leveling”, which enables producers and consumers 
to send and receive messages at different rates. 

The following are some administrative and prerequisite steps you should follow before beginning 
the tutorial. The first is to create a Windows Azure service namespace, and to obtain a shared 
secret key. A service namespace provides an application boundary for each application exposed 
through the Service Bus. A shared secret key is automatically generated by the system when a 
service namespace is created. The combination of service namespace and shared secret key 
provides a credential for the Service Bus to authenticate access to an application. 

1. For information about how to do this, follow the steps outlined in How to: Create or Modify 
a Service Bus Service Namespace. You will use the shared secret key later in this 
tutorial. 

The next step is to create a Visual Studio 2010 project and write two helper functions that load a 
comma-delimited list of messages into a strongly-typed 
(Microsoft.ServiceBus.Messaging.BrokeredMessage) .NET Framework 
System.Collections.Generic.List object. 

1. Open Visual Studio 2010 as an administrator by right-clicking the program in the Start 
menu and selecting Run as administrator. 

2. Create a new console application project. Click the File menu and select New, then click 
Project. In the New Project dialog, click Visual C# (if Visual C# does not appear, look 

To create a service namespace and obtain a shared secret key 

To create a Visual Studio 2010 project 



 

 66 

under Other Languages), click the Console Application template, and name it 
QueueSample. Use the default Location. Click OK to create the project. 

3. In the Solution Explorer, right-click the name of your project (in this example, 
QueueSample), and click Properties. 

4. Click the Application tab on the left, then select .NET Framework 4 from the Target 
framework: dropdown. Click Yes when prompted to reload the project. 

5. Add references to the Microsoft.ServiceBus, System.Runtime.Serialization, and 
System.ServiceModel assemblies: 
a. In the Solution Explorer, right-click the References folder under the project folder 

and then click Add Reference…. 
b. Select the .NET tab in the Add Reference dialog and scroll down until you see 

Microsoft.ServiceBus, select it, and then click OK. 
c. Repeat the above step for System.Runtime.Serialization and 

System.ServiceModel. 
6. In the Solution Explorer, double-click the Program.cs file to open it in the Visual Studio 

editor. Change the namespace name from its default name of QueueSample to 
Microsoft.ServiceBus.Samples. 

namespace Microsoft.ServiceBus.Samples 

{ 

    … 

7. Add using statements for the Microsoft.ServiceBus, Microsoft.ServiceBus.Messaging , 
Microsoft.ServiceBus.Description, System.IO, and System.Data namespaces. 

using Microsoft.ServiceBus; 

using Microsoft.ServiceBus.Messaging; 

using Microsoft.ServiceBus.Description; 

using System.Data; 

using System.IO; 

8. Create a text file named Data.csv, and copy in the following comma-delimited text. 

IssueID,IssueTitle,CustomerID,CategoryID,SupportPackage,Prior

ity,Severity,Resolved 

1,Package lost,1,1,Basic,5,1,FALSE 

2,Package damaged,1,1,Basic,5,1,FALSE 

3,Product defective,1,2,Premium,5,2,FALSE 

4,Product damaged,2,2,Premium,5,2,FALSE 

5,Package lost,2,2,Basic,5,2,TRUE 

6,Package lost,3,2,Basic,5,2,FALSE 

7,Package damaged,3,7,Premium,5,3,FALSE 

8,Product defective,3,2,Premium,5,3,FALSE 



 

 67 

9,Product damaged,4,6,Premium,5,3,TRUE 

10,Package lost,4,8,Basic,5,3,FALSE 

11,Package damaged,5,4,Basic,5,4,FALSE 

12,Product defective,5,4,Basic,5,4,FALSE 

13,Package lost,6,8,Basic,5,4,FALSE 

14,Package damaged,6,7,Premium,5,5,FALSE 

15,Product defective,6,2,Premium,5,5,FALSE 

 

Save and close the Data.csv file, and remember the location to which you saved it. 
9. In the Solution Explorer, right-click the name of your project (in this example, 

QueueSample), click Add, then click Existing Item. 
10. Browse to the Data.csv file that you created in step 6. Click the file, then click Add. You 

may need to ensure that All Files (*.*) is selected in the file type dropdown. 

1. Before the Main() method, declare two variables: one of type DataTable, to contain the 
list of messages in Data.csv. The other should be of type List object, strongly typed to 
Microsoft.ServiceBus.Messaging.BrokeredMessage. The latter is the list of brokered 
messages that subsequent steps in the tutorial will use. 

namespace Microsoft.ServiceBus.Samples 

{ 

    public class Program 

    { 

 

        private static DataTable issues; 

        private static List<BrokeredMessage> MessageList; 

 

 

2. Outside the Main() method, define a ParseCSV() method that parses the list of messages 
in Data.csv and loads the messages into a System.Data.DataTable table, as shown 
here. The method returns a DataTable object. 

static DataTable ParseCSVFile() 

{ 

    DataTable tableIssues = new DataTable("Issues"); 

    string path = @"..\..\data.csv"; 

    try 

To create a function that parses a list of messages 



 

 68 

    { 

        using (StreamReader readFile = new 

StreamReader(path)) 

        { 

            string line; 

            string[] row; 

 

            // create the columns 

            line = readFile.ReadLine(); 

            foreach (string columnTitle in line.Split(',')) 

            { 

                tableIssues.Columns.Add(columnTitle); 

            } 

 

            while ((line = readFile.ReadLine()) != null) 

            { 

                row = line.Split(','); 

                tableIssues.Rows.Add(row); 

            } 

        } 

    } 

    catch (Exception e) 

    { 

        Console.WriteLine("Error:" + e.ToString()); 

    } 

 

    return tableIssues; 

} 

3. In the Main() method, add a statement that calls the  ParseCSVFile() method: 

public static void Main(string[] args) 

{ 

 

    // Populate test data 

    issues = ParseCSVFile(); 



 

 69 

 

} 

1. Outside the Main() method, define a GenerateMessages() method that takes the 
DataTable object returned by ParseCSVFile() and loads the table into a strongly-typed 
list of brokered messages. The method then returns the List object. For example: 

static List<BrokeredMessage> GenerateMessages(DataTable 

issues) 

{ 

    // Instantiate the brokered list object 

    List<BrokeredMessage> result = new 

List<BrokeredMessage>(); 

 

    // Iterate through the table and create a brokered 

message for each row 

    foreach (DataRow item in issues.Rows) 

    { 

        BrokeredMessage message = new BrokeredMessage(); 

        foreach (DataColumn property in issues.Columns) 

        { 

            message.Properties.Add(property.ColumnName, 

item[property]); 

        } 

        result.Add(message); 

    } 

    return result; 

} 

2. In the Main() method, directly below the call to ParseCSVFile(), add a statement that calls 
the GenerateMessages() method with the return value from ParseCSVFile() as an 
argument: 

public static void Main(string[] args) 

{ 

 

    // Populate test data 

    issues = ParseCSVFile(); 

To create a function that loads the list of messages 



 

 70 

    MessageList = GenerateMessages(issues); 

} 

1. First, create three global string variables to hold these values. Declare these variables 
directly after the previous variable declarations, for example: 

namespace Microsoft.ServiceBus.Samples 

{ 

    public class Program 

    { 

 

        private static DataTable issues; 

        private static List<BrokeredMessage> MessageList;  

        // add these variables 

        private static string ServiceNamespace; 

        private static string IssuerName; 

        private static string IssuerKey; 

        … 

2. Next, create a function that accepts and stores the service namespace, issuer name, and 
issuer key. Add this method outside Main(). For example:.  

static void CollectUserInput() 

{ 

    // User service namespace 

    Console.Write("Please enter the service namespace to use: 

"); 

    ServiceNamespace = Console.ReadLine(); 

 

    // Issuer name 

    Console.Write("Please enter the issuer name to use: "); 

    IssuerName = Console.ReadLine(); 

 

    // Issuer key 

    Console.Write("Please enter the issuer key to use: "); 

    IssuerKey = Console.ReadLine(); 

} 

To obtain user credentials 



 

 71 

3. In the Main() method, directly below the call to GenerateMessages(), add a statement that 
calls the CollectUserInput() method: 

public static void Main(string[] args) 

{ 

 

    // Populate test data 

    issues = ParseCSVFile(); 

    MessageList = GenerateMessages(issues); 

 

    // Collect user input 

    CollectUserInput(); 

} 

Compiling the Code 
• From the Build menu in Visual Studio, select Build Solution or press F6 to confirm the 

accuracy of your work so far. 

Step 2: Create Management Credentials 
This is the second step in the Service Bus messaging features tutorial. In this step, you define the 
management operations you will use to create secure (shared secret) credentials with which your 
application will be authorized. 

1. For clarity, this tutorial places all the queue operations in a separate method. Create a 
Queue() method in the Program class, below the Main() method. For example: 

public static void Main(string[] args) 

{ 

…} 

static void Queue() 

{ 

} 

 

2. The next step is to create a shared secret credential using a 
Microsoft.ServiceBus.TokenProvider object. The creation method takes the issuer 
name and key that was obtained in the CollectUserInput() method. Add the following 
code to the Queue() method: 

static void Queue() 

To create management credentials 



 

 72 

{ 

    // Create management credentials 

    TokenProvider credentials = 

TokenProvider.CreateSharedSecretTokenProvider(IssuerName, 

IssuerKey); 

} 

 

1. Create a new service namespace management object, with a URI containing the service 
namespace name and the management credentials obtained in the last step, as 
arguments. Add this code directly beneath the code added in the previous step: 

NamespaceManager namespaceClient = new 

NamespaceManager(ServiceBusEnvironment.CreateServiceUri("sb", 

ServiceNamespace, string.Empty), credentials); 

Example 
Description 
At this point, your code should look similar to the following: 

Code 

namespace Microsoft.ServiceBus.Samples 

{ 

    public class Program 

    { 

 

        private static DataTable issues; 

        private static List<BrokeredMessage> MessageList; 

        private static string ServiceNamespace; 

        private static string IssuerName; 

        private static string IssuerKey; 

 

        public static void Main(string[] args) 

        { 

            // Collect user input 

            CollectUserInput(); 

 

To create the service namespace manager 



 

 73 

            // Populate test data 

            issues = ParseCSVFile(); 

            MessageList = GenerateMessages(issues); 

 

        } 

 

        static void Queue() 

        { 

 

            // Create management credentials 

                TokenProvider credentials = 

TokenProvider.CreateSharedSecretTokenProvider(IssuerName, IssuerKey); 

            // Create namespace client 

            NamespaceManager namespaceClient = new 

NamespaceManager(ServiceBusEnvironment.CreateServiceUri("sb", ServiceNamespace, 

string.Empty), credentials); 

        } 

 

        static void CollectUserInput() 

        { 

            // User service namespace 

            Console.Write("Please provide the service namespace to use: "); 

            ServiceNamespace = Console.ReadLine(); 

 

            // Issuer name 

            Console.Write("Please provide the issuer name to use: "); 

            IssuerName = Console.ReadLine(); 

 

            // Issuer key 

            Console.Write("Please provide the issuer key to use: "); 

            IssuerKey = Console.ReadLine(); 

        } 

 

 



 

 74 

       static List<BrokeredMessage> GenerateMessages(DataTable issues) 

        { 

            // Instantiate the brokered list object 

            List<BrokeredMessage> result = new List<BrokeredMessage>(); 

 

            // Iterate through the table and create a brokered message for each row 

            foreach (DataRow item in issues.Rows) 

            { 

                BrokeredMessage message = new BrokeredMessage(); 

                foreach (DataColumn property in issues.Columns) 

                { 

                    message.Properties.Add(property.ColumnName, item[property]); 

                } 

                result.Add(message); 

            } 

            return result; 

        } 

 

        static DataTable ParseCSVFile() 

        { 

            DataTable tableIssues = new DataTable("Issues"); 

            string path = @"..\..\data.csv"; 

            using (StreamReader readFile = new StreamReader(path)) 

            { 

                string line; 

                string[] row; 

 

                // create the columns 

                line = readFile.ReadLine(); 

                foreach (string columnTitle in line.Split(',')) 

                { 

                    tableIssues.Columns.Add(columnTitle); 

                } 

 



 

 75 

                while ((line = readFile.ReadLine()) != null) 

                { 

                    row = line.Split(','); 

                    tableIssues.Rows.Add(row); 

                } 

            } 

 

        return tableIssues; 

    } 

} 

} 

Comments 
In the next step, you create the queue to which you will send messages. 

Compiling the Code 
• From the Build menu in Visual Studio, select Build Solution or press F6 to confirm the 

accuracy of your work so far. 

Step 3: Send Messages to the Queue 
This is the third step in the Service Bus messaging features tutorial. In this step, you create the 
queue, then send the messages contained in the list of brokered messages to the queue. 

1. First, create the queue. For example, call it myQueue, and declare it directly after the 
management operations you added in the last step: 

QueueDescription myQueue; 

myQueue = namespaceClient.CreateQueue("IssueTrackingQueue"); 

2. In the Queue() method, create a messaging factory object with a newly-created Service 
Bus URI as an argument. Add the following code directly after the management 
operations you added in the last step: 

MessagingFactory factory = 

MessagingFactory.Create(ServiceBusEnvironment.CreateServiceUr

i("sb", ServiceNamespace, string.Empty), credentials); 

3. Next, create the queue object using the Microsoft.ServiceBus.Messaging.QueueClient 
class. Add the following code directly after the code you added in the last step: 

QueueClient myQueueClient = 

factory.CreateQueueClient("IssueTrackingQueue"); 

4. Next, add code that loops through the list of brokered messages you created and 

To create and send messages to the queue 



 

 76 

populated in Step 1 of the tutorial, sending each to the queue. Add the following code 
directly after the CreateQueueClient() statement in the previous step: 

// Send messages 

Console.WriteLine("Now sending messages to the Queue."); 

for (int count = 0; count < 6; count++) 

{ 

    var issue = MessageList[count]; 

    issue.Label = issue.Properties["IssueTitle"].ToString(); 

    myQueueClient.Send(issue); 

    Console.WriteLine(string.Format("Message sent: {0}, {1}", 

issue.Label, issue.MessageId)); 

} 

 

Step 4: Receive Messages from the Queue 
This is the fourth step in the Service Bus messaging features tutorial. In this step, you obtain the 
list of messages from the queue you created in the previous step. 

1. In the Queue() method, iterate through the queue and receive the messages using the 
Microsoft.ServiceBus.Messaging.MessageReceiver.Receive method, printing out 
each message to the console. Add the following code directly beneath the code you 
added in the previous step: 

Console.WriteLine("Now receiving messages from Queue."); 

BrokeredMessage message; 

while ((message = myQueueClient.Receive(new TimeSpan(hours: 

0, minutes: 0, seconds: 5))) != null) 

    { 

        Console.WriteLine(string.Format("Message received: 

{0}, {1}, {2}", message.SequenceNumber, message.Label, 

message.MessageId)); 

        message.Complete(); 

 

        Console.WriteLine("Processing message 

(sleeping...)"); 

        Thread.Sleep(1000); 

To create a receiver and receive messages from the queue 



 

 77 

    } 

1. Directly beneath the previously added code, add the following code to clean up the 
message factory and queue resources: 

factory.Close(); 

myQueueClient.Close(); 

namespaceClient.DeleteQueue("IssueTrackingQueue"); 

1. The last step is to add a statement that calls the Queue() method from the Main() method. 
Add the following highlighted line of code at the end of Main(): 

public static void Main(string[] args) 

{ 

    // Collect user input 

    CollectUserInput(); 

 

    // Populate test data 

    issues = ParseCSVFile(); 

    MessageList = GenerateMessages(issues); 

 

    // Add this call 

    Queue(); 

} 

Example 
Description 
The following code contains the complete QueueSample application. 

Code 

using System; 

using System.Threading; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using Microsoft.ServiceBus; 

using Microsoft.ServiceBus.Messaging; 

To end the Queue() method and clean up resources 

To call the Queue() method 



 

 78 

using Microsoft.ServiceBus.Description; 

using System.Data; 

using System.IO; 

 

namespace Microsoft.ServiceBus.Samples 

{ 

    class Program 

    { 

 

        private static DataTable issues; 

        private static List<BrokeredMessage> MessageList; 

 

        private static string ServiceNamespace; 

        private static string IssuerName; 

        private static string IssuerKey; 

 

 

public static void Main(string[] args) 

{ 

 

    // Populate test data 

    issues = ParseCSVFile(); 

 

       MessageList = GenerateMessages(issues); 

 

       CollectUserInput(); 

 

       Queue(); 

 

 

} 

        static DataTable ParseCSVFile() 

        { 

            DataTable tableIssues = new DataTable("Issues"); 



 

 79 

            string path = @"..\..\data.csv"; 

            try 

            { 

                using (StreamReader readFile = new StreamReader(path)) 

                { 

                    string line; 

                    string[] row; 

 

                    // create the columns 

                    line = readFile.ReadLine(); 

                    foreach (string columnTitle in line.Split(',')) 

                    { 

                        tableIssues.Columns.Add(columnTitle); 

                    } 

 

                    while ((line = readFile.ReadLine()) != null) 

                    { 

                        row = line.Split(','); 

                        tableIssues.Rows.Add(row); 

                    } 

                } 

            } 

            catch (Exception e) 

            { 

                Console.WriteLine("Error:" + e.ToString()); 

            } 

 

            return tableIssues; 

        } 

 

        static List<BrokeredMessage> GenerateMessages(DataTable issues) 

        { 

            // Instantiate the brokered list object 

            List<BrokeredMessage> result = new List<BrokeredMessage>(); 



 

 80 

 

            // Iterate through the table and create a brokered message for each row 

            foreach (DataRow item in issues.Rows) 

            { 

                BrokeredMessage message = new BrokeredMessage(); 

                foreach (DataColumn property in issues.Columns) 

                { 

                    message.Properties.Add(property.ColumnName, item[property]); 

                } 

                result.Add(message); 

            } 

            return result; 

        } 

 

        static void CollectUserInput() 

        { 

            // User service namespace 

            Console.Write("Please enter the service namespace to use: "); 

            ServiceNamespace = Console.ReadLine(); 

 

            // Issuer name 

            Console.Write("Please enter the issuer name to use: "); 

            IssuerName = Console.ReadLine(); 

 

            // Issuer key 

            Console.Write("Please enter the issuer key to use: "); 

            IssuerKey = Console.ReadLine(); 

        } 

 

 

            static void Queue() 

{ 

            // Create management credentials 

    TokenProvider credentials = 



 

 81 

                TokenProvider.CreateSharedSecretTokenProvider(IssuerName, IssuerKey); 

 

                NamespaceManager namespaceClient = new 

NamespaceManager(ServiceBusEnvironment.CreateServiceUri("sb", ServiceNamespace, 

string.Empty), credentials); 

 

                //QueueDescription myQueue; 

                //myQueue = namespaceClient.CreateQueue("IssueTrackingQueue"); 

                namespaceClient.CreateQueue("IssueTrackingQueue"); 

 

                MessagingFactory factory = 

MessagingFactory.Create(ServiceBusEnvironment.CreateServiceUri("sb", ServiceNamespace, 

string.Empty), credentials); 

 

                QueueClient myQueueClient = 

factory.CreateQueueClient("IssueTrackingQueue"); 

 

                // Create a sender 

                //MessageSender myMessageSender = myQueueClient.CreateSender(); 

 

                // Send messages 

                Console.WriteLine("Now sending messages to the Queue."); 

                for (int count = 0; count < 6; count++) 

                { 

                    var issue = MessageList[count]; 

                    issue.Label = issue.Properties["IssueTitle"].ToString(); 

                    myQueueClient.Send(issue); 

                    Console.WriteLine(string.Format("Message sent: {0}, {1}", 

issue.Label, issue.MessageId)); 

                } 

 

                Console.WriteLine("Now receiving messages from Queue."); 

                BrokeredMessage message; 

                while ((message = myQueueClient.Receive(new TimeSpan(hours: 0, minutes: 

0, seconds: 5))) != null) 



 

 82 

                { 

                    Console.WriteLine(string.Format("Message received: {0}, {1}, {2}", 

message.SequenceNumber, message.Label, message.MessageId)); 

                    message.Complete(); 

 

                    Console.WriteLine("Processing message (sleeping...)"); 

                    Thread.Sleep(1000); 

                } 

 

                factory.Close(); 

                myQueueClient.Close(); 

                namespaceClient.DeleteQueue("IssueTrackingQueue"); 

} 

 

    } 

 

} 

Step 5: Build and Run the QueueSample Application 
This is the fifth step in the Service Bus messaging features tutorial. Now that you have completed 
the preceding steps, you can build and run the QueueSample application. 

1. In Visual Studio, from the Build menu, click Build Solution, or press F6. If you 
encounter errors, please verify that your code is correct based on the complete example 
presented at the end of Step 4 of this tutorial. 

1. Before you run the application, you must ensure that you have created a service 
namespace and obtained a shared secret key, as described in Step 1: Introduction and 
Prerequsites. 

2. Open an Internet browser and visit the Windows Azure Management Portal. 
3. Click Service Bus, Access Control & Caching in the left-hand tree, then click Service 

Bus. 
4. Click the name of the service namespace that you want to use. Then, in the right-hand 

pane, click Default Key. Note the Default Issuer and Default Key. 
5. In Visual Studio, from the Debug menu, click Start Debugging, or press F5. When 

To build the QueueSample application 

To run the QueueSample application 

http://go.microsoft.com/fwlink/?LinkId=213161


 

 83 

prompted, enter the name of the service namespace, the issuer name, and the key that 
you obtained in step 4. 

 

Service Bus Brokered Messaging REST Tutorial 
The topics in this section show how to create a basic REST-based Windows Azure Service Bus 
queueing and topic/subscription service. 

In This Section 
Step 1: Create a Service Namespace for the REST Queue and Topic/Subscription Tutorial 

Step 2: Create a Console Client 

Step 3: Create Management Credentials 

Step 4: Create the Queue 

Step 5: Send a Message to the Queue 

Step 6: Receive a Message from the Queue 

Step 7: Create a Topic and Subscription 

Step 8: Retreive Message Resources 

Step 9: Build and Run the Application 

Step 1: Create a Service Namespace for the REST Queue and 
Topic/Subscription Tutorial 
This is the first of nine tasks required to create a basic REST-based Windows Azure Service Bus 
queue and topic/subscription service.  

The first step is to create a service namespace, and to obtain a shared secret key. A service 
namespace provides an application boundary for each application exposed through the Service 
Bus. A shared secret key is automatically generated by the system when a service namespace is 
created. The combination of service namespace and shared secret key provides a credential for 
the Service Bus to authenticate access to an application. 

Expected time to complete: 5 minutes 

How to: Create a Service Namespace for Queues, Topics, and Subscriptions 
 

1. For complete information about how to create a service namespace, see the topic How 
to: Create or Modify a Service Bus Service Namespace in the Managing Service Bus 
Service Namespaces section. 

 

To create a service namespace 



 

 84 

Step 2: Create a Console Client 
This is the second of nine tasks required to create a basic REST-style queue and 
publication/subscription application that uses the Windows Azure Service Bus. 

Service Bus queues enable you to store messages in a first-in, first-out queue. Topics and 
subscriptions implement a publish/subscribe pattern; you create a topic and then create one or 
more subscriptions associated with that topic. When messages are sent to the topic, they are 
immediately sent to the subscribers of that topic. 

The code in this tutorial: 
• Uses your service namespace, issuer name, and issuer key to contact the Windows Azure 

Access Control Service (ACS) to obtain a Simple Web Token (SWT) to gain access to your 
Service Bus service namespace resources. 

• Creates a queue, sends a message to the queue, and reads the message from the queue. 
• Creates a topic, a subscription to that topic, and sends and reads the message from the 

subscription. 
• Retreives all the queue, topic, and subscription information – including subscription rules -- 

from the Service Bus for your service namespace. 
• It then deletes the queue, topic, and subscription resources. 

Because the service is a REST-style Web service, there are no special types involved, as the 
entire exchange involves strings. This means that the Visual Studio project must make no 
references other than the defaults, although if your configuration has modified the defaults, you 
may have to add some basic .NET Framework references to the code.  

After obtaining the service namespace and credentials in step 1, the next step is to create a basic 
Visual Studio console application. 

1. Open Visual Studio 2010 as an administrator by right-clicking the program in the Start 
menu and selecting Run as administrator. 

2. Create a new console application project. Click the File menu and select New, Project. 
In the New Project dialog, select Visual C# (if Visual C# does not appear, look under 
Other Languages), select the Console Application template, and name it 
Microsoft.ServiceBus.Samples. Use the default Location. Click OK to create the 
project. 

3. For a C# project, Visual Studio creates a file that is named Program.cs. This class will 
contain an empty method called Main().This method is required for a console application 
project to build correctly. Therefore, you can safely leave it in the project. 

4. Make sure your using statements appear as follows: 

using System; 

using System.Collections.Specialized; 

using System.IO; 

using System.Net; 

To create a console application 



 

 85 

using System.Text; 

using System.Xml; 

5. If necessary, rename the service namespace for the program from the Visual Studio 
default to Microsoft.ServiceBus.Samples. 

6. Inside the Program class, add the following global variables: 

static string serviceNamespace; 

static string baseAddress; 

static string token; 

const string sbHostName = "servicebus.windows.net"; 

const string acsHostName = "accesscontrol.windows.net"; 

7. Inside the Main() method, copy the following code: 

Console.Write("Enter your service namespace: "); 

serviceNamespace = Console.ReadLine(); 

 

Console.Write("Enter your issuer name: "); 

string issuerName = Console.ReadLine(); 

 

Console.Write("Enter your issuer secret: "); 

string issuerSecret = Console.ReadLine(); 

 

baseAddress = "https://" + serviceNamespace + "." + 

sbHostName + "/"; 

try 

{ 

    // Get a SWT token from the Access Control Service, given 

the issuerName and issuerSecret values. 

    token = GetToken(issuerName, issuerSecret); 

 

    string queueName = "Queue" + Guid.NewGuid().ToString(); 

 

    // Create and put a message in the queue using the SWT 

token. 

    CreateQueue(queueName, token); 

    SendMessage(queueName, "msg1"); 

    string msg = ReceiveAndDeleteMessage(queueName); 

https://"+serviceNamespace+"."+sbHostName+"/"
https://"+serviceNamespace+"."+sbHostName+"/"


 

 86 

 

    string topicName = "Topic" + Guid.NewGuid().ToString(); 

    string subscriptionName = "Subscription" + 

Guid.NewGuid().ToString(); 

    CreateTopic(topicName); 

    CreateSubscription(topicName, subscriptionName); 

    SendMessage(topicName, "msg2"); 

 

    // Wait for messages to post: 

    //System.Threading.Thread.Sleep(500); 

    Console.WriteLine(ReceiveAndDeleteMessage(topicName + 

"/Subscriptions/" + subscriptionName)); 

 

    // Get an Atom feed with all the queues in the namespace 

    Console.WriteLine(GetResources("$Resources/Queues")); 

 

    // Get an Atom feed with all the topics in the namespace 

    Console.WriteLine(GetResources("$Resources/Topics")); 

 

    // Get an Atom feed with all the subscriptions for the 

topic we just created 

    Console.WriteLine(GetResources(topicName + 

"/Subscriptions")); 

 

    // Get an Atom feed with all the rules for the topic and 

subscritpion we just created 

    Console.WriteLine(GetResources(topicName + 

"/Subscriptions/" + subscriptionName + "/Rules")); 

 

    // Delete the queue we created 

    DeleteResource(queueName); 

 

    // Delete the topic we created 

    DeleteResource(topicName); 

 



 

 87 

    // Get an Atom feed with all the topics in the namespace, 

it shouldn't have the one we created now 

    Console.WriteLine(GetResources("$Resources/Topics")); 

 

    // Get an Atom feed with all the queues in the namespace, 

it shouldn't have the one we created now 

    Console.WriteLine(GetResources("$Resources/Queues")); 

} 

catch (WebException we) 

{ 

    using (HttpWebResponse response = we.Response as 

HttpWebResponse) 

    { 

        if (response != null) 

        { 

            Console.WriteLine(new 

StreamReader(response.GetResponseStream()).ReadToEnd()); 

        } 

        else 

        { 

            Console.WriteLine(we.ToString()); 

        } 

    } 

} 

 

Console.WriteLine("\nPress ENTER to exit."); 

Console.ReadLine(); 

 

 

Step 3: Create Management Credentials 
This is the third of nine tasks required to create a basic REST-style queue and 
publication/subscription application that uses the Service Bus. 

The next step is to write a method that processes the service namespace, issuer name, and 
issuer secret that you entered in the previous step, and returns a Simple Web Token (SWT).  



 

 88 

1. Paste the following code after the Main() method in the Program class: 

private static string GetToken(string issuerName, string 

issuerSecret) 

{ 

    var acsEndpoint = "https://" + serviceNamespace + "-sb." 

+ acsHostName + "/WRAPv0.9/"; 

 

    // Note that the realm used when requesting a token uses 

the HTTP scheme, even though 

    // calls to the service are always issued over HTTPS 

    var realm = "http://" + serviceNamespace + "." + 

sbHostName + "/"; 

 

    NameValueCollection values = new NameValueCollection(); 

    values.Add("wrap_name", issuerName); 

    values.Add("wrap_password", issuerSecret); 

    values.Add("wrap_scope", realm); 

 

    WebClient webClient = new WebClient(); 

    byte[] response = webClient.UploadValues(acsEndpoint, 

values); 

 

    string responseString = 

Encoding.UTF8.GetString(response); 

 

    var responseProperties = responseString.Split('&'); 

    var tokenProperty = responseProperties[0].Split('='); 

    var token = Uri.UnescapeDataString(tokenProperty[1]); 

 

    return "WRAP access_token=\"" + token + "\""; 

} 

 

 

To create a GetToken() method 

https://"+serviceNamespace+"."+sbHostName+"/"
https://"+serviceNamespace+"."+sbHostName+"/"
https://"+serviceNamespace+"."+sbHostName+"/"
https://"+serviceNamespace+"."+sbHostName+"/"


 

 89 

Step 4: Create the Queue 
This is the fourth of nine tasks required to create a basic REST-style queue and 
publication/subscription application that uses the Service Bus. 

The next step is to write a method that uses the REST-style HTTP PUT command to create a 
queue. 

1. Paste the following code directly beneath the GetToken() code you added in step 3: 

// Uses HTTP PUT to create the queue 

private static string CreateQueue(string queueName, string 

token) 

{ 

    // Create the URI of the new queue, note that this uses 

the HTTPS scheme 

    string queueAddress = baseAddress + queueName; 

    WebClient webClient = new WebClient(); 

    webClient.Headers[HttpRequestHeader.Authorization] = 

token; 

 

    Console.WriteLine("\nCreating queue {0}", queueAddress); 

    // Prepare the body of the create queue request 

    var putData = @"<entry 

xmlns=""http://www.w3.org/2005/Atom""> 

<title type=""text"">" + queueName + @"</title> 

<content type=""application/xml""> 

<QueueDescription xmlns:i=""http://www.w3.org/2001/XMLSchema-

instance"" 

xmlns=""http://schemas.microsoft.com/netservices/2010/10/serv

icebus/connect"" /> 

</content> 

</entry>"; 

 

    byte[] response = webClient.UploadData(queueAddress, 

"PUT", Encoding.UTF8.GetBytes(putData)); 

    return Encoding.UTF8.GetString(response); 

} 

To create a queue 

http://www.w3.org/2005/Atom
http://www.w3.org/2001/XMLSchemainstance
http://www.w3.org/2001/XMLSchemainstance
http://schemas.microsoft.com/netservices/2010/10/servicebus/connect
http://schemas.microsoft.com/netservices/2010/10/servicebus/connect


 

 90 

 

Step 5: Send a Message to the Queue 
This is the fifth of nine tasks required to create a basic REST-style queue and 
publication/subscription application that uses the Service Bus. 

In this step, you add a method that uses the REST-style HTTP POST command to send a 
message to the queue you created in the previous step. 

1. Paste the following code directly beneath the CreateQueue() code you added in step 4: 

// Sends a message to the "queueName" queue, given the name, 

the value to enqueue, and the SWT token 

// Uses an HTTP POST request. 

private static void SendMessage(string queueName, string 

body) 

{ 

    string fullAddress = baseAddress + queueName + 

"/messages" + "?timeout=60"; 

    Console.WriteLine("\nSending message {0} - to address 

{1}", body, fullAddress); 

    WebClient webClient = new WebClient(); 

    webClient.Headers[HttpRequestHeader.Authorization] = 

token; 

 

    webClient.UploadData(fullAddress, "POST", 

Encoding.UTF8.GetBytes(body)); 

} 

 

 

Step 6: Receive a Message from the Queue 
This is the sixth of nine tasks required to create a basic REST-style queue and 
publication/subscription application that uses the Service Bus. 

The next step is to add a method that uses the REST-style HTTP DELETE command to receive 
and delete a message from the queue. 

To send a message to the queue 

To receive and delete a message from the queue 



 

 91 

1. Paste the following code directly beneath the SendMessage() code you added in step 5: 

// Receives and deletes the next message from the given 

resource (Queue, Topic, or Subscription) 

// using the resourceName, the SWT token, and an HTTP DELETE 

request. 

private static string ReceiveAndDeleteMessage(string 

resourceName) 

{ 

    string fullAddress = baseAddress + resourceName + 

"/messages/head" + "?timeout=60"; 

    Console.WriteLine("\nRetrieving message from {0}", 

fullAddress); 

    WebClient webClient = new WebClient(); 

    webClient.Headers[HttpRequestHeader.Authorization] = 

token; 

 

    byte[] response = webClient.UploadData(fullAddress, 

"DELETE", new byte[0]); 

    string responseStr = Encoding.UTF8.GetString(response); 

 

    Console.WriteLine(responseStr); 

    return responseStr; 

} 

 

Step 7: Create a Topic and Subscription 
This is the seventh of nine tasks required to create a basic REST-style queue and 
publication/subscription application that uses the Service Bus. 

The next step is to write a method that uses the REST-style HTTP PUT command to create a 
topic. Then, you write a method that creates a subscription to that topic. 

1. Paste the following code directly beneath the ReceiveAndDeleteMessage() code you added 
in step 6: 

// Creates a Topic with the given topic name and the SWT 

token 

To create a topic 



 

 92 

// Using an HTTP PUT request. 

private static string CreateTopic(string topicName) 

{ 

    var topicAddress = baseAddress + topicName; 

    WebClient webClient = new WebClient(); 

    webClient.Headers[HttpRequestHeader.Authorization] = 

token; 

 

    Console.WriteLine("\nCreating topic {0}", topicAddress); 

    // Prepare the body of the create queue request 

    var putData = @"<entry 

xmlns=""http://www.w3.org/2005/Atom""> 

<title type=""text"">" + topicName + @"</title> 

<content type=""application/xml""> 

<TopicDescription xmlns:i=""http://www.w3.org/2001/XMLSchema-

instance"" 

xmlns=""http://schemas.microsoft.com/netservices/2010/10/serv

icebus/connect"" /> 

</content> 

</entry>"; 

 

    byte[] response = webClient.UploadData(topicAddress, 

"PUT", Encoding.UTF8.GetBytes(putData)); 

    return Encoding.UTF8.GetString(response); 

} 

1. The following code creates a subscription to the topic you created in the previous section. 
Add the following code directly beneath the CreateTopic() definition: 

private static string CreateSubscription(string topicName, 

string subscriptionName) 

{ 

    var subscriptionAddress = baseAddress + topicName + 

"/Subscriptions/" + subscriptionName; 

    WebClient webClient = new WebClient(); 

    webClient.Headers[HttpRequestHeader.Authorization] = 

To create a subscription 

http://www.w3.org/2005/Atom
http://www.w3.org/2001/XMLSchemainstance
http://www.w3.org/2001/XMLSchemainstance
http://schemas.microsoft.com/netservices/2010/10/servicebus/connect
http://schemas.microsoft.com/netservices/2010/10/servicebus/connect


 

 93 

token; 

 

    Console.WriteLine("\nCreating subscription {0}", 

subscriptionAddress); 

    // Prepare the body of the create queue request 

    var putData = @"<entry 

xmlns=""http://www.w3.org/2005/Atom""> 

<title type=""text"">" + subscriptionName + @"</title> 

<content type=""application/xml""> 

<SubscriptionDescription 

xmlns:i=""http://www.w3.org/2001/XMLSchema-instance"" 

xmlns=""http://schemas.microsoft.com/netservices/2010/10/serv

icebus/connect"" /> 

</content> 

</entry>"; 

 

    byte[] response = 

webClient.UploadData(subscriptionAddress, "PUT", 

Encoding.UTF8.GetBytes(putData)); 

    return Encoding.UTF8.GetString(response); 

} 

 

Step 8: Retreive Message Resources 
This is the eighth of nine tasks required to create a basic REST-style queue and 
publication/subscription application that uses the Service Bus. 

In this step, you add code that retrieves the message properties, then deletes the messaging 
resources you created in the previous steps. 

1. Add the following code directly beneath the CreateSubscription() method you added in 
the previous step: 

private static string GetResources(string resourceAddress) 

{ 

    string fullAddress = baseAddress + resourceAddress; 

    WebClient webClient = new WebClient(); 

To retrieve an Atom feed with the specified resources 

http://www.w3.org/2005/Atom
http://www.w3.org/2001/XMLSchemainstance
http://schemas.microsoft.com/netservices/2010/10/servicebus/connect
http://schemas.microsoft.com/netservices/2010/10/servicebus/connect


 

 94 

    webClient.Headers[HttpRequestHeader.Authorization] = 

token; 

    Console.WriteLine("\nGetting resources from {0}", 

fullAddress); 

    return FormatXml(webClient.DownloadString(fullAddress)); 

} 

1. Add the following code directly beneath the code you added in the previous section: 

private static string DeleteResource(string resourceName) 

{ 

    string fullAddress = baseAddress + resourceName; 

    WebClient webClient = new WebClient(); 

    webClient.Headers[HttpRequestHeader.Authorization] = 

token; 

 

    Console.WriteLine("\nDeleting resource at {0}", 

fullAddress); 

    byte[] response = webClient.UploadData(fullAddress, 

"DELETE", new byte[0]); 

    return Encoding.UTF8.GetString(response); 

} 

1. The GetResources() method contains a call to a FormatXml() method that reformats the 
retrieved Atom feed to be more readable. The following is the definition of FormatXml(); 
add this code directly beneath the DeleteResource() code you added in the previous 
section: 

// Formats the XML string to be more human-readable; intended 

for display purposes 

private static string FormatXml(string inputXml) 

{ 

    XmlDocument document = new XmlDocument(); 

    document.Load(new StringReader(inputXml)); 

 

    StringBuilder builder = new StringBuilder(); 

To delete messaging entities 

To format the Atom feed 



 

 95 

    using (XmlTextWriter writer = new XmlTextWriter(new 

StringWriter(builder))) 

    { 

        writer.Formatting = Formatting.Indented; 

        document.Save(writer); 

    } 

 

    return builder.ToString(); 

} 

 

Step 9: Build and Run the Application 
This is the last of nine tasks required to create a basic REST-style queue and 
publication/subscription application that uses the Service Bus. 

You can now build and run the application.  

1. From the Build menu in Visual Studio, click Build Solution, or press F6 to confirm the 
accuracy of your work. 

1. If there are no errors, press F5 to run the application. When prompted, enter your service 
namespace, issuer name, and default key that you obtained in Step 1. 

Example 
Description 
The following example is the complete code, as it should appear after following steps 1 through 8: 

using System; 

using System.Collections.Specialized; 

using System.IO; 

using System.Net; 

using System.Text; 

using System.Xml; 

 

namespace Microsoft.ServiceBus.Samples 

{ 

To build the application 

To run the application 



 

 96 

    class Program 

    { 

 

        static string serviceNamespace; 

        static string baseAddress; 

        static string token; 

        const string sbHostName = "servicebus.windows.net"; 

        const string acsHostName = "accesscontrol.windows.net"; 

 

 

        static void Main(string[] args) 

        { 

 

            Console.Write("Enter your service namespace: "); 

            serviceNamespace = Console.ReadLine(); 

 

            Console.Write("Enter your issuer name: "); 

            string issuerName = Console.ReadLine(); 

 

            Console.Write("Enter your issuer secret: "); 

            string issuerSecret = Console.ReadLine(); 

 

            baseAddress = "https://" + serviceNamespace + "." + sbHostName + "/"; 

            try 

            { 

                // Get a SWT token from the Access Control Service, given the issuerName 

and issuerSecret values. 

                token = GetToken(issuerName, issuerSecret); 

 

                string queueName = "Queue" + Guid.NewGuid().ToString(); 

 

                // Create and put a message in the queue using the SWT token. 

