
Stacia Varga, Denny Cherry, Joseph D’Antoni

Introducing
Microsoft
SQL Server 2016
Mission-Critical Applications, Deeper Insights,
Hyperscale Cloud

Preview 2

1

Introducing Microsoft

SQL Server 2016

Mission-Critical Applications,
Deeper Insights, Hyperscale
Cloud

Preview 2

Stacia Varga, Denny Cherry, and
Joseph D’Antoni

PUBLISHED BY

Microsoft Press

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2016 by Microsoft Corporation

All rights reserved. No part of the contents of

this book may be reproduced or transmitted in

any form or by any means without the written

permission of the publisher.

ISBN: 978-1-5093-0193-5

Printed and bound in the United States of

America.

First Printing

Microsoft Press books are available through

booksellers and distributors worldwide. If you

need support related to this book, email

Microsoft Press Support at

mspinput@microsoft.com. Please tell us what

you think of this book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the

author’s views and opinions. The views, opinions

and information expressed in this book,

including URL and other Internet website

references, may change without notice.

Some examples depicted herein are provided for

illustration only and are fictitious. No real

association or connection is intended or should

be inferred.

Microsoft and the trademarks listed at

http://www.microsoft.com on the “Trademarks”

webpage are trademarks of the Microsoft group

of companies. All other marks are property of

their respective owners.

Acquisitions and Developmental Editor:

Devon Musgrave

Project Editor: John Pierce

Editorial Production: Flyingspress

Cover: Twist Creative Seattle

iv

Contents at a
glance
Chapter 2 Better security 1

Chapter 3 Higher availability53

Chapter 4 Improved database engine.........89

Chapter 6 More analytics 129

Chapter 7 Better reporting 208

v

Contents
Chapter 2 Better security 1

Always Encrypted .. 2

Getting started with Always Encrypted 3

Creating a table with encrypted values 17

CREATE TABLE statement for encrypted

columns .. 19

Migrating existing tables to Always

Encrypted .. 25

Row-Level Security ... 30

Creating inline table functions 32

Creating security policies 40

Using block predicates 41

Dynamic data masking ... 43

Dynamic data masking of a new table 46

Dynamic data masking of an existing

table ... 47

Understanding dynamic data masking and

permissions ... 48

Masking encrypted values 50

vi

Using dynamic data masking in SQL

Database .. 51

Chapter 3 Higher availability53

AlwaysOn Availability Groups 54

Supporting disaster recovery with basic

availability groups .. 58

Using group Managed Service Accounts ... 61

Triggering failover at the database level 62

Supporting distributed transactions 65

Scaling out read workloads 66

Defining automatic failover targets 69

Reviewing the improved log transport

performance ... 71

Windows Server 2016 Technical Preview high-

availability enhancements 75

Creating workgroup clusters 77

Configuring a cloud witness 79

Using Storage Spaces Direct 82

Introducing site-aware failover clusters 84

Windows Server Failover Cluster logging .. 85

Performing rolling cluster operating system

upgrades .. 86

vii

Chapter 4 Improved database engine.........89

TempDB enhancements ... 91

Configuring data files for TempDB 91

Eliminating specific trace flags 96

Query Store ... 98

Enabling Query Store.. 99

Understanding Query Store components 101

Reviewing information in the query store 103

Using Force Plan ... 108

Managing the query store 111

Tuning with the query store 113

Stretch Database .. 114

Understanding Stretch Database

architecture ... 116

Security and Stretch Database 117

Identifying tables for Stretch Database 119

Configuring Stretch Database 121

Monitoring Stretch Database 123

Backup and recovery with Stretch

Database .. 127

viii

Chapter 6 More analytics 129

Tabular enhancements .. 130

Accessing more data sources with

DirectQuery .. 131

Modeling with a DirectQuery source 134

Working with calculated tables 141

Bidirectional cross-filtering 144

Writing formulas ... 153

Introducing new DAX functions 155

Using variables in DAX 170

R integration .. 173

Installing and configuring R Services 174

Getting started with R Services 177

Using an R Model in SQL Server 201

Chapter 7 Better reporting 208

Report content types .. 208

Paginated report development enhancements

... 210

Introducing changes to paginated report

authoring tools .. 211

Exploring new data visualizations 214

ix

Managing parameter layout in paginated

reports .. 227

Mobile report development 230

KPI development .. 231

Report access enhancements 233

Accessing reports with modern browsers 234

Viewing reports on mobile devices............. 238

Printing without ActiveX 239

Exporting to PowerPoint 244

Pinning reports to Power BI 248

Managing subscriptions 251

About the authors.. 258

1 of 270 C H A P T E R 2 | Better security

C H A P T E R 2

Better security

SQL Server 2016 introduces three

new principal security features—

Always Encrypted, Row-Level

Security, and dynamic data

masking. While all these features

are security related, each provides a

different level of data protection

within this latest version of the

database platform. Throughout this

chapter, we explore the uses of

these features, how they work, and

when they should be used to

protect data in your SQL Server

database.

2 of 270 C H A P T E R 2 | Better security

Always Encrypted
Always Encrypted is a client-side encryption

technology in which data is automatically

encrypted not only when it is written but also

when it is read by an approved application.

Unlike Transparent Data Encryption, which

encrypts the data on disk but allows the data to

be read by any application that queries the data,

Always Encrypted requires your client application

to use an Always Encrypted–enabled driver to

communicate with the database. By using this

driver, the application securely transfers

encrypted data to the database that can then be

decrypted later only by an application that has

access to the encryption key. Any other

application querying the data can also retrieve

the encrypted values, but that application cannot

use the data without the encryption key, thereby

rendering the data useless. Because of this

encryption architecture, the SQL Server instance

never sees the unencrypted version of the data.

Note At this time, the only Always Encrypted–
enabled drivers are the .NET Framework Data
Provider for SqlServer, which requires
installation of .NET Framework version 4.6 on

3 of 270 C H A P T E R 2 | Better security

the client computer, and the JDBC 6.0 driver. In
this chapter, we refer to both of these drivers as
the ADO.NET driver for simplicity.

Getting started with Always
Encrypted

Using Always Encrypted requires a small amount

of preparation within the database storing the

encrypted tables. While this can be done by

using a wizard in SQL Server Management

Studio, using T-SQL is a more repeatable process

for production deployments, so this chapter will

focus on the T-SQL configuration process. The

preparation is a two-step process:

1. Create the column master key definition

2. Create the column encryption key

Column master key definition

The column master key is a certificate that is

stored within a Windows certificate store, a

third-party Hardware Security Module (HSM), or

the Azure Key Vault. The application that is

encrypting the data uses the column master key

to protect the various column encryption keys

4 of 270 C H A P T E R 2 | Better security

that handle the encryption of the data within the

columns of a database table.

Note Using an HSM, also known as an
Enterprise Key Manager (EKM), requires the use
of SQL Server Enterprise Edition. In this chapter,
we describe the use of a self-signed certificate
that you store in the Microsoft Certificate Store
of the Windows operating system. While this is
approach is not the optimal configuration, it
demonstrates the concepts of Always Encrypted
and is applicable to any edition of SQL Server.