                CreateQueue(queueName, token); 

                SendMessage(queueName, "msg1"); 



 

 97 

                string msg = ReceiveAndDeleteMessage(queueName); 

 

                string topicName = "Topic" + Guid.NewGuid().ToString(); 

                string subscriptionName = "Subscription" + Guid.NewGuid().ToString(); 

                CreateTopic(topicName); 

                CreateSubscription(topicName, subscriptionName); 

                SendMessage(topicName, "msg2"); 

 

                // Wait for messages to post: 

                //System.Threading.Thread.Sleep(500); 

                Console.WriteLine(ReceiveAndDeleteMessage(topicName + "/Subscriptions/" + 

subscriptionName)); 

 

                // Get an Atom feed with all the queues in the namespace 

                Console.WriteLine(GetResources("$Resources/Queues")); 

 

                // Get an Atom feed with all the topics in the namespace 

                Console.WriteLine(GetResources("$Resources/Topics")); 

 

                // Get an Atom feed with all the subscriptions for the topic we just 

created 

                Console.WriteLine(GetResources(topicName + "/Subscriptions")); 

 

                // Get an Atom feed with all the rules for the topic and subscritpion we 

just created 

                Console.WriteLine(GetResources(topicName + "/Subscriptions/" + 

subscriptionName + "/Rules")); 

 

                // Delete the queue we created 

                DeleteResource(queueName); 

 

                // Delete the topic we created 

                DeleteResource(topicName); 

 



 

 98 

                // Get an Atom feed with all the topics in the namespace, it shouldn't 

have the one we created now 

                Console.WriteLine(GetResources("$Resources/Topics")); 

 

                // Get an Atom feed with all the queues in the namespace, it shouldn't 

have the one we created now 

                Console.WriteLine(GetResources("$Resources/Queues")); 

            } 

            catch (WebException we) 

            { 

                using (HttpWebResponse response = we.Response as HttpWebResponse) 

                { 

                    if (response != null) 

                    { 

                        Console.WriteLine(new 

StreamReader(response.GetResponseStream()).ReadToEnd()); 

                    } 

                    else 

                    { 

                        Console.WriteLine(we.ToString()); 

                    } 

                } 

            } 

 

            Console.WriteLine("\nPress ENTER to exit."); 

            Console.ReadLine(); 

        } 

 

        private static string GetToken(string issuerName, string issuerSecret) 

        { 

            var acsEndpoint = "https://" + serviceNamespace + "-sb." + acsHostName + 

"/WRAPv0.9/"; 

 

            // Note that the realm used when requesting a token uses the HTTP scheme, 

even though 

https://"+serviceNamespace+"-sb."+acsHostName+"/WRAPv0.9/"
https://"+serviceNamespace+"-sb."+acsHostName+"/WRAPv0.9/"


 

 99 

            // calls to the service are always issued over HTTPS 

            var realm = "http://" + serviceNamespace + "." + sbHostName + "/"; 

 

            NameValueCollection values = new NameValueCollection(); 

            values.Add("wrap_name", issuerName); 

            values.Add("wrap_password", issuerSecret); 

            values.Add("wrap_scope", realm); 

 

            WebClient webClient = new WebClient(); 

            byte[] response = webClient.UploadValues(acsEndpoint, values); 

 

            string responseString = Encoding.UTF8.GetString(response); 

 

            var responseProperties = responseString.Split('&'); 

            var tokenProperty = responseProperties[0].Split('='); 

            var token = Uri.UnescapeDataString(tokenProperty[1]); 

 

            return "WRAP access_token=\"" + token + "\""; 

        } 

 

        // Uses HTTP PUT to create the queue 

        private static string CreateQueue(string queueName, string token) 

        { 

            // Create the URI of the new Queue, note that this uses the HTTPS scheme 

            string queueAddress = baseAddress + queueName; 

            WebClient webClient = new WebClient(); 

            webClient.Headers[HttpRequestHeader.Authorization] = token; 

 

            Console.WriteLine("\nCreating queue {0}", queueAddress); 

            // Prepare the body of the create queue request 

            var putData = @"<entry xmlns=""http://www.w3.org/2005/Atom""> 

<title type=""text"">" + queueName + @"</title> 

<content type=""application/xml""> 

http://www.w3.org/2005/Atom
https://"+serviceNamespace+"."+sbHostName+"/"


 

 100 

<QueueDescription xmlns:i=""http://www.w3.org/2001/XMLSchema-instance"" 

xmlns=""http://schemas.microsoft.com/netservices/2010/10/servicebus/connect"" /> 

</content> 

</entry>"; 

 

            byte[] response = webClient.UploadData(queueAddress, "PUT", 

Encoding.UTF8.GetBytes(putData)); 

            return Encoding.UTF8.GetString(response); 

        } 

 

        // Sends a message to the "queueName" queue, given the name, the value to 

enqueue, and the SWT token 

        // Uses an HTTP POST request. 

        private static void SendMessage(string queueName, string body) 

        { 

            string fullAddress = baseAddress + queueName + "/messages" + "?timeout=60"; 

            Console.WriteLine("\nSending message {0} - to address {1}", body, 

fullAddress); 

            WebClient webClient = new WebClient(); 

            webClient.Headers[HttpRequestHeader.Authorization] = token; 

 

            webClient.UploadData(fullAddress, "POST", Encoding.UTF8.GetBytes(body)); 

        } 

 

        // Receives and deletes the next message from the given resource (Queue, Topic, 

or Subscription) 

        // using the resourceName, the SWT token, and an HTTP DELETE request. 

        private static string ReceiveAndDeleteMessage(string resourceName) 

        { 

            string fullAddress = baseAddress + resourceName + "/messages/head" + 

"?timeout=60"; 

            Console.WriteLine("\nRetrieving message from {0}", fullAddress); 

            WebClient webClient = new WebClient(); 

            webClient.Headers[HttpRequestHeader.Authorization] = token; 

 

http://www.w3.org/2001/XMLSchemainstance
http://schemas.microsoft.com/netservices/2010/10/servicebus/connect


 

 101 

            byte[] response = webClient.UploadData(fullAddress, "DELETE", new byte[0]); 

            string responseStr = Encoding.UTF8.GetString(response); 

 

            Console.WriteLine(responseStr); 

            return responseStr; 

        } 

 

        // Creates a Topic with the given topic name and the SWT token 

        // Using an HTTP PUT request. 

        private static string CreateTopic(string topicName) 

        { 

            var topicAddress = baseAddress + topicName; 

            WebClient webClient = new WebClient(); 

            webClient.Headers[HttpRequestHeader.Authorization] = token; 

 

            Console.WriteLine("\nCreating topic {0}", topicAddress); 

            // Prepare the body of the create queue request 

            var putData = @"<entry xmlns=""http://www.w3.org/2005/Atom""> 

<title type=""text"">" + topicName + @"</title> 

<content type=""application/xml""> 

<TopicDescription xmlns:i=""http://www.w3.org/2001/XMLSchema-instance"" 

xmlns=""http://schemas.microsoft.com/netservices/2010/10/servicebus/connect"" /> 

</content> 

</entry>"; 

 

            byte[] response = webClient.UploadData(topicAddress, "PUT", 

Encoding.UTF8.GetBytes(putData)); 

            return Encoding.UTF8.GetString(response); 

        } 

 

        private static string CreateSubscription(string topicName, string 

subscriptionName) 

        { 

http://www.w3.org/2005/Atom
http://www.w3.org/2001/XMLSchemainstance
http://schemas.microsoft.com/netservices/2010/10/servicebus/connect


 

 102 

            var subscriptionAddress = baseAddress + topicName + "/Subscriptions/" + 

subscriptionName; 

            WebClient webClient = new WebClient(); 

            webClient.Headers[HttpRequestHeader.Authorization] = token; 

 

            Console.WriteLine("\nCreating subscription {0}", subscriptionAddress); 

            // Prepare the body of the create queue request 

            var putData = @"<entry xmlns=""http://www.w3.org/2005/Atom""> 

<title type=""text"">" + subscriptionName + @"</title> 

<content type=""application/xml""> 

<SubscriptionDescription xmlns:i=""http://www.w3.org/2001/XMLSchema-instance"" 

xmlns=""http://schemas.microsoft.com/netservices/2010/10/servicebus/connect"" /> 

</content> 

</entry>"; 

 

            byte[] response = webClient.UploadData(subscriptionAddress, "PUT", 

Encoding.UTF8.GetBytes(putData)); 

            return Encoding.UTF8.GetString(response); 

        } 

 

        private static string GetResources(string resourceAddress) 

        { 

            string fullAddress = baseAddress + resourceAddress; 

            WebClient webClient = new WebClient(); 

            webClient.Headers[HttpRequestHeader.Authorization] = token; 

            Console.WriteLine("\nGetting resources from {0}", fullAddress); 

            return FormatXml(webClient.DownloadString(fullAddress)); 

        } 

 

        private static string DeleteResource(string resourceName) 

        { 

            string fullAddress = baseAddress + resourceName; 

            WebClient webClient = new WebClient(); 

            webClient.Headers[HttpRequestHeader.Authorization] = token; 

http://www.w3.org/2005/Atom
http://www.w3.org/2001/XMLSchemainstance
http://schemas.microsoft.com/netservices/2010/10/servicebus/connect


 

 103 

 

            Console.WriteLine("\nDeleting resource at {0}", fullAddress); 

            byte[] response = webClient.UploadData(fullAddress, "DELETE", new byte[0]); 

            return Encoding.UTF8.GetString(response); 

        } 

 

        // Formats the XML string to be more human-readable; intended for display 

purposes 

        private static string FormatXml(string inputXml) 

        { 

            XmlDocument document = new XmlDocument(); 

            document.Load(new StringReader(inputXml)); 

 

            StringBuilder builder = new StringBuilder(); 

            using (XmlTextWriter writer = new XmlTextWriter(new StringWriter(builder))) 

            { 

                writer.Formatting = Formatting.Indented; 

                document.Save(writer); 

            } 

 

            return builder.ToString(); 

        } 

 

    } 

} 

 

Service Bus Message Buffer Tutorial 
The following topics describe how to build a simple Service Bus host application that exposes a 
REST-based interface. A Web client, such as a Web browser, can access the Service Bus 
service API through HTTP requests. 

This tutorial uses the Windows Communication Foundation (WCF) REST programming model to 
construct a REST service on the Service Bus. For more information, see WCF REST 
Programming Model and Designing and Implementing Services in the WCF documentation. 



 

 104 

In This Section 
Step 1: Sign up for an Account for the REST Tutorial 

Step 2: Define a REST-based WCF Service Contract to use with Service Bus 

Step 3: Implement a REST-based WCF Service Contract to use Service Bus 

Step 4: Host the REST-based WCF Service to use the Service Bus 

Step 1: Sign up for an Account for the REST Tutorial 
This is the first of four tasks required to create a basic REST-based Windows Azure Service Bus 
service. For an overview of all four of the tasks, see the Service Bus Message Buffer Tutorial. 

The first step is to create a Windows Azure service namespace, and to obtain a shared secret 
key. A service namespace provides an application boundary for each application exposed 
through the Service Bus. A shared secret key is automatically generated by the system when a 
service namespace is created. The combination of service namespace and shared secret key 
provides a credential for the Service Bus to authenticate access to an application. 

Expected time to complete: 5 minutes 

1. To create a service namespace by using the Windows Azure portal, follow the steps 
in How to: Create or Modify a Service Bus Service Namespace. 

 

Step 2: Define a REST-based WCF Service Contract to use with 
Service Bus 
This is the second of four tasks required to create a basic REST-style service for the Service Bus. 
For an overview of all four of the tasks, see the Service Bus Message Buffer Tutorial.  

As with other Service Bus services, when you create a REST-style service, you must define the 
contract. The contract specifies what operations the host supports. A service operation can be 
thought of as a Web service method. Contracts are created by defining a C++, C#, or Visual 
Basic interface. Each method in the interface corresponds to a specific service operation. The 
System.ServiceModel.ServiceContractAttribute attribute must be applied to each interface, 
and the System.ServiceModel.OperationContractAttribute attribute must be applied to each 
operation. If a method in an interface that has the 
System.ServiceModel.ServiceContractAttribute does not have the 
System.ServiceModel.OperationContractAttribute, that method is not exposed. The code 
used for these tasks is shown in the example following the procedure. 

The primary difference between a basic Service Bus contract and a REST-style contract is the 
addition of a property to the System.ServiceModel.OperationContractAttribute: 
System.ServiceModel.Web.WebGetAttribute. This property lets you map a method in your 
interface to a method on the other side of the interface. In this case, we will use 

To create a service namespace 



 

 105 

System.ServiceModel.Web.WebGetAttribute to link a method to HTTP GET. This allows the 
Service Bus to accurately retrieve and interpret commands sent to the interface. 

Expected time to completion: 10 minutes. 

1. Open Visual Studio 2008 as an administrator by right-clicking the program in the Start 
menu and selecting Run as administrator. 

2. Create a new console application project. Click the File menu and select New, Project. 
In the New Project dialog, select Visual C# (if Visual C# does not appear, look under 
Other Languages), select the Console Application template, and name it 
ImageListener. Use the default Location. Click OK to create the project. 

3. For a C# project, Visual Studio creates a file that is named Program.cs. This class will 
contain an empty method called Main().This method is required for a console application 
project to build correctly. Therefore, you can safely leave it in the project. 

4. Add a reference to System.ServiceModel.dll to the project: 
a. In the Solution Explorer, right-click the References folder under the project folder 

and then click Add Reference. 
b. Select the .NET tab in the Add Reference dialog and scroll down until you see 

System.ServiceModel, select it. Then click OK. 

Note  
When using a command-line compiler (for example, Csc.exe), you must also 
provide the path of the assemblies. By default, on a computer that is running 
Windows°7 for example, the path is: 
Windows\Microsoft.NET\Framework\v3.0\Windows Communication Foundation. 

5. Repeat the previous step to add a reference to the System.ServiceModel.Web.dll 
assembly. 

6. Add a using statement for the System.ServiceModel, System.ServiceModel.Channels, 
System.ServiceModel.Web, and System.IO namespaces. 

using System.ServiceModel; 

using System.ServiceModel.Channels; 

using System.ServiceModel.Web; 

using System.IO; 

 

System.ServiceModel is the namespace that lets you programmatically access the 
basic features of the Windows Communication Foundation (WCF). The Service Bus uses 
many of the objects and attributes of WCF to define service contracts. You will use this 
namespace in most of your Service Bus applications. Similarly, 
System.ServiceModel.Channels helps define the channel, which is the object through 
which you communicate with the Service Bus and the client Web browser. Finally, 
System.ServiceModel.Web contains the types that let you create Web-based 

To create a Service Bus contract with an interface 



 

 106 

applications. 
7. Rename the namespace for the program from the Visual Studio default to 

Microsoft.ServiceBus.Samples. 

namespace Microsoft.ServiceBus.Samples 

{ 

... 

 

8. Directly after the namespace declaration, define a new interface named IImageContract 
and apply the ServiceContractAttribute attribute to the interface with a value of 
http://samples.microsoft.com/ServiceModel/Relay/. The namespace value differs from 
the namespace that you use throughout the scope of your code. The namespace value is 
used as a unique identifier for this contract, and should have versioning information. For 
more information, see, see Service Versioning. Specifying the namespace explicitly 
prevents the default namespace value from being added to the contract name. 

[ServiceContract(Name = "ImageContract", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/RESTTutorial

1")] 

public interface IImageContract 

{ 

} 

 

9. Within the IImageContract interface, declare a method for the single operation the 
IImageContract contract exposes in the interface and apply the 
OperationContractAttribute attribute to the method that you want to expose as part of 
the public Service Bus contract. 

public interface IImageContract 

{ 

    [OperationContract] 

    Stream GetImage(); 

} 

10. Next to the OperationContract attribute, apply the WebGet attribute. 

 

public interface IImageContract 

{ 

    [OperationContract, WebGet] 

    Stream GetImage(); 

} 

http://samples.microsoft.com/ServiceModel/Relay/
http://go.microsoft.com/fwlink/?LinkID=180498
http://samples.microsoft.com/ServiceModel/Relay/RESTTutorial1
http://samples.microsoft.com/ServiceModel/Relay/RESTTutorial1


 

 107 

Doing so allows the Service Bus to route HTTP GET requests to GetImage, and to 
translate the return values of GetImage into an HTTP GETRESPONSE reply. Later in the 
tutorial, you will use a Web browser to access this method, and to display the image in 
the browser. 

11. Directly underneath the IImageContract definition, declare a channel that inherits from 
both the IImageContract and IClientChannel interfaces. 

[ServiceContract(Name = "IImageContract", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

public interface IImageContract 

{ 

    [OperationContract, WebGet] 

    Stream GetImage(); 

} 

 

public interface IImageChannel : IImageContract, 

IClientChannel { } 

A channel is the WCF object through which the service and client pass each other 
information. Later on, you will create the channel in your host application. The Service 
Bus then uses this channel to pass the HTTP GET requests from the browser to your 
GetImage implementation. The Service Bus also uses the channel to take the GetImage 
return value and translate it into an HTTP GETRESPONSE for the client browser.  

12. From the Build menu, click Build Solution to confirm the accuracy of your work. 

Example 

Description 
The following code example shows a basic interface that defines an Service Bus contract. 

Code 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.ServiceModel; 

using System.ServiceModel.Channels; 

using System.ServiceModel.Web; 

using System.IO; 

 

http://samples.microsoft.com/ServiceModel/Relay


 

 108 

namespace Microsoft.ServiceBus.Samples 

{ 

 

    [ServiceContract(Name = "IImageContract", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

    public interface IImageContract 

    { 

        [OperationContract, WebGet] 

        Stream GetImage(); 

    } 

 

    public interface IImageChannel : IImageContract, IClientChannel { } 

 

    class Program 

    { 

        static void Main(string[] args) 

        { 

        } 

    } 

} 

 

Comments 
Now that the interface is created, proceed to Step 3: Implement a REST-based WCF Service 
Contract to use Service Bus to implement the interface. 

See Also 
Step 3: Implement a REST-based WCF Service Contract to use Service Bus 

Step 3: Implement a REST-based WCF Service Contract to use 
Service Bus 
This is the third of four tasks required to create a basic REST-style Service Bus service. For an 
overview of all tasks, see the Service Bus Message Buffer Tutorial topic. Creating a REST-style 
Service Bus service requires that you first create the contract, which is defined by using an 
interface. For more information about creating the interface, see Step 2: Define a REST-based 
WCF Service Contract to use with Service Bus. The next step, shown in this example, is to 
implement the interface. This involves creating a class named ImageService that implements the 

http://samples.microsoft.com/ServiceModel/Relay


 

 109 

user-defined IImageContract interface. After you implement the contract, you then configure the 
interface using an App.config file. The configuration file contains necessary information for the 
application, such as the name of the service, the name of the contract, and the type of protocol 
that is used to communicate with the Service Bus. The code used for these tasks is provided in 
the example following the procedure. 

As with the previous steps, there is very little difference between implementing a REST-style 
contract and a basic Service Bus contract.  

Expected time to completion: 10 minutes 

1. Create a new class named ImageService directly underneath the definition of the 
IImageContract interface. The ImageService class implements the IImageContract 
interface.  

class ImageService : IImageContract 

{ 

} 

Similar to other interface implementations, you can implement the definition in a different 
file. However, for this tutorial, the implementation appears in the same file as the 
interface definition and Main() method.  

2. Apply the System.ServiceModel.ServiceBehaviorAttribute attribute to the 
IImageService class to indicate that the class is an implementation of a WCF contract: 

 

[ServiceBehavior(Name = "ImageService", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

class ImageService : IImageContract 

{ 

} 

 

As mentioned previously, this namespace is not a traditional namespace. Instead, it is 
part of the WCF architecture that identifies the contract. For more information, see the 
Data Contract Names topic in the WCF documentation. 

3. Add a .jpg image to your project. 

This is a picture the service displays in the receiving browser. Right-click your project, 
click Add. Then click Existing Item. Use the Add Existing Item dialog to browse to an 
appropriate .jpg, and then click Add. An example .jpg file is available at 
<SDKInstallDir>\Samples\ServiceBus\ExploringFeatures\Bindings\WebHttp\CS35\Service

\image.jpg. 

When adding the file, make sure that All Files (*.*) is selected in the drop-down list next 
to the File name: field. The rest of this tutorial assumes that the name of the image is 

To implement a REST-style Service Bus contract 

http://samples.microsoft.com/ServiceModel/Relay


 

 110 

“image.jpg”. If you have a different .jpg, you will have to rename the image, or change 
your code to compensate. 

4. To make sure that the running service can find the image file, in Solution Explorer right-
click the image file. In the Properties pane, set Copy to Output Directory to Copy if 
newer. 

5. Add references to the System.Drawing.dll, System.Runtime.Serialization.dll, and 
Microsoft.ServiceBus.dll assemblies to the project, and also to the following associated 
using statements. 

using System.Drawing; 

using System.Drawing.Imaging; 

using Microsoft.ServiceBus; 

using Microsoft.ServiceBus.Web; 

 

6. Define a constructor that loads the bitmap and prepares to send it to the client browser:  

class ImageService : IImageContract 

{ 

    const string imageFileName = "image.jpg"; 

 

    Image bitmap; 

 

    public ImageService() 

    { 

        this.bitmap = Image.FromFile(imageFileName); 

    } 

} 

 

 

7. Directly underneath the previous code, add the following GetImage method in the 
ImageService class to return an HTTP message that contains the image: 

public Stream GetImage() 

{ 

   MemoryStream stream = new MemoryStream(); 

   this.bitmap.Save(stream, ImageFormat.Jpeg); 

 

   stream.Position = 0; 

   WebOperationContext.Current.OutgoingResponse.ContentType = 



 

 111 

"image/jpeg"; 

 

   return stream; 

} 

This implementation uses MemoryStream to retrieve the image and prepare it for 
streaming to the browser. It starts the stream position at zero, declares the stream 
content as a jpeg, and streams the information. 

8. From the Build menu, click Build Solution to build the whole solution. 

1. Right-click the ImageListener project. Then click Add, New Item. 
2. In the Add New Item dialog, in the Templates pane, select Application Configuration. 

Then click Add. 

The configuration file resembles a WCF configuration file, and includes the service name, 
endpoint (that is, the location Service Bus exposes for clients and hosts to communicate 
with each other), and binding (the type of protocol that is used to communicate). The 
main difference here is that the configured service endpoint refers to a 
Microsoft.ServiceBus.WebHttpRelayBinding binding, which is not part of the .NET 
Framework. Microsoft.ServiceBus.WebHttpRelayBinding is one of the new bindings 
introduced with the Service Bus. For more information about how to configure an Service 
Bus application, see Configuring a WCF Service to Register with the Service Bus. 

3. In Solution Explorer, click App.config, which currently contains the following XML 
elements: 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

</configuration> 

4. Add an XML element to the App.config file for system.serviceModel. This is a WCF 
element that defines one or more services. Here, it is used to define the service name 
and endpoint. 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

<system.serviceModel> 

 

</system.serviceModel> 

 

</configuration> 

5. Within the system.serviceModel element, add a <bindings> element that has the following 
content. This defines the bindings used in the application. You can define multiple 

To define the configuration to run the Web service on the Service Bus 



 

 112 

bindings, but for this tutorial you are defining only one. 

<bindings> 

<!-- Application Binding --> 

<webHttpRelayBinding> 

<binding name="default"> 

<security relayClientAuthenticationType="None" /> 

</binding> 

</webHttpRelayBinding> 

</bindings> 

This step defines an Service Bus Microsoft.ServiceBus.WebHttpRelayBinding binding 
with the relayClientAuthenticationType as None. This indicates that an endpoint using 
this binding will not require a client credential. 

6. Below the <bindings> element, add a <services> element. As with the bindings, you can 
define multiple services in a single configuration file. However, for this tutorial, you define 
only one. 

<services> 

<!-- Application Service --> 

<service name="Microsoft.ServiceBus.Samples.ImageService" 

           behaviorConfiguration="default"> 

<endpoint name="RelayEndpoint" 

              

contract="Microsoft.ServiceBus.Samples.IImageContract" 

              binding="webHttpRelayBinding" 

              bindingConfiguration="default" 

              

behaviorConfiguration="sharedSecretClientCredentials" 

              address="" /> 

</service> 

</services> 

This step configures a service that uses the previously defined default 
webHttpRelayBinding. It also uses the default sharedSecretClientCredentials, which is 
defined in the next step. 

7. Below the <services> element, create a <behaviors> element, with the following content, 
replacing “ISSUER_NAME” and “ISSUER_SECRET” with your issuer name and secret, 
respectively. 

<behaviors> 



 

 113 

<endpointBehaviors> 

<behavior name="sharedSecretClientCredentials"> 

<transportClientEndpointBehavior 

credentialType="SharedSecret"> 

<clientCredentials> 

<sharedSecret issuerName="ISSUER_NAME" 

issuerSecret="ISSUER_SECRET" /> 

</clientCredentials> 

</transportClientEndpointBehavior> 

</behavior> 

</endpointBehaviors> 

<serviceBehaviors> 

<behavior name="default"> 

<serviceDebug httpHelpPageEnabled="false" 

httpsHelpPageEnabled="false" /> 

</behavior> 

</serviceBehaviors> 

</behaviors> 

The sharedSecretClientCredentials behavior defines the type of credentials the service 
uses to access the Service Bus: SharedSecret. In addition, the actual issuer names and 
issuer secrets are stored in the App.config file. Note that storing secrets in clear text is 
not considered good programming practice for production code. Be sure to implement 
more rigorous security in your own code. 

This code also defines the default debugging behavior, which consists of turning off the 
HTTP and HTTPS help pages. 

8. From the Build menu, select Build Solution to build the whole solution. 

Example 

Description 
The following code shows the contract and service implementation for a REST-based service that 
is  running on the Service Bus using the WebHttpRelayBinding binding. 

Code 

 

 

using System; 



 

 114 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.ServiceModel; 

using System.ServiceModel.Channels; 

using System.ServiceModel.Web; 

using System.IO; 

using System.Drawing; 

using System.Drawing.Imaging; 

using Microsoft.ServiceBus; 

using Microsoft.ServiceBus.Web; 

 

namespace Microsoft.ServiceBus.Samples 

{ 

 

 

    [ServiceContract(Name = "ImageContract", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

    public interface IImageContract 

    { 

        [OperationContract, WebGet] 

        Stream GetImage(); 

    } 

 

    public interface IImageChannel : IImageContract, IClientChannel { } 

 

    [ServiceBehavior(Name = "ImageService", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

    class ImageService : IImageContract 

    { 

        const string imageFileName = "image.jpg"; 

 

        Image bitmap; 

 

http://samples.microsoft.com/ServiceModel/Relay


 

 115 

        public ImageService() 

        { 

            this.bitmap = Image.FromFile(imageFileName); 

        } 

 

        public Stream GetImage() 

        { 

            MemoryStream stream = new MemoryStream(); 

            this.bitmap.Save(stream, ImageFormat.Jpeg); 

 

            stream.Position = 0; 

            WebOperationContext.Current.OutgoingResponse.ContentType = "image/jpeg"; 

 

            return stream; 

        }     

    } 

 

    class Program 

    { 

        static void Main(string[] args) 

        { 

        } 

    } 

} 

Example 

Description 
The following example shows the App.config file associated with the service. 

Code 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

<system.serviceModel> 

<bindings> 



 

 116 

<!-- Application Binding --> 

<webHttpRelayBinding> 

<binding name="default"> 

<!-- Turn off client authentication so that client does not need to present credential 

through browser or fiddler --> 

<security relayClientAuthenticationType="None" /> 

</binding> 

</webHttpRelayBinding> 

</bindings> 

 

<services> 

<!-- Application Service --> 

<service name="Microsoft.ServiceBus.Samples.ImageService" 

               behaviorConfiguration="default"> 

<endpoint name="RelayEndpoint" 

                  contract="Microsoft.ServiceBus.Samples.IImageContract" 

                  binding="webHttpRelayBinding" 

                  bindingConfiguration="default" 

                  behaviorConfiguration="sharedSecretClientCredentials" 

                  address="" /> 

</service> 

</services> 

 

<behaviors> 

<endpointBehaviors> 

<behavior name="sharedSecretClientCredentials"> 

<transportClientEndpointBehavior credentialType="SharedSecret"> 

<clientCredentials> 

<sharedSecret issuerName="ISSUER_NAME" issuerSecret="ISSUER_SECRET" /> 

</clientCredentials> 

</transportClientEndpointBehavior> 

</behavior> 

</endpointBehaviors> 

<serviceBehaviors> 



 

 117 

<behavior name="default"> 

<serviceDebug httpHelpPageEnabled="false" httpsHelpPageEnabled="false" /> 

</behavior> 

</serviceBehaviors> 

</behaviors> 

 

</system.serviceModel> 

</configuration> 

Comments 
Now that you have configured and implemented the Web service contract, proceed to Step 4: 
Host the REST-based WCF Service to use the Service Bus. 

Step 4: Host the REST-based WCF Service to use the Service 
Bus 
This is the fourth of four tasks required to create a basic REST-based Service Bus service. For an 
overview of all four of the tasks, see the Service Bus Message Buffer Tutorial topic. This topic 
describes how to run a Web service on Service Bus using a console application. A complete 
listing of the code written in this task is provided in the example following the procedure. 

Estimated time to completion: 10 minutes 

1. In the Main() function declaration, create a variable to store the service namespace of 
your Service Bus project. 

string serviceNamespace = "InsertServiceNamespaceHere"; 

The Service Bus uses the name of your service namespace to create a unique URI. 
2. Create a Uri instance for the base address of the service that is based on the service 

namespace. 

Uri address = ServiceBusEnvironment.CreateServiceUri("https", 

serviceNamespace, "Image"); 

1. Create the Web service host, using the URI address created earlier in this section. 

WebServiceHost host = new 

WebServiceHost(typeof(ImageService), address); 

The service host is the WCF object that instantiates the host application. This example 
passes it the type of host you want to create (an ImageService), and also the address at 
which you want to expose the host application.  

To create a base address for the service 

To create and configure the Web service host 



 

 118 

1. Open the service. 

host.Open(); 

The service is now running. 
2. Display a message indicating that the service is running, and how to stop the service. 

Console.WriteLine("Copy the following address into a browser 

to see the image: "); 

Console.WriteLine(address + "GetImage"); 

Console.WriteLine(); 

Console.WriteLine("Press [Enter] to exit"); 

Console.ReadLine(); 

3. When finished, close the service host. 

host.Close(); 

Example 

Description 
The following example includes the service contract and implementation from previous steps in 
the tutorial and hosts the service in a console application. Compile the following into an 
executable named ImageListener.exe.. 

Code 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.ServiceModel; 

using System.ServiceModel.Channels; 

using System.ServiceModel.Web; 

using System.IO; 

using System.Drawing; 

using System.Drawing.Imaging; 

using Microsoft.ServiceBus; 

using Microsoft.ServiceBus.Web; 

 

To run the Web service host 



 

 119 

namespace Microsoft.ServiceBus.Samples 

{ 

 

    [ServiceContract(Name = "ImageContract", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

    public interface IImageContract 

    { 

        [OperationContract, WebGet] 

        Stream GetImage(); 

    } 

 

    public interface IImageChannel : IImageContract, IClientChannel { } 

 

    [ServiceBehavior(Name = "ImageService", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

    class ImageService : IImageContract 

    { 

        const string imageFileName = "image.jpg"; 

 

        Image bitmap; 

 

        public ImageService() 

        { 

            this.bitmap = Image.FromFile(imageFileName); 

        } 

 

        public Stream GetImage() 

        { 

            MemoryStream stream = new MemoryStream(); 

            this.bitmap.Save(stream, ImageFormat.Jpeg); 

 

            stream.Position = 0; 

            WebOperationContext.Current.OutgoingResponse.ContentType = "image/jpeg"; 

 

http://samples.microsoft.com/ServiceModel/Relay
http://samples.microsoft.com/ServiceModel/Relay


 

 120 

            return stream; 

        }     

    } 

 

    class Program 

    { 

        static void Main(string[] args) 

        { 

            string serviceNamespace = "InsertServiceNamespaceHere"; 

            Uri address = ServiceBusEnvironment.CreateServiceUri("https", 

serviceNamespace, "Image"); 

 

            WebServiceHost host = new WebServiceHost(typeof(ImageService), address); 

            host.Open(); 

 

            Console.WriteLine("Copy the following address into a browser to see the 

image: "); 

            Console.WriteLine(address + "GetImage"); 

            Console.WriteLine(); 

            Console.WriteLine("Press [Enter] to exit"); 

            Console.ReadLine(); 

 

            host.Close(); 

        } 

    } 

} 

 

 

Compiling the Code 
After building the solution, do the following to run the application: 
1. From a command prompt, run the service (ImageListener\bin\Debug\ImageListener.exe). 
2. Copy and paste the address from the command prompt into a browser to see the image. 



 

 121 

Developing Applications that Use the Service 
Bus 
The Windows Azure Service Bus can be thought of as a “relay in the sky” that enables two 
applications to communicate securely regardless of where they may be located. At the highest 
conceptual level, using the Service Bus requires: 
1. One Web service that is trusted by the Access Control service to create endpoints and 

receive and send messages (typically responses but also event notifications) from the 
Service Bus endpoint that it creates. 

2. One client application that is trusted by the Access Control service to send and receive 
messages (typically requests and responses but also event notifications) at a Service Bus 
endpoint. 

There is only one difference between the two Web service applications: the first Web service is 
trusted by Access Control to create an endpoint—that is, an address, or Uniform Resource 
Indicator (URI)—with Service Bus. For more information about endpoints and addresses and how 
they are used in Windows Communication Foundation (WCF) and the Service Bus, see 
Specifying an Endpoint Address. The second Web application (the client), however, cannot 
create, affect, or manage the registered Service Bus endpoint; instead, it is trusted by Access 
Control to interact with endpoints that are already registered.  

Typically, the former type of application is referred to as a service (instead of client or calling 
application), because without a controlling or managing Web service, the Service Bus would have 
no endpoints with which other Web-enabled applications can communicate. Web applications that 
interact with a pre-existing Service Bus endpoint are conventionally referred to as Web service 
client applications, because they consume the features available at a registered Service Bus 
endpoint.  

Overview 
This topic provides an overview of the technical features that the Service Bus provides at a high 
level. The following additional topics in this section describe application development with the 
Service Bus from the point of view of a development lifecycle. Not every development goal 
requires starting at any one point in the cycle; if you have to develop a client that invokes a 
service published by the Service Bus, you do not have to read about publishing a service 
endpoint. Instead, start with Building a Service Bus Client Application.  

This section contains the following topics, starting with a development lifecycle outline that 
describes the steps in the context of your own development processes. 
• Overview of Service Bus Messaging Patterns 
• Service Bus Programming Lifecycle 
• Service Bus Authentication and Authorization with the Access Control Service 
• Service Bus Bindings 
• Designing a WCF Contract for the Service Bus 



 

 122 

• Configuring a WCF Service to Register with the Service Bus 
• Securing and Authenticating a Service Bus Connection 
• Building a Service for the Service Bus 
• Building a Service Bus Client Application 
• Discovering and Exposing a Service Bus Service 
• Working with a Service Bus Message Buffer 

What Do I Need to Build to Use the Service Bus? 
There must be a host application for the Web service that registers an endpoint with the Service 
Bus, and a client application must make requests on the Service Bus endpoint. Typically the 
following host application types are used: 
• .NET Framework applications 
• Windows Azure applications 
• Scripts in both server-side and client-side Web pages 
• Smart devices that have either SOAP or REST networking programming models 

What Types of Applications Can Use the Service Bus? 
Fundamentally, you can use any HTTP programming model to use REST-style messages to 
register an endpoint with the Service Bus or to use a Service Bus endpoint that has already been 
published. However, it is often easier to understand how to use the Access Control service and 
Service Bus in the context of a technology with which you are familiar.  
• If you are familiar with WCF applications, you can use this service to obtain permission 

from Access Control to create (or register) an endpoint address that uses the Service Bus. 
Subsequently, any SOAP or REST client—whether WCF or built on a non-Microsoft 
platform—can use the WCF Web service by invoking operations on the Service Bus address. 
Depending on the security requirements established by the original Web service when it 
registered the endpoint with the Service Bus, the client application may also have to obtain 
permission from Access Control to send or listen for messages by using the Service Bus. 

• If you are familiar with Windows Azure applications with WCF-based services and clients, 
you will develop the host application locally and then run it in Windows Azure. This is true 
even if you use .NET Framework HTTP programming to do REST-style Web service and 
client communication. 

• If you are familiar with REST-based Web services and you can use either a WCF SOAP-
based service to authorize your application and use the Service Bus, or you can use a REST-
based application to do this. The WCF Web Programming Model makes it easy to build a 
REST service that does this, but you can do your REST-based communication with the 
Service Bus any way you want. In fact, if you use REST on the Web service side and the 
client side, you can use the Message Buffer as a temporary storage of messages that can be 
retrieved by callers. 



 

 123 

How Much Can I Do with the Service Bus? 
The Service Bus is made to enable bidirectional communication between service-oriented 
applications anywhere in the world. However, the real world is full of limits, and the Service Bus 
does not support every protocol you might ever want or need. For example, in this release, the 
system-supplied bindings support only a subset of the protocols supported by WCF. What 
happens when you want to use a protocol that is not supported by the system-supplied bindings? 
The answer is that you can either implement a WCF custom binding that does support your 
required protocol – or you can create a bridge between any two endpoints that enables a 
bidirectional stream. As the Service Bus securely exposes service contracts if the contract 
specifies a two-way stream, you can then host that service on the Service Bus and exchange 
binary data – that is, any custom protocol – using the Service Bus. You can even associate ports 
on either side with the binary stream, which enables pre-existing applications to communicate 
through the Service Bus using their own proprietary protocol. Finally, you are doing this secured 
by tokens from Access Control and through firewalls and NAT routers. 

Understanding the Windows Azure Management Portal 
Building an application that uses the Service Bus is straightforward; your applications must obtain 
a security token from the Access Control service, pass that to the Service Bus in order to obtain 
permission to register endpoints and send or receive messages, and start the service, the client, 
or both. Of course, when you are building your applications, you must decide upon a design for 
your service (or client) and you will also consider which bindings to use depending on the network 
environment and application needs. However, the basic development process is that of building a 
WCF SOAP or REST application, and configuring it to use the Service Bus. 

If you are familiar with building applications that use SOAP- or REST-based communication, the 
only new information is how to interact with the Windows Azure platform management Web site to 
obtain or perform the following. 
• A Live ID to access the Windows Azure Web portal. 
• Acquire and configure the appropriate permissions from the Access Control service.  
• Create projects and namespaces using the Service Bus service by using the tokens obtained 

in the first item earlier in this section. 

 

Accessing the Windows Azure Web Portal 
To create your account and obtain or manage the necessary tokens, projects, and namespaces, 
you must have a Windows Live ID. (To start that process, see 
http://go.microsoft.com/fwlink/?LinkID=129428.) 

Choosing Namespaces 
Once that has been accomplished, you must create a project and create some namespaces that 
scope the work that you will be doing. Namespaces are scoping mechanisms, just as they are in 
.NET programming or in their use in XML.  

http://go.microsoft.com/fwlink/?LinkID=129428


 

 124 

The namespaces you create must be unique across all Service Bus and Access Control 
accounts; when you create a namespace in a Windows Azure project, you are declaring a base 
or root namespace that is owned and secured by you. That root namespace is the namespace 
that is used to manage security tokens in the Access Control service, and it is a namespace 
under which you can register any number of services related to your work. (Note that you can 
declare multiple namespaces in a project; each one is completely isolated from the others for all 
work that you may do.) For example, if you use the Windows Azure portal to declare a 
namespace of contoso-samples, the Service Bus creates the resources that you must have in 
order to host, secure, and bill for services underneath the complete namespace URI <protocol 
scheme>://contoso-samples.servicebus.windows.net/ (where protocol scheme is in the end 
either sb, http, or https, depending on which protocol schemes your endpoints require when you 
publish them).  

The important things to note about the namespace created are as follows: 
• It is location and transport independent. Knowing a namespace provides no information about 

the transport used or about the location or type of service endpoint that is registered with the 
Service Bus. (You can publish service metadata to all clients so that they can discover your 
functionality; but you must take that step yourself. By default, this information is kept private.) 

• Creating service names underneath the namespace is a way of partitioning data and 
functionality that makes sense to your work environment. 

An example can illustrate the second point. Given a registered namespace of contoso-samples 
(again, the fully qualified namespace is contoso-samples.servicebus.windows.net), the following 
endpoint URIs have names that indicate logical geographical divisions in your company in order 
to expose the same structural functionality but secured differently depending on local 
considerations: 

sb://contoso-samples.servicebus.windows.net/redmond 
sb://contoso-samples.servicebus.windows.net/paris 
sb://contoso-samples.servicebus.windows.net/tokyo 

The root namespace of contoso-samples.servicebus.windows.net can then be used with the 
Access Control service to provide secure tokens that enable interaction with one or more of the 
local services as is appropriate for the business requirements. The previous example 
demonstrates the use of namespaces and endpoints to partition functionality by geographical 
location. However, you can use namespaces and names to partition functionality and data by any 
logical category you want: by company division, by geographical location, by role, or anything 
else. (If you take the extra step to integrate the Access Control service together with Active 
Directory Federated Services or any other custom authentication and authorization system, you 
can integrate your connected application together with your pre-existing authorization system.) 

Discovering Services 
By default, services registered with the Service Bus are private. However, you can configure the 
Service Bus to make your endpoints public when you register them. The Service Bus exposes 
public endpoints in a registry published in an ATOM 1.0 feed that callers can discover by 
browsing the root namespace URI in a Web browser. For more information about how to declare 



 

 125 

that a registered endpoint is to be published as part of the namespace ATOM feed, see How to: 
Publish a Service to the Service Bus Registry. 

High Level Lifecycle Roadmap 
At the highest level, the standard Service Bus development lifecycle looks as follows. (For a 
different view of the development lifecycle based more on technological approach than workflow, 
see Service Bus Programming Lifecycle.) 
1. Create an account that uses the Service Bus and establish a namespace and endpoint. For 

more information, see How to: Create or Modify a Service Bus Service Namespace. 
2. There must be a Web service that is  running to register an endpoint with the Service Bus. If 

you have one built, go to the next step. If not, build one. For more information, seeDesigning 
a WCF Contract for the Service Bus. (For more information about building services that use 
WCF, see Designing and Implementing Services in WCF) 

3. There are two main mechanisms to register and host endpoints with the Service Bus: Use 
WCF and SOAP with the Windows Azure Service Bus SDK, or use REST-style HTTP Web 
requests. In the latter case, you can use the WCF REST Programming Model, .NET HTTP 
programming, or any other REST programming platform on any device. 
a. Using WCF and SOAP. 

i. Design and implement your WCF service. 
ii. Choose and implement a Host. You can be a local .NET application, a Windows 

Azure application, or an HTTP application. 
iii. Configure the local WCF service to register itself with the Service Bus. For more 

information, seeConfiguring a WCF Service to Register with the Service Bus 
iv. Start the host application. 
v. Build any clients. See step 4. 

b. Using any REST-enabled HTTP programming platform. This includes the WCF REST 
Programming Model. 
i. Obtain the authorization token from the Access Service and create a configuration 

that represents the message buffer parameters. For more information, seeHow to: 
Configure a Service Bus Message Buffer 

ii. Connect to the Service Bus and use your configuration values to create a message 
buffer. For more information, seeHow to: Create and Connect to a Service Bus 
Message Buffer. 

iii. Send messages to the message buffer. For more information, seeHow to: Send 
Messages to a Service Bus Message Buffer. 

iv. Retrieve messages from the message buffer. For more information, seeHow to: 
Retrieve a Message from a Service Bus Message Buffer. 

4. Create or modify a client application. For more information, seeBuilding a Service Bus Client 
Application. 

http://go.microsoft.com/fwlink/?LinkId=185077
http://go.microsoft.com/fwlink/?LinkId=185078
http://go.microsoft.com/fwlink/?LinkID=185078
http://go.microsoft.com/fwlink/?LinkID=185078


 

 126 

Overview of Service Bus Messaging Patterns 
This section contains information about the different types of messaging patterns supported by 
the Windows Azure Service Bus. 

In This Section 
Relayed and Brokered Messaging 

Describes the new “brokered” messaging features and how they differ from the relayed 
messaging pattern of earlier Service Bus releases. 

 

Queues, Topics, and Subscriptions 

Describes the new queues, topics/subscriptions, rules, and filtering features of the 
Service Bus. 

 

Naming and Registry 

An overview of the Service Bus service namespace naming system and service registry. 

 

 

Relayed and Brokered Messaging 
The messaging pattern associated with the initial releases of the Windows Azure Service Bus is 
referred to as relayed messaging. The latest version of the Service Bus adds another type of 
messaging option known as brokered messaging. The brokered messaging scheme can also be 
thought of as asynchronous messaging. 

Relayed Messaging 
The central component of the Service Bus is a centralized (but highly load-balanced) relay 
service that supports a variety of different transport protocols and Web services standards. This 
includes SOAP, WS-*, and even REST. The relay service provides a variety of different relay 
connectivity options and can even help negotiate direct peer-to-peer connections when it is 
possible. The Service Bus is optimized for .NET developers who use the Windows 
Communication Foundation (WCF), both with regard to performance and usability, and provides 
full access to its relay service through SOAP and REST interfaces. This makes it possible for any 
SOAP or REST programming environment to integrate with it.  

The relay service supports traditional one-way messaging, request/response messaging, and 
peer-to-peer messaging. It also supports event distribution at Internet-scope to enable 
publish/subscribe scenarios and bi-directional socket communication for increased point-to-point 
efficiency. In the relayed messaging pattern, an on-premise service connects to the relay service 
through an outbound port and creates a bi-directional socket for communication tied to a 



 

 127 

particular rendezvous address. The client can then communicate with the on-premises service by 
sending messages to the relay service targeting the rendezvous address. The relay service will 
then “relay” messages to the on-premises service through the bi-directional socket already in 
place. The client does not need a direct connection to the on-premises service nor is it required to 
know where the service resides, and the on-premises service does not need any inbound ports 
open on the firewall. 

You must initiate the connection between your on-premise service and the relay service, using a 
suite of WCF “relay” bindings. Behind the scenes, the relay bindings map to new transport 
binding elements designed to create WCF channel components that integrate with the Service 
Bus in the cloud.  

Relayed messaging provides many benefits, but requires the server and client to both be online 
at the same time in order to send and receive messages. This is not optimal for HTTP-style 
communication, in which the requests may not be typically long lived, nor for clients that connect 
only occasionally, such as browsers, mobile applications, and so on. Brokered messaging 
supports decoupled communication, and has its own advantages; clients and servers can 
connect when needed and perform their operations in an asynchronous manner. 

Brokered Messaging 
In contrast to the relayed messaging scheme, brokered messaging can be thought of as 
asynchronous, or “temporally decoupled.” Producers (senders) and consumers (receivers) do not 
have to be online at the same time. The messaging infrastructure reliably stores messages until 
the consuming party is ready to receive them. This allows the components of the distributed 
application to be disconnected, either voluntarily; for example, for maintenance, or due to a 
component crash, without affecting the whole system. Furthermore, the receiving application may 
only have to come online during certain times of the day, such as an inventory management 
system that only is required to run at the end of the business day. 

The core components of theService Bus brokered messaging infrastructure are Queues, Topics, 
and Subscriptions. These components enable new asynchronous messaging scenarios, such as 
temporal decoupling, publish/subscribe, and load balancing. For more information about these 
structures, see the next section. 

As with the relayed messaging infrastructure, the brokered messaging capability is provided for 
WCF and .NET Framework programmers and also via REST. 

Queues, Topics, and Subscriptions 
The new release of the Windows Azure Service Bus adds a set of cloud-based, message-
oriented-middleware technologies including reliable message queuing and durable 
publish/subscribe messaging. These “brokered” messaging capabilities can be thought of as 
asynchronous, or decoupled messaging features that support publish-subscribe, temporal 
decoupling, and load balancing scenarios using the Service Bus messaging fabric. Decoupled 
communication has many advantages; for example, clients and servers can connect as needed 
and perform their operations in an asynchronous fashion. 



 

 128 

There are three messaging patterns that form the core of the new brokered messaging 
capabilities in the Service Bus: Queues, Topics/Subscriptions, and Rules/Actions. 

Queues 
Queues offer First In, First Out (FIFO) message delivery to one or more competing consumers. 
That is, messages are typically expected to be received and processed by the receivers in the 
temporal order in which they were added to the queue, and each message is received and 
processed by only one message consumer. A key benefit of using queues is to achieve “temporal 
decoupling” of application components. In other words, the producers (senders) and consumers 
(receivers) do not have to be sending and receiving messages at the same time, because 
messages are stored durably in the queue. Furthermore, the producer does not have to wait for a 
reply from the consumer in order to continue to process and send messages.  

A related benefit is “load leveling,” which enables producers and consumers to send and receive 
messages at different rates. In many applications, the system load varies over time; however, the 
processing time required for each unit of work is typically constant. Intermediating message 
producers and consumers with a queue means that the consuming application only has to be 
provisioned to be able to handle average load instead of peak load. The depth of the queue will 
grow and contract as the incoming load varies. This directly saves money with regard to the 
amount of infrastructure required to service the application load. As the load increases, more 
worker processes can be added to read from the queue. Each message is processed by only one 
of the worker processes. Furthermore, this pull-based load balancing allows for optimum use of 
the worker computers even if the worker computers differ with regard to processing power, as 
they will pull messages at their own maximum rate. This pattern is often termed the “competing 
consumer” pattern. 

Using queues to intermediate between message producers and consumers provides an inherent 
loose coupling between the components. Because producers and consumers are not aware of 
each other, a consumer can be upgraded without having any effect on the producer. 

Creating a queue is a multi-step process. Management operations for Service Bus messaging 
entities (both queues and topics) are performed via the 
Microsoft.ServiceBus.NamespaceManager class, which is constructed by supplying the base 
address of the Service Bus namespace and the user credentials. 
Microsoft.ServiceBus.NamespaceManager provides methods to create, enumerate and delete 
messaging entities. After creating a 
Microsoft.ServiceBus.Description.SharedSecretCredential object from the issuer name and 
shared key, and a service namespace management object, you can use the 
Microsoft.ServiceBus.NamespaceManager.CreateQueue(Microsoft.ServiceBus.Messaging.
QueueDescription) method to create the queue. For example: 

// Create management credentials 

TokenProvider credentials = TokenProvider.CreateSharedSecretTokenProvider(IssuerName, 

IssuerKey); 

// Create namespace client 



 

 129 

namespaceManager namespaceClient = new 

namespaceManager(ServiceBusEnvironment.CreateServiceUri("sb", ServiceNamespace, 

string.Empty), credentials); 

You can then create a queue object and a messaging factory with the Service Bus URI as an 
argument. For example: 

QueueDescription myQueue; 

myQueue = namespaceClient.CreateQueue("TestQueue"); 

MessagingFactory factory = 

MessagingFactory.Create(ServiceBusEnvironment.CreateServiceUri("sb", ServiceNamespace, 

string.Empty), credentials);  

QueueClient myQueueClient = factory.CreateQueueClient("TestQueue"); 

You can then send messages to the queue. For example, if you have a list of brokered messages 
called MessageList, the code would appear similar to the following: 

for (int count = 0; count < 6; count++) 

{ 

    var issue = MessageList[count]; 

    issue.Label = issue.Properties["IssueTitle"].ToString(); 

    myQueueClient.Send(issue); 

} 

You can receive messages from the queue, as follows: 

while ((message = myQueueClient.Receive(new TimeSpan(hours: 0, minutes: 0, seconds: 5))) 

!= null) 

    { 

        Console.WriteLine(string.Format("Message received: {0}, {1}, {2}", 

message.SequenceNumber, message.Label, message.MessageId)); 

        message.Complete(); 

 

        Console.WriteLine("Processing message (sleeping...)"); 

        Thread.Sleep(1000); 

    } 

In the Microsoft.ServiceBus.Messaging.ReceiveMode.ReceiveAndDelete mode, the receive 
operation is single-shot, that is, when the Service Bus receives the request, it marks the message 
as being consumed and returns it to the application. 
Microsoft.ServiceBus.Messaging.ReceiveMode.ReceiveAndDelete mode is the simplest 
model and works best for scenarios in which the application can tolerate not processing a 
message in the event of a failure. To understand this, consider a scenario in which the consumer 
issues the receive request and then crashes before processing it. Since the Service Bus marks 



 

 130 

the message as being consumed, when the application restarts and begins consuming messages 
again, it will have missed the message that was consumed prior to the crash. 

In Microsoft.ServiceBus.Messaging.ReceiveMode.PeekLock mode, the receive operation 
becomes two-stage, which makes it possible to support applications that cannot tolerate missing 
messages. When the Service Bus receives the request, it finds the next message to be 
consumed, locks it to prevent other consumers from receiving it, and then returns it to the 
application. After the application finishes processing the message (or stores it reliably for future 
processing), it completes the second stage of the receive process by calling 
Microsoft.ServiceBus.Messaging.BrokeredMessage.Complete on the received message. 
When the Service Bus sees the 
Microsoft.ServiceBus.Messaging.BrokeredMessage.Complete, it will mark the message as 
being consumed. 

If the application is unable to process the message for some reason, it can call the 
Microsoft.ServiceBus.Messaging.BrokeredMessage.Abandon method on the received 
message (instead of Microsoft.ServiceBus.Messaging.BrokeredMessage.Complete). This will 
cause the Service Bus to unlock the message and make it available to be received again, either 
by the same consumer or by another completing consumer. Secondly, there is a timeout 
associated with the lock and if the application fails to process the message before the lock 
timeout expires (for example, if the application crashes), then Service Bus will unlock the 
message and make it available to be received again. 

Note that in the event that the application crashes after processing the message, but before the 
Microsoft.ServiceBus.Messaging.BrokeredMessage.Complete request was issued, the 
message will be redelivered to the application when it restarts. This is often called At Least Once 
processing; that is, each message will be processed at least once but in certain situations the 
same message may be redelivered. If the scenario cannot tolerate duplicate processing, then 
additional logic is required in the application to detect duplicates which can be achieved based 
upon the MessageId property of the message which will remain constant across delivery 
attempts. This is known as Exactly Once processing. 

For more information and a working example of how to create and send messages to and from 
queues, see the Service Bus Brokered Messaging .NET Tutorial. 

Topics and Subscriptions 
In contrast to queues, in which each message is consumed by a single consumer, topics and 
subscriptions provide a one-to-many form of communication, in a “publish/subscribe” pattern. 
Useful for scaling to very large numbers of recipients, each published message is made available 
to each subscription registered with the topic. Messages are sent to a topic and delivered to one 
or more associated subscriptions, depending on filter rules that can be set on a per-subscription 
basis. The subscriptions can use additional filters to restrict the messages that they want to 
receive. Messages are sent to a topic in the same way they are sent to a queue, but messages 
are not received from the topic directly. Instead, they are received from subscriptions. A topic 
subscription resembles a virtual queue that receives copies of the messages that are sent to the 



 

 131 

topic. Messages are received from a subscription in the identical way as they are received from a 
queue. 

By way of comparison, the message sending functionality of a queue maps directly to a topic and 
its message receiving functionality to a subscription. Among other things, this means that 
subscriptions support the same patterns described earlier in this section with regard to queues: 
competing consumer, temporal decoupling, load leveling and load balancing. 

Creating a topic is a process similar to creating a queue, as shown in the example in the previous 
section. Create the service URI, and then use the Microsoft.ServiceBus.NamespaceManager 
class to create the namespace client. You can then create a topic using the 
Microsoft.ServiceBus.NamespaceManager.CreateTopic(System.String) method. For 
example:  

TopicDescription dataCollectionTopic = 

namespaceClient.CreateTopic("DataCollectionTopic"); 

Next, add subscriptions as you want: 

SubscriptionClient myAuditSubscription = factory.CreateSubscriptionClient(myTopic.Path, 

"Inventory", ReceiveMode.ReceiveAndDelete); 

SubscriptionClient myAgentSubscription = factory.CreateSubscriptionClient(myTopic.Path, 

"Dashboard", ReceiveMode.ReceiveAndDelete); 

You then create a topic client. For example: 

MessagingFactory factory = MessagingFactory.Create(serviceUri, tokenProvider); 

TopicClient myTopicClient = factory.CreateTopicClient(myTopic.Path) 

Using the message sender, you can send and receive messages to and from the topic, as shown 
in the previous section. For example:  

foreach (BrokeredMessage message in messageList) 

{ 

    myTopicClient.Send(message); 

    Console.WriteLine( 

    string.Format("Message sent: Id = {0}, Body = {1}", message.MessageId, 

message.GetBody<string>())); 

} 

Similar to queues, messages are received from a subscription using a 
Microsoft.ServiceBus.Messaging.SubscriptionClient object instead of a 
Microsoft.ServiceBus.Messaging.QueueClient object. Create the subscription client, passing 
the name of the topic, the name of the subscription, and (optionally) the receive mode as 
parameters. For example, with the Inventory subscription: 

 

// Create the subscription client 

MessagingFactory factory = MessagingFactory.Create(serviceUri, tokenProvider);  



 

 132 

 

SubscriptionClient agentSubscriptionClient = 

factory.CreateSubscriptionClient("IssueTrackingTopic", "Inventory", 

ReceiveMode.PeekLock); 

SubscriptionClient auditSubscriptionClient = 

factory.CreateSubscriptionClient("IssueTrackingTopic", "Dashboard", 

ReceiveMode.ReceiveAndDelete);  

 

while ((message = agentSubscriptionClient.Receive(TimeSpan.FromSeconds(5))) != null) 

{ 

    Console.WriteLine("\nReceiving message from Inventory..."); 

    Console.WriteLine(string.Format("Message received: Id = {0}, Body = {1}", 

message.MessageId, message.GetBody<string>())); 

    message.Complete(); 

}           

 

// Create a receiver using ReceiveAndDelete mode 

while ((message = auditSubscriptionClient.Receive(TimeSpan.FromSeconds(5))) != null) 

{ 

    Console.WriteLine("\nReceiving message from Dashboard..."); 

    Console.WriteLine(string.Format("Message received: Id = {0}, Body = {1}", 

message.MessageId, message.GetBody<string>())); 

} 

 

As noted in the topic How to: Publish a Service to the Service Bus Registry, you can use 
Microsoft.ServiceBus.ServiceRegistrySettings to indicate whether you want your 
service to be discoverable on the Service Bus. If your service is private, then only 
individuals that know the specific URI can connect. If it is public, then anyone can 
navigate the Service Bus hierarchy and find your listener. However, queues, topics, and 
subscriptions cannot be exposed via the service registry. 

Rules and Actions 
In many scenarios, messages that have specific characteristics must be processed in specific 
ways. To enable this, you can configure subscriptions to find messages that have desired 
properties and then perform certain modifications to those properties. While Service Bus 
subscriptions see all messages sent to the topic, you can only copy a subset of those messages 

Important  



 

 133 

to the virtual subscription queue. This is accomplished using subscription filters. Such 
modifications are called Filter Actions. When a subscription is created, you can supply a filter 
expression that can operate over the properties of the message, both the system properties (for 
example, Label) and the application properties, such as StoreName in the previous example. 
The SQL filter expression is optional in this case; without a SQL filter expression, any filter action 
defined on a subscription will be performed on all the messages for that subscription. 

Using the previous example, to filter messages coming only from Store1, you would create the 
Dashboard subscription as follows: 

namespaceManager.CreateSubscription(("Dashboard", new SqlFilter("StoreName = 'Store1'"); 

With this subscription filter in place, only messages that have the StoreName property set to 
Store1 will be copied to the virtual queue for the Dashboard subscription. 

For more information about possible filter values, see the documentation for the 
Microsoft.ServiceBus.Messaging.SqlFilter and 
Microsoft.ServiceBus.Messaging.SqlRuleAction classes. Also, see the 
AdvancedFiltersSample in the Windows Azure SDK. 

See Also 
Service Bus Brokered Messaging .NET Tutorial 

Naming and Registry 
DNS is designed to map domain names to IP addresses. When you browse to a Web site, the 
first thing that occurs is a DNS lookup that determines to what IP address the friendly domain 
name resolves. Since DNS relies on public IP addresses, it does not work for identifying hosts 
located behind NAT devices without the help of a layered service such as Dynamic DNS. It is 
common for a single IP address to identify a complete network of hosts located behind a single 
NAT device. Ultimately, the DNS model is less than ideal for naming and identifying endpoints in 
a service oriented world.  

Unlike DNS, the Windows Azure Service Bus naming system is optimized for naming service 
endpoints in a host-independent manner. You can think of the naming system as a global forest 
of federated naming trees projected onto host-independent URIs. Each service namespace maps 
to a naming tree; therefore, each service namespace must have a globally unique name. The 
naming trees are “federated” because each service namespace owner controls the names within 
a service namespace. They are “trees” because of the hierarchical nature of the namespace 
(names within names within names). There can be a natural projection for these names onto 
URIs, but the resulting URIs are completely host-independent – you can have multiple services 
running on different hosts that share the same solution name. These characteristics of the 
Service Bus naming system provide a more granular, endpoint-level approach that complements 
DNS. 



 

 134 

Naming System 
The root of the Service Bus naming system is resolvable through traditional DNS techniques. The 
naming system relies on host-independent criteria – specifically the service namespace – to 
distinguish between different domains of control in the naming system. Service namespace 
owners control the names within their respective service namespaces. 

You project Service Bus names onto URIs as follows: 

[scheme]://[service-namespace].servicebus.windows.net/[name1]/[name2]/... 

The Service Bus supports three URI schemes: “sb”, “http”, and “https”. You use “http” and “https” 
for all HTTP-based endpoints, and the “sb” scheme for all other TCP-based endpoints. The 
[service-namespace] part of the host name identifies a unique naming tree in the complete 
Service Bus namespace, which is controlled by the service namespace owner. 

In the current release, nesting in the URI naming scheme is not supported. For example, 
topics and queues cannot be nested under each other. You cannot create a topic at 
https://contoso.servicebus.windows.net/HumanResources/Topic1, then a queue at its 
child location: https://contoso.servicebus.windows.net/HumanResources/Topic1/Queue1. 
Conversely, you cannot create a queue at a location such as 
https://contoso.servicebus.windows.net/HumanResources/Queue1, then a topic at its child 
location: https://contoso.servicebus.windows.net/HumanResources/Queue1/Topic1. 

Similarly, a relay endpoint (for example, an endpoint for 
Microsoft.ServiceBus.NetTcpRelayBinding, any Http relay binding, or a message 
buffer) and a messaging endpoint (for example, a queue or topic) cannot be nested under 
each other. You cannot have a messaging endpoint at 
https://contoso.servicebus.windows.net/HumanResources/Queue1 and a relay endpoint at 
https://contoso.servicebus.windows.net/HumanResources/Queue1/Relay1. 

Registry 
The Service Bus provides a service registry for publishing and discovering service endpoint 
references in a service namespace. Others can then discover the endpoints in a service 
namespace by browsing to the service namespace base address and retrieving an Atom feed. 
The service registry exposes the service namespace endpoints through a linked tree of Atom 1.0 
feeds. You navigate the service registry by navigating the naming system via HTTP, browsing to 
each level in the naming structure of the solution you want to inspect. When you browse to the 
service namespace base HTTP address, you obtain the root Atom 1.0 feed describing the first 
level of nested names. If you then browse to one of the nested names, you obtain another Atom 
1.0 feed that describes the second level of nested names. This continues until you reach a leaf 
name in the tree. 

The Service Bus can publish endpoint information into the registry whenever you register new 
endpoints. If you want a particular endpoint to be discoverable, you associate the 
ServiceRegistrySettings behavior with the Windows Communication Foundation (WCF) 

Note  

https://contoso.servicebus.windows.net/HumanResources/Topic1
https://contoso.servicebus.windows.net/HumanResources/Queue1
https://contoso.servicebus.windows.net/HumanResources/Topic1/Queue1
https://contoso.servicebus.windows.net/HumanResources/Queue1/Topic1
https://contoso.servicebus.windows.net/HumanResources/Queue1
https://contoso.servicebus.windows.net/HumanResources/Queue1/Relay1


 

 135 

endpoint, setting its Microsoft.ServiceBus.ServiceRegistrySettings.DiscoveryMode property 
to DiscoveryType.Public. The following code shows how to do this in the WCF host application: 

class Program 

{ 

    static void Main(string[] args) 

    { 

        Console.WriteLine("**** Service ****"); 

        ServiceHost host = new ServiceHost(typeof(myExample)); 

        host.Open(); 

 

        ServiceRegistrySettings settings = new ServiceRegistrySettings(); 

        settings.DiscoveryMode = DiscoveryType.Public; 

        foreach(ServiceEndpoint se in host.Description.Endpoints) 

            se.Behaviors.Add(settings); 

 

        Console.WriteLine("Press [Enter] to exit"); 

        Console.ReadLine(); 

 

        host.Close(); 

    } 

} 

With this behavior, the relay service automatically populates the service registry with information 
about the endpoint in question.  

Queues, Topics, and Subscriptions are not discoverable in the service registry. 

Service Bus Programming Lifecycle 
The following topics describe general programming lifecycles for creating an application that uses 
the Windows Azure Service Bus and the Windows Azure Access Control service. These topics 
also include optimized lifecycles for creating an Service Bus application that is hosted on 
Windows Azure, and also to a lifecycle for creating Web-based Service Bus applications that 
comply with the REST standard.  

Note  



 

 136 

In This Section 
Basic Service Bus Programming Lifecycl  e

This topic describes building a Windows Communication Foundation (WCF) Web 
service, configuring it to register itself with the Service Bus, and creating a client that 
calls the service by using the Service Bus. 

 

Windows Azure and Service Bus Programming Lifecycle 

This topic describes building a Windows Communication Foundation (WCF) Web 
service hosted in Windows Azure, configuring it to register itself with the Service Bus, 
and creating a client that calls the service by using the Service Bus. 

 

REST and Service Bus Relay Programming Lifecycle 

This topic describes building two REST-style Web service applications for the Service 
Bus.  

• The first is a Windows Communication Foundation (WCF) REST Web service that 
registers itself with the Service Bus just as the previous topic does. 

• The second application is an HTTP REST-style application that is not a WCF 
application that creates an Service Bus message buffer to store messages and a 
REST client that retrieves them from the buffer.  

 

 

 

 

See Also 
Building Web Services that Trust ACS 

Basic Service Bus Programming Lifecycle 
The Windows Azure Service Bus enables Web service applications expose their functionality to 
clients through firewalls and on different application platforms. This topic outlines the tasks that 
are required to build an application that uses the Service Bus to expose its functionality to clients. 
For a working sample application, see the Service Bus Relayed Messaging Tutorial.  

Basic Service Bus Tasks 
The tasks required to create a Windows Communication Foundation (WCF) application that 
accesses the Service Bus are as follows. If you are hosting in Windows Azure, see Windows 
Azure and Service Bus Programming Lifecycle. If you want to use a REST-style application 
together with the Service Bus, see REST and Service Bus Relay Programming Lifecycle. 



 

 137 

1. Create a service namespace. This service namespace creates a named scope within which 
the Service Bus creates resources to support Web services regardless of where they are 
originally hosted or how. For more information, see Managing Service Bus Service 
Namespaces.  

2. Define the service contract, whether using WCF or using HTTP programming directly in the 
.NET Framework (if you are using a message buffer). A contract specifies the signature of the 
service, the data it exchanges, and other required inputs, behavior specifications, and object 
invariants. For more information, see Designing a WCF Contract for the Service Bus. 

3. Implement the contract. To implement a service contract, create a class that implements the 
interface and specify custom runtime behavior.  

4. Configure the service by specifying endpoint and other behavior information. For more 
information, see Configuring a WCF Service to Register with the Service Bus.  

5. Build and run the service. For more information, see Building a Service for the Service Bus. 
6. Build and run the client application. For more information, see Building a Service Bus Client 

Application. 

As with any iterative, service-oriented software development, it may not always be appropriate to 
follow the previous steps sequentially, or even start from step 1. For example, if you want to build 
a client for a pre-existing service, you start at step 5. Or, if you are building a host service that 
others will use, you can skip step 6. 

Windows Azure and Service Bus Programming Lifecycle 
The Windows Azure Service Bus enables Web service applications expose their functionality to 
clients through firewalls and on different application platforms. This topic outlines the tasks that 
you can use to host a Web service on Windows Azure and expose its functionality using the 
Service Bus to connect your application with those of your customers.  

The tasks required for creating a Windows Azure application for the Service 
Bus 
The basic tasks required to create a Windows Azure application that accesses the Service Bus 
are the same as those in the topics described in Basic Service Bus Programming Lifecycle with 
the sole exception that you must perform some tasks required to host your application in 
Windows Azure. This is true whether your .NET application uses WCF and SOAP, the WCF 
REST Programming Model, or .NET HTTP request programming directly. 

To restate the complete lifecycle considering this: 
1. Create the Windows Azure project and service namespace. The project and service 

namespace contain the resources to support your application. For more information, 
see Managing Service Bus Service Namespaces. You must also create a Windows Azure 
Services account and project. For more information, see the Windows Azure documentation.  

2. Define the service contract that is to be registered with the Service Bus. A contract specifies 
the signature of the service and the data it exchanges. For more information, see Designing a 
WCF Contract for the Service Bus. There are no additional steps at this point: Windows 

http://go.microsoft.com/fwlink/?LinkID=185078
http://go.microsoft.com/fwlink/?LinkID=185078


 

 138 

Azure can act as the platform for an Windows Communication Foundation (WCF) interface 
for both a service and client application that has no modifications to the interface. 

3. Implement the service contract. To implement a contract, create the class whose methods 
define the operations. As with the previous step, there is nothing specific for Windows Azure 
to do at this point: Windows Azure is the host for a Web service that has no additional 
modifications to the interface implementation.  

4. Configure the service by specifying endpoint information and other behavior information. For 
more information, see Configuring a WCF Service to Register with the Service Bus. In 
addition, you must configure the Windows Azure service or client to use full trust 
authentication. You must also make sure that the Service Bus assembly is uploaded to 
Windows Azure. For more information, see How to: Configure a Windows Azure-Hosted 
Service Bus Service or Client Application. 

5. Create and run the service. For more information, see How to: Host a Service on Windows 
Azure that Accesses the Service Bus. If your service is running locally (but connecting to a 
Windows Azure-hosted client), there are no additional steps to perform. 

6. Create and build the client application. If the client application is running on the local 
computer, it requires no additional steps. 

Depending upon the state of your application, you may not have to perform all these steps, or in 
this sequence. For example, if you want to build a client for a pre-existing service, you can start at 
step 5. Or, if you are building a service that others will use, you can skip step 6. 

REST and Service Bus Relay Programming Lifecycle 
This walkthrough illustrates how to use REST-style Web service applications that use the 
Windows Azure Service Bus in two different ways. The first uses the Windows Communication 
Foundation (WCF) Web programming model to create and register a REST-style Web service for 
use with the Service Bus, and then creates a REST client that invokes the REST service through 
the Service Bus.  

The second example shows how to create a REST-style service application that uses the Service 
Bus message buffer to store messages until they are retrieved by a REST client. The message 
buffer is exposed as a REST interface to and from which applications can send and receive 
messages. This enables any form of REST-capable application to access the Service Bus, even if 
the service or client is hosted behind a firewall. In addition, a managed application can access the 
message buffer through a class wrapper. This topic outlines the tasks that are required to build a 
managed Service Bus application that complies with the REST protocol. For a working sample 
application, see the Service Bus Message Buffer Tutorial. 

Using message buffers is still supported, but future REST-style applications are advised 
to use queues, topics, and subscriptions – depending on the specific need. For more 
information on using queues, topics, and subscriptions in a REST-style application, see 
the Service Bus Brokered Messaging REST Tutorial. 

Note  



 

 139 

Creating a REST-based Application that uses the Service Bus 
The basic tasks required to create an application that accesses the Service Bus using the REST 
architecture model are as follows: 
1. Create the Service Bus and Service Bus Access Control projects and the service 

namespace. The project and service namespace contain the resources to support your 
application. For more information, seeCreating a .NET Services Account. Both styles of 
REST applications (REST applications that register Web service endpoints and those that 
only use the message buffer) must have a Windows Azure Service Bus project and 
namespace created by using the Service Bus Web portal: The former because it is a full 
Service Bus application; the latter because the message buffer is one of the resources 
created when you create a service namespace. The project also helps provide security and 
authentication, through the Access Control service. For more information, see Building 
Applications that Use Access Control Services. 

2. Define the Service Bus contract. For more information, see Designing a WCF Contract for the 
Service Bus. The main difference between using the message buffer and registering a 
service endpoint is that if you are creating and registering a service endpoint that supports 
the REST protocol, you must apply WCF attributes to your interface that map to the HTTP 
verbs GET, PUT, DELETE, and UPDATE. For For more information, seeHow to: Expose a 
REST-based Web Service Through the Service Bus. If you are only using the message 
buffer, you do not have to define a REST interface: the message buffer itself is exposed 
through a REST interface, which means there is no additional interface necessary. 

3. If you are registering a REST-based service endpoint, you must implement the contract in the 
previous step. The important point here is that the information passed through the interface 
must be in a format that is transmittable by a REST-style service, for example, a stream. As 
with the previous step, if you are only using the message buffer without additional support 
from the .NET Framework, you do not have to implement any form of service contract: the 
REST-based contract is already implemented and exposed by the message buffer.  

4. Configure the service by specifying endpoint information and other behavior information. For 
more information, seeConfiguring a WCF Service to Register with the Service Bus. For a full 
Service Bus application that supports the REST protocol, the main difference is that the 
application must use a binding that supports the REST protocol, such as 
Microsoft.ServiceBus.WebHttpRelayBinding. However, other than that restriction, the 
actual configuration is identical to any other WCF application that uses the Service Bus. In 
contrast, an application that uses only the message buffer is much simpler. For more 
information, seeHow to: Configure a Service Bus Message Buffer. 

5. Build and run the service. For more information, seeBuilding a Service for the Service Bus. 
For more information about creating an Service Bus service that supports the REST protocol, 
see How to: Create a REST-based Service that Accesses the Service Bus. In contrast, when 
non-WCF applications use the message buffer, the message buffer itself is the closest thing 
to a “host”, although one of the REST applications must have requested creating the 
message buffer. For more information, seeHow to: Create and Connect to a Service Bus 
Message Buffer. 

6. Build a client application. For more information, seeBuilding a Service Bus Client Application. 
For a message buffer application, when the message buffer is created, any application that 
connects to the message buffer (including the application that created the buffer) can send 



 

 140 

and receive information: there are no host or client applications. For more information, 
seeHow to: Send Messages to a Service Bus Message Buffer and How to: Retrieve a 
Message from a Service Bus Message Buffer. 

As with WCF applications, some scenarios do not start at the first step. For example, if you want 
to build a client for a pre-existing service, you can start at step 5 (this would be the case for an 
application that uses only the message buffer). Or, if you are building a host service that others 
will use, you can skip step 6. 

REST and Brokered Messaging Programming Lifecycle 
Service Bus queues are first-in, first-out, durable lists of messages that you can use to build 
messaging applications that are not tightly coupled to a particular time or component, enabling all 
kinds of applications to participate in loosely coupled and robust distributed applications. 

The development lifecycle mirrors that of the REST and Service Bus Relay Programming 
Lifecycle, as you do not have to create a REST-style Windows Communication Foundation 
(WCF) service contract in order to send a message. Creating a queue, a topic, or a subscription 
to a topic, or sending a message to or from one of these resources requires only the appropriate 
credentials for the specific action and the appropriate URI for the resource you want to create, 
delete, or use. 

Basic Lifecycle 
The basic lifecycle is as follows, and is completely implemented in a simple example in 
the Service Bus Brokered Messaging REST Tutorial. 
1. Use your service namespace, issuer name, and issuer key to contact the Windows Azure 

Access Control service to obtain a Simple Web Token (SWT). You use the SWT to gain 
access to your Service Bus service namespace resources. 

2. Create the resources you want to use. For example, you might create a queue or a topic. If a 
topic in which you are interested already exists, you can create a subscription to that topic, 
add a filter, and so on. 

3. Send messages to a queue or a topic. 
4. Retrieve messages from a queue or a subscription. 
5. If needed, delete the queue, topic, or subscription whose resources you want to enable the 

Service Bus to reclaim. 

See Also 
Relayed and Brokered Messaging 

Queues, Topics, and Subscriptions 

Service Bus Brokered Messaging .NET Tutorial 



 

 141 

Service Bus Authentication and Authorization with 
the Access Control Service 
The authorization of Windows Azure Service Bus operations, meaning the act of deciding 
whether an operation may or may not be performed within the current security context, is a 
cooperative effort between the Windows Azure Access Control Service (ACS) and the Service 
Bus. 

Windows Azure Access Control 
Access Control facilitates authentication, meaning it establishes the identity of a caller. Access 
Control has two means of establishing the caller identity. It either establishes the identity based 
on a namespace-scoped list of service identities (or accounts) using a classic user name and 
password scheme, or it delegates establishing the identity to an external identity provider, such 
as Active Directory Federation Services (ADFS), Windows Live ID,  Facebook, Google ID, Yahoo 
ID, or OpenID.  

Once the identity has been established, Access Control has (or receives) a number of ‘claims’ 
about the identity. Those claims make statements about the person (or the non-person account), 
and they are digitally signed by the identity provider that issued the claims, which provides an 
assurance to Access Control that the claims are correct or at least in compliance with the 
governance rules of the issuer. In other words, a set of claims stating that the represented identity 
is “Bill Gates, Chairman, Microsoft Corporation” are likely most trustworthy when issued by the 
Microsoft ADFS gateway, and less so when issued by a third party. The claims that are 
consistently available across all identity providers and also for the Access Control built-in service 
identities are the provider claim (identifying the provider itself) and the ‘nameidentifier’ claim, 
which is a provider-specific and provider-unique identifier for the given identity.  

Second, Access Control facilitates authorization by allowing the claims issued by identity 
providers to be mapped to claims that are understood by a ‘relying party’. The Service Bus is 
such a relying party, meaning that it relies on Access Control to handle authentication and 
authorization. The mapping of claims serves two purposes: first, it normalizes the claims from a 
multitude of different claim ‘lingos’ into a single set of claims understood by the service, and, 
second, the mapping acts as an authorization rule set. If there’s no mapping for a given identity to 
a set of claims understood by the service, the identity doesn’t have access to the service. 

Authentication and authorization always flows through the client, and the client is the only 
component requiring direct network visibility to all parties. It is, for example, possible to use an 
ADFS service that is not exposed outside the corporate firewall in conjunction with Access 
Control since Access Control and ADFS never talk to each other directly. Whenever the client 
wants to perform an operation on a protected resource, such as sending a message to a Service 
Bus queue, it needs to obtain proof that it is authorized to do so. That proof is acquired, from 
Access Control, in form of a ‘token’. The token is simply a container for a set of claims, and is 
digitally signed by the issuer. If Access Control is configured to establish the identity using an 
external identity provider such as ADFS, there are at least two tokens in play. The first token is 
acquired from an identity provider such as ADFS, providing one of many kinds of proof of the 



 

 142 

user’s identity as input. That token is then handed to Access Control, which evaluates it, runs the 
rules, and emits the token for the relying party. 

The Service Bus and Access Control 
The Service Bus and Access Control have a special relationship in that each Service Bus service 
namespace is paired with a matching Access Control service namespace of the same name, 
suffixed with “–sb”. The reason for this special relationship is in the way that Service Bus and 
Access Control manage their mutual trust relationship and the associated cryptographic secrets.  

The Service Bus can federate with Access Control V1 as well as with Access Control V2. All 
service namespaces that were created before the September 2011 release of the Service Bus 
are federated with Access Control V1, and all service namespaces created after the service 
upgrade are federated with Access Control V2. This topic only covers Access Control V2, which 
is the current release of the Access Control service.  

Inside the “-sb” Access Control service namespace, which you can explore from the Windows 
Azure Portal by selecting the Service Bus service namespace and then clicking the Access 
Control icon on the ribbon, is a “ServiceBus” relying party definition following the ‘Relying Party 
Applications’ navigation. The relying party definition has a ‘Realm’ value mapping to the root of 
the matching Service Bus service namespace (using the ‘http’ scheme), and sets the token type 
to ‘SWT’ and the expiration time of tokens to 1200 seconds. Furthermore, the signing keys are 
not manageable or accessible through the portal or the API.  

Associated with the “ServiceBus” relying party definition is a “Default Rule Group for Service Bus” 
containing the basic mapping that enables the ‘owner’ of a service namespace to act as super-
user on the service namespace. The rule group contains, by default, three simple rules that map 
the input ‘nameidentifier’ claim for the “owner” service identity to the three permission claims 
understood by Service Bus: ‘Send’ for all send operations, ‘Listen’ to open up listeners or receive 
messages, and ‘Manage’ to observe or manage the state of the Service Bus tenant. The Service 
Bus ignores all other claims contained in tokens issued to it. The “owner” service identity is a 
regular service identity in the Access Control service namespace. It is possible, and advised, to 
create more. In fact, using the “owner” identity should be restricted to performing administrative 
tasks. 

Relying Party Definitions and Scoping 
When a client requests an authorization token for sending a message to a queue residing at, for 
example, https://tenant.servicebus.windows.net/my/test, the token request will include a 
normalized form of the target address as the intended target realm. This ‘normalization’ simply 
uses a common URI scheme across all protocols. Therefore, requesting a token for interacting 
with a Service Bus entity residing at https://tenant.servicebus.windows.net/my/test or 
sb://tenant.servicebus.windows.net/my/test will always be done using a Realm URI using the 
‘http’ scheme http://tenant.servicebus.windows.net/foo/bar. Consequently, all relying party 
definitions must also use the ‘normalized’ URI scheme ‘http’ for the Realm URI.  

https://tenant.servicebus.windows.net/my/test
https://tenant.servicebus.windows.net/my/test
http://tenant.servicebus.windows.net/foo/bar


 

 143 

When the request arrives at Access Control, Access Controlwill match the realm URI to relying 
party definitions by means of a ‘longest prefix match’, which means that the relying party whose 
‘Realm URI’ address is the longest available prefix of the address that the token is requested for, 
the relying party definition, and its associated rule definitions are selected and run. The default 
‘ServiceBus’ relying party definition is scoped to the entirety of the corresponding Service 
Bus service namespace, meaning that its Realm URI, corresponding to the Service Bus service 
namespace root address, is a prefix to all possible addresses on a Service Bus service 
namespace. As such, the rule definitions enabled on this relying party definition grant full access 
across the entire Service Bus service namespace.  

The way to create a scoped set of authorization rules for a queue residing at, for example, 
https://tenant.servicebus.windows.net/my/test, is to create a new relying party definition, providing 
the address of the queue or a prefix of that address as the Realm URI of the new definition, either 
through the Access Control portal or the Access Control management API. On the portal, the 
steps are:  
• Under Relying Party Applications click Add. 
• Enter some display name, for example MyTest. 
• Enter http://tenant.servicebus.windows.net/my/test as the Realm URI for the scope. 
• Choose SWT as the token format. 
• Set Encryption Policy to None. 
• Set Token lifetime to 1200 seconds. 
• Click Save. 

The result is a relying party definition that is exclusive to this address. Because its Realm URI is a 
suffix of the built-in ‘ServiceBus’ relying party definition, the definition automatically inherits the 
correct signing keys so that the Service Bus trusts tokens issued based on the new definition. 
However, since there are no associated rules for new the relying party definition, so far, nobody 
will be able to access the queue, not even the “owner”, because there is no automatic implicit 
inheritance of rules between relying party definitions even if they form a hierarchy.  

After creating the new definition, there will be a “Default Rule Group for <displayname>” in the 
Rule Groups section of the Access Control portal. This new group is empty by default. In order to 
permit access to the queue, rules need to be added to the group, which is explained in the 
following section. Alternatively, an already existing rule group with rules can be enabled for the 
relying party definition. Each rule group can be seen as a separate access control list that can be 
enabled anywhere in the relaying party hierarchy. To enable file-system like inheritance, for 
example to inherit the default rules of the Service Bus service namespace root, the corresponding 
“Default Rule Group for ServiceBus” and any other rule group can simply be enabled on the 
relying party definition – which requires checking the right box in the ‘Rule groups’ section of the 
Relying Party definition on the portal. For cases in which a common set of access rules should be 
applied across a number of resources, for example common rules for a set of parallel resources 
such as sibling queues at http://tenant.servicebus.windows.net/my/test and 
http://tenant.servicebus.windows.net/my/zoo, the relying party definition can also be scoped to 
the shared service namespace branch, such as http://tenant.servicebus.windows.net/my.  

https://tenant.servicebus.windows.net/my/test
http://tenant.servicebus.windows.net/my/test
http://tenant.servicebus.windows.net/my/test
http://tenant.servicebus.windows.net/my/zoo
http://tenant.servicebus.windows.net/my


 

 144 

In other cases, scenarios may call for managing access control differently for aspects of the same 
Service Bus entity, such as different permissions on different subscriptions of a topic. In these 
cases it is possible to create a relying party definition scoped to a particular subscription name, 
such as http://tenant.servicebus.windows.net/my/test/subscriptions/sub1/, and have that definition 
hold the rules applying only to the particular named subscription. 