You can create a column master key definition

by using the graphical interface within SQL

Server Management Studio (SSMS) or by using

T-SQL. In SSMS, connect to the SQL Server 2016

database instance in which you want to use

Always Encrypted to protect a database table. In

Object Explorer, navigate first to the database,

then to Security, and then expand the Always

Encrypted Keys folder to display its two

subfolders, as shown in Figure 2-1.

5 of 270 C H A P T E R 2 | Better security

Figure 2-1: Always Encrypted Keys folder in SQL Server
2016 Object Explorer.

To create the column master key, right-click the

Column Master Keys folder and select New

Column Master Key. In the New Column Master

Key dialog box, type a name for the column

master key, specify whether to store the key in

6 of 270 C H A P T E R 2 | Better security

the current user’s or local machine’s certificate

store or the Azure Key Vault, and then select a

certificate in the list, as shown in Figure 2-2. If

there are no certificates, or if you want to use a

new self-signed certificate, click the Generate

Certificate button, and then click OK. This step

creates a self-signed certificate and loads it into

the certificate store of the current user account

running SSMS.

Figure 2-2: New Column Master Key dialog box.

7 of 270 C H A P T E R 2 | Better security

Note You should perform these steps on a
trusted machine, but not on the computer
hosting your SQL Server instance. That way, the
data remains protected in SQL Server even if
the host computer is compromised.

After creating the certificate and configuring it as

a column master key, you must then export and

distribute it to all computers hosting clients

requiring access to the data. If a client

application is web-based, you must load the

certificate on the web server. If it is an

application installed on users’ computers, then

you must deploy the certificate to each user’s

computer individually.

You can find applicable instructions for

exporting and importing certificates for your

operating system at the following URLs:

 Exporting certificates

 Windows 7 and Windows Server 2008

R2: https://technet.microsoft.com/en-

us/library/cc730988.aspx.

 Windows 8 and Windows Server 2012:

https://technet.microsoft.com/en-

us/library/hh848628(v=wps.620).aspx.

https://technet.microsoft.com/en-us/library/cc730988.aspx
https://technet.microsoft.com/en-us/library/cc730988.aspx
https://technet.microsoft.com/en-us/library/hh848628(v=wps.620).aspx
https://technet.microsoft.com/en-us/library/hh848628(v=wps.620).aspx

8 of 270 C H A P T E R 2 | Better security

 Windows 8.1 and Windows Server 2012

R2: https://technet.microsoft.com/en-

us/library/hh848628(v=wps.630).aspx.

 Windows 10 and Windows Server 2016:

https://technet.microsoft.com/en-

us/library/hh848628(v=wps.640).aspx.

 Importing certificates

 Windows 7 and Windows Server 2008

R2: https://technet.microsoft.com/en-

us/library/cc754489.aspx.

 Windows 8 and Windows Server 2012:

https://technet.microsoft.com/en-

us/library/hh848630(v=wps.620).aspx.

 Windows 8.1 and Windows Server 2012

R2: https://technet.microsoft.com/en-

us/library/hh848630(v=wps.630).aspx.

 Windows 10 and Windows Server 2016:

https://technet.microsoft.com/en-

us/library/hh848630(v=wps.640).aspx.

Certificate stores and special service
accounts

https://technet.microsoft.com/en-us/library/hh848628(v=wps.630).aspx
https://technet.microsoft.com/en-us/library/hh848628(v=wps.630).aspx
https://technet.microsoft.com/en-us/library/hh848628(v=wps.640).aspx
https://technet.microsoft.com/en-us/library/hh848628(v=wps.640).aspx
https://technet.microsoft.com/en-us/library/cc754489.aspx
https://technet.microsoft.com/en-us/library/cc754489.aspx
https://technet.microsoft.com/en-us/library/hh848630(v=wps.620).aspx
https://technet.microsoft.com/en-us/library/hh848630(v=wps.620).aspx
https://technet.microsoft.com/en-us/library/hh848630(v=wps.630).aspx
https://technet.microsoft.com/en-us/library/hh848630(v=wps.630).aspx
https://technet.microsoft.com/en-us/library/hh848630(v=wps.640).aspx
https://technet.microsoft.com/en-us/library/hh848630(v=wps.640).aspx

9 of 270 C H A P T E R 2 | Better security

When you import certificates into the certificate
store on the computers with the application
that encrypts and decrypts the data, you must
import the certificates into either the machine
certificate store or the certificate store of the
domain account running the application.

As an alternative, you can create a column

master key by using T-SQL. Although you might

find that creating the key is easier using SSMS,

T-SQL scripts provide you with a repeatable

process that you can check into a source control

system and keep safe in case you need to rebuild

the server. Furthermore, because best practices

for SQL Server 2016 discourage installation of

SSMS on the server’s console and Windows

security best practices discourage certificate

installation on unsecured systems such as users’

desktops, the use of T-SQL scripts to create

column master keys is recommended.

To create a column master key, use the CREATE

COLUMN MASTER KEY statement, as shown in

Example 2-1. This statement requires you to

supply a name for the definition, such as MyKey,

as shown in the example. You must also set the

value for KEY_STORE_PROVIDER_NAME as

MSSQL_CERTIFICATE_STORE. Last, you specify

the path for the certificate in the certificate store

10 of 270 C H A P T E R 2 | Better security

as the KEY_PATH value. This value begins with

CurrentUser when you use a certificate stored in

the user account’s certificate store or

LocalMachine when using a certificate stored in

the computer’s certificate store. The rest of the

value is a random-looking string of characters

that represents the thumbprint of the selected

certificate. This thumbprint is unique to each

certificate.

Example 2-1: Creating a column master
key

USE [Samples]

GO

CREATE COLUMN MASTER KEY MyKey

WITH

(

 KEY_STORE_PROVIDER_NAME =

N'MSSQL_CERTIFICATE_STORE',

 KEY_PATH =

N'CurrentUser/My/DE3A770F25EBD6071305B77FB198D

1AE434E6014'

);

GO

11 of 270 C H A P T E R 2 | Better security

Other key store providers?

You may be asking yourself what key-store
providers are available besides the Microsoft
SQL Server certificate store. You can choose
from several other key-store providers. One
option is MSSQL_CSP_PROVIDER, which allows
you to use any HSM supporting Microsoft
CryptoAPI. Another option is
MSSQL_CNG_STORE, which allows you to use
any HSM supporting Cryptography API: Next
Generation. A third option is to specify
AZURE_KEY_VAULT as the key-store provider,
which requires you to download and install the
Azure Key Vault key store provider on the
machines accessing the protected data, which
will be protected as described at
http://blogs.msdn
.com/b/sqlsecurity/archive/2015/11/10/using-
the-azure-key-vault-key-store-provider.aspx.
Last, you can use a custom provider, as
described at http://blogs.msdn.com/b/
sqlsecurity/archive”/2015/09/25/creating-an-
ad-hoc-always-encrypted-provider-using-
azure-key-vault.aspx. Although this article
provides an example using Azure Key Vault,
you can apply the principles to the
development of a custom provider.