Defining Rules 
Rules are defined in rule groups and generally map an input claim to an output claim. All rules in 
a group yield a single combined result, so if there are three matching rules for a given input claim 
set that yield three distinct output claims, the issued authorization token will contain all three 
claims. For the Service Bus, the three permission claims are ‘Send’ for all send operations, 
‘Listen’ to open up listeners or receive messages, and ‘Manage’ to observe or manage the state 
of the Service Bus tenant. To be precise, ‘Send’, ‘Listen’, and ‘Manage’ are the permitted values 
of the claim-type ‘net.windows.servicebus.action’. Creating a rule for the Service Bus requires 
mapping an input claim, such as the nameidentifier of a service identity, to the desired permission 
claim. To grant the service identity “contoso” the permission to ‘Send’ on a queue, the rule 
definition would therefore map the issuer’s nameidentifier claim with the value “contoso” to a 
custom output claim of type ‘net.windows.servicebus.action’ with a value of ‘Send’. Granting the 
service identity all three permission claims requires three distinct rules. The goal of having just 
three permission claims is to limit the complexity of defining rules. The table below shows how the 
permission claims map to concrete operations on Service Bus entities: 
 

Operation Claim Required Claim Scope 

Service Registry   

Enumerate Private 
Policies 

Manage Any service namespace address 

Relay   

Begin listening on a 
service namespace 

Listen Any service namespace address 

Send messages to a 
listener at a service 
namespace 

Send Any service namespace address 

Queue   

Create a queue Manage Any service namespace address 

Delete a queue Manage Any valid queue address 

Enumerate queues Manage /$Resources/Queues 

Get the queue Manage or Listen or Any valid queue address 

http://tenant.servicebus.windows.net/my/test/subscriptions/sub1/


 

 145 

Operation Claim Required Claim Scope 

description Send 

Send into to the queue Send Any valid queue address 

Receive messages from 
a queue 

Listen Any valid queue address 

Abandon or complete 
messages after 
receiving the message 
in peek-lock mode 

Listen Any valid queue address 

Defer a message for 
later retrieval 

Listen Any valid queue address 

Deadletter a message Listen Any valid queue address 

Get the state associated 
with a message queue 
session 

Listen Any valid queue address 

Set the state associated 
with a message queue 
session 

Listen Any valid queue address 

Topic   

Create a topic Manage Any service namespace address 

Delete a topic Manage Any valid topic address 

Enumerate topics Manage /$Resources/Topics 

Get the topic description Manage or Send Any valid topic address 

Send to the topic Send Any valid topic address 

Subscription   

Create a subscription Manage Any service namespace address 

Delete subscription Manage ../myTopic/Subscriptions/mySubscription 

Enumerate 
subscriptions 

Manage ../myTopic/Subscriptions 

Get subscription 
description 

Manage or Listen ../myTopic/Subscriptions/mySubscription 

Abandon or complete 
messages after 

Listen ../myTopic/Subscriptions/mySubscription 



 

 146 

Operation Claim Required Claim Scope 

receiving the message 
in peek-lock mode 

Defer a message for 
later retrieval 

Listen ../myTopic/Subscriptions/mySubscription 

Deadletter a message Listen ../myTopic/Subscriptions/mySubscription 

Get the state associated 
with a topic session 

Listen ../myTopic/Subscriptions/mySubscription 

Set the state associated 
with a topic session 

Listen ../myTopic/Subscriptions/mySubscription 

Rule   

Create a rule Manage ../myTopic/Subscriptions/mySubscription 

Delete a rule Manage ../myTopic/Subscriptions/mySubscription 

Enumerate rules Manage or  Listen ../myTopic/Subscriptions/mySubscription/Rules 
 

Using Token Providers 
A token provider is a generic construct in the .NET managed API for the Service Bus that allows 
turning some form of credential into an authorization token issued by the Access Control service, 
that can then be passed on to the Service Bus to perform the desired operation. 
Microsoft.ServiceBus.TokenProvider is an abstract base class with three concrete 
implementations accessible via factory methods for the most basic scenarios: 
• Shared Secret – allows obtaining a token based on a service identity (and the shared key 

associated with that identity) that has been defined in the Service Bus service namespace “-
sb” buddy namespace in Access Control. The pre-provisioned service identity created when 
the service namespace is created is called “owner” and its shared secret is available through 
the management portal. 

• Simple Web Token (SWT) – allows obtaining a token based on a previously acquired SWT 
token passed to Access Control via the token provider. The token is passed to Access 
Control as a binary token using a WS-Trust/WS-Federation RST/RSTR request. Please refer 
to the Access Controldocumentation for information about how to configure WS-Federation 
providers. 

• SAML – allows obtaining a token based on a previously acquired SAML token passed to 
Access Control via the token provider. The token is passed to Access Control using a WS-
Trust/WS-Federation RST/RSTR request. Please refer to the Access Controldocumentation 
for information about how to configure WS-Federation providers. 

The Service Bus Microsoft.ServiceBus.Messaging.MessagingFactory, 
Microsoft.ServiceBus.NamespaceManager, and 



 

 147 

Microsoft.ServiceBus.TransportClientEndpointBehavior APIs accept 
Microsoft.ServiceBus.TokenProvider instances. The token provider is called as tokens are 
required, which includes scenarios where a long-lived connection needs to acquire a new token 
once the existing token has passed its expiration (which defaults to 1200 seconds). Federation 
scenarios that require user interaction do require implementation of a custom token provider.  

As an example, a custom token provider to enable a particular Facebook user to send messages 
to a particular queue will have to present the user, via Access Control, with the appropriate 
Facebook UI to establish the Facebook identity, redirect via Access Control to trade the 
Facebook token for an Access Control token for the Service Bus, and then extract the Access 
Control token as the request gets redirected to the local application. The Service Bus Codeplex 
site will contain a growing collection of token provider examples for customization. 

Service Bus Bindings 
The primary programming model for working with the Windows Azure Service Bus on the .NET 
platform is Windows Communication Foundation (WCF). The SDK includes a set of new WCF 
bindings that automate the integration between your WCF services and clients with the relay 
service offered by the Service Bus. In most cases, you just have to replace the current WCF 
binding that you are using with one of the Service Bus “relay” bindings. 

The following table lists all of the Service Bus WCF bindings and the standard WCF bindings to 
which they correspond. The most frequently used WCF bindings, such as BasicHttpBinding, 
WebHttpBinding, WS2007HttpBinding, and NetTcpBinding, all have a corresponding Service Bus 
binding with a very similar name (just insert “Relay” before “Binding”). There are only a few new 
relay bindings – NetOnewayRelayBinding and NetEventRelayBinding – that do not have a 
corresponding WCF binding. 
 

Standard WCF Binding Equivalent Relay Binding 

BasicHttpBinding BasicHttpRelayBinding 

WebHttpBinding WebHttpRelayBinding 

WS2007HttpBinding WS2007HttpRelayBinding 

NetTcpBinding NetTcpRelayBinding 

N/A NetOnewayRelayBinding 

N/A NetEventRelayBinding 
 

The relay bindings work in a similar manner to the standard WCF bindings. For example, they 
support the different WCF message versions (SOAP 1.1, SOAP 1.2, and None), the various WS-* 
security scenarios, reliable messaging, streaming, metadata exchange, the Web programming 
model (e.g., [WebGet] and [WebInvoke]), and many more standard WCF features. There are only 
a few WCF features not supported by design including atomic transaction flow and transport level 
authentication. 



 

 148 

If you are familiar with how WCF works, you might be interested to know how the new bindings 
(shown earlier in this topic) map to the underlying WCF transport binding elements. The following 
table specifies the transport binding element for each relay binding. As you can see, the SDK 
includes several new WCF transport binding elements including RelayedHttpBindingElement, 
RelayedHttpsBindingElement, TcpRelayTransportBindingElement, and 
RelayedOnewayTransportBindingElement. 
 

Relay Binding Transport Binding Element 

BasicHttpRelayBinding RelayedHttp(s)BindingElement 

WebHttpRelayBinding RelayedHttp(s)BindingElement 

WS2007HttpRelayBinding RelayedHttp(s)BindingElement 

NetTcpRelayBinding TcpRelayTransportBindingElement 

NetOnewayRelayBinding RelayedOnewayTransportBindingElement 

NetEventRelayBinding RelayedOnewayTransportBindingElement 
 

These new WCF primitives are ultimately what provide the low-level channel integration with the 
relay service behind the scenes, but those details are hidden from view behind the binding. The 
following sections discuss the details of the main WCF relay bindings and show how to use them. 

NetMessagingBinding 
The Microsoft.ServiceBus.Messaging.NetMessagingBinding binding can be used by WCF-
enabled applications to send and receive messages through queues, topics and subscriptions. 
For more information, see NetMessagingBinding. 

NetOnewayRelayBinding 
Microsoft.ServiceBus.NetOnewayRelayBinding is the most constrained of the all the relay 
bindings, because it only supports one-way messages. However, it is also specifically optimized 
for that scenario. By default, the Microsoft.ServiceBus.NetOnewayRelayBinding binding uses 
SOAP 1.2 over TCP together with a binary encoding of the messages, although these 
communication settings are configurable through standard binding configuration techniques. 
Services that use this binding must always use the “sb” protocol scheme. 

When using this binding in the default configuration, the on-premise WCF service attempts to 
establish an outbound connection with the relay service in order to create a bidirectional socket. 
In this case, it always creates a secure TCP/SSL connection through outbound port 828. During 
the connection process the WCF service authenticates (by supplying a token acquired from 
Access Control), specifies a name on which to listen in the relay service, and tells the relay 
service what type of listener to create. When a WCF client uses this binding in the default 
configuration, it creates a TCP connection with the relay via port 808 (TCP) or 828 (TCP/SSL), 

http://msdn.microsoft.com/en-us/library/hh532034(VS.103).aspx


 

 149 

depending on the binding configuration. During the connection process it must authenticate with 
the relay by supplying a token acquired from Access Control. Once the client has successfully 
connected, it can start to send one-way messages to the Service Bus to be “relayed” to the on-
premises service through its TCP connection 

If you set the Microsoft.ServiceBus.NetOnewayRelayBinding binding security mode property 
to Transport, the channel will require SSL protection. In this case, all traffic sent to and from the 
relay service will be protected via SSL; however, it is important to realize that the message will 
pass through the relay service in the clear. If you want to ensure full privacy, you should use the 
Message security mode, in which case you can encrypt everything except the addressing 
information in the message passing through the relay service. 

The Microsoft.ServiceBus.NetOnewayRelayBinding binding requires all operations on the 
service contract to be marked as one-way operations (IsOneWay=true). Assuming that’s the case, 
to use this WCF binding, specify it on your endpoint definitions and supply the necessary 
credentials. 

System Connectivity Mode 
When using the Microsoft.ServiceBus.NetOnewayRelayBinding, the on-premise WCF service 
connects to the relay service over TCP by default. If you are operating in a network environment 
that does not enable any outbound TCP connections beyond HTTP(s), you can configure the 
various relay bindings to use a more aggressive connection mode to work around those 
constraints. This is made possible by configuring the on-premises WCF service to establish an 
HTTP connection with the relay service (instead of a TCP connection). The Service Bus provides 
a system-wide ConnectivityMode setting that you can configure with one of three values: Tcp, 
Http, and AutoDetect (see the following table). If you want to make sure that your services 
connect over HTTP, set this property to Http. 
 

ConnectivityMode Description 

Tcp Services create TCP connections with the relay service through port 
828 (SSL). 

Http Services create an HTTP connection with the relay service making it 
easier to work around TCP port constraints. 

AutoDetect (Default) This mode automatically selects between the Tcp and Http modes 
based on an auto-detection mechanism that probes whether either 
connectivity option is available for the current network environment and 
prefers Tcp. 

 

AutoDetect is the default mode, which means the relay bindings will automatically determine 
whether to use TCP or HTTP for connecting the on-premises service to the relay service. If TCP 
is possible on the given network configuration, it will use that mode by default (that is, it attempts 
to use TCP by sending a ping message to a connection-detecting URL). If the TCP connection 



 

 150 

fails, it automatically switches to the HTTP mode. Hence, most of the time, you do not have to set 
this property explicitly because the default “auto detect” behavior determines the behavior for you. 
The only time that you have to set this property explicitly is when you want to force either TCP or 
HTTP. 

You can set the connectivity mode at the AppDomain-level through the static 
Microsoft.ServiceBus.ServiceBusEnvironment class. It provides a 
Microsoft.ServiceBus.ServiceBusEnvironment.SystemConnectivity property in which you 
can specify one of the three ConnectivityMode values shown earlier in this section. The 
following code illustrates how to modify an application to use the HTTP connectivity mode: 

... 

ServiceBusEnvironment.SystemConnectivity.Mode = ConnectivityMode.Http; 

ServiceHost host = new ServiceHost(typeof(OnewayService), address); 

host.Open(); 

... 

The system connectivity mode setting takes effect on all of the relay bindings. 

NetEventRelayBinding 
Microsoft.ServiceBus.NetEventRelayBinding is very similar to the 
Microsoft.ServiceBus.NetOnewayRelayBinding binding, in the way it is implemented. The 
binding defaults and security options are identical to those for 
Microsoft.ServiceBus.NetOnewayRelayBinding. In addition, the mechanics around how 
clients/services interact with the relay service are basically the same. In fact, the 
Microsoft.ServiceBus.NetEventRelayBinding class actually derives from the 
Microsoft.ServiceBus.NetOnewayRelayBinding class. 

The main difference in the Microsoft.ServiceBus.NetEventRelayBinding binding is that it lets 
you register multiple WCF services with the same Service Bus address. When a client sends a 
message to such an address, the relay service multicasts the message to all on-premise WCF 
services currently subscribed to that address. 

The Microsoft.ServiceBus.NetEventRelayBinding binding supports the same 
Microsoft.ServiceBus.ServiceBusEnvironment.SystemConnectivity options as 
Microsoft.ServiceBus.NetEventRelayBinding. When you configure the 
Microsoft.ServiceBus.ServiceBusEnvironment.SystemConnectivity property on the 
Microsoft.ServiceBus.ServiceBusEnvironment class, it takes effect for all endpoints. Hence, 
you can use the aggressive HTTP connectivity mode for all your on-premise 
Microsoft.ServiceBus.NetEventRelayBinding endpoints if they are hosted in a locked-down 
network environment that blocks outbound TCP connections. 

NetTcpRelayBinding 
The Microsoft.ServiceBus.NetTcpRelayBinding binding supports two-way messaging 
semantics and is very closely aligned with the standard WCF NetTcpBinding – the key 



 

 151 

difference is that Microsoft.ServiceBus.NetTcpRelayBinding creates a publicly-reachable TCP 
endpoint in the relay service. 

By default, the Microsoft.ServiceBus.NetTcpRelayBinding binding supports SOAP 1.2 over 
TCP and it uses binary serialization for efficiency. Although its configuration is very similar to that 
of the NetTcpBinding, their underlying TCP socket layers are different and are therefore not 
directly compatible with each other. This means that client applications will also have to be 
configured to use Microsoft.ServiceBus.NetTcpRelayBinding in order to integrate. 

First, the on-premises WCF service establishes a secure outbound TCP connection with the relay 
service. During the process, it must authenticate, specify an address to listen on, and specify 
what type of listener to create in the relay. Up to this point, it is very similar to the 
Microsoft.ServiceBus.NetOnewayRelayBinding binding. When an incoming message arrives 
on one of the front nodes, a control message is then routed down to the on-premises WCF 
service indicating how to create a rendezvous connection back with the client front-end node. 
This establishes a direct socket-to-socket forwarder for relaying TCP messages. 

The Microsoft.ServiceBus.NetTcpRelayBinding binding supports two connection modes (see 
Microsoft.ServiceBus.TcpRelayConnectionMode) that control how the client and service 
communicate with each other through the relay service (see the following table). 
 

TcpConnectionMode Description 

Microsoft.ServiceBus.
TcpRelayConnectionM
ode.Relayed (default) 

All communication is relayed through the relay service. The SSL-
protected control connection is used to negotiate a relayed end-to-end 
socket connection that all communication flows through. Once the 
connection is established the relay service behaves as a socket 
forwarder proxy relaying a bi-directional byte stream. 

Microsoft.ServiceBus.
TcpRelayConnectionM
ode.Hybrid 

The initial communication is relayed through the relay service 
infrastructure while the client/service negotiate a direct socket 
connection to each other. The coordination of this direct connection is 
governed by the relay service. The direct socket connection algorithm 
can establish direct connections between two parties that sit behind 
opposing firewalls and NAT devices. The algorithm uses only outbound 
connections for firewall traversal and relies on a mutual port prediction 
algorithm for NAT traversal. Once a direct connection can be 
established the relayed connection is automatically upgraded to a 
direct connection without message or data loss. If the direct connection 
cannot be established, data will continue to flow through the relay 
service as usual. 

 

Relayed mode is the default, while Hybrid mode instructs the relay service to establish a direct 
connection between the client and service applications. Therefore, no data has to pass through 
the relay. It is considered a “hybrid” mode because it starts by relaying information through the 
relay while it attempts to upgrade to a direct connection. If successful, it will switch over to a direct 



 

 152 

connection without any data loss. If it cannot establish a direct connection, it will continue to use 
the relay service. The Microsoft.ServiceBus.NetTcpRelayBinding binding also supports the 
Microsoft.ServiceBus.ServiceBusEnvironment.SystemConnectivity feature when you must 
configure the on-premises service to connect to the relay service over HTTP. When you configure 
the Microsoft.ServiceBus.ServiceBusEnvironment.SystemConnectivity property, it takes 
effect for all endpoints. Hence, you can use the aggressive HTTP connectivity mode for all your 
on-premise Microsoft.ServiceBus.NetTcpRelayBinding endpoints if they are being hosted in a 
locked-down network environment that blocks outbound TCP connections. 

HTTP Relay Bindings 
All of the bindings discussed to this point require clients to use WCF on the client side of the 
interaction. When you need non-WCF clients to integrate with your Service Bus endpoints, you 
can support relaying HTTP-based messages by selecting one of the various HTTP relay bindings. 

The Service Bus includes several HTTP bindings –
Microsoft.ServiceBus.WebHttpRelayBinding, 
Microsoft.ServiceBus.BasicHttpRelayBinding, and 
Microsoft.ServiceBus.WS2007HttpRelayBinding. These HTTP bindings offer wider reach and 
more interoperability because they can support any client that knows how to use the standard 
protocols supported by each of these bindings. Microsoft.ServiceBus.WebHttpRelayBinding 
and Microsoft.ServiceBus.BasicHttpRelayBinding provide the greatest reach because they 
are based on HTTP/REST and basic SOAP, respectively. The 
Microsoft.ServiceBus.WS2007HttpRelayBinding binding can provide additional layers of 
functionality through the WS-* protocols. When using the 
Microsoft.ServiceBus.WS2007HttpRelayBinding binding, clients will have to support the same 
suite of WS-* protocols enabled on the endpoint. 

Regardless of which HTTP relay binding you use, the mechanics of what occurs in the relay 
service is largely the same. The on-premises WCF service first establishes either a TCP or HTTP 
connection with the relay service depending on the Microsoft.ServiceBus.ConnectivityMode 
setting that is being used. The Microsoft.ServiceBus.ConnectivityMode functionality works the 
same on all HTTP relay bindings. Clients then start to send messages to the HTTP endpoint 
exposed by the relay service. This means WCF is no longer necessary on the client – any 
HTTP/SOAP compatible library will do. When an incoming message arrives on one of the front 
nodes, a control message is then routed to the service indicating how to create a rendezvous 
connection back with the front-end node of the client. This establishes a direct HTTP-to-socket 
forwarder for relaying the HTTP messages. 

The relay service knows how to route SOAP 1.1, SOAP 1.2, and plain HTTP (REST) messages 
transparently. You control the messaging style and the various WS-* protocols you want to use by 
configuring one of the HTTP relay bindings as you would any other WCF binding. 



 

 153 

Designing a WCF Contract for the Service Bus 
The following topics describe how to design an Windows Communication Foundation (WCF) 
service contract that can be registered to be available on at a Windows Azure Service Bus 
endpoint. 

In This Section 
How to: Design a WCF Service Contract for use with the Service Bu  s

This topic describes how to create a SOAP-based WCF service contract that can be 
configured to use the Service Bus. 

 

How to: Expose a REST-based Web Service Through the Service Bus 

This topic describes how to create a REST-based WCF service contract that can be 
configured to use the Service Bus. 

 

Designing an Windows Azure-compliant Windows Azure Service Contract 

Because WCF service contracts – whether SOAP- or REST-based – can be hosted in 
Windows Azure, you can follow the instructions in either of the previous two topics. 

 

 

How to: Design a WCF Service Contract for use with the Service 
Bus 
After you have created your Windows Azure Service Bus project, you can start writing code. The 
first step in writing the code is to define the interface that your service application uses to 
communicate with the client application. This interface, known as a service contract, is almost 
identical to a Windows Communication Foundation (WCF) contract: it defines the name of the 
interface, and also to the methods and properties exposed by the interface. You can use WCF-
style attributes to add information to the contract, and you use the same syntax to do this. The 
main difference is that the Service Bus is an extension of WCF. Therefore, you must also define a 
channel to connect to the Service Bus. However, other extensions of WCF use a similar channel. 
Therefore, the channel itself is not unique to the Service Bus. The following discussion is a brief 
overview of creating an Service Bus contract. 

As with WCF, both the service and client applications are required to have a copy of the contract 
in their code. There are four ways this can occur: 
1. Manually define the contract – this is the default, and is used most often when you are 

developing the interface. A simplified process for doing this is shown later in this section. For 
a complete discussion, see Designing Service Contracts in the WCF documentation. 



 

 154 

2. Copy the contract from the service code – this is copying and pasting the contract from 
the service code, or sharing in the project. This is accomplished when you have quick access 
to the code, for example, when you are also the developer writing the client. Many of the 
sample applications in the Windows Azure SDK share the same interface definition, because 
both the client and service are in the same project.  

3. Use the ServiceModel Metadata Utility Tool (scvutil.exe) – this is an application that you 
point to an exposed metadata endpoint on a running service application. It returns a file that 
contains the associated service contract. A simplified procedure for doing this is described 
later in this section. For a complete discussion, see Accessing Services Using a WCF 
Client and ServiceModel Metadata Utility Tool (Svcutil.exe) in the WCF documentation. 
The main difference in using Svcutil.exe on an Service Bus application is that the URI passed 
to the tool is on the Service Bus, instead of on the local host. Note that Svcutil.exe requires 
the target service to have the appropriate metadata exposed. For more information, seeHow 
to: Expose a Metadata Endpoint.  

4. Add a service reference through Visual Studio – this is the UI version of Svcutil.exe, and 
can be accessed through the Visual Studio environment. A simplified procedure for accessing 
the Add Service Reference dialog box is shown later in this section. For more information, 
seeHow to: Add, Update, or Remove a Service Reference in the Visual Studio 
documentation. As stated previously, adding a service reference requires that the target 
service expose the necessary information through a metadata endpoint. 

1. Create the service contract by applying the 
System.ServiceModel.ServiceContractAttribute attribute to the interface that defines 
the methods the service is to implement. 

[ServiceContract] 

public interface IMyContract 

{ 

    void Send(int count); 

} 

 

2. Indicate which methods in the interface a client can invoke by applying the 
System.ServiceModel.OperationContractAttribute attribute to them. 

[ServiceContract] 

public interface IMyContract 

{ 

    [OperationContract] 

    void Send(int count); 

} 

 

To manually create a Service Bus contract 



 

 155 

3. It best to explicitly define the name of your contract, and also to the namespace of your 
application, when declaring the contract. Doing so prevents the infrastructure from using 
the default name and namespace values. Note that this is not the service namespace: in 
this case, it represents a unique identifier for your contract, and should contain some kind 
of versioning information.  

[ServiceContract(Name = "IMyContact", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/MyContractV1

")] 

public interface IMyContract 

{ 

    [OperationContract] 

    void Send(int count); 

} 

 

4. Declare a channel that inherits from your interface and also to the IClientChannel 
interface. 

[ServiceContract(Name = "IMyContact", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/MyContractV1

")] 

public interface IMyContract 

{ 

    [OperationContract] 

    void Send(int count); 

} 

 

public interface IOnewayChannel : IOnewayContract, 

IClientChannel { } 

5. If you are creating a service application, implement the interface elsewhere in your code. 

1. Ensure that the service is running before you try to retrieve the metadata. 
2. Use the command line to move to the location of the Svcutil.exe took in the Windows 

SDK.  

The default installation path is C:\Program Files\Microsoft SDKs\Windows\v6.0\Bin.  

From the command line, run the following command: 

Svcutil.exe <service's Metadata Exchange (MEX) address or 

HTTP GET address> 

To use Svcutil.exe to create a service contract from a service application 

http://samples.microsoft.com/ServiceModel/Relay/MyContractV1
http://samples.microsoft.com/ServiceModel/Relay/MyContractV1


 

 156 

If the target address has the appropriate metadata exposed, you will retrieve a file that 
contains WCF client code that the client application can use to start the service 
application. 

1. In Solution Explorer, right-click the name of the project to which you want to add the 
service. Then click Add Service Reference. 
The Add Service Reference dialog box appears.  

2. In the Address box, enter the URL for the service. Then click Go to search for the 
service. If the service implements username/password security, you may be prompted for 
a username and password.  

3. In the Service list, expand the node for the service that you want to use, and then select 
a service contract.  

4. In the Namespace box, enter the namespace that you want to use for the reference.  
5. Click OK to add the reference to the project.  
6. A service client (proxy) is generated, and metadata describing the service is added to the 

App.config file.  

 

How to: Expose a REST-based Web Service Through the Service 
Bus 
Exposing a REST-based service via the Windows Azure Service Bus requires no special steps 
beyond what is required to make any Windows Communication Foundation (WCF) service REST-
based. The main change is the addition of a series of attributes to the contract definition that map 
the contract operations to commands in the REST protocol. Note that these attributes are WCF 
attributes; the ability to define an interface as REST-compliant is an aspect of WCF, instead of 
anything specific to the Service Bus. Thus, the following is a simplified procedure for tagging a 
contract to be REST-compliant. For a complete discussion, see WCF REST Programming 
Model in the WCF documentation. 

If you plan to develop an application that uses the message buffer, you do not have to 
define an Service Bus contract: the message buffer is already exposed by using a REST 
interface. For more information, seeWorking with a Service Bus Message Buffer. 

1. Define a standard Service Bus contract, as shown in the topic How to: Design a WCF 
Service Contract for use with the Service Bus. 

2. When defining the service contract with the 
System.ServiceModel.OperationContractAttribute attribute, use one of the following 
values to indicate how the member maps to the REST protocol:  

To add a Service Reference through Visual Studio 

Note  

To define a REST-compliant interface for a Service Bus application 



 

 157 

 

GET [OperationContract, WebGet] or [OperationContract]  

[WebGet] 

PUT [OperationContract]  

[WebInvoke(Method = “PUT”)] 

DELETE [OperationContract]  

[WebInvoke(Method = “DELETE”)] 

POST [OperationContract]  

[WebInvoke] 
 

The following example shows how to tag an interface member as a REST-style GET 
member. 

public interface ImageContract 

{ 

    [OperationContract, WebGet] 

    Message GetImage(); 

} 

 

3. If you are designing a service, implement the contract as a class elsewhere in your 
project. 

 

Designing a Windows Azure-Compliant Service Bus Contract 
A contract used by a Windows Azure Service Bus application that is running on Windows Azure is 
no different from the contract used by an Service Bus application that is running on the local 
computer. Any differences are in the code, or in the configuration file specific to the application 
itself, not in how the interfaces are created. For more information about that procedure, see, How 
to: Design a WCF Service Contract for use with the Service Bus. 

Configuring a WCF Service to Register with the 
Service Bus 
Configuring an application that uses the Windows Azure Service Bus requires that you set the 
following properties: 
• The name of the service you are exposing. 
• The interface (representing the service contract) your application either exposes or connects 

through. 



 

 158 

• The type of binding your application uses, which includes transport, security, and encoding 
settings. 

• The address at which the contract is available.  

When using WCF you can set these properties in an WCF service or client application either 
programmatically or in an App.config file. However, it is usually best to specify the binding and 
address information declaratively in a configuration file, instead of imperatively in code unless 
your specific scenario requires it. Defining endpoints in code is usually not practical because the 
bindings and addresses for a deployed service are typically different from those used as the 
service is being developed. More generally, keeping the binding and addressing information out 
of the code enables them to change without having to recompile or redeploy the application. 

Note that if you do not have the Windows Azure SDK installed on a particular computer the 
Machine.config file does not have the necessary extensions that enable the .NET run time to 
interpret Service Bus-specific information. While there are workarounds for this situation, it is 
usually easier to define your configuration in the code. (For more information about working to 
enable application configuration files, see the RelayConfigurationInstaller.exe Tool).  

The following list contains the general scenarios for configuring an Service Bus application. For 
additional information about how to configure a WCF application, see Configuring Services in 
the WCF documentation.  
• Basic Application 

This type of application is a WCF SOAP-based application that is configured to use the 
Service Bus as a secured relay to connect to other applications. The only differences 
required to use the Service Bus are the type of binding and the endpoint address. WCF 
applications that use the Service Bus use one of the relay bindings available in the Windows 
Azure SDK, bindings which have authentication and transport elements not present in the 
standard WCF bindings. Similarly, the endpoint address that is used for the service endpoint 
is an Service Bus URI based on the registered Service Bus namespace name (and may also 
have a different protocol scheme), whereas a regular WCF application uses an address 
based on the local host. Because these are the only two configuration differences, you can 
often – but not always – just reconfigure a currently existing WCF application to expose its 
services through the Service Bus 

• REST-based Application 

The topics in this documentation describe are two types of REST applications: those that use 
the WCF Web programming model and the Windows Azure SDK, and one that does not. 
However, the topics in this section only describe REST applications that use the Windows 
Azure SDK as a programming foundation. (REST-based applications that do not use the 
Windows Azure SDK can use the message buffer as a location to and from which to send 
and receive messages. For more information about about REST applications that use the 
message buffer, see Working with a Service Bus Message Buffer.) 

If your application does use the Windows Azure SDK, you can configure your application just 
as any other REST-based WCF service: you must use a relay binding that supports HTTP, 
such as Microsoft.ServiceBus.WebHttpRelayBinding or 
Microsoft.ServiceBus.WS2007HttpRelayBinding, and you must apply the appropriate 



 

 159 

WCF attributes to your interface, and confirm that your implementation can send and receive 
HTTP messages and events. For more information, seeDesigning a WCF Contract for the 
Service Bus. 

• Windows Azure-hosted Application 

Because Windows Azure does not have the Windows Azure SDK installed it does not have 
the information necessary in its Machine.config file to identify configuration elements specific 
to Service Bus. If you must use an App.config file, you can include all of the necessary 
information into an App.config file by using the RelayConfigurationInstaller.exe Tool. 
However, whereas this enables you to use an App.config file together with Windows Azure, 
you may encounter duplication issues on your development computer. Therefore, we 
recommend that when you use Windows Azure, you configure your applications 
programmatically.  

In addition, you must set your Windows Azure worker or Web role to Full Trust – this is 
required for all applications that use the Service Bus. This is not specified in the configuration 
file, but in the ServiceDefinition.csdef file. For more information, seeHow to: Configure a 
Windows Azure-Hosted Service Bus Service or Client Application. 

In This Section 
How to: Configure a Service Bus Service Programmatically 

How to: Configure a Service Bus Service Using a Configuration File 

How to: Configure a Service Bus Client Using Code 

How to: Configure a Service Bus Client Using a Configuration File 

How to: Configure a Windows Azure-Hosted Service Bus Service or Client Application 

How to: Change the Connection Mode 

Creating a Custom Service Bus Binding 

Windows Azure Service Bus Quotas 

Service Bus Port Settings 

How to: Configure a Service Bus Service Programmatically 
Once you have defined and implemented the interface for the Service Bus service in your code, 
you can start configuring your application. Note that configuring an Service Bus application is very 
similar to configuring a Windows Communication Foundation (WCF) application, as described in 
Configuring Services in the WCF documentation. Therefore, this topic contains a simplified 
procedure for configuring an Service Bus application, and also a discussion of the setting specific 
to the Service Bus.  

In addition to the issues discussed in Configuring a WCF Service to Register with the Service 
Bus, an Service Bus service must determine what kind of authentication and transport security, if 
any, is required. Authentication security is the type of security necessary for the service to 
connect to the Service Bus. A service is always required to present authentication credentials to 



 

 160 

the Service Bus, usually in the form of a shared secret (that is, issuer name and secret) token. 
However, the service also determines what type of authentication credentials the client 
applications must use in order to connect to the service. By default, client authentication is set to 
RelayClientAuthenticationType.RelayAccessToken, which means that the client must present 
some form of authentication to the Service Bus. In the current version of Windows Azure, this is 
always another shared secret token. In contrast, transport security determines whether it must 
connect with some form of secure line. This is referred to as “end-to-end” security because it 
covers the whole connection between the service, the Service Bus, and the client. In contrast, 
client authentication covers only the required relationship to connect from the service to the 
Service Bus. By default, the transport security is set to EndToEndSecurityMode.Transport. This 
means that security is provided using some form of secure transport, such as HTTPS. It is 
recommended that you keep the end-to-end security mode set to Transport unless you have a 
compelling reason to change it, as doing this might reduce the security of your application. For 
more information about security settings, see Securing and Authenticating a Service Bus 
Connection 

The following procedure describes how to configure an Service Bus service programmatically. 

1. Create the URI of the endpoint that includes your service namespace name and schema 
type. 

string serviceNamespace = "myServiceNamespace"; 

Uri uri = ServiceBusEnvironemnt.CreateServiceUri("sb", 

serviceNamespace, "sample/log/"; 

 

The prefix “sb” indicates that this URI uses the Service Bus schema. Other schemas 
include HTTP or HTTPS.  

2. Instantiate the host with the contract and URI. 

host = new ServiceHost(typeof(EchoService), uri); 

3. Declare and implement the type of authentication credentials to use.  

string issuerName = "MY ISSUER NAME" 

string issuerSecret = "MY SECRET"; 

TransportClientEndpointBehavior 

sharedSecretServiceBusCredential = new 

TransportClientEndpointBehavior(); 

sharedSecretServiceBusCredential.CredentialType = 

TransportClientCredentialType.SharedSecret; 

sharedSecretServiceBusCredential.Credentials.SharedSecret.Iss

uerName = issuerName; 

sharedSecretServiceBusCredential.Credentials.SharedSecret.Iss

To programmatically configure a Service Bus Service 



 

 161 

uerSecret = issuerSecret; 

All services are required to use authentication credentials to connect to the Service Bus. 
Note that hard-coding the issuer name and secret into your code is not a secure practice. 
For example, many of the samples in the Windows Azure SDK prompt the user for this 
information. 

4. Declare the type and instance of the contract. 

ContractDescription contractDescription = 

ContractDescription.GetContract(typeof(IEchoContract), 

typeof(EchoService)); 

5. Add the contract description to the service endpoint. 

ServiceEndpoint serviceEndPoint = new 

ServiceEndpoint(contractDescription); 

6. Add the URI to the service endpoint. 

serviceEndPoint.Address = new EndpointAddress(uri); 

7. Declare the type of binding to use for the endpoint. 

serviceEndPoint.Binding = new NetTcpRelayBinding(); 

At this point you can declare the Authentication and EndToEndSecurity mode. This 
particular example uses the default constructor, which sets the 
Microsoft.ServiceBus.EndToEndSecurityMode to Transport and the 
Microsoft.ServiceBus.RelayClientAuthenticationType to RelayAccessToken. 
Therefore,, the following snippet is identical to the default constructor, except that it sets 
those two parameters explicitly: 

serviceEndPoint.Binding = new 

NetTcpRelayBinding(EndToEndSecurityMode.Transport, 

RelayClientAuthenticationType.RelayAccessToken); 

8. Add the security credentials to the endpoint. 

serviceEndpoint.Behaviors.Add(sharedSecretServiceBusCredentia

l); 

These security credentials are required for all services to authenticate with the Service 
Bus. Because we set the Microsoft.ServiceBus.RelayClientAuthenticationType to 
RelayAccessToken (either by default or explicitly), any client applications are also 
required to use the same type of authentication credentials. 

9. Add the endpoint to the host. 

host.Description.Endpoints.Add(serviceEndPoint); 

You have now created the minimum configuration necessary for an Service Bus service 
application. At this point, you can add more service-level or endpoint-level configurations, 
as you would with any other WCF application. For more information about configuring a 
WCF application, see Configuring Services in the WCF documentation. When you are 
finished configuring your application, you can host and run your application. For more 



 

 162 

information, seeBuilding a Service for the Service Bus. 

Example 

Description 
The following example shows how to define configuration information programmatically. The main 
difference is that all information is set programmatically; in the tutorial, some information not 
specific to Windows Azure is stored in an App.config file.  

Code 

 

namespace AzureSample_WorkerRole 

{ 

    public class WorkerRole : RoleEntryPoint 

    { 

        private ServiceHost host; 

 

        public override void Start() 

        { 

            string serviceNamespace = "myDomainName"; 

            string issuerName = "MY ISSUER NAME" 

            string issuerSecret = "MY SECRET"; 

 

            Uri uri = ServiceBusEnvironemnt.CreateServiceUri("sb", serviceNamespace, 

"sample/log/"; 

 

            host = new ServiceHost(typeof(EchoService), uri); 

 

            TransportClientEndpointBehavior sharedSecretServiceBusCredential = new 

TransportClientEndpointBehavior(); 

            sharedSecretServiceBusCredential.CredentialType = 

TransportClientCredentialType.SharedSecret; 

            sharedSecretServiceBusCredential.Credentials.SharedSecret.IssuerName = 

issuerName; 

            sharedSecretServiceBusCredential.Credentials.SharedSecret.IssuerSecret = 

issuerSecret; 

 



 

 163 

            ContractDescription contractDescription = 

ContractDescription.GetContract(typeof(IEchoContract), typeof(EchoService)); 

 

            ServiceEndpoint serviceEndPoint = new ServiceEndpoint(contractDescription); 

            serviceEndPoint.Address = new EndpointAddress(uri); 

 

            serviceEndPoint.Binding = new NetTcpRelayBinding(); 

 

           serviceEndpoint.Behaviors.Add(sharedSecretServiceBusCredential); 

            host.Description.Endpoints.Add(serviceEndPoint); 

 

            host.Open(); 

 

            while (true) 

            { 

                //Loop 

            } 

        } 

 

        public override void Stop() 

        { 

            host.Close(); 

            base.Stop(); 

        } 

 

        public override RoleStatus GetHealthStatus() 

        { 

            // This is a sample worker implementation. Replace with your logic. 

            return RoleStatus.Healthy; 

        } 

    } 

} 

 



 

 164 

Comments 
 

How to: Configure a Service Bus Service Using a Configuration 
File 
Once you have defined and implemented your Service Bus interface, you can configure the 
service. You can configure an Service Bus service programmatically or in an App.config file. 
Configuring your application in an App.config file lets you easily see what the configuration 
settings are, and let users easily modify the settings after deployment. Note that configuring an 
Service Bus application by using a configuration file is like configuring a Windows Communication 
Foundation (WCF) application, which is discussed in the topic Configuring Services Using 
Configuration Files, in the WCF documentation. Therefore,, the following discussion is a 
simplified overview of configuration techniques, with an emphasis on the unique features relevant 
to the Service Bus. 

In addition to the issues discussed in Configuring a WCF Service to Register with the Service 
Bus, an Service Bus service must determine what type of authentication and transport security, if 
any, is required. Authentication security is the type of security necessary for a service to connect 
to the Service Bus. A service is always required to present authentication credentials to the 
Service Bus, usually in the form of a shared secret (that is, issuer name and secret) token. 
However, the service also determines what type of authentication credentials the client 
applications must use in order to connect to the service. By default, client authentication is set to 
RelayClientAuthenticationType.RelayAccessToken, which means that the client must present 
some form of authentication to the Service Bus. In the current version of Windows Azure, this is 
always another shared secret token. In contrast, transport security determines whether it must 
connect with some form of secure line. This is referred to as “end-to-end” security because it 
covers the whole connection between the service, the Service Bus, and the client. In contrast, 
client authentication covers only the required relationship to connect from the service to the 
Service Bus. By default, transport security is set to EndToEndSecurityMode.Transport, which 
means that security is provided using some form of secure transport, such as HTTPS. It is 
recommended that you keep the end-to-end security mode set to Transport unless you have a 
compelling reason to change it, as doing this might reduce the security level in your application. 
For more information about setting security, see Securing and Authenticating a Service Bus 
Connection 

The Service Bus uses the default configuration that you have specified in the App.config 
file. Therefore, you do not have to directly reference the configuration in your code. 
However, if you have multiple endpoints and bindings, you may want to explicitly state 
which configuration to use, in order to avoid confusion.  

The following procedure describes how to configure an Service Bus service by using an 
App.config file. 

Note  



 

 165 

1. To configure the endpoint for the service that uses the contract with a specified binding, 
create the App.config file. For example: 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

<system.serviceModel> 

<services> 

<!-- Application Service --> 

<service name="Microsoft.ServiceBus.Samples.EchoService"> 

<endpoint 

contract="Microsoft.ServiceBus.Samples.IEchoContract" 

                  binding="netTcpRelayBinding" 

                  

address="sb://MyCodeSample.ServiceBus.Microsoft.com/EchoServi

ce" /> 

</service> 

</services> 

</system.serviceModel> 

</configuration> 

Note the minimum parameters that are required to configure an endpoint: the service 
name, the contract that implements the service, the type of binding used, and the 
address. The service uses the default Transport and Authentication security 
parameters. Therefore, they are not explicitly declared. The address is explicitly declared 
here, although very often it is built programmatically using the URI type.  