http://blogs.msdn.com/b/sqlsecurity/archive/2015/11/10/using-the-azure-key-vault-key-store-provider.aspx
http://blogs.msdn.com/b/sqlsecurity/archive/2015/11/10/using-the-azure-key-vault-key-store-provider.aspx
http://blogs.msdn.com/b/sqlsecurity/archive/2015/11/10/using-the-azure-key-vault-key-store-provider.aspx
http://blogs.msdn.com/b/sqlsecurity/archive
http://blogs.msdn.com/b/sqlsecurity/archive
http://blogs.msdn.com/b/sqlsecurity/archive
http://blogs.msdn.com/b/sqlsecurity/archive

12 of 270 C H A P T E R 2 | Better security

Finding the certificate thumbprint

You can easily locate the thumbprint of the
certificate in the certificate store by using the
Certificate snap-in within the Microsoft
Management Console (MMC). In MMC, on the
File menu, select Add/Remove Snap-In. In the
Add Or Remove Snap-ins dialog box, select
Certificates in the Available Snap-ins list on the
left, and click the Add button to move your
selection to the right. The Certificates Snap-in
dialog box prompts you to select a certificate
store. Choose either My User Account or
Computer Account, depending on which
certificate store you are using. Click the Finish
button, and then click OK. Expand the
Certificates folder to locate your certificate in
the Personal/Certificates subfolder, double-click
the certificate, select the Details tab, and scroll
to the bottom, where you can see the
thumbprint that you use as the value for the
CREATE COLUMN MASTER KEY DEFINITION
statement.

Column encryption keys

After creating a column master key, you are

ready to create the encryption keys for specific

columns. The SQL Server 2016 ADO.NET driver

uses column encryption keys to encrypt the data

13 of 270 C H A P T E R 2 | Better security

before sending it to the SQL Server and to

decrypt the data after retrieving it from the SQL

Server 2016 instance. As with the column master

key, you can create column encryption keys by

using T-SQL or SSMS. While the column master

keys are easier to create by using T-SQL, column

encryption keys are easier to create by using

SSMS.

To create a column encryption key, use Object

Explorer to connect to the database instance,

navigate to the database, then to Security, and

expand the Always Encrypted Keys folder. Right-

click Column Encryption Keys, and then select

New Column Encryption Key. In the New Column

Encryption Key dialog box, type a name for the

new encryption key, select a Column Master Key

Definition in the drop-down list, as shown in

Figure 2-3, and then click OK. You can now use

the column encryption key in the definition of a

new table.

14 of 270 C H A P T E R 2 | Better security

Figure 2-3: New Column Encryption Key dialog box.

To create a new column encryption key by using

T-SQL, you use the CREATE COLUMN

ENCRYPTION KEY statement as shown in

Example 2-2.

Example 2-2: CREATE COLUMN
ENCRYPTION KEY

15 of 270 C H A P T E R 2 | Better security

USE [Samples]

GO

CREATE COLUMN ENCRYPTION KEY [MyColumnKey]

WITH VALUES

(

 COLUMN MASTER KEY DEFINITION = [MyKey],

 ALGORITHM = 'RSA_OAEP',

 ENCRYPTED_VALUE =

0x016E008000630075007200720065006E007400750073

00650072002F006D0079002F0064006500330061003700

3700300066003200350065006200640036003000370031

0033003000350062003700370066006200310039003800

6400310061006500340033003400650036003000310034

004D74119935C902E59F57A96C3E6F770826D247135FFF

A759B5B013DF4DAF7CFB760A5864DD8381B91924D067BE

4F574B50DE7F0D53F278E1C003B5D192865B808C159022

4F4A4BB463255101C36D3089F46609B376D7B00FA9F9CE

AF715398EECAB790AC6EC8BD18C17B3EB992CAE08FEA6A

2F5A2BDDA4F5A700744E45861F993A3C488127E5897B30

892DD2734DD5D84F096882A393D5877C5A20E392888FE0

357F46DB578AEB4C677CFFCE2281276C4D12F3E5AC3BCC

C09B78BB0E522D86F9B2CF989F14695B7CB95A478194EC

BD175B5C7C1687B7589FD9145B2782CB0BBAB6F7F5B0AC

7F8C256EB0D3D87ABAE4F73137FA4AFA387B791B54AC50

3B53271D

);

GO

The CREATE COLUMN ENCRYPTION KEY

statement accepts three parameters. The first

parameter is COLUMN MASTER KEY DEFINITION,

which corresponds to the column master key

16 of 270 C H A P T E R 2 | Better security

definition that you created in a previous step.

The second parameter defines the encryption

algorithm used to encrypt the value of the

encryption key. In SQL Server 2016, the only

supported parameter value at this time is

RAS_OAEP. The third parameter is the value of

the column encryption key after it has been

encrypted by the column master key definition.

Note When creating column encryption keys,
you should not use an unencrypted value as
the ENCRYPTED_VALUE parameter of the
CREATE COLUMN ENCRYPTION KEY statement.
Otherwise, you compromise the benefits of
Always Encrypted by making data vulnerable to
attack.

The CREATE COLUMN ENCRYPTION KEY

command accepts a minimum of one VALUE

block, and a maximum of two VALUE blocks. Two

VALUE blocks should be used when rotating

encryption keys, either because a key has

expired or because it has become compromised.

Two keys should exist within the database long

enough for all connected applications to

download the new encryption keys from the

database. Depending on the application design

and client connectivity, this process may take

minutes or months.

17 of 270 C H A P T E R 2 | Better security

Generating new encrypted values

Given that the value is encrypted, how can new
encrypted values be generated? The easiest
way is to use SSMS to open the New Column
Encryption Key dialog box shown in Figure 2-3,
select the correct column master key definition,
provide a name for the new encryption key, and
then click the Script button at the top of the
dialog box. This selection gives you the full
CREATE COLUMN ENCRYPTION KEY statement,
including a new random encrypted value. You
can then add this new value as a second
encryption key and thereby easily rotate the
encryption keys.

Creating a table with encrypted
values

After creating the column master key definition

and column encryption keys, you can create the

table to hold the encrypted values. Before you

do this, you must decide what type of encryption

to use, which columns to encrypt, and whether

you can index these columns. With the Always

Encrypted feature, you define column sizes

normally, and SQL Server adjusts the storage size

of the column based on the encryption settings.

18 of 270 C H A P T E R 2 | Better security

After you create your table, you might need to

change your application to execute commands

on this table using Always Encrypted. In this

section, we describe the choices you have when

creating your table and adapting your

application.

Encryption types

Before creating a table to contain encrypted

values, you must first make a choice about each

column to be encrypted. First, will this column be

used for looking up values or just returning

those values? If the column is going to be used

for lookups, the column must use a deterministic

encryption type, which allows for equality

operations. However, there are limitations on

searching for data that has been encrypted by

using the Always Encrypted feature. SQL Server

2016 supports only equality operations, which

include equal to, not equal to, joins (which use

equality), and using the value in the GROUP BY

clause. Any search using LIKE is not supported.

Additionally, sorting data that is encrypted using

Always Encrypted must be done at the

application level, as SQL Server will sort based on

the encrypted value rather than the decrypted

value.

19 of 270 C H A P T E R 2 | Better security

If the column is not going to be used for

locating records, then the column should use the

randomized encryption type. This type of

encryption is more secure, but it does not

support searches, joins, or grouping operations.