Once you have completed the steps that are required to configure an Service Bus 
service, you can add more endpoint and service-level configurations. For more 
information, seeConfiguring Services in the WCF documentation. 

2. After you have finished configuring the service, you can host and run the application. For 
more information, seeBuilding a Service for the Service Bus. 

 

How to: Configure a Service Bus Client Using Code 
Once you have defined the Windows Azure Service Bus interface (as described in Designing a 
WCF Contract for the Service Bus) in your code, you can continue configuring the client 
application. Configuring an Service Bus client application programmatically is very similar to 
configuring any other Windows Communication Foundation (WCF) application, which is described 
in detail in the Configuring Services topic in the WCF documentation. The following topic 

To configure a Service Bus service application by using an App.config file 



 

 166 

describes programmatically creating and configuring a simple client that uses the 
Microsoft.ServiceBus.NetTcpRelayBinding binding, and also a discussion of issues specific to 
Service Bus. 

The main difference between configuring a service and a client is that clients must know some of 
the configuration settings that are used by the service, and comply with them. These settings 
include the type of binding to use, and also what security options you must have to access the 
service (that is, authentication and transport-level security.) For more information about setting 
security, see Securing and Authenticating a Service Bus Connection. 

1. Define the endpoint using the service namespace name and schema type. 

string serviceNamespace = "ServiceBusTutorial"; 

Uri uri = ServiceBusEnvironemnt.CreateServiceUri("sb", 

serviceNamespace, "sample/EchoService/"; 

In this context, the schema type is “sb”, indicating the Service Bus, and the service 
namespace is “ServiceBusTutorial”.  

2. Create a Microsoft.ServiceBus.TransportClientEndpointBehavior with your 
credentials. 

TransportClientEndpointBehavior 

sharedSecretServiceBusCredential = new 

TransportClientEndpointBehavior(); 

sharedSecretServiceBusCredential.CredentialType = 

TransportClientCredentialType.SharedSecret; 

sharedSecretServiceBusCredential.Credentials.SharedSecret.Iss

uerName = "YOUR ISSUER NAME"; 

sharedSecretServiceBusCredential.Credentials.SharedSecret.Iss

uerSecret = "YOUR ISSUER SECRET"; 

In your code you will have to substitute “YOUR ISSUER NAME” and “YOUR ISSUER 
SECRET” with the issuer name and secret you want to use when you connect to the 
service endpoint. 

3. Create and initialize the channel factory with the endpoint, binding type, and contract 
type: 

ChannelFactory<IEchoChannel> channelFactory = new 

ChannelFactory<IEchoChannel>(); 

channelFactory.Endpoint.Address = new EndpointAddress(uri); 

channelFactory.Endpoint.Binding = new NetTcpRelayBinding(); 

channelFactory.Endpoint.Contract.ContractType = 

typeof(IEchoChannel); 

To configure a Service Bus client using code 



 

 167 

4. Apply the Service Bus credentials: 

ChannelFactory.Endpoint.Behaviors.Add(sharedSecretServiceBusC

redential); 

You are now finished configuring the client application. You can move on to implementing 
the rest of the client application, in Building a Service Bus Client Application. Note that 
this tutorial does use an App.config file; however, it is only to store name and password 
information in a string, and is easily replaced by the code used in this procedure. 

 

How to: Configure a Service Bus Client Using a Configuration 
File 
Once you have defined and implemented your Windows Azure Service Bus interface, you can 
configure the client application. You can configure your application programmatically or in an 
App.config file. Configuring your application in an App.config file lets you easily see what the 
configuration settings are, and lets users modify the settings after deployment. Note that 
configuring an Service Bus application by using a configuration file is very similar to configuring a 
Windows Communication Foundation (WCF) application, which is discussed in Configuring 
Services Using Configuration Files in the Windows Communication Foundation (WCF) 
documentation. Therefore,, the following discussion is a simplified overview of configuration, with 
an emphasis on the unique features relevant to the Service Bus. 

The main difference between configuring a service and a client is that the client must know what 
configuration settings the service is using, and match them. Such settings typically include what 
type of binding to use, and also what security protocols you must have to access the service (that 
is, authentication and transport-level security). For more information about setting security, 
see Securing and Authenticating a Service Bus Connection. 

1. Create the App.config file to define the client endpoint. 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

<system.serviceModel> 

<client> 

<endpoint name="RelayEndpoint" 

               

contract="Microsoft.ServiceBus.Samples.IEchoContract" 

               binding="netTcpRelayBinding" 

               bindingConfiguration="default" 

               

To configure a Service Bus Client using an App.config file 



 

 168 

behaviorConfiguration="sharedSecretEndpointBehavior" 

               address="" /> 

</client> 

</system.serviceModel> 

</configuration> 

Similar to configuring a service application, the minimum parameters that you must have 
to configure an endpoint are the contract that implements the service, and the type of 
binding used. The address attribute is the Service Bus address. It can be specified 
explicitly in the configuration file but is usually constructed programmatically using the 
Microsoft.ServiceBus.ServiceBusEnvironment.CreateServiceUri(System.String,Sys
tem.String,System.String) method. This example also associates an endpoint behavior 
with the client. 

2. Define the endpoint behavior that contains the security settings. 

<behaviors> 

<endpointBehaviors> 

<behavior name="sharedSecretEndpointBehavior"> 

<transportClientEndpointBehavior 

credentialType="SharedSecret"> 

<clientCredentials> 

<sharedSecret issuerName="ISSUER_NAME" 

issuerSecret="ISSUER_SECRET" /> 

</clientCredentials> 

</transportClientEndpointBehavior> 

</behavior> 

</endpointBehaviors> 

</behaviors> 

 

In this example, for simplicity the security credentials are defined by using the issuer 
name and secret in clear text. Note that this is an nonsecure programming practice: a 
more secure process (and the process used by many samples in the Windows Azure 
SDK) is to query the user for this information. Alternately, you could decide to encrypt the 
App.config file to avoid exposing this information. 

3. Define the binding that the client application is to use when it connects to the Service 
Bus. 

<bindings> 

<!-- Application Binding --> 

<netTcpRelayBinding> 



 

 169 

<!-- Default Binding Configuration--> 

<binding name="default" /> 

</binding> 

</bindings> 

 

4. You have finished configuring the client application through the App.config file. For more 
information about creating a Service Bus client application, see Building a Service Bus 
Client Application.  

 

How to: Configure a Windows Azure-Hosted Service Bus Service 
or Client Application 
Configuring a service or client application that runs on Windows Azure follows the same general 
programming patterns for both a Windows Azure and a basic Windows Azure Service Bus 
application. However, note the following issues:  
• Windows Azure does not include the Service Bus assembly 

The default Windows Azure installation does not include the Service Bus assembly and, 
because of Windows Azure security restrictions, you cannot install the Windows Azure SDK 
on the Windows Azure platform.  

Therefore, to run any Service Bus application on Windows Azure, you must redistribute the 
Service Bus assembly with your Service Bus application. For more information about how to 
package an assembly with your application, see the following procedure. 

• Service Bus and Access Control must have Full Trust authorization to run on Azure 

As with all other applications that use the Service Bus, you must make sure that the operating 
system is running with Full Trust authorization. This can be set in the Servicedefinition.csdef 
file, using the following procedure. 

• The Windows Azure SDK version 1.5 no longer adds entries to the Machine.config file. You 
may see errors such as the following: 

Configuration binding extension 

'system.serviceModel/bindings/netTcpRelayBinding' could not be found. Verify 

that this binding extension is properly registered in 

system.serviceModel/extensions/bindingExtensions and that it is spelled 

correctly. 

It is recommended that you add these extensions to the App.config files for your projects or 
use the Relayconfiginstaller.exe tool in the SDK to add these bindings. For example: 

<configuration> 

<system.serviceModel> 

<extensions> 



 

 170 

<!-- Adding all known service bus extensions. You can remove the 

ones you don't need. --> 

<behaviorExtensions> 

<add name="connectionStatusBehavior" 

type="Microsoft.ServiceBus.Configuration.ConnectionStatusElement

, Microsoft.ServiceBus, Version=1.5.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35" /> 

<add name="transportClientEndpointBehavior" 

type="Microsoft.ServiceBus.Configuration.TransportClientEndpoint

BehaviorElement, Microsoft.ServiceBus, Version=1.5.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="serviceRegistrySettings" 

type="Microsoft.ServiceBus.Configuration.ServiceRegistrySettings

Element, Microsoft.ServiceBus, Version=1.5.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35" /> 

</behaviorExtensions> 

<bindingElementExtensions> 

<add name="netMessagingTransport" 

type="Microsoft.ServiceBus.Messaging.Configuration.NetMessagingT

ransportExtensionElement, Microsoft.ServiceBus, Version=1.5.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="tcpRelayTransport" 

type="Microsoft.ServiceBus.Configuration.TcpRelayTransportElemen

t, Microsoft.ServiceBus, Version=1.5.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35" /> 

<add name="httpRelayTransport" 

type="Microsoft.ServiceBus.Configuration.HttpRelayTransportEleme

nt, Microsoft.ServiceBus, Version=1.5.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35" /> 

<add name="httpsRelayTransport" 

type="Microsoft.ServiceBus.Configuration.HttpsRelayTransportElem

ent, Microsoft.ServiceBus, Version=1.5.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35" /> 

<add name="onewayRelayTransport" 

type="Microsoft.ServiceBus.Configuration.RelayedOnewayTransportE

lement, Microsoft.ServiceBus, Version=1.5.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35" /> 

</bindingElementExtensions> 



 

 171 

<bindingExtensions> 

<add name="basicHttpRelayBinding" 

type="Microsoft.ServiceBus.Configuration.BasicHttpRelayBindingCo

llectionElement, Microsoft.ServiceBus, Version=1.5.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="webHttpRelayBinding" 

type="Microsoft.ServiceBus.Configuration.WebHttpRelayBindingColl

ectionElement, Microsoft.ServiceBus, Version=1.5.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="ws2007HttpRelayBinding" 

type="Microsoft.ServiceBus.Configuration.WS2007HttpRelayBindingC

ollectionElement, Microsoft.ServiceBus, Version=1.5.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="netTcpRelayBinding" 

type="Microsoft.ServiceBus.Configuration.NetTcpRelayBindingColle

ctionElement, Microsoft.ServiceBus, Version=1.5.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="netOnewayRelayBinding" 

type="Microsoft.ServiceBus.Configuration.NetOnewayRelayBindingCo

llectionElement, Microsoft.ServiceBus, Version=1.5.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="netEventRelayBinding" 

type="Microsoft.ServiceBus.Configuration.NetEventRelayBindingCol

lectionElement, Microsoft.ServiceBus, Version=1.5.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

<add name="netMessagingBinding" 

type="Microsoft.ServiceBus.Messaging.Configuration.NetMessagingB

indingCollectionElement, Microsoft.ServiceBus, Version=1.5.0.0, 

Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> 

</bindingExtensions> 

</extensions> 

</system.serviceModel> 

</configuration> 

1. In Solution Explorer, under the WorkerRole or WebRole node (depending on where 
you have your code), add the Microsoft.ServiceBus assembly to your Windows Azure 
project as a reference.  

To package the Service Bus assembly with your application 



 

 172 

This step is the standard process for adding a reference to an assembly. 
2. In the Reference folder, right-click Microsoft.ServiceBus. Then click Properties. 
3. In the Properties dialog, set Copy Local to True.  

Doing so makes sure that the Microsoft.ServiceBus assembly will be available to your 
application when it runs on Windows Azure. 

1. In your ServiceDefinition.csdef file, set the enableNativeCodeExecution field to true as 
shown in the following code, replacing ApplicationNameHere with the name of your 
application: 

<?xml version="1.0" encoding="utf-8"?> 

<ServiceDefinition name="ApplicationNameHere" 

xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/Se

rviceDefinition"> 

<WebRole name="WebRole" enableNativeCodeExecution="true"> 

<InputEndpoints> 

<!-- Must use port 80 for http and port 443 for https when 

running in the cloud --> 

<InputEndpoint name="HttpIn" protocol="http" port="80" /> 

</InputEndpoints> 

</WebRole> 

<WorkerRole name="WorkerRole" enableNativeCodeExecution="true"> 

</WorkerRole> 

</ServiceDefinition> 

 

 

How to: Change the Connection Mode 
The connection mode defines how your Windows Azure Service Bus application connects to 
other applications when it uses a TCP connection: either Relayed or Hybrid:  
• Relayed – all communications between the service and client applications use the Service 

Bus.  
• Hybrid – the initial connection between the applications uses the Service Bus. However, if 

the two applications can connect to each other, they will attempt to do this. If at any time this 
connection is lost, the applications will revert to communicating through the Service Bus.  

The connection mode is defined by the Microsoft.ServiceBus.TcpRelayConnectionMode 
enumeration, which is in turn used by 

To set a Windows Azure application to Full Trust 

http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition
http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition


 

 173 

Microsoft.ServiceBus.TcpRelayTransportBindingElement to define the 
Microsoft.ServiceBus.NetTcpRelayBinding binding. Therefore,, you can set the connection 
mode for a Microsoft.ServiceBus.NetTcpRelayBinding binding by setting the 
Microsoft.ServiceBus.NetTcpRelayBindingBase.ConnectionMode property. You can do this 
at any time in your application: the Service Bus will take the change and attempt to modify the 
connection. As with most properties, you can decide to set the connection status in the 
App.config file. Finally, the Service Bus exposes the current status of the connection through the 
Microsoft.ServiceBus.IHybridConnectionStatus interface, which you can decide to implement.  

The following topic describes how to determine or modify the mode of an Service Bus application. 

1. Create the binding, and then set the property. 

NetTcpRelayBinding myTcpBinding = new NetTcpRelayBinding(); 

myTcpBinding.ConnectionMode = TcpRelayConnectionMode.Hybrid; 

1. Open the application configuration file for the client application, as in the following 
example. 

<bindings> 

<netTcpRelayBinding> 

<binding name="default"/> 

</netTcpRelayBinding> 

</bindings> 

 

Note that the netTcpRelayBinding tag does not specify the connection mode attribute. 
By default, the connection mode used is Relayed. 

2. Explicitly change the connection mode to Hybrid by adding the connectionMode field, 
which is set to Hybrid. 

<bindings> 

<netTcpRelayBinding> 

<binding name="default" connectionMode="Hybrid"> 

<security mode="None" /> 

</binding> 

</netTcpRelayBinding> 

</bindings> 

 

To modify the connection mode programmatically  

To modify the connection mode with an App.config file 



 

 174 

1. Optionally, you might want to receive a notification when the connection between the 
connected endpoints changes from a Relayed connection to a Hybrid connection. 

channel.Open(); 

 

IHybridConnectionStatus hybridConnectionStatus = 

channel.GetProperty<IHybridConnectionStatus>(); 

if (hybridConnectionStatus != null) 

{ 

    hybridConnectionStatus.ConnectionStateChanged += (o, e) 

=> 

    { 

        Console.WriteLine("Connection state changed to: 

{0}.", e.ConnectionState); 

    }; 

} 

 

Console.WriteLine("Enter text to echo (or [Enter] to 

exit):"); 

 

 

Creating a Custom Service Bus Binding 
This section discusses the transport binding primitives. If you want to create a Windows 
Communication Foundation (WCF) custom binding, use one of these binding elements to send to 
or listen on the Windows Azure Service Bus instead of using the corresponding WCF transport 
binding elements.  

TcpRelayTransportBindingElement 
The Microsoft.ServiceBus.TcpRelayTransportBindingElement element is closely aligned with 
the WCF version, System.ServiceModel.Channels.TcpTransportBindingElement and is the 
foundation for NetTcpRelayBinding. 
 

Additional members Description 

RelayClientAuthenticationType The TcpRelayTransportBindingElement uses a federated 
security token authorization scheme to guard access to the 

To determine when the connection mode changes 



 

 175 

Additional members Description 

Service Bus and to the services listening through it.  

This property controls whether clients of a service are 
required to present a security token issued by the Access 
Control service to the Service Bus service when it sends 
messages. Services are always required to authenticate with 
Access Control and present an authorization token to the 
Service Bus. If the service assumes the responsibility of 
authenticating/authorizing clients, it can opt out of the 
integration between Access Control and Service Bus by 
setting this property to 
RelayClientAuthenticationType.None. The default value is 
RelayClientAuthenticationType.RelayAccessToken. 

ConnectionMode See the discussion of Connection Modes in 
NetTcpRelayBinding.  

The following are the Connection Mode values: 
• TcpConnectionMode.Relayed: In this mode, all 

communication is relayed through the Service Bus cloud. 
• TcpConnectionMode.Hybrid: In this mode, 

communication is relayed through the Service Bus cloud 
whereas the client and service endpoints negotiate a 
direct socket connection to each other. If a direct 
connection can be established, the relayed connection is 
automatically upgraded to the direct connection. 

• TcpConnectionMode.Direct: This mode is identical to 
TcpConnectionMode.Hybrid.  

TransportProtectionEnabled This property gets or sets a Boolean value that indicates 
whether transport protection (SSL) is enabled for the 
connection. With this property set to true, outbound 
communication uses SSL through port 828. With the 
property set to false, outbound communication uses port 
808. 

 

HttpRelayTransportBindingElement 
The Microsoft.ServiceBus.HttpRelayTransportBindingElement element is closely aligned with 
the WCF version, System.ServiceModel.Channels.HttpTransportBindingElement and is the 
foundation for all HTTP relay bindings that are configured to use unsecured HTTP 
communication. 
 



 

 176 

Additional members Description 

RelayClientAuthenticationType The HttpRelayTransportBindingElement uses a federated 
security token authorization scheme to guard access to the 
Service Bus and to the services listening through it.  

This property controls whether clients of a service are 
required to present a security token issued by the Access 
Control service to the Service Bus service when it sends 
messages. Services (listeners) are always required to 
authenticate with Access Control and present an 
authorization token to the Service Bus. If the service 
assumes the responsibility of authenticating and authorizing 
clients, it can opt out of the integration between Access 
Control and Service Bus by setting this property to 
RelayClientAuthenticationType.None. The default value is 
RelayClientAuthenticationType.RelayAccessToken. 

 

HttpsRelayTransportBindingElement 
The Microsoft.ServiceBus.HttpsRelayTransportBindingElement element derives from 
HttpRelayTransportBindingElement and is the foundation for all HTTP Relay bindings that are 
configured to use secured HTTPS communication. 

OnewayRelayTransportBindingElement 
The Microsoft.ServiceBus.OnewayRelayTransportBindingElement element is the foundation 
for the Microsoft.ServiceBus.NetEventRelayBinding and 
Microsoft.ServiceBus.NetOnewayRelayBinding bindings. As a TCP-based transport binding 
element, it is similar to the WCF 
System.ServiceModel.Channels.TcpTransportBindingElement element, but only supports 
one-way communication. 
 

Additional members Description 

RelayClientAuthenticationType The OnewayRelayTransportBindingElement uses a 
federated security token authorization scheme to guard 
access to the Service Bus and to the services listening 
through it.  

This property controls whether clients of a service are 
required to present a security token issued by the Access 
Control service to the Service Bus service when it sends 
messages. Services are always required to authenticate with 
Access Control and present an authorization token to the 



 

 177 

Additional members Description 

Service Bus. If the service assumes the responsibility of 
authenticating and authorizing clients, it can opt out of the 
integration between Access Control and Service Bus by 
setting this property to 
RelayClientAuthenticationType.None. The default value is 
RelayClientAuthenticationType.RelayAccessToken. 

ConnectionMode The transport binding element has two connection modes:  
• OnewayConnectionMode.Unicast: Unicast messaging. 

Used by NetOnewayRelayBinding. 
• OnewayConnectionMode.Multicast: Multicast 

messages. Used by NetEventRelayBinding. 

TransportProtectionEnabled This property gets or sets a Boolean value that indicates 
whether transport protection (SSL) is enabled for the 
connection. With this property set to true, outbound 
communication uses SSL through port 828; with the property 
set to false, outbound communication uses port 808. 

 

Service Bus Port Settings 
The following table describes the required configuration for port values for a Windows Azure 
Service Bus binding: 
 

Binding Transport Security Port 

Microsoft.ServiceBus.BasicHttpRelayBinding 
(client) 

yes HTTP 

 no HTTPS 

Microsoft.ServiceBus.BasicHttpRelayBinding 
(service) 

either 9351/HTTP 

Microsoft.ServiceBus.NetEventRelayBinding 
(client) 

yes 9351/HTTPS 

 no 9350/HTTP 

Microsoft.ServiceBus.NetEventRelayBinding 
(service) 

either 9351/HTTP 

Microsoft.ServiceBus.NetTcpRelayBinding 
(client/service) 

either 9352/HTTP 
(9352/9353 if using 
Hybrid) 



 

 178 

Microsoft.ServiceBus.NetOnewayRelayBinding 
(client) 

yes 9351/HTTPS 

 no 9350/HTTP 

Microsoft.ServiceBus.NetOnewayRelayBinding 
(service) 

either 9351/HTTP 

Microsoft.ServiceBus.WebHttpRelayBinding 
(client) 

yes HTTPS 

 no HTTP 

Microsoft.ServiceBus.WebHttpRelayBinding 
(service) 

either 9351/HTTP 

Microsoft.ServiceBus.WS2007HttpRelayBinding 
(client) 

yes HTTPS 

 no HTTP 

Microsoft.ServiceBus.WS2007HttpRelayBinding 
(service) 

either 9351/HTTP 

 

Securing and Authenticating a Service Bus 
Connection 
Applications that use the Windows Azure Service Bus are required to perform security tasks at 
two points. First, services exposed for use by the Service Bus are resources. Therefore, access 
to them -- whether for configuration and registration purposes or for invoking service functionality 
-- requires authentication and authorization using tokens from the Windows Azure Access Control 
service. Second, when permission to interact with the service has been granted by the Service 
Bus, the service has its own security considerations that are associated with the authentication, 
authorization, encryption, and signatures required by the message exchange itself. (This second 
set of security issues has nothing to do with the functionality of the Service Bus; it is purely a 
consideration of the service and its clients.) 

In the first case, authentication and authorization to use a service exposed by the Service Bus are 
controlled by the Access Control service, and can be programmatically accessed through the 
Service Bus API. There are four kinds of authentication currently available:  
• Microsoft.ServiceBus.TransportClientCredentialType.SharedSecret, a slightly more 

complex but easy-to-use form of username/password authentication.  
• Microsoft.ServiceBus.TransportClientCredentialType.Saml, which can be used to interact 

with SAML 2.0 authentication systems. 
• Microsoft.ServiceBus.TransportClientCredentialType.SimpleWebToken, which uses the 

OAuth Web Resource Authorization Protocol (WRAP)and Simple Web Tokens (SWT). 



 

 179 

• Microsoft.ServiceBus.TransportClientCredentialType.Unauthenticated, which enables 
interaction with the service endpoint without any authentication behavior. 

In the second case, the originating service itself typically applies some end-to-end security that 
specifies message-level security (such as message encryption) and transport-level security (such 
as Windows or NTLM). End-to-end conversation security follows the Windows Communication 
Foundation (WCF) programming model, and is discussed more fully in the Securing Services 
topic in the WCF documentation. Therefore, although the following topics contain a general 
discussion of end-to-end security, they focus mainly on the features unique to a service 
configured to use the Service Bus. For additional information about Service Bus authentication 
and Access Control, see Building Applications that Use Access Control Services. 

Every Service Bus relay binding has a security binding element – for example, the 
Microsoft.ServiceBus.Configuration.NetTcpRelaySecurityElement performs the security 
functions for the Microsoft.ServiceBus.NetTcpRelayBinding – that contains the following 
security values that you can specify either programmatically or in a configuration file. 

Mode 

Short for end-to-end security mode, this value defines the security across the message 
exchange through the Service Bus. The programmatic value depends on the specific 
relay binding; for example, the Microsoft.ServiceBus.EndToEndSecurityMode 
type supports the Microsoft.ServiceBus.NetTcpRelayBinding binding, and the 
Microsoft.ServiceBus.EndToEndWebHttpSecurityMode value performs this 
service together with the Microsoft.ServiceBus.WebHttpRelayBinding binding. 
When used with the Microsoft.ServiceBus.NetTcpRelayBinding binding, this 
property can be set to Microsoft.ServiceBus.EndToEndSecurityMode.None, 
Microsoft.ServiceBus.EndToEndSecurityMode.Message, 
Microsoft.ServiceBus.EndToEndSecurityMode.Transport, or 
Microsoft.ServiceBus.EndToEndSecurityMode.TransportWithMessageCre
dential. The default is 
Microsoft.ServiceBus.EndToEndSecurityMode.Transport, which means that 
the transport-specific security settings are enabled. If you use any setting that includes 
Microsoft.ServiceBus.EndToEndSecurityMode.Message or 
Microsoft.ServiceBus.EndToEndSecurityMode.Transport, you will have to 
set additional properties. In general, Mode value follows the standard WCF security 
programming model. 

 

Message 

Defines security on a per-message basis if you set end-to-end message security to 
Microsoft.ServiceBus.EndToEndSecurityMode.Message or 
Microsoft.ServiceBus.EndToEndSecurityMode.TransportWithMessageCre
dential. Setting one of those values for the Mode property requires that this property 
also be set to specify the type of credentials that are used, and also to the algorithm 
that is used to help secure the credentials. As with Mode, the message security setting 
follows the WCF programming model. 



 

 180 

 

Transport 

This property is a wrapper for security properties unique to a given binding’s transport 
binding element. For example, the 
Microsoft.ServiceBus.RelayedOnewayTransportSecurity class exposes and 
implements the 
Microsoft.ServiceBus.RelayedOnewayTransportSecurity.ProtectionLevel 
setting on the Microsoft.ServiceBus.NetEventRelayBinding and 
Microsoft.ServiceBus.NetOnewayRelayBinding bindings. In contrast, the 
Microsoft.ServiceBus.HttpRelayTransportSecurity type sets proxy credentials 
for Microsoft.ServiceBus.BasicHttpRelayBinding and 
Microsoft.ServiceBus.WS2007HttpRelayBinding bindings. As with the previous 
properties, Transport security generally follows the WCF security model. 

 

RelayClientAuthenticationType 

Controls whether clients of a service are required to present a security token issued by 
Access Control to the Service Bus when it sends messages. Therefore, this security 
property is unique to the Service Bus, and is the focus of topics in this section of the 
documentation. Services are always required to authenticate with Access Control and 
present an authorization token to the Service Bus; otherwise they cannot register 
endpoints or create message buffers, each of which engages Service Bus resources. 
However, clients are required to authenticate with the Service Bus only if the 
Microsoft.ServiceBus.RelayClientAuthenticationType is set to 
Microsoft.ServiceBus.RelayClientAuthenticationType.RelayAccessToken. 
Setting Microsoft.ServiceBus.RelayClientAuthenticationType to 
Microsoft.ServiceBus.RelayClientAuthenticationType.None waives the 
requirement of a token. If you are providing your own authentication or if you do not 
need authentication, you may want to opt out of authentication on the client (sender) in 
the Service Bus leg of the communication. The default value is 
Microsoft.ServiceBus.RelayClientAuthenticationType.RelayAccessToken. 

 

In addition, every binding contains the Scheme property, which defines the scheme used to 
encode information. For HTTP-based bindings (such as 
Microsoft.ServiceBus.BasicHttpRelayBinding, the default scheme is HTTPS, which includes 
its own security protocols.  

This section describes specific processes for using authentication on the Service Bus. 

In This Section 
How to: Set Security and Authentication on a Service Bus Application 

Setting Security on a REST-based Service Bus Application 



 

 181 

Choosing Authentication for a Service Bus Application 

Choosing a Type of Relay Authentication 

How to: Modify the Service Bus Connectivity Settings 

Creating a Service Bus URI 

 

How to: Set Security and Authentication on a Service Bus 
Application 
This topic discusses how to authenticate a service and client application by using the Windows 
Azure Service Bus. For more information about setting transport and message-level security, 
see Securing and Authenticating a Service Bus Connection, and also the Securing Services 
topic in the Windows Communication Foundation (WCF) documentation. 

If you are developing a service, you must first determine what type of credentials you will use to 
authenticate with the Service Bus, and whether a client that connects to your service must 
authenticate. All services are required to authenticate with the Service Bus, using SAML, shared 
secret, or a simple Web token. You may decide to have a different form of authentication for your 
service as you do for the client. For more information, seeChoosing Authentication for a Service 
Bus Application.  

If you are developing a client, determine what type of authentication credentials are required by 
the service to which you are connecting. This can be done in a variety of ways. This includes 
retrieving the information from the contract metadata. For more information, seeHow to: Design a 
WCF Service Contract for use with the Service Bus. 

1. Define a behavior that contains the specified <transportClientEndpointBehavior> 
element, and also the relevant credentials.  

The following code, from the WebHttpSample in the Windows Azure SDK, shows how to 
declare and configure a shared secret credential. 

<behaviors> 

<endpointBehaviors> 

<behavior name="sharedSecretClientCredentials"> 

<transportClientEndpointBehavior 

credentialType="SharedSecret"> 

<clientCredentials> 

<sharedSecret issuerName="ISSUER_NAME" 

issuerSecret="ISSUER_SECRET" /> 

</clientCredentials> 

</transportClientEndpointBehavior> 

To set Service Bus authentication with an App.config file 



 

 182 

</behavior> 

</endpointBehaviors> 

</behaviors> 

In this procedure, the issuer name and secret are held directly in the App.config file. It is 
recommended that you implement some form of security on any configuration file that 
contains such security information. 

Once you have defined the credentials in the App.config file, the application will use the 
security configuration automatically. There are no additional steps necessary. 

1. Retrieve the security credentials: 

Console.Write("Your Issuer Name: "); 

string issuerName = Console.ReadLine(); 

Console.Write("Your Issuer Secret: "); 

string issuerSecret = Console.ReadLine(); 

As is common in the Windows Azure SDK samples, this procedure has the issuer name 
and secret known by the user, and they are typed in directly. For more information about 
retrieving such information, see Building Applications that Use Access Control 
Services. 

2. Create the credential endpoint behavior object that contains the security credentials: 

TransportClientEndpointBehavior 

sharedSecretServiceBusCredential = new 

TransportClientEndpointBehavior(); 

sharedSecretServiceBusCredential.CredentialType = 

TransportClientCredentialType.SharedSecret; 

sharedSecretServiceBusCredential.Credentials.SharedSecret.Iss

uerName = issuerName; 

sharedSecretServiceBusCredential.Credentials.SharedSecret.Iss

uerSecret = issuerSecret; 

3. Create the channel factory to connect to the endpoint: 

ChannelFactory<IEchoChannel> channelFactory = new 

ChannelFactory<IEchoChannel>("RelayEndpoint", new 

EndpointAddress(serviceUri)); 

4. Apply the credentials to the channel factory: 

channelFactory.Endpoint.Behaviors.Add(sharedSecretServiceBusC

redential); 

Once you have applied the credentials to the channel factory, you can open a connection 

To set Service Bus authentication programmatically  



 

 183 

to the endpoint and access the Service Bus.  

 

Setting Security on a REST-based Service Bus Application 
There are two types of REST-based applications that interact with the Windows Azure Service 
Bus: those that use a traditional Windows Communication Foundation (WCF)-style contract and 
binding, and those that use a message buffer. For more information about message buffers, 
see Working with a Service Bus Message Buffer. Instead, this topic assumes that your application 
interacts with the Service Bus via the Microsoft.ServiceBus.dll assembly and the authentication 
features available through the Windows Azure. In particular, this topic covers applications that 
use the Microsoft.ServiceBus.WebHttpRelayBinding binding, which is the default binding for 
Web applications. 

In the current Windows Azure release, the relay authentication options for Web clients that are 
accessing services built on the Microsoft.ServiceBus.WebHttpRelayBinding binding have 
been created to fit the most common scenarios. Most frequently, Web-style clients communicate 
with services that decide to accept all incoming traffic. These clients perform only lightweight 
authentication using a variety of custom techniques to enable and enrich AJAX-style user 
experiences. You can achieve the same result and provide similar fidelity by setting the 
Security.Transport.RelayAuthenticationType property on the WebHttpRelayBinding binding 
to Microsoft.ServiceBus.RelayClientAuthenticationType.None. You can see this option in the 
Service Bus WebNoAuth relay authentication sample in the Windows Azure SDK. A simplified 
procedure for setting this option is described later in this section. 

1. In the service, configure the authentication as required: 

Console.Write("Your Issuer Name: "); 

string issuerName = Console.ReadLine(); 

Console.Write("Your Issuer Secret: "); 

string issuerSecret = Console.ReadLine(); 

… 

TransportClientEndpointBehavior clientBehavior = new 

TransportClientEndpointBehavior(); 

clientBehavior.CredentialType = 

TransportClientCredentialType.SharedSecret; 

clientBehavior.Credentials.SharedSecret.IssuerName = 

issuerName; 

clientBehavior.Credentials.SharedSecret.IssuerSecret = 

issuerSecret; 

To set authentication in a Service Bus Web application to None 



 

 184 

As with other applications, you can configure the authentication in an App.config file or 
programmatically. 

2. Set the RelayClientAuthenticationType field to None. 

<bindings> 

<!-- Application Binding --> 

<webHttpRelayBinding> 

<binding name="default"> 

<security relayClientAuthenticationType="None" /> 

</binding> 

</webHttpRelayBinding> 

</bindings> 

This allows the service to authenticate with the Service Bus (as required), but also 
enables any client to connect, without authentication required. In this scenario, the 
App.config file defines the type of security to use for the whole scenario, but the 
programmatic configuration (in step 1) overrides the App.config file – which is necessary, 
because it is impossible to have “None” for service authentication.  

If you use the RelayAccessToken option for the 
Microsoft.ServiceBus.Configuration.TcpRelayTransportElement.RelayClientAuthentication
Type property, the Service Bus provides a security layer over plain HTTP services that require 
authentication and authorization to be performed before any HTTP traffic is forwarded to the 
listening service. If Relay authentication is enabled on the Service Bus, the required security 
token can be provided through programmatic credentials. 

If you decide to implement programmatic credentials, you can use any of the authentication 
options available to Service Bus through the Access Control service, such as shared secret or 
simple Web tokens. For more information, seeHow to: Set Security and Authentication on a 
Service Bus Application. The following procedure shows a simplified procedure for creating a 
Web token.  

1. Retrieve the issuer name and secret from the user: 

Console.Write("Your Issuer Name: "); 

string issuerName = Console.ReadLine(); 

Console.Write("Your Issuer Secret: "); 

string issuerSecret = Console.ReadLine(); 

2. Define the transport client credential type as 
Microsoft.ServiceBus.TransportClientCredentialType.SimpleWebToken: 

TransportClientEndpointBehavior behavior = new 

TransportClientEndpointBehavior(); 

To programmatically create a simple Web token 



 

 185 

behavior.CredentialType = 

TransportClientCredentialType.SimpleWebToken; 

 

3. Compute and initialize the Web token with a call to 
Microsoft.ServiceBus.Description.SharedSecretCredential.ComputeSimpleWebTok
enString(System.String,System.String): 

behavior.Credentials.SimpleWebToken.SimpleWebToken = 

SharedSecretCredential.ComputeSimpleWebTokenString(issuerName

, issuerSecret); 

When you have created the Web token, you can add the behavior to the endpoint, create 
the channel factory, and open a channel to the Service Bus. 

 

Choosing Authentication for a Service Bus Application 
The Microsoft.ServiceBus.TransportClientEndpointBehavior behavior is a Windows 
Communication Foundation (WCF) class that is used to specify the Windows Azure Service Bus 
authentication credentials for a particular endpoint. Instances of this behavior are shareable 
across endpoints so that the descriptions of multiple endpoints (listener and channels) using the 
same Service Bus credentials can be populated with the same configured instance of this class.  

The behavior can be defined and applied to endpoints in code and in configuration files. 
 

T:Microsoft.ServiceBus.TransportClie
ntEndpointBehavior members 

Description 

Microsoft.ServiceBus.Configuratio
n.TransportClientEndpointBehavio
rElement.CredentialType 

The 
Microsoft.ServiceBus.Configuration.TransportClientE
ndpointBehaviorElement.CredentialType property 
specifies which authentication method will be used on the 
endpoint. The possible values for this property are as 
follows: 
•

 Microsoft.ServiceBus.TransportClientCredenti
alType.Saml: this option specifies that the client 
credential is provided in the Security Assertion 
Markup Language (SAML) format, over the Secure 
Sockets Layer protocol. This option requires that you 
write your own SSL credential server. 

•
 Microsoft.ServiceBus.TransportClientCredenti
alType.SharedSecret: This option specifies that the 
client credential is provided as a self-issued shared 
secret that is registered with Access Control through 



 

 186 

T:Microsoft.ServiceBus.TransportClie
ntEndpointBehavior members 

Description 

the Windows Azure portal. This option requires no 
additional settings on the 
Microsoft.ServiceBus.TransportClientEndpointBe
havior.Credentials property.  

•
 Microsoft.ServiceBus.TransportClientCredenti
alType.SimpleWebToken: This option specifies that 
the client credential is provided as a self-issued 
shared secret that is registered with Access Control 
through the Windows Azure portal, and presented in 
the emerging industry-standard format called simple 
Web token (SWT). Similar to the shared secret 
option, this option requires no additional settings on 
the 
Microsoft.ServiceBus.TransportClientEndpointBe
havior.Credentials property. 

•
 Microsoft.ServiceBus.TransportClientCredenti
alType.Unauthenticated: This option specifies that 
there is no client credential provided. This option 
avoids acquiring and sending a token. It is used by 
clients that are not required to authenticate, based on 
the policy of their service binding. Note that this 
setting might leave data nonsecure if not used 
together with another security measure. 

Microsoft.ServiceBus.TransportCli
entEndpointBehavior.Credentials 

This property refers to the composite credentials 
container 
Microsoft.ServiceBus.Description.TransportClientCre
dentials, which holds the specific credentials for the 
credential types described earlier in this section. 

 

Choosing a Type of Relay Authentication 
The Microsoft.ServiceBus.RelayClientAuthenticationType enumeration is referenced by the 
security settings in all of the relay bindings. The use of this property is identical throughout all 
bindings. The following table lists the possible values for this enumeration. 
 

T:Microsoft.ServiceBus.RelayClientAuthenticationType 
value 

Description 

Microsoft.ServiceBus.RelayClientAut The client is required to provide a relay 



 

 187 

T:Microsoft.ServiceBus.RelayClientAuthenticationType 
value 

Description 

henticationType.RelayAccessToken access token to access the service 
endpoint, and access control is 
performed by the Windows Azure 
Access Control service. If this option is 
set on the service binding, all clients 
must acquire and present tokens to the 
Service Bus when establishing the 
channel. Furthermore, all subsequent 
access control is delegated to Access 
Control. The relay access token may be 
a shared secret, simple Web access 
token, or a SAML token. This is the 
default value. 

Microsoft.ServiceBus.RelayClientAuthenticationTy
pe.None 

The client is not required to provide a 
relay access token. Services are not 
required to present access tokens at any 
time. Therefore,, this represents an opt-
out mechanism with which services can 
waive the Access Control protection on 
the endpoint and perform their own 
access control. 

 

When the Microsoft.ServiceBus.RelayClientAuthenticationType.RelayAccessToken option 
is chosen, all access control management is delegated to the Access Control service. Access 
Control yields an access control token for the relay that indicates whether the requestor can listen 
on or send to the relay (or both). At the same time, it protects the actual identity of the caller. 
Therefore, the listening service will not be able to gather any user-specific information. Effectively, 
the service operates in an anonymous authentication mode, trusting the Access Control service.  

The Microsoft.ServiceBus.RelayClientAuthenticationType.None option causes the relay to 
pass all incoming messages to the service. The service assumes the responsibility for performing 
all access control locally, and also more precise access control. The type of access control 
depends on business data, local credentials stores, or other criteria—but it potentially exposes 
the service to unwanted traffic.  

The hybrid solution is to combine the 
Microsoft.ServiceBus.RelayClientAuthenticationType.RelayAccessToken option with end-to-
end message security, which is an option supported by most bindings. In this combination, the 
client is required to provide two separate credentials: one via the 
Microsoft.ServiceBus.TransportClientEndpointBehavior behavior, for gaining access to the 
service through the Service Bus. The latter is specified on the regular 
Microsoft.ServiceBus.Configuration.TransportClientEndpointBehaviorElement.ClientCrede



 

 188 

ntials property of the channel factory, which is used to help secure the end-to-end 
communication path. The latter credential can be a token issued by Access Control in the scope 
of the solution. 

You are required to use message-security for end-to-end authorization. This is because the 
Service Bus bindings do not support the use of standard WCF transport-credentials. For most 
uses, transport-credentials can only be passed point-to-point on a connection, and cannot 
traverse intermediaries such as the Service Bus. 

How to: Modify the Service Bus Connectivity Settings 
The Microsoft.ServiceBus.ConnectivitySettings class contains settings effective for all 
endpoints, based on the Microsoft.ServiceBus.NetOnewayRelayBinding or 
Microsoft.ServiceBus.NetEventRelayBinding bindings, that are active in the current 
application domain. The reason for the shared nature of these settings is that the connectivity 
path to the Service Bus is identical across all endpoints in the same process. Most corporate 
network environments prefer to limit ports opened to outbound traffic, and typically restrict 
outbound HTTP and TCP traffic to the same narrow range of ports.  

By default, all service endpoints listening for messages using one of these two bindings connect 
to the Service Bus using outbound TCP port 828 (for SSL-protected connections) or outbound 
TCP port 808.  

If neither of these ports is available for outbound communication, the 
Microsoft.ServiceBus.ServiceBusEnvironment.SystemConnectivity property of the 
connectivity settings can be set to Microsoft.ServiceBus.ConnectivityMode.Http, which 
enables the HTTP polling through outbound ports 80 and 443 using RFC 2616-compliant HTTP 
requests. RFC 2616 strongly recommends constraining the concurrent requests to a particular 
domain be limited to two, and the operating system and networking devices or upstream proxies 
can enforce that limit. Considering that, the HTTP polling mode is using a single HTTP 
connection to implement polling. All messages destined for all one-way and event endpoints in 
the current application domain are multiplexed through the HTTP polling connection and 
distributed locally.  