CREATE TABLE statement for
encrypted columns

When creating tables, you use the normal

CREATE TABLE syntax with some additional

parameters within the column definition, as

shown in Example 2-3. Three parameters are

used within the ENCRYPTED WITH syntax for the

CREATE TABLE statement. The first of these is the

ENCRYPTION_TYPE parameter, which accepts a

value of RANDOMIZED or DETERMINISTIC. The

second is the ALGORITHM parameter, which only

accepts a value of

AEAD_AES_256_CBC_HMAC_SHA_256. The third

parameter is the COLUMN_ENCRYPTION_KEY,

which is the encryption key you use to encrypt

the value.

20 of 270 C H A P T E R 2 | Better security

Example 2-3: Creating a table using
Always Encrypted

CREATE TABLE [dbo].[Customers](

 [CustomerId] [int] IDENTITY(1,1),

 [TaxId] [varchar](11) COLLATE
Latin1_General_BIN2
 ENCRYPTED WITH (ENCRYPTION_TYPE =

DETERMINISTIC,

 ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256',

 COLUMN_ENCRYPTION_KEY = MyColumnKey) NOT

NULL,

 [FirstName] [nvarchar](50) NULL,

 [LastName] [nvarchar](50) NULL,

 [MiddleName] [nvarchar](50) NULL,

 [Address1] [nvarchar](50) NULL,

 [Address2] [nvarchar](50) NULL,

 [Address3] [nvarchar](50) NULL,

 [City] [nvarchar](50) NULL,

 [PostalCode] [nvarchar](10) NULL,

 [State] [char](2) NULL,

 [BirthDate] [date]

 ENCRYPTED WITH (ENCRYPTION_TYPE = RANDOMIZED,

 ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256',

 COLUMN_ENCRYPTION_KEY = MyColumnKey) NOT NULL

 PRIMARY KEY CLUSTERED ([CustomerId] ASC) ON

[PRIMARY]);

 GO

The sample code shown in Example 2-3 creates

two encrypted columns. The first encrypted

column is the TaxId column, which is encrypted

21 of 270 C H A P T E R 2 | Better security

as a deterministic value because our application

allows a search of customers based on their

government-issued tax identification number.

The second encrypted column is the BirthDate

column, which is a randomized column because

our application does not require the ability to

search, join, or group by this column.

Indexing and Always Encrypted

Columns containing encrypted data can be used

as key columns within indexes—provided that

those columns are encrypted by using the

DETERMINISTIC encryption type. Columns

encrypted by using the RANDOMIZED

encryption type return an error message when

you try to create an index on those columns.

Columns encrypted by using either encryption

type can be used as INCLUDE columns within

nonclustered indexes.

Because encrypted values can be indexes, no

additional performance-tuning measures are

required for values encrypted with Always

Encrypted beyond the indexing and tuning that

you normally perform. Additional network

bandwidth and greater I/O are the only side

22 of 270 C H A P T E R 2 | Better security

effects that result from the increased size of the

values being returned.

Application changes

The beauty of the Always Encrypted feature of

SQL Server 2016 is that applications already

using stored procedures, ORMs, or

parameterized T-SQL commands should require

no application changes to use Always Encrypted,

unless nonequality operations are currently

being used. Applications that build SQL

statements as dynamic SQL within the

application and execute those commands

against the database directly need to be

modified to use parameterization of their

queries, a recommended security best practice

for all applications, before they can take

advantage of the Always Encrypted feature.

Another change required to make Always

Encrypted work is the addition of a connection

string attribute to the connection string of the

application connecting to the database:

Column Encryption Setting=enabled

23 of 270 C H A P T E R 2 | Better security

With this setting added to the connection string,

the ADO.NET driver asks the SQL Server if the

executing command includes any encrypted

columns, and if so, which columns are encrypted.

For high-load applications, the use of this setting

may not be the best practice, especially if a large

percentage of executing commands do not

include encrypted values. Consequently, the .NET

Framework provides a new method on the

SqlConnection object called

SqlCommandColumnEncryptionSetting, which has

three possible values as shown in the following

table.

Method

value

Effective change

Disabled There are no Always Encrypted

columns or parameters to use

for the queries that are

executed by using this

connection object.

Enabled There are Always Encrypted

columns and/or parameters in

use for the queries that are

executed by using this

connection object.

24 of 270 C H A P T E R 2 | Better security

ResultSet There are no Always Encrypted

parameters. However,

executing queries using this

connection object return

columns encrypted by using

Always Encrypted.

Note Be aware that the use of this method
can potentially require a significant amount of
change to your application code. An alternative
approach is to refactor your application to use
different connections.

For the best performance of SQL Server, it is wise

to request only the metadata about Always

Encrypted for those queries that use Always

Encrypted. This means that in applications for

which a large percentage of queries use Always

Encrypted, the connection string should be

enabled and the specific queries within the

application should specify

SqlCommandColumnEncryptionSetting as

Disabled. For applications for which most queries

are not using Always Encrypted values, the

connection string should not be enabled, and

SqlCommandColumnEncryptionSetting should be

set for Enabled or ResultSet as needed for those

25 of 270 C H A P T E R 2 | Better security

queries that are using Always Encrypted

columns. In most cases, applications are able to

simply enable the connection string attribute,

and application performance will remain

unchanged while using the encrypted data.

Note While enabling the Always Encrypted
setting has been designed to be an easy-to-
implement solution for application data
encryption, it is a very major change to
application functionality. Like all major changes
to application functionality, there should be
rigorous testing of this feature in a testing
environment, including load testing, before
making this change in a production
environment.

Migrating existing tables to
Always Encrypted

In a production environment, there is no direct

path to migrate an unencrypted table to a table

that is protected by Always Encrypted. A

multiphased approach to data migration is

required to move data from the current table

into the new table. The basic approach to move

data from an existing table into an Always

Encrypted table includes the following steps:

26 of 270 C H A P T E R 2 | Better security

1. Build a new staging table.

2. Write a .NET application using ADO.NET to

process the encryption of both existing and

updated rows.

3. Run the .NET application built in the prior

step.

4. Drop the existing table and rename the new

table to use the old table name.

5. Change the application’s connection string

to include Column Encryption

Setting=enabled.

Note For nonproduction environments, you
can use the Always Encrypted wizard or the
Import/Export wizard in SSMS, which follow a
process similar to the one we outline in this
section.

Step 1: Build a new staging table

Because Always Encrypted does not support the

conversion of an existing table into an Always

Encrypted table, you must build a new table. The

new table should have the same schema as the

existing table. When you build the new table, the

only changes you need to make are enabling the

27 of 270 C H A P T E R 2 | Better security

columns to be encrypted and specifying the

collation as described in Example 2-3.

A large application is likely to require a large

amount of time to encrypt and move the data,

and it might not complete this process during a

single maintenance window. In that case, it is

helpful to make two additional schema changes.

The first change is to add a column on the

production table to track when a row is updated

(if the table does not already have such a

column). The second change is to add a trigger

to the production table that fires on delete and

removes any rows from the new table when the

row is deleted from the production table. To

reduce downtime when you move the table with

the encrypted data into production, you should

create any indexes existing on the production

table on the new table before loading it with

data.