1. Set or modify the connectivity settings with a call to 
Microsoft.ServiceBus.ServiceBusEnvironment.SystemConnectivity. 

ServiceBusEnvironment.SystemConnectivity.Mode = 

ConnectivityMode.Http; 

Example 

Description 
The following example, taken from the Echo sample in the Windows Azure SDK, describes how 
to set the connectivity mode in a command-line application. 

To set or modify the Service Bus connectivity settings 



 

 189 

Code 

 

ServiceBusEnvironment.SystemConnectivity.Mode = ConnectivityMode.Http; 

 

Console.Write("Your Service Namespace (ex. 

sb://<ServiceNamespace>.servicebus.windows.net/): "); 

string serviceNamespace = Console.ReadLine(); 

Console.Write("Your Issuer Name: "); 

string issuerName = Console.ReadLine(); 

Console.Write("Your Issuer Secret: "); 

string issuerSecret = Console.ReadLine(); 

 

// Create the service URI based on the service namespace name. 

Uri address = ServiceBusEnvironment.CreateServiceUri("sb", serviceNamespace, 

"EchoService"); 

Creating a Service Bus URI 
A Windows Azure Service Bus URI is a universal resource identifier (URI) that describes the 
location at which an endpoint is exposed on the Service Bus. You use an Service Bus URI when 
you connect with both a service and client application. You also use an Service Bus URI when 
you connect to retrieve tokens for authentication and credential verification with the Access 
Control service. While you can manually create the URI, or store it in the App.config file, we 
recommend that you use the 
Microsoft.ServiceBus.ServiceBusEnvironment.CreateServiceUri(System.String,System.Str
ing,System.String) or 
Microsoft.ServiceBus.ServiceBusEnvironment.CreateAccessControlUri(System.String) 
methods to create your URIs, as those members contain all the relevant default settings. 

The Service Bus performs case-insensitive comparisons of service namespaces to align 
with the behavior of iis60. Because Access Control is designed as a general purpose 
access control service, it performs case-sensitive comparisons of service namespaces 
and scopes. Thus, applications that rely on Access Control can decide to be case 
sensitive or case insensitive, depending on the needs of that application. When designing 
applications that support multitenancy, you should realize that Access Control performs 
case-sensitive comparisons and Service Bus performs case-insensitive comparisons, if 
this difference in behavior produces unexpected results in your application. Because 
Access Control prevents creating scopes that differ only by case, this difference in 
behavior should not present a security issue. 

Note  



 

 190 

1. Create the URI with a call to 
Microsoft.ServiceBus.ServiceBusEnvironment.CreateServiceUri(System.String,Sys
tem.String,System.String) or 
Microsoft.ServiceBus.ServiceBusEnvironment.CreateAccessControlUri(System.Str
ing), respectively. 

Uri address = ServiceBusEnvironment.CreateServiceUri("sb", 

solutionName, "EchoService"); 

Example 

Description 
The following example, taken from the Echo sample in the Windows Azure SDK, shows how to 
programmatically create an Service Bus URI. 

Code 

Console.Write("Your Service Namespace (ex. 

sb://<ServiceNamespace>.servicebus.windows.net/): "); 

string serviceNamespace = Console.ReadLine(); 

Console.Write("Your Issuer Name: "); 

string issuerName = Console.ReadLine(); 

Console.Write("Your Issuer Secret: "); 

string issuerSecret = Console.ReadLine(); 

 

// create the service URI based on the solution name 

Uri address = ServiceBusEnvironment.CreateServiceUri("sb", serviceNamespace, 

"EchoService"); 

Building a Service for the Service Bus 
Unless you are building a non-Windows Communication Foundation (WCF) REST application 
that creates a message buffer, using the Windows Azure Service Bus requires creating and then 
hosting a Web service that registers itself with the Service Bus. (For more information about using 
a message buffer, see Service Bus Message Buffer Overview.)  

Hosting an application means instantiating and running a service that is configured to use a relay 
binding that connects to the Service Bus. Therefore,, the hosted service is the originating service, 
which the application registers with the Service Bus. Clients then use the service endpoint 
exposed by the Service Bus, which relays authorized messages to and from the originating 
service regardless of where it is physically located.  

To create an Access Control or Service Bus URI 



 

 191 

Note that, before you actually write the code that instantiates and runs a service, you must 
perform several steps. The following procedure describes the setup work necessary before 
hosting an Service Bus service. 

1. Design the WCF contract for your service, as described in Designing a WCF Contract for 
the Service Bus. The contract, as a WCF interface, is the same for both service and client 
applications. 

2. Implement the WCF contract for your service. The implementation of the contract is used 
later, as part of the hosting process. 

3. Configure your service, as defined in Configuring a WCF Service to Register with the 
Service Bus. Configuration can be done programmatically or through the App.config file. 
Common scenarios include defining the service endpoint and security in the App.config 
file. These values are used implicitly or explicitly later when the endpoints are created. 

4. Create the authorization and authentication credentials, as defined in Securing and 
Authenticating a Service Bus Connection. As in the previous step, the credentials can be 
defined either programmatically or in the App.config file. 

After completing these steps, you can host your service. 

In This Section 
The following topics describe the most common hosting scenarios and contain information to help 
with common issues related to hosting. 

How to: Host a WCF Service that Uses the Service Bus Servic  e
This topic describes how to create a WCF service host using the Windows Azure SDK. 

 

How to: Host a Service on Windows Azure that Accesses the Service Bus 

This topic describes how to create a WCF service host using the Windows Azure SDK, 
that you can run in Windows Azure. 

 

How to: Create a REST-based Service that Accesses the Service Bus 

This topic describes how to use the WCF Web Programming Model to create and host a 
WCF REST-style Web service that registers a REST service endpoint with the Service 
Bus. 

 

How to: Use a Third Party Hosting Service with the Service Bus 

This topic describes how to create and host with a third-party hosting system a WCF 
Web service that registers a service endpoint with the Service Bus. 

 

To set up a service for hosting 



 

 192 

Hosting Behind a Firewall with the Service Bus 

This topic describes some of the important items to remember when hosting behind a 
firewall. 

 

See Also 
How to: Expose a Metadata Endpoint 

How to: Host a WCF Service that Uses the Service Bus Service 
Hosting the service is the final step in creating a Windows Azure Service Bus application. Before 
reaching this point, you will have defined and implemented the service contract, defined and 
configured the service endpoint, and created the security credentials. For more information about 
what you must do before hosting the application, see Building a Service for the Service Bus. The 
next step is to put all these separate parts together and get them running. This process is 
accomplished through the service host, which takes the URL of your project, together with the 
contract, and creates a connection to the Service Bus. 

The first procedure describes how to create a service that uses the Service Bus with the 
configuration settings defined programmatically. The second procedure shows how to create a 
service when most of the configuration is specified in the App.config file. This procedure follows 
the NetOneWay sample in the Windows Azure SDK. For a hybrid approach that uses both 
programmatic configuration and also an App.config file, see steps 1 through 4 of the Service Bus 
Relayed Messaging Tutorial. 

For a complete discussion of hosting an application, see Hosting Services in the Windows 
Communication Foundation (WCF) documentation. 

1. Create an address for your service. 

The address for your Service Bus project is used in both service and client applications. 
For a service, the URI is used to determine where the Service Bus exposes the service. 
For a client, the URI determines where the client looks for the service:  

string servicePath = "ServicePath"; 

string serviceNamespace = "ServiceNamespace"; 

Uri uri = ServiceBusEnvironment.CreateServiceUri("sb", 

serviceNamespace, servicePath); 

 

2. Create a new instance of System.ServiceModel.ServiceHost. 

host = new ServiceHost(typeof(EchoService), uri); 

In this example, the service host takes the supplied address, in addition to the type that 
the service contract implements. In this example, the class that implements the service 

To host a Service Bus service programmatically 



 

 193 

contract is named EchoService. 
3. Create a description of the contract with a call to 

System.ServiceModel.Description.ContractDescription. 

ContractDescription contractDescription = 

ContractDescription.GetContract(typeof(IEchoContract), 

typeof(EchoService)); 

System.ServiceModel.Description.ContractDescription links the contract with the 
specific implementation you want to use. In this example, the contract is defined in 
IEchoContract, and the implementation of the contract is EchoService.  

4. Define the address and binding for the endpoint: 

ServiceEndpoint serviceEndPoint = new 

ServiceEndpoint(contractDescription); 

serviceEndPoint.Address = new EndpointAddress(uri); 

serviceEndPoint.Binding = new NetTcpRelayBinding(); 

5. Add any additional behaviors to the endpoint, such as security or publishing behaviors: 

serviceEndPoint.Behaviors.Add(sharedSecretServiceBusCredentia

l); 

In this code sample, sharedSecretServiceBusCredential had previously been created to 
store the security credentials. 

6. Add the service endpoint to the service host instance. This step indicates which endpoint 
you want to instantiate.  

host.Description.Endpoints.Add(serviceEndPoint); 

7. Open the service by using a call to ServiceHost.Open. 

If successful, the service will be available for a client application to contact and 
communicate with through the Service Bus without additional action required. However, 
you may want to perform additional tasks, such as notifying the user that the host has 
succeeded. 

host.Open(); 

 

Console.WriteLine(String.Format("Listening at: {0}", 

endPoint)); 

Console.WriteLine("Press [Enter] to exit"); 

Console.ReadLine(); 

8. When you are finished, close the host with ServiceHost.Close. 

host.Close(); 

To host a Service Bus service that uses an App.config file 



 

 194 

1. Create the name of the project to expose on the Service Bus: 

string serviceBusProjectName = "myProjectNameHere"; 

 
2. Create the URI for your service: 

Uri address = ServiceBusEnvironment.CreateServiceUri("sb", 

serviceBusProjectName, "OnewayService"); 

3. Create a new instance of the ServiceHost. 

ServiceHost host = new ServiceHost(typeof(LogService), uri); 

Here, the service host takes the supplied address, and also the type that the service 
contract implements. In this example, the class that implements the service contract is 
named LogService. 

4. If successful, the service will be available for a client application to contact and 
communicate with through the Service Bus without additional action required.  

host.Open(); 

 

Console.WriteLine("Press [Enter] to exit"); 

Console.ReadLine(); 

5. When you are finished, close the host with ServiceHost.Close. 

host.Close(); 

6. In your App.config file, add the credential and binding information for your project.  

An example App.config file that contains this information is located in the code sample at 
the end of this topic. 

Example 

Description 
The following example shows how to programmatically define and create a service application. 

Code 

 

    class Program 

    { 

        static void Main(string[] args) 

        { 

            string servicePath = "ServicePath"; 

            string serviceNamespace = "ServiceNamespace"; 

            string issuerName = "IssuerName"; 



 

 195 

            string issuerSecret = "IssuerSecret"; 

 

            // Construct a Service Bus URI 

            Uri uri = ServiceBusEnvironment.CreateServiceUri("sb", serviceNamespace, 

servicePath); 

 

            // Create a Behavior for the Credentials 

            TransportClientEndpointBehavior sharedSecretServiceBusCredential = new 

TransportClientEndpointBehavior(); 

            sharedSecretServiceBusCredential.CredentialType = 

TransportClientCredentialType.SharedSecret; 

            sharedSecretServiceBusCredential.Credentials.SharedSecret.IssuerName = 

issuerName; 

            sharedSecretServiceBusCredential.Credentials.SharedSecret.IssuerSecret = 

issuerSecret; 

 

            // Create the Service Host  

            host = new ServiceHost(typeof(EchoService), uri); 

            ContractDescription contractDescription = 

ContractDescription.GetContract(typeof(IEchoContract), typeof(EchoService)); 

            ServiceEndpoint serviceEndPoint = new ServiceEndpoint(contractDescription); 

            serviceEndPoint.Address = new EndpointAddress(uri); 

            serviceEndPoint.Binding = new NetTcpRelayBinding(); 

            serviceEndPoint.Behaviors.Add(sharedSecretServiceBusCredential); 

            host.Description.Endpoints.Add(serviceEndPoint); 

 

            host.Open(); 

 

            Console.WriteLine(String.Format("Listening at: {0}", endPoint)); 

            Console.WriteLine("Press [Enter] to exit"); 

            Console.ReadLine(); 

 

            host.Close(); 

        } 

    } 



 

 196 

 

 

 

 

//Service that is configured mainly with an App.config file 

   class Program 

    { 

        static void Main(string[] args) 

        { 

            string serviceNamespace = GetServiceNamespace(); 

            Uri address = ServiceBusEnvironment.CreateServiceUri("sb", serviceNamespace, 

"OnewayService"); 

 

            ServiceHost host = new ServiceHost(typeof(OnewayService), address); 

            host.Open(); 

 

            Console.WriteLine("Press [Enter] to exit"); 

            Console.ReadLine(); 

 

            host.Close(); 

        } 

    } 

 

 

//App.config file associated with the previous code sample 

 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

<system.serviceModel> 

<behaviors> 

<endpointBehaviors> 

<behavior name="sharedSecretClientCredentials"> 

<transportClientEndpointBehavior credentialType="SharedSecret"> 

<clientCredentials> 



 

 197 

<sharedSecret issuerName="ISSUER_NAME" issuerSecret="ISSUER_SECRET" /> 

</clientCredentials> 

</transportClientEndpointBehavior> 

</behavior> 

</endpointBehaviors> 

</behaviors> 

<bindings> 

<!-- Application Binding --> 

<netOnewayRelayBinding> 

<binding name="default" /> 

</netOnewayRelayBinding> 

</bindings> 

<services> 

<service name="Microsoft.ServiceBus.Samples.OnewayService"> 

<endpoint address="" behaviorConfiguration="sharedSecretClientCredentials" 

          binding="netOnewayRelayBinding" bindingConfiguration="default" 

          name="RelayEndpoint" contract="Microsoft.ServiceBus.Samples.IOnewayContract" /> 

</service> 

</services> 

 

</system.serviceModel> 

</configuration> 

 

See Also 
Hosting a WCF Service in IIS 

How to: Host a Service on Windows Azure that Accesses the 
Service Bus 
Creating a service application that runs on Windows Azure follows the programming patterns for 
both a Windows Azure and a traditional Windows Azure Service Bus application: you define and 
implement the service contract, configure the endpoint, create the credentials, and then start the 
host. Once you are finished, you stop the host. However, note that there are three unique issues 
when you create a service in Windows Azure: 
• Windows Azure does not have the Service Bus assembly pre-installed 

http://go.microsoft.com/fwlink/?LinkId=196180


 

 198 

Windows Azure is not integrated with Windows Azure. Therefore,, Windows Azure does not 
install the Service Bus Bus assembly. Due to Windows Azure security restrictions, you cannot 
install the Windows Azure SDK on the Windows Azure platform. Therefore, to run a Service 
Bus application on Windows Azure, you must redistribute the Service Bus assembly with your 
Service Bus application. For more information about packaging an assembly with your 
application, see the following procedure. 

• Windows Azure does not store Service Bus and Access Control configuration 
information in the Machine.config file 

Because Windows Azure does not install the Windows Azure SDK, the Machine.config file on 
a Windows Azure computer has no information about Service Bus bindings or endpoints. As 
stated previously, Windows Azure security restrictions prevent you from modifying the 
Windows Azure Machine.config file. Therefore, there are two options to make Service Bus 
and Access Control configuration information available to your Service Bus applications. 
a. The recommended solution is to use the Service Bus APIs to programmatically configure 

your application. For example, although you could store name and password information 
in the App.config file, you would programmatically set any relay binding configurations. 
For more information about setting configuration programmatically, see Configuring a 
WCF Service to Register with the Service Bus. 

b. The second solution is to manually modify the App.config file for your application by 
adding all of the relevant information. Once you do this, you can use the App.config file to 
configure bindings and endpoints. To do so, you can see the Machine.config file on a 
computer that has the Windows Azure SDK installed, find all Windows Azure-related 
configuration information, and copy them to your application App.config file. While this 
lets you use the App.config file on the host service, it will be difficult to test your code: you 
may encounter duplication issues with the Machine.config file of the local test computer, 
which will already have the Windows Azure SDK installed. Therefore, we recommend 
that you use the previous option, and set everything programmatically. 

• The Service Bus Service Bus must have Full Trust authorization to run on Windows 
Azure 

As with all other Service Bus applications, you must make sure that the operating system is 
running with Full Trust authorization. This can be set in the ServiceDefinition.csdef file of your 
Windows Azure project, using the following procedure. 

1. In Solution Explorer, under the WorkerRole or WebRole node (depending on where 
your code is located), add the Microsoft.ServiceBus.dll assembly to your Windows 
Azure project as a reference.  

This step is the standard process for adding a reference to an assembly. 
2. In the Reference folder, right-click Microsoft.ServiceBus. Then click Properties. 
3. In the Properties dialog, set Copy Local to True.  

Doing so makes sure that the Microsoft.ServiceBus.dll assembly is copied to the local 
\bin path and available to your application when it is running on Windows Azure. 

To package the Service Bus assembly with your application 



 

 199 

1. In the ServiceDefinition.csdef file in your project, set the enableNativeCodeExecution field 
to "true", as shown in the following code. Replace "ApplicationNameHere" with the name 
of your application: 

<?xml version="1.0" encoding="utf-8"?> 

<ServiceDefinition name="ApplicationNameHere" 

xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/Se

rviceDefinition"> 

<WebRole name="WebRole" enableNativeCodeExecution="true"> 

<InputEndpoints> 

<!-- Must use port 80 for http and port 443 for https when 

running in the cloud --> 

<InputEndpoint name="HttpIn" protocol="http" port="80" /> 

</InputEndpoints> 

</WebRole> 

<WorkerRole name="WorkerRole" enableNativeCodeExecution="true"> 

</WorkerRole> 

</ServiceDefinition> 

 

 

How to: Create a REST-based Service that Accesses the Service 
Bus 
Windows Azure currently supports two different styles of applications that qualify as REST-based 
services: a traditional Service Bus application that complies with the Web programming model, 
and an HTTP-compliant application that uses a message buffer. 
• Traditional application 

This style of application uses the basic Windows Communication Foundation (WCF) 
programming model: defining and creating a service contract, using a binding and security 
credentials to connect to the Service Bus, and so on. The main addition is that a REST-based 
Service Bus application uses a service contract to whose members the [OperationContract, 
WebGet] or [OperationContract, WebInvoke] attributes are applied. These behaviors define 
the interface as a REST interface, and allow the Service Bus to interact with other REST-
style applications. And therefore, the applications contain additional code that enables them 
to build HTTP-style messages. Finally, all these applications use the 
Microsoft.ServiceBus.WebHttpRelayBinding binding. For more information, seeHow to: 
Expose a REST-based Web Service Through the Service Bus. For an extended example of a 

To set the Windows Azure application to Full Trust 

http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition
http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition


 

 200 

REST-based service application, see the Service Bus Message Buffer Tutorial, which is in 
turn based on the WebHttp sample in the Windows Azure SDK.  

• Message Buffer applications 

The Message Buffer is an Service Bus feature that exposes a REST interface to a buffer 
location. Sender applications can use this message buffer to temporarily store messages and 
events, similar to any other buffer. Similarly, client applications can subscribe to the message 
buffer to receive stored messages or events. Because the interface is exposed through the 
Service Bus, it is available to any application that can connect to the Internet. Because the 
message buffer is a REST-style interface, you can connect to it using non-WCF style 
applications, such as JavaScript applications, Web browsers, and other non-Microsoft 
products. This includes writing services in JavaScript. However, because this technology is 
so different from a typical Service Bus application, it has its own section of the 
documentation. For more information about creating applications that interact with the 
message buffer, see Service Bus Message Buffer Overview. 

Because message buffers have a dedicated section in the documentation, this topic focuses 
mainly on the details of creating a basic Service Bus application that uses the REST standard. 
The process of hosting a REST-based Service Bus application is very similar to hosting a 
standard Service Bus application. The main differences are in the contract and configuration: the 
actual hosting process is basically the same. 

1. Create the service by using the standard pattern as defined in Building a Service for the 
Service Bus; that is, define and implement a service contract, configure and implement 
the service host, and so on. 
a. When applying the System.ServiceModel.OperationContractAttribute attribute to 

the service contract, make sure that you apply the relevant attributes to identify the 
REST-based members. For more information, see How to: How to: Expose a REST-
based Web Service Through the Service Bus.  

The following example code shows how to tag an interface member as a REST-style 
GET member. 

public interface IImageContract 

{ 

    [OperationContract, WebGet] 

    Stream GetImage(); 

} 

b. When implementing the contract, set the appropriate content type header for the 
outgoing Web responses, as defined by the needs of your application.  

public ImageService()  

{ 

    this.bitmap = Image.FromFile(imageFileName); 

To host a Service Bus service application that complies with the REST standard 



 

 201 

} 

 

public Stream GetImage() 

{ 

    MemoryStream stream = new MemoryStream(); 

    this.bitmap.Save(stream, ImageFormat.Jpeg); 

 

    stream.Position = 0; 

    WebOperationContext.Current.OutgoingResponse.ContentType = 

"image/jpeg"; 

 

    return stream; 

}         

 

 

2. Create the address for the service by using the 
Microsoft.ServiceBus.ServiceBusEnvironment.CreateServiceUri(System.String,Sys
tem.String,System.String) method:  

string serviceNamespace = “myServiceNamespace” 

Uri address = ServiceBusEnvironment.CreateServiceUri("https", 

serviceNamespace, "Image"); 

 

3. Create a new instance of System.ServiceModel.Web.WebServiceHost. 

WebServiceHost host = new 

WebServiceHost(typeof(ImageService), address); 

The System.ServiceModel.Web.WebServiceHost class is derived from the 
System.ServiceModel.ServiceHost class, and complements the WCF Web 
programming model. It also makes it easier to host REST-based services. It is 
recommended that you use System.ServiceModel.Web.WebServiceHost instead of 
System.ServiceModel.ServiceHost in your REST-based Service Bus application 
implementation. For more information, seeWCF REST Programming Model in the WCF 
documentation. 

4. Specify the address, binding, and contracts (also known as the "ABCs") used by the 
service endpoint. 

<services> 

<!-- Application Service --> 

<service name="Microsoft.ServiceBus.Samples.ImageService" 



 

 202 

               behaviorConfiguration="default"> 

<endpoint name="RelayEndpoint" 

                  

contract="Microsoft.ServiceBus.Samples.IImageContract" 

                  binding="webHttpRelayBinding" 

                  bindingConfiguration="default" 

                  

behaviorConfiguration="sharedSecretClientCredentials" 

                  address="" /> 

</service> 

Here, the ABC is linked to the endpoint in the App.config file. For more information about 
configuring an application, see Configuring a WCF Service to Register with the Service 
Bus. 

The only binding to use for a service endpoint in a REST-based Service Bus application 
is Microsoft.ServiceBus.WebHttpRelayBinding. 

5. If necessary, disable client authentication. 

 

<bindings> 

<!-- Application Binding --> 

<webHttpRelayBinding> 

<binding name="default"> 

<security relayClientAuthenticationType="None" /> 

</binding> 

</webHttpRelayBinding> 

</bindings> 

 

By default, the Microsoft.ServiceBus.WebHttpRelayBinding binding requires client 
authentication. This step describes how to disable it in the <binding> element in the 
App.config file, so that the client does not have to present credentials (for example, when 
you use a browser). For more information about authenticating with the Service Bus, 
see Securing and Authenticating a Service Bus Connection. 

6. Define the security for your application: 

 

<behaviors> 

<endpointBehaviors> 

<behavior name="sharedSecretClientCredentials"> 



 

 203 

<transportClientEndpointBehavior 

credentialType="SharedSecret"> 

<clientCredentials> 

<sharedSecret issuerName="ISSUER_NAME" 

issuerSecret="ISSUER_SECRET" /> 

</clientCredentials> 

</transportClientEndpointBehavior> 

 

</behaviors> 

In this example, the security is defined in the App.config file. For more information about 
security, see Securing and Authenticating a Service Bus Connection. 

7. Open the Service with a call to WebServiceHost.Open:  

host.Open() 

8. When you are finished, close the host with WebServiceHost.Close.  

host.Close(); 

 

How to: Use a Third Party Hosting Service with the Service Bus 
It is possible to run an application that uses the Windows Azure Service Bus on a third-party 
hosting platform. There are no special settings that you must use in order to deploy your 
application on the hosting service, other than what the hosting service requires. There are also no 
special security requirements for accessing the Service Bus from a third-party system. However, 
in order to get your application to run correctly, there are two things to note, which are very similar 
to running an application on Windows Azure: 
• The hosting service may not install the Windows Azure SDK 

If the hosting service does not have the Windows Azure SDK installed, you cannot know for 
sure that the Microsoft.ServiceBus.dll assembly is available for your application to use. 
Therefore, you must make sure that the appropriate assembly is packaged and redistributed 
with your application. To do so, see the following procedure. 

• The hosting service may not have the appropriate listings in the Machine.config file 

Because the third-party hosting service may not have the Windows Azure SDK installed, the 
Machine.config file on the host has no information about Service Bus bindings or endpoints. 
Due to security restrictions on many hosting services, you will likely not be able to install the 
SDK on the host computer in order to add those configuration elements to the Machine.config 
file. Therefore, the App.config file for your Service Bus application will likely not have any 
information specific to Windows Azure in it.  

There are two solutions to this issue.  



 

 204 

a. The recommended solution is to use the Windows Azure APIs to programmatically 
configure your application. For example, although you could store name and password 
information in the App.config file, you would programmatically set any relay binding 
configurations. For more information about setting the configuration programmatically, 
see Configuring a WCF Service to Register with the Service Bus. 

b. The second solution is to manually modify the App.config file for your application by 
adding all of the relevant Service Bus information. Once you do this, you can use the 
App.config file to configure bindings and endpoints. To do so, you can see the 
Machine.config file on a computer that has the Windows Azure SDK installed, find all 
Windows Azure related configuration information, and copy it to the App.config file for 
your application. Although this will let you use the App.config file on the host service, it 
will be difficult to test your code: you may experience duplication issues with the 
Machine.config file on the local test computer, which will already have the Windows 
Azure SDK installed. Therefore, we recommend that you use the previous option, and set 
everything programmatically.  

1. In Solution Explorer, add the Microsoft.ServiceBus.dll assembly to your project as a 
reference.  
This step is the standard process for adding a reference to an assembly. 

2. In the Reference folder, right-click Microsoft.ServiceBus. Then click Properties. 
3. In the Properties dialog, set Copy Local to True.  
4. Doing so makes sure that the Microsoft.ServiceBus.dll assembly is copied to the local 

\bin path and available to your application when it runs on the host service. 

 

Hosting Behind a Firewall with the Service Bus 
This topic describes several ways to connect to the Windows Azure Service Bus from behind a 
firewall or through a proxy server. 

Troubleshoot your Firewall Connection 
The following troubleshooting topics discuss common solutions to problems encountered when 
you connect through a firewall to the Service Bus. 

Configure the Ports on your Firewall 
To use the Service Bus relay, ensure that your firewall allows outgoing TCP communication on 
TCP ports 9350 to 9354. For Service Bus brokered messaging, use port 9354. 

Configure the WinHTTP Proxy Settings 
If you are running behind a firewall/proxy that requires authentication, or if you are running in an 
IPsec-protected network, there are additional obstacles for any client to reach the network proxy. 
For example, Windows accounts might not have permissions to communicate through the 

To package the Service Bus assembly with your application 



 

 205 

firewall. Therefore, you might have to explicitly configure the WinHTTP proxy settings with the 
appropriate credentials. 

Set OpenTimeout 
Setting the connectivity mode to HTTP (that is, ConnectivityMode = http) may cause connections 
in the presence of some proxies to be very slow. For example, some connections can require up 
to 20 seconds to connect. Extending the OpenTimeout option for the service to up to two 
minutes can help, because you might run out of time between the acquisition of the Access 
Control token and getting the Web stream working. After the Web stream is established, the 
throughput often improves.  

Building a Service Bus Client Application 
The following topic describes how to build a client application that connects to and uses a 
Windows Azure Service Bus service endpoint to communicate with the originating service. 

In This Section 
How to: Create a WCF SOAP Client Application for the Service Bus 

This topic describes how to create a SOAP-based client application that uses Windows 
Communication Foundation (WCF). 

 

Creating a REST-based Client Application for the Service Bu  s
This topic describes how to create one REST-based client application that uses the 
Windows Communication Foundation (WCF) Web programming model and the 
Windows Azure SDK assemblies and one application without them. 

 

Creating a Windows Azure Client for the Service Bus 

This topic describes the mechanisms you can use to access a SOAP- or REST-based 
service from a Windows Azure client application. 

 

See Also 
Building a Service Bus Client Application 

How to: Create a WCF SOAP Client Application for the Service 
Bus 
The following topic describes how to create a traditional client application that accesses the 
Windows Azure Service Bus. For a complete discussion of building a client application, see 
Building Clients in the Windows Communication Foundation (WCF) documentation. The 



 

 206 

following procedure is a simplified process for creating a client application that highlights the 
features unique to the Service Bus. For a complete sample, see the Echo sample in the Windows 
Azure SDK, or Step 5: Create a WCF Client for the Service Contract in the Service Bus Relayed 
Messaging Tutorial.  

1. Retrieve a copy of the contract of the service and include it in your code: 

using System; 

using System.ServiceModel; 

 

[ServiceContract(Name = "IEchoContract", Namespace = 

"http://samples.microsoft.com/ServiceModel/Relay/")] 

public interface IEchoContract 

{ 

    [OperationContract] 

    string Echo(string text); 

} 

 

public interface IEchoChannel : IEchoContract, IClientChannel 

{ } 

 

You can retrieve the contract from the service in a variety of ways, such as through 
metadata exposed by the service. For more information, seeHow to: Design a WCF 
Service Contract for use with the Service Bus. 

2. Add references to the System.ServiceModel and Microsoft.ServiceBus namespaces 
to your project: 

using System.ServiceModel; 

using Microsoft.ServiceBus; 

 

3. Retrieve your service namespace and relevant credential information: 

static void Main(string[] args) 

{ 

    Console.Write("Your Service Namespace (ex. 

sb://<ServiceNamespace>.servicebus.windows.net/): "); 

    string serviceNamespace = Console.ReadLine(); 

    Console.Write("Your Issuer Name: "); 

To create a Service Bus client application 



 

 207 

    string issuerName = Console.ReadLine(); 

    Console.Write("Your Issuer Secret: "); 

    string issuerSecret = Console.ReadLine(); 

} 

 

Note  
The previous code example assumes that the service endpoint requires issuer 
name and secret credentials. Service endpoints may not require authentication; if 
one did not require authentication, setting the issuer name and secret would also 
not be necessary. 

The type of security and authentication that is required to connect is defined by the 
service. You can retrieve this information in a variety of ways, such as through metadata 
that the service exposes. For more information, seeHow to: Design a WCF Service 
Contract for use with the Service Bus. This topic assumes that the Service Bus endpoint 
requires client applications to authenticate and uses issuer name and secret credentials. 
(An endpoint may not require any authentication, although this example does.) You can 
also use other credential types, such as a simple Web token (SWT), or SAML. At this 
point, you can also set the client transport or message-level security. However, for many 
scenarios, the default settings are sufficient. For more information, seeSecuring and 
Authenticating a Service Bus Connection. 

4. Define the security credentials to use with the endpoint: 

TransportClientEndpointBehavior 

sharedSecretServiceBusCredential = new 

TransportClientEndpointBehavior(); 

sharedSecretServiceBusCredential.CredentialType = 

TransportClientCredentialType.SharedSecret; 

sharedSecretServiceBusCredential.Credentials.SharedSecret.Iss

uerName = issuerName; 

sharedSecretServiceBusCredential.Credentials.SharedSecret.Iss

uerSecret = issuerSecret;} 

Note  
The previous code example assumes that the service endpoint requires issuer 
name and secret credentials. Service endpoints may not require authentication; if 
authentication is not required, skip this step and step 8, later in this section. 

5. Create a URI object pointing to the Service Bus service, as shown in the following code: 

Uri serviceUri = ServiceBusEnvironment.CreateServiceUri("sb", 

serviceNamespace, "EchoService"); 

In this code sample, the 



 

 208 

Microsoft.ServiceBus.ServiceBusEnvironment.CreateServiceUri(System.String,Sys
tem.String,System.String) method takes the schema (“sb” for the Service Bus, used for 
TCP relay connections), the service namespace, and the name of the endpoint to which 
to connect. For more information, seeCreating a Service Bus URI.  

6. Configure the client endpoint used to connect to the service. 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

<system.serviceModel> 

<client> 

<!-- Application Endpoint --> 

<endpoint name="RelayEndpoint" 

                

contract="Microsoft.ServiceBus.Samples.IEchoContract" 

                binding="netTcpRelayBinding"/> 

</client> 

 

</system.serviceModel> 

</configuration> 

In this example, the client endpoint is defined using the name “RelayEndpoint”, which is 
used later to help create the channel factory. The endpoint configuration also declares 
the contract defined in the first step of this procedure, as well as the fact that the binding 
used to connect is a Microsoft.ServiceBus.NetTcpRelayBinding. For this procedure, 
the information is declared in an App.config file. You can also define this information 
programmatically. For more information, seeConfiguring a WCF Service to Register with 
the Service Bus. 

7. Instantiate a channel factory: 

ChannelFactory<IEchoChannel> channelFactory = new 

ChannelFactory<IEchoChannel>("RelayEndpoint", new 

EndpointAddress(serviceUri)); 

This channel factory uses the type of channel defined in the client contract at the 
beginning of this procedure. 

8. Apply the credentials and any other behaviors to the endpoint: 

channelFactory.Endpoint.Behaviors.Add(sharedSecretServiceBusC

redential); 

Note  
The preceding code example assumes that the service endpoint requires issuer 
name and secret credentials. Service endpoints may or may not require 



 

 209 

authentication; if an endpoint does not require authentication, adding the 
credential behavior to the client endpoint would not be required. 

9. Create a new channel to the service and open it: 

IEchoChannel channel = channelFactory.CreateChannel(); 

channel.Open(); 

10. Perform whatever tasks are necessary to your scenario: 

Console.WriteLine("Enter text to echo (or [Enter] to 

exit):"); 

string input = Console.ReadLine(); 

while (input != String.Empty) 

{ 

     try 

    { 

        Console.WriteLine("Server echoed: {0}", 

channel.Echo(input)); 

    } 

    catch (Exception e) 

    { 

        Console.WriteLine("Error: " + e.Message); 

    } 

    input = Console.ReadLine(); 

} 

This step consists of accessing the service application through the exposed endpoint. For 
more information, seeBuilding a Service for the Service Bus. 

11. When you are finished, close the channel, as shown in the following code: 

channel.Close(); 

channelFactory.Close(); 

 

Creating a REST-based Client Application for the Service Bus 
A client application can access a REST-style service by using the 
Microsoft.ServiceBus.WebHttpRelayBinding or by directly sending HTTP requests to the 
service endpoint. 

Some applications, such as browsers or JavaScript applications, do not use the 
Microsoft.ServiceBus.dll assembly. Therefore, they do not have access to the Windows Azure 
SDK. These applications can access a REST service endpoint directly using whatever HTTP 



 

 210 

capabilities available to them. In this case, the only issue is what type of security and 
authentication the service requires. However, in this kind of scenario, it is common for the service 
to require little or no authentication. For more information, seeHow to: Create a REST-based 
Service that Accesses the Service Bus. For a full example of this scenario, see the WebHttp 
sample in the Windows Azure SDK, or the Service Bus Message Buffer Tutorial. 

If the client has access to the Windows Azure SDK, it follows the same procedure as a standard 
Service Bus client application. For more information, seeHow to: Create a WCF SOAP Client 
Application for the Service Bus. The only unique feature in this scenario is that attributes such as 
[WebGet] are applied to the contract you retrieve from the service. These attributes map the 
contract to the REST standard. Because it is an Internet-based protocol, you will be required to 
use an HTTP-based binding, such as Microsoft.ServiceBus.WebHttpRelayBinding. 

Creating a Windows Azure Client for the Service Bus 
Although the Windows Azure Service Bus runs on Windows Azure, an application can use either 
service independently of the other. To emphasize the independence of the technologies, the 
following is possible:  
• An application executing on a computer on a desktop (that is, not hosted in Windows Azure) 

can use the Service Bus without knowing anything about Windows Azure. 
• An application can be hosted in Windows Azure without knowing anything about or using the 

Service Bus. 
• An application can be hosted in Windows Azure and also use the Service Bus. 

Therefore, applications that are hosted in Windows Azure and that use the Service Bus (whether 
as a service or a client) have no different development or configuration requirements other than 
those required to host any application in Windows Azure with one exception: Because the 
Microsoft.ServiceBus.dll assembly is not available to Windows Azure, applications hosted in 
Windows Azure must package and deploy that assembly and make any configuration changes 
that are required to use it from Windows Azure. 

For more information about Service Bus clients that are hosted in Windows Azure, see How to: 
Configure a Windows Azure-Hosted Service Bus Service or Client Application. 

Discovering and Exposing a Service Bus Service 
The following topics describe how to use the Windows Azure Service Bus service registry to 
register service endpoints, expose them in the registry, publish WSDL metadata exchange 
endpoints, and locate service endpoints that have been registered to be publicly visible.  

In This Section 
How to: Publish a Service to the Service Bus Registry 

This topic describes how to use the 
Microsoft.ServiceBus.ServiceRegistrySettings behavior to publish a service 
endpoint in the ATOM 1.0 feed and to control the name that appears there. 



 

 211 

 

How to: Discover and Expose a Service Bus Application 

This topic describes how to navigate the endpoints published in the registry to obtain 
the one to which you want to connect. 

 

How to: Expose a Metadata Endpoint 
This topic describes how to publish an 
System.ServiceModel.Description.IMetadataExchange service endpoint on 
the Service Bus to enable SOAP-based clients to create their client channels using 
tools such as those available in Visual Studio. 

 

 

How to: Publish a Service to the Service Bus Registry 
The Microsoft.ServiceBus.ServiceRegistrySettings endpoint behavior gives you control over 
how a given service is published in the Service Registry. By default, all services are "cloaked" 
and are not visible in the Service Registry ATOM feed. 

The following table lists the properties that you can set on the 
Microsoft.ServiceBus.ServiceRegistrySettings endpoint: 
 

T:Microsoft.ServiceBus.ServiceRegistrySettings 
properties 

Description 

Microsoft.ServiceBus.ServiceRegistrySetting
s.DisplayName 

This is the display name for the endpoint and 
is used as the <title> field for the endpoint in 
the discovery ATOM feed. By default, the 
Microsoft.ServiceBus.ServiceRegistrySetti
ngs.DisplayName property is set to the last 
segment of the service URI. 

Microsoft.ServiceBus.ServiceRegistrySetting
s.DiscoveryMode 

This property is set to the 
Microsoft.ServiceBus.DiscoveryType.Publi
c or 
Microsoft.ServiceBus.DiscoveryType.Privat
e values, with the latter being the default. If 
you set this property to 
Microsoft.ServiceBus.DiscoveryType.Publi
c, the endpoint is published into the Service 
Registry ATOM feed. 

 



 

 212 

1. Create an instance of the Microsoft.ServiceBus.ServiceRegistrySettings behavior, 
using the Microsoft.ServiceBus.DiscoveryType.Public parameter. 

ServiceRegistrySettings serviceRegistrySettings = new 

ServiceRegistrySettings(DiscoveryType.Public); 

serviceRegistrySettings.DisplayName = "MyService"; 

2. Add the description to the associated endpoint. 

foreach (ServiceEndpoint subscriberEndpoint in 

subscriberHost.Description.Endpoints) 

{ 

    

subscriberEndpoint.Behaviors.Add(serviceRegistrySettings); 

} 

 

 

How to: Discover and Expose a Service Bus Application 
Once a service has been deployed to a Windows Azure Service Bus endpoint, you can create a 
client to connect to that service. However, in order to do this, you must first know the URI of the 
service, which you can discover in one of two ways: 
1. The creator of the service can explicitly provide the URI. 
2. You can discover the address by navigating the naming hierarchy of the service namespace 

under which the service has been published. 

This second step occurs through the service registry, which is a database of services and their 
associated URIs. For more information about exposing an endpoint in the service registry, 
see How to: Publish a Service to the Service Bus Registry. 

1. You can discover a published service by navigating the naming hierarchy, which can be 
accessed through a nested tree of Atom 1.0 feeds. The root feed for a given project is 
located at http://<service-namespace>.servicebus.windows.net/ . 

Note that, by default, services are "cloaked," and not visible in the Atom feed. A 
developer must explicitly decide to make the service visible. However, cloaking only 
makes a service invisible in the Atom feed; any client that has the necessary credentials 
can still connect to the service if it knows the address.  

 

To add an Application to the Service Bus registry 

To discover a service that has been published in the Service Registry 

http://<service-namespace>.servicebus.windows.net/


 

 213 

How to: Expose a Metadata Endpoint 
A Windows Azure Service Bus metadata endpoint is a URI that exposes additional information 
about a service or client application. For example, the Svcutil.exe tool uses the exposed 
metadata from a service to build a contract so that a developer can access that service. Without 
the metadata, the developer would have to gain access to the contract in some other way, such 
as asking the creator for a copy of it directly via e-mail. Note that you can still implement an 
interface without metadata: metadata just lets you easily obtain the contract if you do not already 
have it. Also note that exposing a metadata endpoint differs from publishing your interface to the 
ATOM feed: the metadata endpoint contains additional information about the contract, whereas 
publishing on the ATOM feed just lists the service URI in a publicly-accessed database. 

The following is a simplified procedure for exposing metadata on an application that uses the 
Service Bus. For a complete discussion of metadata, see Metadata Architecture Overview in 
the Windows Communication Foundation (WCF) documentation. 

1. In the App.config file for the host application, add the metadata endpoint definition to the 
service configuration information. 

<services> 

<service name="Service.EchoService"> 

<endpoint name="RelayEndpoint" 

              ... /> 

 

<endpoint name="MexEndpoint" 

 contract="IMetadataExchange" 

 binding="netTcpRelayBinding" 

 bindingConfiguration="default" 

 address="mex" /> 

 

</service> 

</services> 

 

2. To add metadata publishing to the service, modify the application configuration 
information to include an additional behavior section. 

<system.serviceModel> 

  ... 

<behaviors> 

<endpointBehaviors> 

To expose a metadata endpoint 



 

 214 

      ... 

<endpointBehaviors> 

 

<serviceBehaviors> 

<behavior name="serviceMetadata"> 

<serviceMetadata /> 

</behavior> 

</serviceBehaviors> 

 

</behaviors> 

 

</system.serviceModel> 

 

3. Add the metadata behavior to the service by specifying the behaviorConfiguration 
property in the service definition. 

<services> 

<service name="Service.EchoService" behaviorConfiguration="serviceMetadata"> 

    ... 

</service> 

</services> 

 

Warning  
If the metadata endpoint is specified with a different end-to-end security mode 
than the service endpoint, and uses a relative address while sharing the same 
base address with the service endpoint, an exception of type 
System.ArgumentException is thrown when you open the service host. The 
following error message accompanies the exception: Incompatible channel 
listener settings. To resolve this issue, perform one of the following 
workarounds: 

• Specify the address of the metadata endpoint as a fully-qualified address. 
• If you want to use a relative address for the metadata endpoint that shares a base 

address with the service endpoint, specify the same end-to-end security mode for 
both the metadata and service endpoints.  

• Use a relative address for the metadata endpoint with a base address that differs 
from the base address of the service endpoint. 

 



 

 215 

Working with a Service Bus Message Buffer 
The following topics provide an overview of the Windows Azure Service Bus message buffer 
feature. They also describe how to create, configure, and use an Service Bus message buffer. 

In This Section 
Service Bus Message Buffer Overview 

How to: Configure a Service Bus Message Buffer 

How to: Create and Connect to a Service Bus Message Buffer 

How to: Send Messages to a Service Bus Message Buffer 

How to: Retrieve a Message from a Service Bus Message Buffer 

Service Bus Message Buffer Overview 

Service Bus Message Buffer Overview 

The current Message Buffers feature, including their management protocol, will remain 
supported for backwards compatibility. However, the general recommendation is that you 
explicitly change client code to use the new Queue feature. For more information, 
see Queues, Topics, and Subscriptions. 

Message buffers are small, temporary cache locations in which messages can be held for a short 
time until they are retrieved. Message buffers are especially useful in Web programming model 
scenarios when Windows Azure Service Bus bindings are not available; for example, when the 
message consumer is running on a computer that is not running Windows, or is implemented in 
Java. Message buffers can be accessed by applications that use HTTP and do not require the 
Windows Azure SDK. Hence, message buffers enable Web developers, mobile device 
programmers, and others to integrate their applications together with the Service Bus by creating 
message consumers that use HTTP requests to poll for messages. 

Message buffers use the HTTP REST protocol to expose various operations on the message 
buffer such as creating a message buffer, sending a message to the message buffer, and 
retrieving a message from the message buffer. These operations are described in the 
following Message Buffer Protocol section. 

The following code example shows how to use the REST protocol to create a message buffer, 
send and retrieve a message from the message buffer, and finally delete the message buffer. 
This example uses System.Net.WebClient to send and receive HTTP requests. For a complete 
working sample, see the PlainHttp sample in the Windows Azure SDK samples folder under 
ServiceBus\ExploringFeatures\MessageBuffer. 

// Prompt the user for the service namespace and issuer key. 

Console.Write("Please enter your Service Namespace: "); 

Important  



 

 216 

string serviceNamespace = Console.ReadLine(); 

Console.Write("Please enter the key for the 'owner' issuer: "); 

string ownerKey = Console.ReadLine(); 

// Create a GUID for the buffer name. 

string bufferName = Guid.NewGuid().ToString("N"); 

 

// Construct the message buffer URI. 

string messageBufferLocation = string.Format("http://{0}.servicebus.windows.net/{1}", 

serviceNamespace, bufferName); 

 

// Get the AC token 

WebClient client = new WebClient(); 

client.BaseAddress = string.Format("https://{0}-sb.accesscontrol.windows.net/", 

serviceNamespace); 

NameValueCollection values = new NameValueCollection(); 

values.Add("wrap_name", "owner"); 

values.Add("wrap_password", ownerKey); 

values.Add("wrap_scope", messageBufferLocation); 

byte[] responseBytes = client.UploadValues("WRAPv0.9", "POST", values); 

string response = Encoding.UTF8.GetString(responseBytes); 

 

string token = Uri.UnescapeDataString(response.Split('&').Single(value => 

value.StartsWith("wrap_access_token=", 

StringComparison.OrdinalIgnoreCase)).Split('=')[1]); 

 

// Create the auth header from the token  

string authHeaderValue = string.Format("WRAP access_token=\"{0}\"", token); 

 

// Create the message buffer policy. 

string policy = 

    "<entry xmlns=\"http://www.w3.org/2005/Atom\">" + 

    "<content type=\"text/xml\">" + 

    "<MessageBufferPolicy 

xmlns=\"http://schemas.microsoft.com/netservices/2009/05/servicebus/connect\"/>" + 

    "</content>" + 

http://www.w3.org/2005/Atom
http://{0}.servicebus.windows.net/
http://{0}.servicebus.windows.net/
http://schemas.microsoft.com/netservices/2009/05/servicebus/connect\


 

 217 

    "</entry>"; 

 

// Create a message buffer. 

client.BaseAddress = string.Format("https://{0}.servicebus.windows.net/{1}/", 

serviceNamespace, bufferName); 

client.Headers[HttpRequestHeader.ContentType] = 

"application/atom+xml;type=entry;charset=utf-8"; 

client.Headers[HttpRequestHeader.Authorization] = authHeaderValue; 

client.UploadData(String.Empty, "PUT", Encoding.UTF8.GetBytes(policy)); 

Console.WriteLine("Message buffer was created at '{0}'.", messageBufferLocation); 

 

// Send a message to the message buffer. 

client.Headers[HttpRequestHeader.ContentType] = "text/xml"; 

client.Headers[HttpRequestHeader.Authorization] = authHeaderValue; 

client.UploadData("messages?timeout=20", "POST", Encoding.UTF8.GetBytes("<msg1>This is 

message #1</msg1>")); 

Console.WriteLine("Message sent."); 

 

// Retrieve message. 

client.Headers[HttpRequestHeader.Authorization] = authHeaderValue; 

string payload = Encoding.UTF8.GetString(client.UploadData("messages/head?timeout=20", 

"DELETE", new byte[0])); 

Console.WriteLine("Retrieved the message '{0}'.", payload); 

 

// Delete the message buffer. 

client.Headers[HttpRequestHeader.Authorization] = authHeaderValue; 

client.UploadData(String.Empty, "DELETE", new byte[0]);   

Console.WriteLine("Message buffer at '{0}' was deleted.", messageBufferLocation); 

You can also use message buffers through the APIs provided by the Windows Azure SDK. This 
requires the Windows Azure SDK to be installed. For more information about using message 
buffers with the Windows Azure SDK, see the Using the Message Buffer with the Windows Azure 
SDK section later in this topic. 

http://{0}.servicebus.windows.net/


 

 218 

Message Buffer Protocol 
The message buffer protocol is an HTTP REST protocol that is designed to follow REST 
principles and to be simple and easy to understand. The goal is to make sure that developers can 
easily use the protocol from any client without requiring a library or SDK. 

The protocol relies on the Access Control service HTTP authorization model to help it enforce 
access control on the message buffer. This means that it uses the Simple Web Token (SWT) 
mechanism that you can use to retrieve a token using HTTP, and then embed it in an HTTP 
request as a header. This token includes claims that are used to determine whether an operation 
should be allowed. 

The protocol expects each message buffer to be located at a unique URI in the Service Bus 
namespace. This URI then becomes the root for a set of resources that represents the message 
buffer instance. Each resource type has a unique URI and an associated set of HTTP verbs for 
interacting with it. The URIs are organized in a way that helps communicate the logical 
relationships between the different types of resources. 

The verbs used to interact with message buffers are modeled on standard HTTP commands. The 
following is a list of these verbs: 
• POST/PUT: Use to create new resources. POST is used to create a new instance of the 

message resource. PUT is used to either create or update a message buffer resource. When 
using POST, the address of the new resource is returned in the response. 

• PUT: Use to update an existing resource. 
• DELETE: Use to delete an existing resource. 
• GET: Use to retrieve a representation of a resource. In this case the GET is expected to 

represent a snapshot of the resource and it can be cached when appropriate. 

The following is a summary of the different message buffer resources and the associated verbs 
for each resource. 
 

URI Resource  

Operations 

http://{serviceNamespace}.service
bus.windows.net/{path}/{buffer} 

 

 

Message buffer 

 

 

PUT Creates or updates 
message buffer. 

GET Gets message buffer policy. 

DELETE Deletes message buffer 
along with its policy and all 
associated state. 

http://{serviceNamespace}.service
bus.windows.net/{path}/{buffer}/m
essages 

Message buffer 
store 

POST Creates message. 

(Returns message URI.) 

http://{serviceNamespace}.service
bus.windows.net/{path}/{buffer}/m

First unlocked 
message 

POST Gets the first unlocked 
message and locks it. 

http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}
http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}
http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages
http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages
http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages
http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head
http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head


 

 219 

URI Resource  

Operations 

essages/head 

 

 (Returns message content, 
message URI, lock duration, 
lock URI, and lock ID.) 

DELETE Retrieves the first unlocked 
message and deletes it from 
the buffer. 

(Returns message content.) 

http://{serviceNamespace}.service
bus.windows.net/{path}/{buffer}/m
essages/{messageid} 

Message DELETE Deletes message. Supports 
delete with lock ID. 

http://{serviceNamespace}.service
bus.windows.net/{path}/{buffer}/m
essages/{messageid}/{lockid} 

Message lock DELETE Unlocks message. 

 

Request/Response Details of the Message Buffer Protocol 
The following tables list the contents of the requests and their corresponding responses for each 
message buffer operation. 

 

Create or update a message buffer 

Resource URI https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer} 

HTTP Verb PUT 

Request 
Headers 

Authorization: WRAPv0.8 {token} 

Content-Type: application/atom+xml;type=entry;charset=utf-8 

Request Body {policy-xml} 
 
For example:  
<entry xmlns="http://www.w3.org/2005/Atom"> 
<content type="text/xml"> 
<MessageBufferPolicy 
xmlns="http://schemas.microsoft.com/netservices/2009/05/servicebus/connect"> 
<Authorization>[AuthorizationPolicy enum value]</Authorization> 
<Discoverability>[DiscoverabilityPolicy enum value]</Discoverability> 
<TransportProtection>[TransportProtectionPolicy enum 
value]</TransportProtection> 
<ExpiresAfter>PTnHnMnS</ExpiresAfter> 

http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head
http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{messageid}
http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{messageid}
http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{messageid}
http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{messageid}/{lockid}
http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{messageid}/{lockid}
http://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{messageid}/{lockid}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}
http://www.w3.org/2005/Atom
http://schemas.microsoft.com/netservices/2009/05/servicebus/connect


 

 220 

<MaxMessageCount>nnn</MaxMessageCount> 
<OverflowPolicy>[OverflowPolicy enum value]</OverflowPolicy> 
</MessageBufferPolicy> 
</content> 
</entry> 
 
Notes:  
The ExpiresAfter time interval is broken up into hours (H), minutes (M), and 
seconds (S). Replace n by the corresponding amount of time for each unit of 
time.  
The enumeration values for the policy properties are part of the 
Microsoft.ServiceBus namespace.  
 

Response 
Body 

{policy-xml} 
 
The message buffer policy is returned because some policy property might be 
defaulted if their value supplied in the request is invalid. 

Expected 
HTTP Status 
Code 

201 Created: The message buffer was successfully created.  
403 Forbidden: Quota exceeded on the number of message buffers. Please 
increase the per solution connection quota. 

 

 

Get a message buffer policy 

Resource URI https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer} 

HTTP Verb GET 

Request Headers Authorization: WRAPv0.8 {token} 

Request Body Empty. 

Response Body {policy-xml} 

Expected HTTP Status 
Code 

200 OK: The message buffer policy was successfully retrieved. 

 

 

Delete a message buffer 

Resource URI https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer} 

HTTP Verb DELETE 

Request Headers Authorization: WRAPv0.8 {token} 

https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}


 

 221 

Request Body Empty. 

Response Body Empty. 

Expected HTTP Status 
Code 

200 OK: The message buffer was successfully deleted. 

 

 

Send a message to a message buffer 

Resource URI https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages 

HTTP Verb POST 

Request 
Headers 

Authorization: WRAPv0.8 {token} 

Content-Type: application/atom+xml;type=entry;charset=utf-8 

Request Body {message-payload} 

Response Body Empty. 

Expected HTTP 
Status Code 

201 Created: The message was sent successfully.  
408 Request Timeout: The request timed out. Please retry.  
400 Bad Request: The request exceeded the quota of pending senders to 
the buffer. Please retry after some time.  
410 Gone: The message buffer does not exist anymore. Please recreate the 
message buffer and retry. 

 

 

Retrieve a message from the message buffer (destructive read) 

Resourc
e URI 

https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?ti
meout={timeout-in-seconds} 

The timeout parameter specifies the maximum amount of time that the retrieve 
request will wait if a message is not readily available in the message buffer. The 
maximum time that can be specified is 2 minutes. 

HTTP 
Verb 

DELETE 

Request 
Headers 

Authorization: WRAPv0.8 {token} 

Request 
Body 

Empty. 

Respon {message-payload} 

https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?timeout={timeout-in-seconds}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?timeout={timeout-in-seconds}


 

 222 

se Body 

Expecte
d HTTP 
Status 
Code 

200 OK: The message was successfully retrieved.  
204 No Content: No messages are present in the message buffer.  
400 Bad Request: This request exceeds the quota of pending receivers to the buffer. 
Please retry after some time.  
410 Gone: The message buffer is no longer available. 

 

 

Lock a message in the message buffer (non-destructive read) 

Resourc
e URI 

https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?ti
meout={timeout-in-seconds}&lockduration={lockduration-in-secs} 

The timeout parameter specifies the maximum amount of time that this request will 
wait if a message is not readily available in the message buffer. The maximum time 
that can be specified is 2 minutes. 

The lockduration parameter specifies the time in seconds that the returned message is 
locked so that no other consumer can see the message. The maximum lock duration 
is 5 minutes and the minimum lock duration is 10 seconds. 

HTTP 
Verb 

POST 

Request 
Headers 

Authorization: WRAPv0.8 {token} 

Request 
Body 

Empty. 

Respon
se 
Headers 

X-MS-MESSAGE-LOCATION: 
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{messa
ge-id} 
This header indicates the location of the message. This URI is needed to unlock or 
delete the message. For more information, see the “Unlock a locked message” and 
“Delete a locked message from the message buffer” tables. 
X-MS-LOCK-ID: {lock-id} 
This header provides the lock ID of the message. This lock ID is needed to delete the 
locked message. For more information, see the “Delete a locked message from the 
message buffer” table. 
X-MS-LOCK-LOCATION: 
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{messa
ge-id}/{lock-id} 
This header indicates the lock location for the message. This URI is needed to unlock 
the message. For more information, see the “Unlock a locked message” table. 

https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?timeout={timeout-in-seconds}&lockduration={lockduration-in-secs}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?timeout={timeout-in-seconds}&lockduration={lockduration-in-secs}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}/{lock-id}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}/{lock-id}


 

 223 

Respon
se Body 

{message-payload} 

Expecte
d HTTP 
Status 
Code 

200 OK: The message was successfully read and locked.  
204 No Content: No messages are present in the message buffer.  
400 Bad Request: This request exceeds the quota of pending receivers to the buffer. 
Please retry after some time.  
410 Gone: The message buffer is no longer available. 

 

 

Unlock a locked message (that is, delete a lock on a message) in the message buffer 

Resource 
URI 

https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{mess
age-id}/{lock-id} 

HTTP 
Verb 

DELETE 

Request 
Headers 

Authorization: WRAPv0.8 {token} 

Request 
Body 

Empty. 

Respons
e Body 

Empty. 

Expected 
HTTP 
Status 
Code 

200 OK: The message was successfully unlocked.  
404 Not Found: No message with the specified lock ID was found. Please retry with a 
valid lock ID.  
410 Gone: The message buffer is no longer available. 

 

 

Delete a locked message from the message buffer 

Resource 
URI 

https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{mess
age-id}?lockid={lock-id} 

The lockid parameter should be a valid lock ID from the response header value “X-
MS-LOCK-ID” that is returned in the response of a non-destructive read operation. 
For more information, see the “Lock a message in the message buffer”  table. 

HTTP 
Verb 

DELETE 

Request 
Headers 

Authorization: WRAPv0.8 {token} 

https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}/{lock-id}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}/{lock-id}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}?lockid={lock-id}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}?lockid={lock-id}


 

 224 

Request 
fBody 

Empty. 

Respons
e Body 

Empty. 

Expected 
HTTP 
Status 
Code 

200 OK: The message was successfully deleted. 
404 Not Found: No message with the specified lock ID was found. Please retry with a 
valid lock ID. 
410 Gone: The message buffer is no longer available. 

 

Message Buffer Policy 
The message buffer policy is an XML document that defines the desired semantics for a message 
buffer. You must include a message buffer policy document in the request when creating a new 
message buffer instance. You can later retrieve the message buffer policy document to determine 
the semantics for an existing message buffer. You can also update an existing message buffer 
policy document to renew the expiration time-out. When doing this, you must ensure that the 
other properties are unchanged. 

For more information about the message buffer policy properties that can be configured, see the 
documentation for the Microsoft.ServiceBus.MessageBufferPolicy class. 

Message Buffer Quota 
By default, the message buffer can contain up to 10 messages. You can modify this limit through 
the Microsoft.ServiceBus.MessageBufferPolicy.MaxMessageCount property in the 
Microsoft.ServiceBus.MessageBufferPolicy class. The maximum number of messages that 
the message buffer can hold is 50 messages. 

Using the Message Buffer with the Windows Azure SDK 
The Windows Azure SDK provides a set of managed client APIs that make it easy for developers 
to use a message buffer. They are designed to closely follow the semantics of the protocol and 
enable the use and configuration of message buffers. These APIs are exposed through the 
Microsoft.ServiceBus.MessageBufferClient and the 
Microsoft.ServiceBus.MessageBufferPolicy classes. 

You can use the Microsoft.ServiceBus.MessageBufferClient class to create a new message 
buffer or to retrieve an object that you can then use to interact with an existing message buffer. It 
provides methods for operating directly on the message buffer such as queuing messages in the 
message buffer and retrieving messages from the message buffer. For more information, see the 
documentation for the Microsoft.ServiceBus.MessageBufferClient class. 

You can use the Microsoft.ServiceBus.MessageBufferPolicy to configure the message buffer 
including the security used on the message buffer, the message buffer lifespan, and the message 
buffer capacity. For more information, see the documentation for the 
Microsoft.ServiceBus.MessageBufferPolicy class. 



 

 225 

The following code example shows how to configure and create a message buffer, and send and 
retrieve messages from the message buffer. 

string serviceNamespace = "..."; 

MessageVersion messageVersion = MessageVersion.Soap12WSAddressing10; 

string messageAction = "urn:Message"; 

 

// Configure credentials. 

TransportClientEndpointBehavior behavior = new TransportClientEndpointBehavior(); 

behavior.CredentialType = TransportClientCredentialType.SharedSecret; 

behavior.Credentials.SharedSecret.IssuerName = "..."; 

behavior.Credentials.SharedSecret.IssuerSecret = "..."; 

 

// Configure buffer policy. 

MessageBufferPolicy policy = new MessageBufferPolicy 

{ 

    ExpiresAfter = TimeSpan.FromMinutes(2.0d), 

    MaxMessageCount = 100 

}; 

 

// Create message buffer. 

string bufferName = "MyBuffer"; 

Uri bufferLocation = new Uri("https://" + serviceNamespace + 

".servicebus.windows.net/services/" + bufferName); 

MessageBufferClient client = MessageBufferClient.CreateMessageBuffer(behavior, 

bufferLocation, policy, messageVersion); 

 

// Send 10 messages. 

for (int i = 0; i < 10; ++i) 

{ 

    client.Send(Message.CreateMessage(messageVersion, messageAction, "Message #" + i)); 

} 

 

Message message; 

string content; 



 

 226 

 

// Retrieve a message (destructive read). 

message = client.Retrieve(); 

content = message.GetBody<string>(); 

message.Close(); 

 

Console.WriteLine("Retrieve message content: {0}", content); 

 

// Retrieve a message (peek/lock). 

message = client.PeekLock(); 

content = message.GetBody<string>(); 

 

Console.WriteLine("PeekLock message content: {0}", content); 

 

// Delete previously locked message. 

client.DeleteLockedMessage(message); 

message.Close(); 

 

// If no more messages are retrieved within the ExpiresAfter time span, 

// the buffer will automatically be deleted... 

 

Because message buffer contents are stored in active memory, there are no strong fault 
tolerance or reliability guarantees. If the server hosting a message buffer crashes, you 
may lose messages. In the event of a server crash, you do not necessarily lose the buffer 
itself: knowledge of the buffer, including policy settings, is distributed across multiple 
servers and can be recovered. However, any messages in your buffer at the time of the 
crash are lost. Therefore, if you are designing an application that requires a high degree 
of message reliability, we recommend that you provide for message redundancy and 
recovery through another way.  

How to: Configure a Service Bus Message Buffer 
Before you create a message buffer, you must determine the configuration that you want to apply 
to the buffer. A message buffer is configured by using the 
Microsoft.ServiceBus.MessageBufferPolicy class, which exposes several properties that 
control the message buffer behavior. 
 

Important  



 

 227 

MessageBufferPolicy Properties Description 

Microsoft.ServiceBus.MessageBufferPolicy.
Authorization 

Specifies the authorization policy for managing 
the message buffer and sending or receiving 
messages. The default is 
Microsoft.ServiceBus.AuthorizationPolicy.R
equired, which means that authorization is 
required. 

Microsoft.ServiceBus.MessageBufferPolicy.
Discoverability 

Controls whether the message buffer is visible 
on the ATOM feed. If the message buffer is not 
visible, only clients that know the exact URI 
can access it. The default is 
Microsoft.ServiceBus.DiscoverabilityPolicy.
Managers, which means that the applications 
that created the buffer with manager 
permissions can see the URI. 

Microsoft.ServiceBus.MessageBufferPolicy.
ExpiresAfter 

Specifies the time interval during which the 
message buffer idles before automatically 
deleting itself. The lifespan is implicitly 
renewed every time that an application sends a 
message to the buffer or requests a message 
from the buffer. The default is 5 minutes and 
the maximum is 10 minutes. 

Microsoft.ServiceBus.MessageBufferPolicy.
MaxMessageCount 

Specifies the maximum number of messages 
that can be in the message buffer before the 
overflow policy becomes active. The default is 
10 messages and the maximum is 50 
messages. 

Microsoft.ServiceBus.MessageBufferPolicy.
OverflowPolicy 

Determines the action to perform on incoming 
messages when the message buffer capacity 
is reached, as defined by the 
Microsoft.ServiceBus.MessageBufferPolicy.
MaxMessageCount property. Currently, the 
only available action is to reject the incoming 
message by returning the message to the 
sender. 

Microsoft.ServiceBus.MessageBufferPolicy.
TransportProtection 

Specifies the level of end-to-end security that 
will be used. End-to-end security refers to the 
security used between the sender, the 
message buffer, and the receiver. The default 
is 



 

 228 

Microsoft.ServiceBus.TransportProtectionP
olicy.AllPaths, which means that messages 
must be sent and received from the message 
buffer using a secure communication channel. 

 

You apply a policy to the message buffer when you create the message buffer.  

A message buffer can be thought of as a service hosted on a Windows Azure Service Bus 
endpoint. Similar to other services hosted on Service Bus endpoints, you must create a message 
buffer with credentials that enable manage-level operations upon the target service namespace. 
Therefore, to create and configure an Service Bus message buffer, you must first obtain a valid 
token from the Access Control service. 

1. Before creating the message buffer policy, you must obtain the Access Control token that 
is used to authenticate your application with the Service Bus. The following example 
obtains a token from the Access Control service for the specified service namespace,  
then creates the authorization header that is sent later in the HTTP request. 

string serviceNamespace = "..."; 

string ownerKey = "..."; 

string bufferName = "..."; 

 

// Construct the message buffer URI. 

string messageBufferLocation = 

string.Format("http://{0}.servicebus.windows.net/{1}", 

serviceNamespace, bufferName); 

 

// Get the AC token. 

WebClient client = new WebClient(); 

client.BaseAddress = string.Format("https://{0}-

sb.accesscontrol.windows.net/", serviceNamespace); 

NameValueCollection values = new NameValueCollection(); 

values.Add("wrap_name", "owner"); 

values.Add("wrap_password", ownerKey); 

values.Add("wrap_scope", messageBufferLocation); 

byte[] responseBytes = client.UploadValues("WRAPv0.9", 

"POST", values); 

string response = Encoding.UTF8.GetString(responseBytes); 

To configure a Service Bus message buffer using the REST protocol 

http://{0}.servicebus.windows.net/
http://{0}.servicebus.windows.net/
http://{0}.servicebus.windows.net/
http://{0}.servicebus.windows.net/


 

 229 

 

string token = 

Uri.UnescapeDataString(response.Split('&').Single(value => 

value.StartsWith("wrap_access_token=", 

StringComparison.OrdinalIgnoreCase)).Split('=')[1]); 

 

// Create the auth header from the token.  

string authHeaderValue = string.Format("WRAP 

access_token=\"{0}\"", token); 

 

To build and run the previous code, add the following using statements at the top of the 
class file: 

using System.Net; 

using System.Collections.Specialized; 

2. Create the message buffer policy XML string that will be used when you create the 
message buffer. The following message buffer policy configures the message buffer with 
an expiration time of 2 minutes and a maximum capacity of 20 messages. 

// Create the message buffer policy. 

string policy = 

    "<entry xmlns=\"http://www.w3.org/2005/Atom\">" + 

    "<content type=\"text/xml\">" + 

    "<MessageBufferPolicy 

xmlns=\"http://schemas.microsoft.com/netservices/2009/05/serv

icebus/connect\">" + 

    "<ExpiresAfter>PT0H2M0S</ExpiresAfter>" + 

    "<MaxMessageCount>20</MaxMessageCount>" + 

    "</MessageBufferPolicy>" + 

    "</content>" + 

    "</entry>"; 

 

3. After you have finished creating your message buffer policy, you can apply the 
configuration information at the time that you create the message buffer and start to send 
and receive messages. For more information, seeHow to: Create and Connect to a 
Service Bus Message Buffer. 
 

How to configure a Service Bus message buffer using the Windows Azure SDK 

http://www.w3.org/2005/Atom
http://schemas.microsoft.com/netservices/2009/05/servicebus/connect\
http://schemas.microsoft.com/netservices/2009/05/servicebus/connect\


 

 230 

1. Configure your credentials as you would any other application that uses the Service Bus. 

TransportClientEndpointBehavior behavior = new 

TransportClientEndpointBehavior(); 

behavior.CredentialType = 

TransportClientCredentialType.SharedSecret; 

behavior.Credentials.SharedSecret.IssuerName = "..."; 

behavior.Credentials.SharedSecret.IssuerSecret = "..."; 

To build and run the previous code, you must add a reference to the 
Microsoft.ServiceBus.dll assembly. Also, add the following using statement at the top of 
the class file to reference this namespace, as follows: 

using Microsoft.ServiceBus; 

2. Configure the message buffer policy using the 
Microsoft.ServiceBus.MessageBufferPolicy class. The following message buffer 
policy configures the message buffer with a maximum capacity of 20 messages and an 
expiration time of 2 minutes. 

MessageBufferPolicy policy = new MessageBufferPolicy(); 

policy.MaxMessageCount = 20; 

policy.ExpiresAfter = TimeSpan.FromMinutes(2); 

 

3. After you have finished configuring your message buffer policy, you can apply the 
configuration at the time that you instantiate the message buffer and start to send and 
receive messages. For more information, see How to: Create and Connect to a Service 
Bus Message Buffer. You can also use the 
Microsoft.ServiceBus.MessageBufferClient.GetPolicy method to retrieve the 
message buffer policy at any time in order to discover the current configuration settings. 
 

 

How to: Create and Connect to a Service Bus Message Buffer 
After you have specified the desired configuration of your message buffer by creating a message 
buffer policy (see How to: Configure a Service Bus Message Buffer), you must define the 
Windows Azure Service Bus endpoint URI for the message buffer, and then instruct the Service 
Bus to instantiate and expose a message buffer at that location.  

The following table lists the operations available to create, access, and delete a message buffer 
using the REST protocol. 
 

Resource URI HTTP Verb Description 

https://{serviceNamespace}.servicebus. PUT Creates a message buffer on the 



 

 231 

windows.net/{path}/{buffer} Service Bus with the specified policy. 

GET Retrieves the message buffer policy. 

DELETE Deletes the message buffer along with 
its policy and all associated state. 

 

The following table lists the methods available to create, access, and delete a message buffer 
using the Windows Azure SDK. 
 

Method Description 

Microsoft.ServiceBus.Mes
sageBufferClient.CreateM
essageBuffer(Microsoft.S
erviceBus.TransportClient
EndpointBehavior,System
.Uri,Microsoft.ServiceBus.
MessageBufferPolicy) 

Creates a message buffer on the Service Bus with the specified 
policy and location. 

Microsoft.ServiceBus.Mes
sageBufferClient.GetMess
ageBuffer(Microsoft.Servi
ceBus.TransportClientEnd
pointBehavior,System.Uri,
System.ServiceModel.Cha
nnels.MessageVersion) 

Connects to a pre-existing message buffer. 

Microsoft.ServiceBus.Mes
sageBufferClient.DeleteM
essageBuffer 

Deletes the message buffer. 

 

You can create only one message buffer at a given Service Bus endpoint. Furthermore, 
when a message buffer is open on a given endpoint, no other services can be open on 
that same endpoint. 

1. Send a PUT HTTP request to create a message buffer using the authorization header 
and message buffer policy previously created in How to: Configure a Service Bus 
Message Buffer. 

WebClient client = new WebClient(); 

client.BaseAddress = 

string.Format("https://{0}.servicebus.windows.net/{1}/", 

Note  

To create and delete a Service Bus message buffer using the REST protocol 

http://{0}.servicebus.windows.net/


 

 232 

serviceNamespace, bufferName); 

client.Headers[HttpRequestHeader.ContentType] = 

"application/atom+xml;type=entry;charset=utf-8"; 

client.Headers[HttpRequestHeader.Authorization] = 

authHeaderValue; 

client.UploadData(String.Empty, "PUT", 

Encoding.UTF8.GetBytes(policy)); 

 

2. At this point, you can send and receive messages from the message buffer. For more 
information, see How to: Send Messages to a Service Bus Message Buffer and How to: 
Retrieve a Message from a Service Bus Message Buffer. 

3. To maintain the existence of the message buffer, periodically request a message from 
the buffer. 

A message buffer renews its own lifespan implicitly whenever a request for a message is 
received. This is the only method currently supported for renewing the lifespan of a 
message buffer.  

4. When finished, you can delete the message buffer by sending the following DELETE 
HTTP request. 

client.Headers[HttpRequestHeader.Authorization] = 

authHeaderValue; 

client.UploadData(String.Empty, "DELETE", new byte[0]);   

 

You do not have to delete the message buffer when you are finished: all message buffers 
have an expiration time that causes the Service Bus to automatically delete the buffer. 
However, you may want to delete the buffer before this expiration time. For more 
information, see the Microsoft.ServiceBus.MessageBufferPolicy.ExpiresAfter 
property. 

1. Create a URI that contains the address of the buffer. 

Uri bufferLocation = new Uri("https://" + serviceNamespace + 

".servicebus.windows.net/services/MyBuffer"); 

2. Create the buffer by calling the 
Microsoft.ServiceBus.MessageBufferClient.CreateMessageBuffer(Microsoft.Servic
eBus.TransportClientEndpointBehavior,System.Uri,Microsoft.ServiceBus.Message
BufferPolicy) method.  

MessageBufferClient client = 

MessageBufferClient.CreateMessageBuffer(behavior, 

bufferLocation, policy); 

To create and delete a Service Bus message buffer using the Windows Azure SDK 

https://"+serviceNamespace+".servicebus.windows.net/services/MyBuffer
https://"+serviceNamespace+".servicebus.windows.net/services/MyBuffer


 

 233 

You can also obtain access to a pre-existing message buffer by calling the 
Microsoft.ServiceBus.MessageBufferClient.GetMessageBuffer(Microsoft.ServiceBu
s.TransportClientEndpointBehavior,System.Uri) method. 

3. At this point, you can send and receive messages from the message buffer. For more 
information, see How to: Send Messages to a Service Bus Message Buffer and How to: 
Retrieve a Message from a Service Bus Message Buffer. 

4. To maintain the existence of the message buffer, periodically request a message from 
the buffer. 

A message buffer renews its own lifespan implicitly whenever a request for a message is 
received. This is the only method currently supported for renewing the lifespan of a 
message buffer.  

5. When finished, you can close the message buffer by calling the 
Microsoft.ServiceBus.MessageBufferClient.DeleteMessageBuffer method.  

You do not have to delete the message buffer when you are finished: all buffers have an 
expiration time that causes the Service Bus to automatically delete the buffer. However, 
you may want to delete the buffer before this expiration time. For more information, see 
the Microsoft.ServiceBus.MessageBufferPolicy.ExpiresAfter property. 

 

How to: Send Messages to a Service Bus Message Buffer 
After you have created a Windows Azure Service Bus message buffer, you can send messages 
to it. 

The following describes the operations you can perform to send messages to a message buffer 
using the REST protocol. 
 

Resource URI HTTP Verb Description 

https://{serviceNamespace}.servicebus.win
dows.net/{path}/{buffer}/messages 

POST Attempts to send the message 
specified in the request body. 

https://{serviceNamespace}.servicebus.win
dows.net/{path}/{buffer}/messages?timeout
=n 

POST Attempts to send the message 
specified in the request body for a 
time interval equal to the specified 
timeout value. 

 

The following is a description of the methods that you can use to send a message to a message 
buffer using the API in the Windows Azure SDK. 
 

Method Description 

Microsoft.ServiceBus.MessageBufferClient.Se
nd(System.ServiceModel.Channels.Message) 

Attempts to send the specified message. 

https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages?timeout=n
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages?timeout=n
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages?timeout=n


 

 234 

Microsoft.ServiceBus.MessageBufferClient.Se
nd(System.ServiceModel.Channels.Message,S
ystem.TimeSpan) 

Attempts to send the specified message for a 
time interval equal to the specified timeout 
value. 

 

1. Send a message to the message buffer using an HTTP POST request with the message 
content in its body. The address specified in the UploadData call is relative to the base 
address URI of the Web client. To create the Web client and set its base address, 
see How to: Create and Connect to a Service Bus Message Buffer. To construct the 
authorization header, see How to: Configure a Service Bus Message Buffer.  

// Add request headers. 

client.Headers[HttpRequestHeader.ContentType] = "text/xml"; 

client.Headers[HttpRequestHeader.Authorization] = 

authHeaderValue; 

// Send the POST HTTP request with the message as the request 

body. 

client.UploadData("messages", "POST", 

Encoding.UTF8.GetBytes("<msg1>This is message #1</msg1>")); 

 

2. Alternatively, by appending a time-out parameter to the URI, you can specify the time 
interval during which the attempt to send the message is made. 

client.UploadData("messages?timeout=20", "POST", 

Encoding.UTF8.GetBytes("<msg1>This is message #1</msg1>")); 

 

1. Send a message to the message buffer with a call to the 
Microsoft.ServiceBus.MessageBufferClient.Send(System.ServiceModel.Channels.
Message) or 
Microsoft.ServiceBus.MessageBufferClient.Send(System.ServiceModel.Channels.
Message,System.TimeSpan) methods. 

client.Send(Message.CreateMessage(messageVersion, 

messageAction, "Message #1")); 

client.Send(Message.CreateMessage(messageVersion, 

messageAction, "Message #2"), TimeSpan.FromSeconds(30)); 

The first method sends the message to the message buffer. The second method lets you 
specify a time-out period. If the message was not successfully sent during that time, the 
call will generate a TimeoutException. 

To send a message to a message buffer using the REST protocol 

To send a message to a message buffer using the Windows Azure SDK 



 

 235 

The following example, taken from the code example in Service Bus Message Buffer 
Overview, shows how to send several messages to a message buffer.  

 

MessageBufferClient client = 

MessageBufferClient.CreateMessageBuffer(behavior, 

bufferLocation, policy, messageVersion); 

 

// Send 10 messages. 

for (int i = 0; i < 10; ++i) 

{ 

    client.Send(Message.CreateMessage(messageVersion, 

messageAction, "Message #" + i)); 

} 

 

To build and run the previous code, you must add references to the 
Microsoft.ServiceBus.dll and System.ServiceModel.dll assemblies. Also, add the 
following using statements at the top of the class file to reference these namespaces: 

using Microsoft.ServiceBus; 

using System.ServiceModel.Channels; 

 

How to: Retrieve a Message from a Service Bus Message Buffer 
There are two ways to retrieve a single message from a Windows Azure Service Bus message 
buffer: a peek/lock read or a destructive read. 

The message buffer orders messages using the principle of first-in-first-out; therefore, a peek/lock 
read retrieves the next available message from the start of the buffer. However, the message is 
not deleted from the buffer until a destructive read is performed by the client. Locked messages 
are not available for additional retrieval unless they are deleted, unlocked, or their lock duration 
expires. The next non-locked message in the message buffer can be retrieved. 

Therefore, a peek/lock read allows the client to see the next message in the buffer, while at the 
same time locking that message in place until you delete it, unlock it, or until its lock duration 
expires. In contrast, a destructive read retrieves the message, and then deletes the message 
from the buffer. 

The following describes the operations you can perform for destructive and non-destructive 
retrieval of a message from a message buffer using the REST protocol. 
 

Resource URI HTTP Verb Description 



 

 236 

https://{serviceNamespace}.serviceb
us.windows.net/{path}/{buffer}/mess
ages/head?timeout={timeout-in-
seconds} 

DELETE Retrieves the first message and deletes it 
from the message buffer. The optional 
time-out parameter specifies the length of 
time for the operation to finish. 

https://{serviceNamespace}.serviceb
us.windows.net/{path}/{buffer}/mess
ages/head?timeout={timeout-in-
seconds}&lockduration={lockduratio
n-in-secs} 

POST Retrieves the first message from the 
message buffer and locks the message 
until the specified lock duration expires or 
until instructed by the caller to either 
delete it or release the lock. If there are 
no messages in the buffer, this method 
waits up to the specified time-out interval 
for a message to arrive. The timeout and 
lockduration parameters are optional. If 
not specified, the default time-out and 
lock duration values are used. 

https://{serviceNamespace}.serviceb
us.windows.net/{path}/{buffer}/mess
ages/{message-id}/{lock-id} 

DELETE Releases the lock on the specified 
message in the message buffer. 

https://{serviceNamespace}.serviceb
us.windows.net/{path}/{buffer}/mess
ages/{message-id}?lockid={lock-id} 

DELETE Deletes the specified locked message. 

 

The following is a description of the methods you can use for destructive and non-destructive 
retrieval of a message from a message buffer using the API in the Windows Azure SDK. 
 

Method Description 

Microsoft.ServiceBus.MessageBufferCl
ient.Retrieve 

Retrieves the first message and deletes it from the 
message buffer. 

Microsoft.ServiceBus.MessageBufferCl
ient.Retrieve(System.TimeSpan) 

Retrieves the first message and deletes it from the 
message buffer, using the specified time-out. 

Microsoft.ServiceBus.MessageBufferCl
ient.PeekLock 

Retrieves the first message from the message buffer 
and locks the message until instructed by the caller 
to either delete the message or release the lock, or 
until the default lock duration expires. 

Microsoft.ServiceBus.MessageBufferCl
ient.PeekLock(System.TimeSpan) 

Retrieves the first message from the message buffer 
and locks the message until instructed by the caller 
to either delete it or release the lock, or until the 
default lock duration expires. If there are no 
messages in the buffer, this method will wait up to 

https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?timeout={timeout-inseconds}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?timeout={timeout-inseconds}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?timeout={timeout-inseconds}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?timeout={timeout-inseconds}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?timeout={timeout-inseconds}&lockduration={lockduration-in-secs}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?timeout={timeout-inseconds}&lockduration={lockduration-in-secs}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?timeout={timeout-inseconds}&lockduration={lockduration-in-secs}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?timeout={timeout-inseconds}&lockduration={lockduration-in-secs}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/head?timeout={timeout-inseconds}&lockduration={lockduration-in-secs}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}/{lock-id}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}/{lock-id}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}/{lock-id}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}?lockid={lock-id}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}?lockid={lock-id}
https://{serviceNamespace}.servicebus.windows.net/{path}/{buffer}/messages/{message-id}?lockid={lock-id}


 

 237 

the specified time-out interval for a message to 
arrive. 

Microsoft.ServiceBus.MessageBufferCl
ient.PeekLock(System.TimeSpan,Syste
m.TimeSpan) 

Retrieves the first message from the message buffer 
and locks the message until the specified lock 
duration expires or until instructed by the caller to 
either delete it or release the lock. If there are no 
messages in the buffer, this method will wait up to 
the specified time-out interval for a message to 
arrive. 

Microsoft.ServiceBus.MessageBufferCl
ient.ReleaseLock(System.ServiceModel
.Channels.Message) 

Releases the lock on the specified message in the 
message buffer. 

Microsoft.ServiceBus.MessageBufferCl
ient.ReleaseLock(System.Uri) 

Releases the lock on the message that is contained 
at the specified URI. 