Steps 2 and 3: Write a .NET application
to encrypt the data and move it to the
new table

Because of the design of Always Encrypted, data

is encrypted only by applications using the

28 of 270 C H A P T E R 2 | Better security

ADO.NET driver with parameterized queries. This

design prevents you from using SSMS to move

data into the new table. Similarly, you cannot use

an application to perform a simple query such as

this:

INSERT INTO NewTable SELECT * FROM OldTable;

The rows must be brought from the database

into a .NET application and then written back to

the database using a parameterized query, one

row at a time, for the data to be properly

inserted as encrypted values in the database.

For small applications, this process can be

completed quickly, within a single maintenance

window. For larger applications, this processes

may take several nights, which requires the

application to be aware of data changes during

the business day. After the application has

processed the initial push of data from the

source table to the new table, the application

must run periodically to move over any changed

rows to the new table until the cutover has been

completed.

29 of 270 C H A P T E R 2 | Better security

Step 4: Rename the table

Once all the data has been migrated, the existing

table can be dropped or renamed so that it can

be saved until testing has been completed. Then

the new table can be renamed so that it now has

the production table’s name. Any indexes

existing on the production table that do not exist

on the new table should be created at this time,

as well as any foreign keys that exist on the old

table. Once testing is completed, if the old table

is not deleted, any foreign keys using that table

as a parent should be removed to prevent issues

when rows are deleted.

Step 5: Update the application’s
connection string

Once the tables are changed, the application

needs to know to use Always Encrypted. To do

this, change the application’s connection string

to use the new Column Encryption

Setting=enabled attribute or release a new

version of the application that uses the

SqlCommandColumnEncryptionSetting method

on the connection object within the .NET code.

30 of 270 C H A P T E R 2 | Better security

Using Always Encrypted in Microsoft
Azure SQL Database

Always Encrypted is fully supported by the SQL
Database platform. You configure Always
Encrypted for a SQL Database just as you do for
an on-premises SQL Server 2016 deployment
by using T-SQL commands. At the time of this
writing, there are no enhancements in the
Microsoft Azure portal for configuring Always
Encrypted in SQL Database.

Row-Level Security
Row-Level Security (RLS) allows you to configure

tables such that users see only the rows within

the table to which you grant them access. This

feature limits which rows are returned to the

user, regardless of which application they are

using, by automatically applying a predicate to

the query. You can use a filter predicate to

silently filter the rows that are accessible by the

user when using INSERT, UPDATE, or DELETE

statements. In addition, you can use the

following block predicates to block the user from

writing data: AFTER INSERT, AFTER UPDATE,

BEFORE UPDATE and BEFORE DELETE. These

31 of 270 C H A P T E R 2 | Better security

block predicates return an error to the

application indicating that the user is attempting

to modify rows to which the user does not have

access.

You implement RLS by creating an inline table

function that identifies the rows accessible to

users. The function you create can be as simple

or complex as you need. Then you create a

security policy to bind the inline table function to

one or more tables.

Note Although you can create a complex RLS
inline table function, bear in mind that complex
queries are typically slow to execute. Besides
ensuring that your function properly limits
access to specific rows in a table, you should
take care that it does so with minimal impact to
application performance.

RLS is designed to simplify your application code

by centralizing access logic within the database.

It should be noted that, as with any RLS solution

and workarounds, it is possible for users with the

ability to execute arbitrary T-SQL commands to

infer the existence of data that should be

filtered, via side-channel attacks. Therefore, RLS

is intended for scenarios where the queries that

32 of 270 C H A P T E R 2 | Better security

users can execute are controlled, such as

through a middle-tier application.

Be aware that RLS impacts all users of a

database, including members of the db_owner

fixed database role. Members of this role have

the ability to remove the RLS configuration from

tables in the database. However, by doing so, all

other users again have access to all rows in the

table.

Note You can use branching logic in the inline
table function for RLS when you need to allow
members of the db_owner fixed database role
to access all rows in the table.

Creating inline table functions

The method by which users connect to a

database determines how you need to write the

inline table function. In an application that

connects users to the database with their

individual Windows or SQL login, the function

must directly match each user’s login to a value

within the table. On the other hand, in an

application that uses a single SQL login for

authentication, you must modify the application

to set the session context to use a database

value that sets the row-level filtering as we

33 of 270 C H A P T E R 2 | Better security

explain in more detail later in this section. Either

way, when you create a row-level filtering inline

table function, you must enable

SCHEMABINDING and the function must return a

column that contains a value of 1 (or any other

valid value) when the user can view the row.

Note You can implement RLS on existing
tables without rebuilding the tables because
the inline table function that handles the
filtering is a separate object in the database,
which you then bind to the table after you
create the function. Consequently, you can
quickly and easily implement RLS in existing
applications without requiring significant
downtime.

Application using one login per user

When your application logs into the database

engine by using each user’s Windows or SQL

login, your inline table function needs only to

compare the user’s login against a table in the

database to determine whether the user has

access to the requested rows. As an example,

let’s say you have an Orders application for

which you want to use RLS to restrict access to

order information to the person entering the

34 of 270 C H A P T E R 2 | Better security

order. First, your application requires an Order

table, such as the one shown in Example 2-4.

When your application writes a row into this

table, it must store the user’s login in the

SalesRep column.

Example 2-4: Creating an Orders table

CREATE TABLE Orders

 (

 OrderId int,

 SalesRep sysname

);

Your next step is to create an inline table

function like the one shown in Example 2-5. In

this example, when a user queries the Orders

table, the value of the SalesRep column passes

into the @SalesRep parameter of the fn_Orders

function. Then, row by row, the function

compares the @SalesRep parameter value to the

value returned by the USER_NAME() system

function and returns a table containing only the

rows for which it finds a match between the two

values.

35 of 270 C H A P T E R 2 | Better security

Example 2-5: Creating an inline table
function to restrict access by user login

CREATE FUNCTION dbo.fn_Orders(@SalesRep AS

sysname)

 RETURNS TABLE

WITH SCHEMABINDING

AS

 RETURN

SELECT 1 AS fn_Orders_result

WHERE @SalesRep = USER_NAME();

GO

Note The data type of the parameter in your
inline table function must match the
corresponding column data type in the table
that you plan to secure with RLS, although it is
not necessary for the parameter name to match
the column name. However, managing your
code is easier if you keep the names consistent.

Now let’s consider what happens if your

database contains related information in another

table, such as the OrderDetails table shown in

Example 2-6.

36 of 270 C H A P T E R 2 | Better security

Example 2-6: Creating an OrderDetails
table

CREATE TABLE OrderDetails

 (

 OrderId int,

 ProductId int,

 Qty int,

 Price numeric(8,2)

);

GO

To apply the same security policy to this related

table, you must implement additional filtering by

creating another inline table-valued function,

such as the one shown in Example 2-7. Notice

that you continue to use the USER_NAME()

system function to secure the table by a user-

specific login. However, this time the inline table-

valued function’s parameter is @OrderId, which

is used in conjunction with the SalesRep column.

Example 2-7: Creating an inline table
function to restrict access by user login in
a related table

CREATE FUNCTION dbo.fn_OrderDetails(@OrderId

AS int)

 RETURNS TABLE

WITH SCHEMABINDING

37 of 270 C H A P T E R 2 | Better security

AS

 RETURN

 SELECT 1 AS fn_Orders_result

 FROM Orders

 WHERE OrderId = @OrderId

 AND SalesRep =

USER_NAME();

GO

Application using one login for all users

When your application uses a single login for all

users of the application, also known as an

application account, you use similar logic as you

do when the application passes user logins to

the database. Let’s continue with a similar

example as the one in the previous section, but

let’s add some additional columns to the Orders

table, as shown in Example 2-8. In this version of

the Orders table, the SalesRep column has an int

data type instead of the sysname data type in

the earlier example.

Example 2-8: Creating a variation of the
Orders table

CREATE TABLE Orders

 (

 OrderId int,

38 of 270 C H A P T E R 2 | Better security

 SalesRep int,

 ProductId int,

 Qty int,

 Price numeric(8,2)

);

GO

Additionally, the inline table function changes to

reflect the single login, as shown in Example 2-9.

Notice the parameter’s data type is now int

instead of sysname to match the column in the

table shown in Example 2-8. In addition, the

predicate in the function now uses the

SESSION_CONTEXT system function and outputs

the result as an int data type to match the input

parameter’s data type.

Example 2-9: Creating an inline table
function for an application using a single
login

CREATE FUNCTION dbo.fn_Orders(@SalesRep AS

int)

 RETURNS TABLE

WITH SCHEMABINDING

AS

 RETURN

 SELECT 1 AS fn_Orders_result

 WHERE @SalesRep =

39 of 270 C H A P T E R 2 | Better security

CONVERT(SESSION_CONTEXT(N'UserId') AS int);

GO

You must also modify your application code to

use the sp_set_session_context system stored

procedure, which sets the value returned by the

SESSION_CONTEXT system function, as shown in

Example 2-10. This system stored procedure

supports two parameters—the key name of the

value to add and the value to store for this key.

In this example, the key name is UserID and its

value is set to the UserId of the application user,

which the application passes into the stored

procedure by using the @UserId input

parameter. Applications can call

sp_set_session_context in line within the stored

procedures or directly at application startup

when the connection is created.

Example 2-10: Using the
sp_set_session_context system stored
procedure

CREATE PROCEDURE GetOrder

 @OrderId int,

 @UserId int

AS

EXEC sp_set_session_context @key=N'UserId',

@value=@UserId;

40 of 270 C H A P T E R 2 | Better security

SELECT *

FROM Orders

WHERE OrderId = @OrderId;

GO

Creating security policies

After creating inline table-valued functions, you

next bind them to the table that you want to

secure. To do this, use the CREATE SECURITY

POLICY command, as shown in Example 2-11. In

the security policy, you can define a filter

predicate by specifying the inline table-valued

function name, the column name to pass to the

function, and the table to which the policy

applies.

Example 2-11: Creating a security policy

CREATE SECURITY POLICY dbo.OrderPolicy

 ADD FILTER PREDICATE

dbo.fn_Orders(SalesRep) ON dbo.Orders

 WITH (STATE=ON);

You can specify multiple filter predicates in the

security policy when you want to filter rows in

different tables, as shown in Example 2-12.

41 of 270 C H A P T E R 2 | Better security

Example 2-12: Creating one security policy
for multiple tables

CREATE SECURITY POLICY dbo.OrderPolicy

 ADD FILTER PREDICATE

dbo.fn_Orders(SalesRep) ON dbo.Orders,

 ADD FILTER PREDICATE

dbo.fn_OrderHistory(OrderId) ON

dbo.OrderHistory

 WITH (STATE = ON);

Using block predicates

When you use the filter predicate as shown in

the examples in the preceding section, the

security policy affects “get” operations only.

Users are still able to insert rows that they

cannot subsequently query. They can also

update rows they can currently access and even

change the rows to store values that block

further access. You must decide whether your

application should allow this behavior or should

prevent users from inserting rows to which they

do not have access. To do this, use a block

predicate in addition to a filter predicate.

As shown in Example 2-13, you can use both

filter and block predicates in a security policy. In

42 of 270 C H A P T E R 2 | Better security

this example, the security policy allows users to

query for rows using the SELECT statement and

returns only rows to which the user has access. A

user can insert new rows into the table as long

as the SalesRep value matches the user’s login.

Otherwise, the insert fails and returns an error to

the user. Similarly, an update to the table

succeeds as long as the user doesn’t attempt to

change the value of the SalesRep column. In that

case, the update fails and returns an error to the

user.

Example 2-13: Using block and filter
predicates in a single security policy

CREATE SECURITY POLICY dbo.OrderPolicy

 ADD FILTER PREDICATE

dbo.fn_Orders(SalesRep) ON dbo.Orders,

 ADD BLOCK PREDICATE

dbo.fn_Orders(SalesRep) ON dbo.Orders AFTER

INSERT,

 ADD BLOCK PREDICATE

dbo.fn_Orders(SalesRep) ON dbo.Orders AFTER

UPDATE

 WITH (STATE = ON);

43 of 270 C H A P T E R 2 | Better security

Note You can use a filter predicate to prevent
users from updating or deleting records they
cannot read, but the filter is silent. By contrast,
the block predicate always returns an error
when performing these operations.

Using RLS in SQL Database

You can use RLS in SQL database by using the
same T-SQL commands described in this
chapter. At the time of this writing, you cannot
use the Azure portal to implement RLS.

Dynamic data masking
When you have a database that contains

sensitive data, you can use dynamic data

masking to obfuscate a portion of the data

unless you specifically authorize a user to view

the unmasked data. To mask data, you can use

one of the following four masking functions to

control how users see the data returned by a

query:

44 of 270 C H A P T E R 2 | Better security

 Default Use this function to fully mask

values by returning a value of XXXX (or fewer

Xs if a column length is less than 4

characters) for string data types, 0 for

numeric and binary data types, and

01.01.2000 00:00:00.0000000 for date and

time data types.

 Email Use this function to partially mask

email addresses like this: aXXX@XXXX.com.

This pattern masks not only the email

address but also the length of the email

address.

 Partial Use this function to partially mask

values by using a custom definition requiring

three parameters as described in the

following table:

Parameter Description

Prefix Number of starting

characters to display, starting

from the first character in the

value.

Padding Value to be displayed

between the prefix and suffix

characters.

45 of 270 C H A P T E R 2 | Better security

Suffix Number of ending characters

to display, starting from the

last character in the value.

 Random Use this function to fully mask

numeric values by using a random value

between a lower and upper boundary that

you specify.

Random function may display unmasked
data

The Random() data-masking function may on
occasion display the actual value that is stored
in the table. This behavior is the result of using
a random value that could match the value to
mask if it is within the specified range. You
should consider whether the business rules of
your application allow for this behavior before
using this masking function. Whenever
possible, use a range of values outside the
possible range of values to mask to ensure that
there is no possibility of an accidental data leak.
While it is possible that the random value will
return the actual value, there is no way of
knowing that the displayed random value is in
fact the actual value without knowing the actual
value.