Microsoft.ServiceBus.MessageBufferCl
ient.DeleteLockedMessage(System.Ser
viceModel.Channels.Message) 

Deletes the specified locked message. 

 

1. Retrieve the first message while locking it in the message buffer. The following example 
uses a lock duration of 120 seconds and a time-out value of 20 seconds in the peek/lock 
request. The PeekLockMessage method expects the Web client and authorization header to 
be passed in. To create the Web client and set its base address, see How to: Create and 
Connect to a Service Bus Message Buffer. To construct the authorization header, 
see How to: Configure a Service Bus Message Buffer. 

static string PeekLockMessage(WebClient webClient, string 

authHeaderValue, out string messageLocation, out string 

lockId, out string lockLocation) 

{ 

    webClient.Headers[HttpRequestHeader.Authorization] = 

authHeaderValue; 

    byte[] response = 

webClient.UploadData("messages/head?timeout=20&lockduration=1

20", "POST", new byte[0]); 

    messageLocation = webClient.ResponseHeaders["X-MS-

MESSAGE-LOCATION"]; 

    lockId = webClient.ResponseHeaders["X-MS-LOCK-ID"]; 

    lockLocation = webClient.ResponseHeaders["X-MS-LOCK-

To perform a peek/lock read using the REST protocol 



 

 238 

LOCATION"]; 

 

    return Encoding.UTF8.GetString(response); 

} 

2. After you have performed a peek/lock operation on the message, you can delete the 
locked message from the message buffer using the message location and lock ID 
returned by the peek/lock operation. 

static void DeleteLockedMessage(string authHeaderValue, 

string messageLocation, string lockId) 

{ 

    WebClient webClient = new WebClient(); 

    webClient.BaseAddress = string.Format("{0}?lockid={1}", 

messageLocation, lockId); 

    webClient.Headers[HttpRequestHeader.ContentType] = 

"application/atom+xml;type=entry;charset=utf-8"; 

    webClient.Headers[HttpRequestHeader.Authorization] = 

authHeaderValue;     

    webClient.UploadData(string.Empty, "DELETE", new 

byte[0]); 

} 

3. Alternatively, if you do not want to delete the message, you can release the lock on the 
locked message using the lock location returned by the peek/lock operation. 

static void UnlockMessage(string authHeaderValue, string 

lockLocation) 

{ 

    WebClient webClient = new WebClient(); 

    webClient.BaseAddress = lockLocation; 

    webClient.Headers[HttpRequestHeader.ContentType] = 

"application/atom+xml;type=entry;charset=utf-8"; 

    webClient.Headers[HttpRequestHeader.Authorization] = 

authHeaderValue; 

    webClient.UploadData(string.Empty, "DELETE", new 

byte[0]); 

} 

1. Retrieve the first message and delete it from the message buffer. The following example 

To perform a destructive read using the REST protocol 



 

 239 

performs a retrieval, with a time-out value of 20 seconds. 

webClient.Headers[HttpRequestHeader.Authorization] = 

authHeaderValue; 

string payload = 

Encoding.UTF8.GetString(webClient.UploadData("messages/head?t

imeout=20", "DELETE", new byte[0])); 

1. Retrieve a message while locking it in the message buffer with a call to the 
Microsoft.ServiceBus.MessageBufferClient.PeekLock method. 

Message message = client.PeekLock(); 

2. After you have read and locked the message and want to delete it from the message 
buffer, call the 
Microsoft.ServiceBus.MessageBufferClient.DeleteLockedMessage(System.Service
Model.Channels.Message) method to delete the locked message. 

client.DeleteLockedMessage(message); 

3. You can also unlock the previously locked message by using a call to 
Microsoft.ServiceBus.MessageBufferClient.ReleaseLock(System.ServiceModel.Ch
annels.Message), as follows: 

client.ReleaseLock(message); 

1. Retrieve the message from the message buffer with a call to the 
Microsoft.ServiceBus.MessageBufferClient.Retrieve method. 

Message message = client.Retrieve(); 

Example 

Description 
The following code example, taken from the code sample in Service Bus Message Buffer 
Overview, describes how to perform a destructive read in addition to a peek/lock read. 

Code 

// Retrieve a message (destructive read) 

Message message = client.Retrieve(); 

string content = message.GetBody<string>(); 

message.Close(); 

 

Console.WriteLine("Retrieve message content: {0}", content); 

To perform a Peek/Lock read using the Windows Azure SDK 

To perform a destructive read using the Windows Azure SDK 



 

 240 

 

// Retrieve a message (peek/lock) 

message = client.PeekLock(); 

content = message.GetBody<string>(); 

 

Console.WriteLine("PeekLock message content: {0}", content); 

 

// Delete previously locked message 

client.DeleteLockedMessage(message); 

message.Close(); 

 

Silverlight and Flash Support 
The Windows Azure SDK now includes support for cross-domain scenarios for Silverlight and 
Flash clients. 

Same Origin Policy and Cross Domain Access 
Browsers and client-side programming languages, such as Javascript, enforce a security policy 
called the same origin policy. This policy restricts cross domain calls; that is, it only allows code 
running in the browser to call code that resides on the host site from which the browser code was 
downloaded. This policy does not allow code running in a browser to call code residing on a 
different site (the target site). 

You can set up cross-domain access explicitly if the target site places a specific policy file at its 
root. For Silverlight, this policy file is called ClientAccessPolicy.xml. For Flash, the cross-
domain policy file is called CrossDomain.xml. The following is an example of a simple 
ClientAccessPolicy.xml file: 

<?xml version=""1.0"" encoding=""utf-8""?> 

<access-policy> 

<cross-domain-access> 

<policy> 

<allow-from http-request-headers="*" http-methods="*"> 

<domain uri="https://*"/> 

<domain uri="http://*"/> 

</allow-from> 

<grant-to> 

<resource path="/" include-subpaths="true" /> 



 

 241 

</grant-to> 

</policy> 

</cross-domain-access> 

</access-policy> 

For the Access Control service, by default all service namespaces have cross-domain access set 
up. For the Service Bus, you must explicitly configure cross-domain access. To enable uploads of 
the policy file to the root of the service namespace, the Service Bus provides REST commands 
(PUT, DELETE) that enable this. The following example is taken from the 
MessageBufferForSilverlight sample application in the Windows Azure SDK: 

static HttpStatusCode PublishClientAccessPolicy(string serviceNamespace, string 

authHeaderValue, byte[] fileContentArray) 

{ 

    HttpWebRequest request = 

(HttpWebRequest)WebRequest.Create(string.Format("https://{0}.{1}/clientaccesspolicy.xml", 

serviceNamespace, ServiceBusUriPostFix)); 

 

    request.Method = "PUT"; 

    request.ContentType = "text/xml"; 

 

    request.ContentLength = fileContentArray.Length; 

    request.Headers[AuthorizationHeader] = authHeaderValue; 

 

    Stream dataStream = request.GetRequestStream(); 

    dataStream.Write(fileContentArray, 0, fileContentArray.Length); 

    dataStream.Close(); 

 

    return SendHttpRequestAndGetResponse(request); 

} 

Similarly, the following code deletes the policy file: 

static HttpStatusCode DeleteClientAccessPolicy(string serviceNamespace, string 

authHeaderValue) 

{ 

    HttpWebRequest request = 

(HttpWebRequest)WebRequest.Create(string.Format("https://{0}.{1}/clientaccesspolicy.xml", 

serviceNamespace, ServiceBusUriPostFix)); 

 

https://{0}.{1}/clientaccesspolicy.xml
https://{0}.{1}/clientaccesspolicy.xml


 

 242 

    request.Method = "DELETE"; 

    request.Headers[AuthorizationHeader] = authHeaderValue; 

    return SendHttpRequestAndGetResponse(request); 

} 

Custom HTTP Header 
To programmatically address secured endpoints, Windows Azure requires an Access Control 
token with a “Manage” claim to be sent through an Authorization HTTP header. Because 
Silverlight does not allow applications to write directly to the Authorization HTTP header, the 
Windows Azure Services API has introduced the X-MS-Authorization HTTP custom header, 
which behaves similarly to the Authorization HTTP header. The following example, also taken 
from the MessageBufferForSilverlight sample application, demonstrates the use of this custom 
header. 

const string XMSAuthorizationHeader = "X-MS-Authorization"; 

 

public void CreateMessageBuffer(UploadStringCompletedEventHandler 

createMessageBufferCompleted) 

        { 

            string bufferLocation = AddTrailingSlashIfNeeded(this.messageBufferLocation); 

 

            WebClient webClient = new WebClient(); 

            webClient.BaseAddress = bufferLocation; 

            webClient.Headers[XMSAuthorizationHeader] = this.authHeaderValue; 

            webClient.Headers[HttpRequestHeader.ContentType] = 

"application/atom+xml;type=entry;charset=utf-8"; 

            webClient.UploadStringCompleted += createMessageBufferCompleted; 

 

            this.AppendOutputText("MessageBuffer.Create: Sending request to create 

message buffer"); 

            webClient.UploadStringAsync(new Uri(bufferLocation), "PUT", DefaultPolicy, 

"MessageBuffer.Create"); 

        } 

For more information, see the MessageBufferForSilverlight sample application in the Windows 
Azure SDK. 



 

 243 

Service Bus Troubleshooting 
The following topics contain information and recommendations for troubleshooting applications 
that use the Windows Azure Service Bus.  

In This Section 
Troubleshooting the Service Bus 

Hosting Behind a Firewall with the Service Bus 

Troubleshooting the Service Bus 
The following sections describe issues that may occur in writing applications for the Windows 
Azure Service Bus, and how to resolve them. 

Troubleshooting Windows Azure Applications 
The following sections describe troubleshooting Windows Azure applications. 

Application runs in the development fabric, but crashes when it is deployed 
Symptom 

An Service Bus application runs without error in the deployment fabric, but crashes after it is 
deployed to the Windows Azure servers. 

Cause 

The Service Bus assemblies are currently not integrated into the Windows Azure platform. 
Therefore, the application is trying to access an assembly that does not exist on the server. 

Resolution 

Add the Service Bus assembly to your deployment package (for example, set the assembly to 
Local Copy). Note that therefore, you will have to update the assemblies manually. 

Endpoints can be set programmatically, but fail when set in the 
configuration file 
Symptom 

An application works when the endpoints are set programmatically, but fail when those same 
configuration settings are stored in the associated App.config file. The application generates the 
following error: 

System.Configuration.ConfigurationErrorsException: Configuration binding extension 
'system.serviceModel/bindings/netTcpRelayBinding' could not be found. Verify that this binding 
extension is correctly registered in system.serviceModel/extensions/bindingExtensions and that it 
is spelled correctly. 

Cause 



 

 244 

The Service Bus assemblies are currently not integrated into the Windows Azure platform. On the 
local computer, if you have the Windows Azure SDK installed, your Machine.config file will be 
modified to add several Windows Communication Foundation (WCF) extensions, such as 
Microsoft.ServiceBus.NetTcpRelayBinding. The application can then find the relevant 
information in the Machine.config file, such as in the netTcpRelayBinding section. This does not 
occur on the Windows Azure platform, therefore the application cannot find the relevant 
information. 

Resolution 

For your configuration to work with Windows Azure, copy the extensions from the local 
Machine.config file to your App.config file. Otherwise, tags such as netTcpRelayBinding will not be 
recognized. However, if you do this, your application will not run locally because of duplicate 
extensions. Therefore, you will have to keep two versions of the App.config file; one locally, and 
one for Windows Azure. It is recommended that you to perform this particular task 
programmatically. 

Connectivity Issues 
The following troubleshooting topics contain information about how to connect to the Service Bus. 
If you cannot find your solution later in this section, you may want to consider one of the following 
possibilities: 
• Run a network trace – the network may be down. Using Network Monitor to determine the 

status of the network may assist you in debugging your problem. 

Client application cannot find the targeted endpoint 
Symptom 

When you attempt to connect to the Service Bus with a client application, you receive the 
following error: 

Unhandled Exception: System.ServiceModel.EndpointNotFoundException: The endpoint was not 
found. Please make sure that you can connect to the Internet using HTTP port 80 and TCP port 
808. 

Cause 

There are a variety of possible causes for this error. 

Resolution 
• Check to see whether the host is running. If not, there is no endpoint to which to connect. 

You can run the service by using one of the two procedures that are shown here: 
a. Debug Mode - Right click your service project in the Visual Studio Solution Explorer, 

click Debug. Then click Start new instance. After the service starts, repeat this 
procedure for the client. Note that you can debug the client even though the service is 
already running. 

b. Outside Debug Mode - Set your service project as the start-up project. From the Debug 
menu, click Start Without Debugging. By doing this, although the service application will 



 

 245 

run, Visual Studio is not affected. After the service starts, set the client project as the 
startup project, then run it. 

• Ensure that you have set the Copy Local property for the Microsoft.ServiceBus.dll assembly 
(in Visual Studio) to true. The cloud servers do not have the Windows Azure SDK installed. 
Therefore, you must include the assembly with your package. Without it, your worker role will 
not run correctly. 

• Confirm that you can, in fact, connect to the Internet using HTTP port 80 and TCP port 808.  

 

Client is unable to finish the security negotiation in the configured time-out  
Symptom 

The application is not able to connect to the Service Bus, but instead returns the following error 
message: 

"Client is unable to finish the security negotiation in the configured time-out (00:01:00).  The 
current negotiation leg is 1 (00:00:59.9429968)." 

Cause 

The authentication credentials may be set incorrectly. 

Resolution 

Check to see whether you are authenticating the client. Specifically, check to see whether you 
have you set Microsoft.ServiceBus.RelayClientAuthenticationType to 
Microsoft.ServiceBus.RelayClientAuthenticationType.None. By default, the value is 
Microsoft.ServiceBus.RelayClientAuthenticationType.RelayAccessToken, which requires 
that you provide an authentication claim, such as a shared secret. However, if you manually set 
the value to None, the client should not provide any authentication. 

If you have not set the authentication type, you likely have 
Microsoft.ServiceBus.RelayClientAuthenticationType with the default 
Microsoft.ServiceBus.RelayClientAuthenticationType.RelayAccessToken value. If this is the 
case, check to see whether your authentication claim is specified correctly. For more information, 
seeSecuring and Authenticating a Service Bus Connection. 

Application cannot verify security when it connects to the Service Bus 
Symptom 

When trying to connect to the Service Bus, you receive the following error: 

"An error occurred when verifying security for the message" 

Cause 

One possible cause of this error is that the UTC time for the local computer is ahead of the UTC 
time on the Service Bus server. For example, the local UTC time stamp may be 8:06, whereas on 
the server the time stamp is 8:05. The server considers this to be an invalid time stamp, and 
generates the error message that is mentioned in the "Symptoms" section.  

Resolution 



 

 246 

Confirm that the UTC time for the local computer is correct. If necessary, manually set the clock 
back several minutes. The Service Bus does not consider slightly older messages to be a security 
violation; only ones that appear to come from further in the future. 

The ATOM feed does not display your service 
Symptom 

You cannot locate a service on the ATOM feed, even though you know the service is successfully 
running.  

Cause 

The default behavior for the service registry is not to expose a service through the ATOM feed. 

Resolution 

Set the endpoint to be discoverable, as described in How to: Publish a Service to the Service Bus 
Registry. 

Hosting Behind a Firewall with the Service Bus 
This topic describes several ways to connect to the Windows Azure Service Bus from behind a 
firewall or through a proxy server. 

Troubleshoot your Firewall Connection 
The following troubleshooting topics discuss common solutions to problems encountered when 
you connect through a firewall to the Service Bus. 

Configure the Ports on your Firewall 
To use the Service Bus relay, ensure that your firewall allows outgoing TCP communication on 
TCP ports 9350 to 9354. For Service Bus brokered messaging, use port 9354. 

Configure the WinHTTP Proxy Settings 
If you are running behind a firewall/proxy that requires authentication, or if you are running in an 
IPsec-protected network, there are additional obstacles for any client to reach the network proxy. 
For example, Windows accounts might not have permissions to communicate through the 
firewall. Therefore, you might have to explicitly configure the WinHTTP proxy settings with the 
appropriate credentials. 

Set OpenTimeout 
Setting the connectivity mode to HTTP (that is, ConnectivityMode = http) may cause connections 
in the presence of some proxies to be very slow. For example, some connections can require up 
to 20 seconds to connect. Extending the OpenTimeout option for the service to up to two 
minutes can help, because you might run out of time between the acquisition of the Access 



 

 247 

Control token and getting the Web stream working. After the Web stream is established, the 
throughput often improves.  

RelayConfigurationInstaller.exe Tool 
The RelayConfigurationInstaller.exe tool is located in the <installdir>/Assemblies directory of the 
Windows Azure SDK, and enables you to easily add the Machine.config settings necessary for 
the Service Bus bindings to be supported in the configuration file. You can also use the 
Microsoft.ServiceBus.Configuration.RelayConfigurationInstaller class to accomplish this 
programmatically.  

The primary scenario for the RelayConfigurationInstaller.exe tool is to help in installing the 
necessary Machine.config or App.config information that is required to run an Service Bus 
application on a computer that does not have the Service Bus installed. However, in most 
scenarios, the application installer for the Service Bus application automatically installs the 
necessary configuration information. Therefore, the tool or class would likely be used by 
developers who want additional control over the installation process. 

Command-line Options 
 

/i 

Adds the entries to the configuration file to allow an application that uses that 
configuration to use Service Bus elements. 

 

/u 

Removes the entries from the Machine.config file. 

 

 

Best Practices for Performance 
Improvements Using Service Bus Brokered 
Messaging 
This topic describes how to use the Windows Azure Service Bus to optimize performance when 
exchanging brokered messages. The first half of this topic describes the different mechanisms 
that are offered to help increase performance. The second half provides guidance on how to use 
the Service Bus in a way that can offer the best performance for a given scenario.  



 

 248 

Throughout this topic, the term “client” refers to any entity that accesses the Service Bus. A client 
can take the role of a sender or a receiver. The term “sender” is used for a Service Bus queue or 
topic client that sends messages to a Service Bus queue or topic. The term “receiver” refers to a 
Service Bus queue or subscription client that receives messages from a Service Bus queue or 
subscription. 

Mechanisms 
This section introduces different concepts employed by the Service Bus to help boost 
performance. 

Protocols 
The Service Bus enables clients to send and receive messages via two protocols: the Service 
Bus client protocol, and HTTP. The Service Bus client protocol is more efficient, because it 
maintains the connection to the Service Bus service as long as the message factory exists. It also 
implements batching and prefetching. The Service Bus client protocol is available for .NET 
applications using the .NET managed API.  

Unless explicitly mentioned, all content in this topic assumes the use of the Service Bus client 
protocol. 

Reusing factories and clients 
Service Bus client objects, such as Microsoft.ServiceBus.Messaging.QueueClient or 
Microsoft.ServiceBus.Messaging.MessageSender, are created through a 
Microsoft.ServiceBus.Messaging.MessagingFactory object, which also provides internal 
management of connections. You should not close messaging factories or queue, topic, and 
subscription clients after you send a message, and then re-create them when you send the next 
message. Closing a messaging factory deletes the connection to the Service Bus service, and a 
new connection is established when recreating the factory. Establishing a connection is an 
expensive operation that can be avoided by re-using the same factory and client objects for 
multiple operations. 

Concurrent operations 
Performing an operation (send, receive, delete, etc.) takes some time. This time includes the 
processing of the operation by the Service Bus service in addition to the latency of the request 
and the reply. To increase the number of operations per time, operations must execute 
concurrently. You can do this in several different ways: 

Asynchronous operations: the client pipelines operations by performing asynchronous 
operations. The next request is started before the previous request is completed. The 
following is an example of an asynchronous send operation: 

BrokeredMessage m1 = new BrokeredMessage(body); 

BrokeredMessage m2 = new BrokeredMessage(body); 



 

 249 

queueClient.BeginSend(m1, processEndSend, queueClient); // Send 

message 1. 

queueClient.BeginSend(m2, processEndSend, queueClient); // Send 

message 2. 

 

void processEndSend(IAsyncResult result) 

{ 

    QueueClient qc = result.AsyncState as QueueClient; 

    qc.EndSend(result); 

    Console.WriteLine("Message sent"); 

} 

The following is an example of an asynchronous receive operation: 

queueClient.BeginReceive(processEndReceive, queueClient); // 

Receive message 1. 

queueClient.BeginReceive(processEndReceive, queueClient); // 

Receive message 2. 

 

void processEndReceive(IAsyncResult result)  

{ 

    QueueClient qc = result.AsyncState as QueueClient; 

    BrokeredMessage m = qc.EndReceive(result); 

    m.BeginComplete(processEndComplete, m); 

    Console.WriteLine("Received message " + m.Label); 

} 

 

void processEndComplete(IAsyncResult result) 

{ 

    QueueClient qc = result.AsyncState as QueueClient; 

    BrokeredMessage m = result.AsyncState as BrokeredMessage; 

    m.EndComplete(result); 

    Console.WriteLine("Completed message " + m.Label); 

} 

Multiple factories: all clients (senders in addition to receivers) that are created by the same 
factory share one TCP connection. The maximum message throughput is limited by the 
number of operations that can go through this TCP connection. The throughput that can be 



 

 250 

obtained with a single factory varies greatly with TCP round-trip times and message size. In 
benchmarks, a maximum throughput per factory of around 800msg/s (message size: 1KB) 
has been observed. To obtain rates beyond this, you should use multiple messaging 
factories. 

Receive mode 
When creating a queue or subscription client, you can specify a receive mode: Peek-lock or 
Receive and delete. The default receive mode is 
Microsoft.ServiceBus.Messaging.ReceiveMode.PeekLock. When operating in this mode, the 
client sends a request to receive a message from the Service Bus. After the client has received 
the message, it sends a request to complete the message.  

When setting the receive mode to 
Microsoft.ServiceBus.Messaging.ReceiveMode.ReceiveAndDelete, both steps are combined 
in a single request. This reduces the overall number of operations, and can improve the overall 
message throughput. This performance gain comes at the risk of losing messages.  

The September 2011 release of the Service Bus does not support transactions for receive-and-
delete operations. In addition, peek-lock semantics are required for any scenarios in which the 
client wants to defer or deadletter a message. 

Client-side batching 
Client-side batching enables a queue or topic client to delay the sending of a message for a 
certain period of time. If the client sends additional messages during this time period, it transmits 
the messages in a single batch. Client-side batching also causes a queue/subscription client to 
batch multiple Complete requests into a single request. Batching is only available for 
asynchronous Send and Complete operations. Synchronous operations are immediately sent to 
the Service Bus service. Batching does not occur for peek or receive operations, nor does 
batching occur across clients.  

If the batch exceeds the maximum message size, the last message is removed from the batch, 
and the client immediately sends the batch. The last message becomes the first message of the 
next batch. By default, a client uses a batch interval of 20ms. You can change the batch interval 
by setting the 
Microsoft.ServiceBus.Messaging.NetMessagingTransportSettings.BatchFlushInterval 
property before creating the messaging factory. This setting affects all clients that are created by 
this factory.To disable batching, set the 
Microsoft.ServiceBus.Messaging.NetMessagingTransportSettings.BatchFlushInterval 
property to TimeSpan.Zero. For example: 

MessagingFactorySettings mfs = new MessagingFactorySettings(); 

mfs.TokenProvider = tokenProvider; 

mfs.NetMessagingTransportSettings.BatchFlushInterval = TimeSpan.FromSeconds(0.05); 

MessagingFactory messagingFactory = MessagingFactory.Create(namespaceUri, mfs); 



 

 251 

Batching does not affect the number of billable messaging operations, and is available only for 
the Service Bus client protocol. The HTTP protocol does not support batching. 

Batching store access 
To increase the throughput of a queue/topic/subscription, the Service Bus service batches 
multiple messages when it writes to its internal store. If enabled on a queue or topic, writing 
messages into the store will be batched. If enabled on a queue or subscription, deleting 
messages from the store will be batched. If batched store access is enabled for an entity, the 
Service Bus delays a store write operation regarding that entity by up to 20ms. Additional store 
operations that occur during this interval are added to the batch. Batched store access only 
affects Send and Complete operations; receive operations are not affected. Batched store 
access is a property on an entity. Batching occurs across all entities that enable batched store 
access.  

When creating a new queue, topic or subscription, batched store access is enabled by default. To 
disable batched store access, set the 
Microsoft.ServiceBus.Messaging.QueueDescription.EnableBatchedOperations property to 
false before creating the entity. For example: 

QueueDescription qd = new QueueDescription(); 

qd.EnableBatchedOperations = false; 

Queue q = namespaceManager.CreateQueue(qd); 

Batched store access does not affect the number of billable messaging operations, and is a 
property of a queue, topic, or subscription. It is independent of the receive mode and the protocol 
that is used between a client and the Service Bus service. 

Prefetching 
Prefetching enables the queue or subscription client to load additional messages from the service 
when it performs a receive operation. The client stores these messages in a local cache. The size 
of the cache is determined by the 
Microsoft.ServiceBus.Messaging.QueueClient.PrefetchCount and 
Microsoft.ServiceBus.Messaging.SubscriptionClient.PrefetchCount properties. Each client 
that enables prefetching maintains its own cache. A cache is not shared across clients. If the 
client initiates a receive operation and its cache is empty, the service transmits a batch of 
messages. The size of the batch equals the size of the cache or 256KB, whichever is smaller. If 
the client initiates a receive operation and the cache contains a message, the message is taken 
from the cache.  

When a message is prefetched, the service locks the prefetched message. By doing this, the 
prefetched message cannot be received by a different receiver. If the receiver cannot complete 
the message before the lock expires, the message becomes available to other receivers. The 
prefetched copy of the message remains in the cache. The receiver that consumes the expired 
cached copy will receive an exception when it tries to complete that message. By default, the 
message lock expires after 60 seconds. This value can be extended to 5 minutes. To prevent the 



 

 252 

consumption of expired messages, the cache size should always be smaller than the number of 
messages that can be consumed by a client within the lock time-out interval.  

When using the default lock expiration of 60 seconds, a good value for 
SubscriptionClient.PrefetchCount is 20 times the maximum processing rates of all receivers of the 
factory. For example, a factory creates 3 receivers. Each receiver can process up to 10 
messages per second. The prefetch count should not exceed 20*3*10 = 600.By default, 
QueueClient.PrefetchCount is set to 0, which means that no additional messages are fetched 
from the service.  

Prefetching messages increases the overall throughput for a queue or subscription because it 
reduces the overall number of message operations, or round trips. Fetching the first message, 
however, will take longer (due to the increased message size). Receiving prefetched messages 
will be faster because these messages have already been downloaded by the client.  

The time-to-live (TTL) property of a message is checked by the server at the time the server 
sends the message to the client. The client does not check the message’s TTL property when the 
message is received. Instead, the message can be received even if the message’s TTL has 
passed while the message was cached by the client.  

Prefetching does not affect the number of billable messaging operations, and is available only for 
the Service Bus client protocol. The HTTP protocol does not support prefetching. Prefetching is 
available for synchronous and asynchronous receive operations. 

Use of multiple queues 
Internally, the Service Bus uses the same node to process all messages for an entity. To achieve 
throughput beyond several thousand messages per second, the messages must be distributed 
through multiple entities. Note that all subscription of a topic are handled by the same node that 
handles the topic. When using multiple entities, you should use a dedicated client for each of 
these entities instead of employing the same client for all entities. 

Scenarios 
The following sections describe typical messaging scenarios and outline the preferred Service 
Bus settings. Throughput rates are classified as small (<1msg/s), moderate (≥1msg/s, 
<100msg/s) and high (≥100msg/s). The number of clients are classified as small (≤5), moderate 
(>5, ≤20), and large (>20). 

High-throughput queue 
Goal: Maximize throughput of a single queue. The number of senders and receivers is small. 
• To increase the overall send rate into the queue, use multiple message factories to create 

senders. For each sender, use asynchronous operations or multiple threads. 
• To increase the overall receive rate from the queue, use multiple message factories to create 

receivers. 
• Use asynchronous operations to take advantage of client-side batching. 



 

 253 

• Set the batching interval to 50ms to reduce the number of Service Bus client protocol 
transmissions. If multiple senders are used, increase the batching interval to 100ms. 

• Leave batched store access enabled. This increases the overall rate at which messages can 
be written into the queue. 

• Set the prefetch count to 20 times the maximum processing rates of all receivers of a factory. 
This reduces the number of Service Bus client protocol transmissions. 

Benchmarks suggest that a single queue can achieve a message throughput of up to 2000msg/s 
(message size: 1KB). To obtain higher throughput, use multiple queues. 

Multiple high-throughput queues 
Goal: Maximize overall throughput of multiple queues. The throughput of an individual queue is 
moderate or high. 

To obtain maximum throughput across multiple queues, use the settings outlined to maximize the 
throughput of a single queue. In addition, use different factories to create clients that send or 
receive from different queues. 

Low latency queue 
Goal: Minimize end-to-end latency of a queue or topic. The number of senders and receivers is 
small. The throughput of the queue is small or moderate. 
• Disable client-side batching. The client immediately sends a message. 
• Disable batched store access. The service immediately writes the message to the store. 
• If using a single client, set the prefetch count to 20 times the processing rate of the receiver. 

If multiple messages arrive at the queue at the same time, the Service Bus client protocol 
transmits them all at the same time. When the client receives the next message, that 
message is already in the local cache. The cache should be small. 

•  If using multiple clients, set the prefetch count to 0. By doing this, the second client can 
receive the second message while the first client is still processing the first message. 

Queue with a large number of senders 
Goal: Maximize throughput of a queue or topic with a large number of senders. Each sender 
sends messages with a moderate rate. The number of receivers is small.  

The Service Bus enables up to 100 concurrent connections to an entity. For queues, this number 
is shared between senders and receivers. If all 100 connections are required for senders, you 
should replace the queue with a topic and a single subscription. A topic accepts up to 100 
concurrent connections from senders, whereas the subscription accepts an additional 100 
concurrent connections from receivers. If more than 100 concurrent senders are required, the 
senders should send messages to the Service Bus protocol via HTTP.  

To maximize throughput, do the following: 
• If each sender resides in a different process, use only a single factory per process. 
• Use asynchronous operations to take advantage of client-side batching. 



 

 254 

• Use the default batching interval of 20ms to reduce the number of Service Bus client protocol 
transmissions. 

• Leave batched store access enabled. This increases the overall rate at which messages can 
be written into the queue or topic. 

• Set the prefetch count to 20 times the maximum processing rates of all receivers of a factory. 
This reduces the number of Service Bus client protocol transmissions. 

Queue with a large number of receivers 
Goal: Maximize the receive rate of a queue or subscription with a large number of receivers. Each 
receiver receives messages at a moderate rate. The number of senders is small.  

The Service Bus enables up to 100 concurrent connections to an entity. If a queue requires more 
than 100 receivers, you should replace the queue with a topic and multiple subscriptions. Each 
subscription can support up to 100 concurrent connections. Alternatively, receivers can access 
the queue via the HTTP protocol.  

To maximize throughput, do the following: 
• If each receiver resides in a different process, use only a single factory per process. 
• Receivers can use synchronous or asynchronous operations. Given the moderate receive 

rate of an individual receiver, client-side batching of a Complete request does not affect 
receiver throughput. 

• Leave batched store access enabled. This reduces the overall load of the entity. It also 
reduces the overall rate at which messages can be written into the queue or topic. 

• Set the prefetch count to a small value (for example, PrefetchCount = 10). This prevents 
receivers from being idle while other receivers have large numbers of messages cached. 

Benchmarks suggest that a single topic with 5 subscriptions can achieve a message throughput 
of up to 600msg/s (message size: 1KB) if all messages are routed to all subscriptions. To obtain 
higher throughput, multiple topics must be used. 

Topic with a small number of subscriptions 
Goal: Maximize the throughput of a topic with a small number of subscriptions. A message is 
received by many subscriptions, which means the combined receive rate over all subscriptions is 
larger than the send rate. The number of senders is small. The number of receivers per 
subscription is small. 

To maximize throughput, do the following: 
• To increase the overall send rate into the topic, use multiple message factories to create 

senders. For each sender, use asynchronous operations or multiple threads. 
• To increase the overall receive rate from a subscription, use multiple message factories to 

create receivers. For each receiver, use asynchronous operations or multiple threads. 
• Use asynchronous operations to take advantage of client-side batching. 
• Use the default batching interval of 20ms to reduce the number of Service Bus client protocol 

transmissions. 



 

 255 

• Leave batched store access enabled. This increases the overall rate at which messages can 
be written into the topic. 

• Set the prefetch count to 20 times the maximum processing rates of all receivers of a factory. 
This reduces the number of Service Bus client protocol transmissions. 

Benchmarks suggest that a single topic with 5 subscriptions can achieve a message throughput 
of up to 600msg/s (message size: 1KB) if all messages are routed to all subscriptions. To obtain 
higher throughput, use multiple topics. 

Topic with a large number of subscriptions 
Goal: Maximize the throughput of a topic with a large number of subscriptions. A message is 
received by many subscriptions, which means the combined receive rate over all subscriptions is 
much larger than the send rate. The number of senders is small. The number of receivers per 
subscription is small.  

Topics with a large number of subscriptions typically expose a low overall throughput if all 
messages are routed to all subscriptions. This is caused by the fact that each message is 
received many times, and all messages that are contained in a topic and all its subscriptions are 
stored in the same store. It is assumed that the number of senders and number of receivers per 
subscription is small. The September 2011 release of Service Bus supports up to 2,000 
subscriptions per topic. 

To maximize throughput, do the following: 
• Use asynchronous operations to take advantage of client-side batching. 
• Use the default batching interval of 20ms to reduce the number of Service Bus client protocol 

transmissions. 
• Leave batched store access enabled. This increases the overall rate at which messages can 

be written into the topic. 
• Set the prefetch count to 20 times the expected receive rate in seconds. This reduces the 

number of Service Bus client protocol transmissions. 

Benchmarks suggest that a single topic with 250 subscriptions can achieve a message 
throughput of up to 5msg/s (message size: 1KB) if all messages are routed to all subscriptions. 
To obtain higher throughput, use multiple topics. 

Appendix: Messaging Exceptions 
This section lists the various exceptions generated by the Service Bus messaging API. This 
reference is subject to change, so check back for updates. 

Exception Categories 
The messaging API generate exceptions that can fall into the following categories, with the 
associated action you can take to try to fix them: 



 

 256 

1. User code error (System.ArgumentException, System.InvalidOperationException, 
System.ObjectDisposedException, 
System.Runtime.Serialization.SerializationException). General action: try to fix the code 
before proceeding. 

2. Setup/configuration error 
(Microsoft.ServiceBus.Messaging.MessagingEntityNotFoundException, 
System.UnauthorizedAccessException. General action: review your configuration and 
change if necessary. 

3. Transient exceptions (Microsoft.ServiceBus.Messaging.ServerBusyException, 
Microsoft.ServiceBus.Messaging.MessagingCommunicationException). General action: 
retry the operation or notify users. 

4. Other exceptions (Microsoft.ServiceBus.Messaging.MessagingException, 
System.Transactions.TransactionException, System.TimeoutException, 
Microsoft.ServiceBus.Messaging.MessageLockLostException/Microsoft.ServiceBus.M
essaging.SessionLockLostException). General action: you generally do not handle these 
exceptions to perform cleanup or aborts. They might be used for tracing. 

Exception Types 
The following table lists messaging exception types, and their causes, and notes suggested 
action you can take. 
 

Exception Type Description/Cause/Examples Suggested Action Note on 
automatic/imme
diate retry 

System.TimeoutEx
ception 

The server did not respond to the 
requested operation within the 
specified time which is controlled by 
Microsoft.ServiceBus.Messaging.
MessagingFactorySettings.Operati
onTimeout. The server may have 
completed the requested 
operation.This can happen due to 
network or other infrastructure 
delays. 

Check the 
system state for 
consistency and 
retry if 
necessary. 

Retry might 
help in some 
cases; add retry 
logic to code. 

System.InvalidOpe
rationException 

The requested operation is not 
supported on the current state of the 
object. 
Microsoft.ServiceBus.Messaging.B
rokeredMessage.Complete will 
generate this exception if the 
message was received in 
ReceiveAndDelete mode. 

Check the code 
and the 
documentation. 
Make sure the 
requested 
operation is 
valid. 

Retry will not 
help. 



 

 257 

Exception Type Description/Cause/Examples Suggested Action Note on 
automatic/imme
diate retry 

System.ObjectDis
posedException 

An attempt is made to invoke an 
operation on an object that has 
already been closed, aborted or 
disposed.In rare cases, the ambient 
transaction is already disposed. 

Check the code 
and make sure it 
does not invoke 
operations on a 
disposed object. 

Retry will not 
help. 

System.Unauthori
zedAccessExcepti
on 

The 
Microsoft.ServiceBus.TokenProvid
er object could not acquire a token, 
the token is invalid, or the token does 
not contain the claims required to 
perform the operation. 

Make sure the 
token provider is 
created with the 
correct values. 
Check the 
configuration of 
the Access 
Control service. 

Retry might 
help in some 
cases; add retry 
logic to code. 

System.Argument
Exception 

System.ArgumenN
ullException 

System.ArgumenO
utOfRangeExcepti
on 

• One or more arguments supplied 
to the method are invalid. 

• The URI supplied to 
Microsoft.ServiceBus.Namesp
aceManager or 
Microsoft.ServiceBus.Messagi
ng.MessagingFactory.Create(S
ystem.Uri,Microsoft.ServiceBu
s.Messaging.MessagingFactor
ySettings) contains path 
segment(s). 

• The URI scheme supplied to 
Microsoft.ServiceBus.Namesp
aceManager or 
Microsoft.ServiceBus.Messagi
ng.MessagingFactory.Create(S
ystem.Uri,Microsoft.ServiceBu
s.Messaging.MessagingFactor
ySettings) is invalid. 

• The property value is larger than 
32KB. 

Check the calling 
code and make 
sure the 
arguments are 
correct. 

Retry will not 
help. 

Microsoft.Service
Bus.Messaging.Me
ssagingEntityNotF
oundException 

Entity associated with the operation 
does not exist or it has been deleted. 

Make sure the 
entity exists. 

Retry will not 
help. 



 

 258 

Exception Type Description/Cause/Examples Suggested Action Note on 
automatic/imme
diate retry 

Microsoft.Service
Bus.Messaging.Me
ssagingCommunic
ationException 

Client is not able to establish a 
connection to the Service Bus. 

Make sure the 
supplied host 
name is correct 
and the host is 
reachable. 

Retry might 
help if there are 
intermittent 
connectivity 
issues. 

Microsoft.Service
Bus.Messaging.Se
rverBusyExceptio
n 

Service is not able to process the 
request at this time. 

Client may retry 
the operation. 

Client may retry 
after certain 
interval. If a 
retry results in a 
different 
exception, 
check retry 
behavior of that 
exception. 

Microsoft.Service
Bus.Messaging.Me
ssageLockLostEx
ception 

Lock token associated with the 
message has expired or the lock 
token is not found. 

Dispose the 
message. 

Retry will not 
help. 

Microsoft.Service
Bus.Messaging.Se
ssionLockLostExc
eption 

Lock associated with this session is 
lost. 

Abort the 
Microsoft.Servi
ceBus.Messagi
ng.MessageSes
sion object. 

Retry will not 
help. 

Microsoft.Service
Bus.Messaging.Me
ssagingException 

Generic messaging exception that 
may be thrown in the following cases: 
• An attempt is made to create a 

Microsoft.ServiceBus.Messagi
ng.QueueClient using a name or 
path that belongs to a different 
entity type (for example, a topic). 

• An attempt is made to send a 
message larger than 256KB. 

• An internal server error might 
also be one of the reasons this 
error is thrown. In that case, the 
exception message will indicate 
the same, and this is usually a 
transient exception. 

• Check the 
code and 
ensure that 
only 
serializable 
objects are 
used for the 
message 
body (or use 
a custom 
serializer). 

• Check the 
documentati
on for the 
supported 

Retry behavior 
is undefined 
and might not 
help. 



 

 259 

Exception Type Description/Cause/Examples Suggested Action Note on 
automatic/imme
diate retry 

value types 
of the 
properties 
and only use 
supported 
types. 

System.Transactio
ns.TransactionExc
eption 

The ambient transaction 
(System.Transactions.Transaction.
Current) is invalid. It may have been 
completed or aborted. Inner 
exception may provide additional 
information. 

 Retry will not 
help. 

System.Transactio
ns.TransactionInD
oubtException 

An operation is attempted on a 
transaction that is in doubt, or an 
attempt is made to commit the 
transaction and the transaction 
becomes in doubt. 

You application 
must handle this 
exception (as a 
special case), as 
the transaction 
may have 
already been 
committed. 

 

 

 


	Cover
	Contents
	Service Bus
	About the Windows Azure Service Bus
	Release Notes for the Service Bus November 2011 Release
	Service Bus Feedback and Community Information
	Service Bus and Pricing FAQ
	System and Developer Requirements
	Managing Service Bus Service Namespaces
	How to: Create or Modify a Service Bus Service Namespace
	How to: Delete a Service Bus Service Namespace

	Windows Azure Service Bus Quotas
	Getting Started with the Service Bus
	Service Bus Relayed Messaging Tutorial
	Service Bus Brokered Messaging Tutorials
	Service Bus Message Buffer Tutorial

	Developing Applications that Use the Service Bus
	Overview of Service Bus Messaging Patterns
	Service Bus Programming Lifecycle
	Service Bus Authentication and Authorization with the Access Control Service
	Service Bus Bindings
	Designing a WCF Contract for the Service Bus
	Configuring a WCF Service to Register with the Service Bus
	Securing and Authenticating a Service Bus Connection
	Building a Service for the Service Bus
	Building a Service Bus Client Application
	Discovering and Exposing a Service Bus Service
	Working with a Service Bus Message Buffer
	Silverlight and Flash Support

	Service Bus Troubleshooting
	Troubleshooting the Service Bus
	Hosting Behind a Firewall with the Service Bus

	RelayConfigurationInstaller.exe Tool
	Best Practices for Performance Improvements Using Service Bus Brokered Messaging
	Appendix: Messaging Exceptions