46 of 270 C H A P T E R 2 | Better security

Dynamic data masking of a new
table

To configure dynamic data masking for a new

table, use the CREATE TABLE statement with the

MASKED WITH argument, as shown in Example

2-14. In this example, the default() function

masks the TaxId column for complete masking,

and the partial() function masks the FirstName

column by displaying its first three characters

and its final character and replacing the

remaining characters with xyz.

Example 2-14: Creating a table with two
masked columns

CREATE TABLE [dbo].[Customer](

 [CustomerId] [int] IDENTITY(1,1) NOT

NULL,

 [TaxId] [varchar](11) MASKED WITH

(FUNCTION = 'default()'),

 [FirstName] [nvarchar](50) MASKED WITH

(FUNCTION = 'partial(3, "xyz", 1)') NULL,

 [LastName] [nvarchar](50) NULL,

PRIMARY KEY CLUSTERED

(

 [CustomerId] ASC)

) ON [PRIMARY];

GO

47 of 270 C H A P T E R 2 | Better security

Dynamic data masking of an
existing table

Because dynamic data masking changes only the

presentation of data returned by a query, there is

no change to the underlying table structure. That

means you can easily add dynamic data masking

to a column in an existing table without

rebuilding the table. To this, use the ALTER

TABLE statement with the ALTER COLUMN and

ADD MASKED arguments, as shown in Example

2-15.

Example 2-15: Adding dynamic data
masking to an existing table

ALTER TABLE [dbo].[Customers]

ALTER COLUMN [LastName] ADD MASKED WITH

(FUNCTION = 'default()');

Likewise, you can remove dynamic data masking

quickly and easily without rebuilding a table or

moving data because only metadata changes

rather than the schema. You remove dynamic

data masking from a column by using the ALTER

TABLE statement with the ALTER COLUMN and

48 of 270 C H A P T E R 2 | Better security

DROP MASKED arguments, as shown in Example

2-16.

Example 2-16: Removing dynamic data
masking from a table

ALTER TABLE [dbo].[Customers]

ALTER COLUMN [LastName] DROP MASKED;

Understanding dynamic data
masking and permissions

When you use dynamic data masking, the

permissions that you assign to users affect

whether users see plain text values or masked

values. Specifically, members of the db_owner

fixed database role always see plain text values,

whereas users who are not members of this role

see masked data by default.

If you need to grant a user permission to see

plain text data in a table, you must grant the new

UNMASK permission at the database level. To do

this, use the GRANT UNMASK statement in the

database containing the masked values, as

shown in Example 2-17.

49 of 270 C H A P T E R 2 | Better security

Example 2-17: Granting the UNMASK
permission

GRANT UNMASK TO MyUser;

Note It is not possible to grant table-level
access to masked data. You can grant this
privilege only at the database level.
Consequently, you can mask either all masked
data within the database for a user or none of
the data.

To remove this permission, you use the REVOKE

statement as shown in Example 2-18.

Example 2-18: Revoking the UNMASK
permission

REVOKE UNMASK TO MyUser;

Figure 2-4 shows examples of query results when

you apply dynamic data masking to a table. The

first query shows default and email masking. The

second result set shows the same queries

executed after giving the user permissions to

view masked data.

50 of 270 C H A P T E R 2 | Better security

Figure 2-4: Query results for masked and unmasked
values.

Data-masking permissions and configuration

survive when you copy data from one object to

another. For example, if you copy data from a

user table to a temporary table, the data remains

masked in the temporary table.

Masking encrypted values

Dynamic data masking does not work with

encrypted values if you encrypt data in the

application tier or by using the Always Encrypted

feature. If you encrypt data before storing it in

51 of 270 C H A P T E R 2 | Better security

the SQL Server database engine, the engine

cannot mask a value that it cannot decrypt. In

this case, because data is already encrypted,

there is no benefit or extra protection from

applying dynamic data masking.

Using dynamic data masking in
SQL Database

Dynamic data masking is also available for use in

SQL Database. You can configure it by using T-

SQL or by using the Microsoft Azure portal. In

the Azure portal, navigate to the list of SQL

Databases within SQL DB, and then select the

database to view its properties. Next, in the

Settings panel, select Dynamic Data Masking, as

shown in Figure 2-5. In the Dynamic Data

Masking window, a list of masking rules is

displayed in addition to a list of columns for

which data masking is recommended. You can

enable data masking on those columns by

clicking the Add Mask button to the right of the

column name.

52 of 270 C H A P T E R 2 | Better security

Figure 2.5: Configuring dynamic data masking for a SQL
Database in the Azure portal.

After specifying the mask function to apply to

selected columns, click the Save button at the

top of the window to save the configuration

changes to your SQL Database. After saving

these changes, users can no longer see the

unmasked data in the SQL Database tables

unless they have the unmask privilege within the

database.

53 of 270 C H A P T E R 3 | Higher availability

C H A P T E R 3

Higher availability

In a world that is always online,

maintaining uptime and

streamlining maintenance

operations for your mission-critical

applications are more important

than ever. In SQL Server 2016, the

capabilities of the AlwaysOn

Availability Group feature continue

to evolve from previous versions,

enabling you to protect data more

easily and flexibly and with greater

throughput to support modern

storage systems and CPUs.

54 of 270 C H A P T E R 3 | Higher availability

Furthermore, AlwaysOn Availability

Groups and AlwaysOn Failover

Cluster Instances now have higher

security, reliability, and scalability.

By running SQL Server 2016 on

Windows Server 2016, you have

more options for better managing

clusters and storage. In this chapter,

we introduce the new features that

you can use to deploy more robust

high-availability solutions.

AlwaysOn Availability
Groups
First introduced in SQL Server 2012 Enterprise

Edition, the AlwaysOn Availability Groups feature

provides data protection by sending transactions

from the transaction log on the primary replica

to one or more secondary replicas, a process

55 of 270 C H A P T E R 3 | Higher availability

that is conceptually similar to database

mirroring. In SQL Server 2014, the significant

enhancement to availability groups was the

increase in the number of supported secondary

replicas from three to eight. SQL Server 2016

includes a number of new enhancements that we

explain in this section:

 AlwaysOn Basic Availability Groups

 Support for group Managed Service

Accounts (gMSAs)

 Database-level failover

 Distributed Transaction Coordinator (DTC)

support

 Load balancing for readable secondary

replicas

 Up to three automatic failover targets

 Improved log transport performance

New to availability groups?

If you are still using database mirroring, there
are several reasons to transition your high-
availability strategy to availability groups.
Database mirroring is deprecated as of SQL

56 of 270 C H A P T E R 3 | Higher availability

Server 2012, for example, and basic availability
groups are now included in SQL Server 2016
Standard Edition as a replacement. Also, if you
are exploring options for high-
availability/disaster-recovery (HA/DR) solutions
but have never implemented availability
groups, SQL Server 2016 provides several
benefits to consider.

Whereas database mirroring occurs at the
database level, using a single thread to perform
the data replication, data is moved within
availability groups by using a worker pool,
which provides better throughput and reduces
CPU overhead. When your application requires
multiple databases, you can assign the
databases to a single availability group to
ensure that they all fail over at the same time.
By contrast, the unit of failover with database
mirroring is a single database. With database
mirroring, you use a SQL Server witness
instance to manage automatic failover, but with
availability groups you rely on Windows Server
Failover Clustering (WSFC) to arbitrate uptime
and connections. Furthermore, clustering is a
more robust solution than database mirroring
because it provides additional levels of
protection.

A key benefit of availability groups is the ability
to scale out replicas that you can configure to
support both high-availability and disaster-
recovery requirements. For high-availability
scenarios, you should locate two or three
servers in the same geographic location,

57 of 270 C H A P T E R 3 | Higher availability

configured to use synchronous-commit mode
and automatic failover. That said, automatic
failover should be used only in low-latency
scenarios because writes to the primary replica
are not considered complete until they reach
the transaction log on the secondary replica.
For disaster-recovery scenarios in which the
servers are more than 100 kilometers apart,
asynchronous-commit mode is a better choice
to minimize the performance impact on the
primary replica.

Another benefit of availability groups is the
ability for databases on a secondary replica to
support online reads as well as database
backups. This capability allows you to
implement a scale-out architecture for
reporting solutions by having multiple copies of
secondary replicas in multiple geographies. You
provide connectivity to the availability group by
using a virtual IP address called the listener,
which you configure to connect transparently
to the primary replica or to a secondary replica
for reading. Figure 3-1 is a diagram of an
availability group with replicas in New York, Los
Angeles, and Seattle and a listener to which
clients connect.

58 of 270 C H A P T E R 3 | Higher availability

Figure 3-1: An AlwaysOn Availability Group with a
primary replica and two secondary replicas.

Supporting disaster recovery with
basic availability groups

You can now use basic availability groups in the

Standard Edition to automatically fail over a

single database. The use of basic availability

groups is subject to the following limitations:

 Two replicas (one primary and one

secondary)

 One availability database

 No read access on secondary replica

 No backups on secondary replica

 No availability group listener

59 of 270 C H A P T E R 3 | Higher availability

 No support in an existing availability group

to add or remove a replica

 No support for upgrading a basic availability

group to an advanced availability group

Despite these limitations, with a basic availability

group you get benefits similar to database

mirroring in addition to other features. For each

replica, you can choose either synchronous-

commit or asynchronous-commit mode, which

determines whether the primary replica waits for

the secondary replica to confirm that it has

hardened the log. Moreover, performance is

better because basic availability groups use the

same improved log transport operations that we

describe later in this chapter.

The steps to configure basic availability groups

are similar to those for regular availability

groups, with some exceptions. You start by using

the New Availability Group Wizard, which you

launch in SQL Server Management Studio

(SSMS) by right-clicking the AlwaysOn High

Availability folder in Object Explorer. When you

reach the Specify Replicas page, you click the

Add Replica button to add the primary and

secondary replicas, but then the button becomes

unavailable, as shown in Figure 3-2. In addition,

60 of 270 C H A P T E R 3 | Higher availability

you cannot change the value for the Readable

Secondary drop-down list, nor can you access

the Backup Preferences or Listener tabs.

Figure 3-2: Configuring replicas for a basic availability
group.

Note Although including an Azure replica in
your disaster-recovery architecture is fully
supported for basic availability groups, the New
Availability Group Wizard does not allow you
the option to add it. However, you can perform
this step separately by using the Add Azure
Replica Wizard, which is described at

61 of 270 C H A P T E R 3 | Higher availability

https://msdn.microsoft.com/en-
us/library/dn463980.aspx.

Using group Managed Service
Accounts

To comply with regulatory auditing

requirements, DBAs or system administrators in

a large enterprise must frequently reset service

account passwords across SQL Server instances.

However, managing individual service account

passwords involves a high degree of risk because

downtime is likely to occur if anything goes

wrong. To address this problem, Microsoft

enhanced Windows Server 2012 so that you can

more easily manage passwords for a service

account in Active Directory by creating a single

service account for your SQL Server instances

and then delegating permissions to each of

those servers. By default, Active Directory

changes the password for a group Managed

Service Account (gMSA) every thirty days,

although you can adjust the password-change

interval to satisfy your audit requirements.

In SQL Server 2012 and SQL Server 2014, you

can implement this feature only in standalone

configurations. In SQL Server 2016, you can now

use gMSAs with both availability groups and

https://msdn.microsoft.com/en-us/library/dn463980.aspx
https://msdn.microsoft.com/en-us/library/dn463980.aspx

62 of 270 C H A P T E R 3 | Higher availability

failover clusters. If you are using Windows Server

2012 R2 as your operating system, you must

install KB298082 to ensure that services can

seamlessly log on after a password change.

However, no patches are required if you install

SQL Server 2016 on Windows Server 2016.

Triggering failover at the
database level

Beginning in SQL Server 2012, AlwaysOn

Availability Groups and AlwaysOn Failover

Cluster Instances (FCIs) use the

sp_server_diagnostics stored procedure to

periodically monitor the health of a server. The

default behavior is to fail over an availability

group or an FCI when the health monitoring

reveals any of the following conditions:

 The stored procedure returns an error

condition.

 The SQL Service service is not running.

 The SQL Server instance is not responding.

However, in versions earlier than SQL Server

2016, this check does not account for database-

level failures. Beginning in SQL Server 2016, you

can enable Database Level Health Detection

63 of 270 C H A P T E R 3 | Higher availability

when you create an availability group, as shown

in Figure 3-3. This way, any error that causes a

database to be suspect or go offline also triggers

a failover of the availability group.

Note The FailureConditionLevel property
determines the conditions that trigger a
failover. For normal operations, the default
value is suitable. However, you can reduce or
increase this property’s value if necessary. To
learn more, see “Configure
FailureConditionLevel Property Settings” at
https://msdn.microsoft.com/en-
us/library/ff878667.aspx.

https://msdn.microsoft.com/en-us/library/ff878667.aspx
https://msdn.microsoft.com/en-us/library/ff878667.aspx

64 of 270 C H A P T E R 3 | Higher availability

Figure 3-3: Creating a new availability group with
database-level health detection.

Note Enabling Database Level Health
Detection needs to be weighed carefully with
the needs of your application and its intended
behavior in response to a failover. If your
application can support a database failover,
Database Level Health Detection can enhance
your total availability and uptime.

65 of 270 C H A P T E R 3 | Higher availability

Automatic page repair

An important capability of availability groups is
automatic page repair. If the primary replica
cannot read a page, it requests a fresh copy of
the page from a secondary. However, in the
event that the primary replica cannot be
repaired, such as when storage fails completely,
you might be able to bring your secondary
replica online as a primary replica.

Supporting distributed
transactions

One of the features long supported in FCIs, but

not in availability groups, is the use of the

Distributed Transaction Coordinator (DTC). This

feature is required if your application performs

transactions that must be consistent across

multiple instances. When running SQL Server

2016 on Windows Server 2016, you can now

implement support for distributed transactions

when you create a new availability group. To do

this, you select the Per Database DTC check box

(shown earlier in Figure 3-3) or by using the T-

SQL command shown in Example 3-1. Note that

you cannot add DTC support to an existing

availability group. By enabling DTC support, your

66 of 270 C H A P T E R 3 | Higher availability

application can distribute transactions between

separate SQL Server instances or between SQL

Server and another DTC-compliant server, such

as Oracle or WebSphere.

Example 3-1: Creating an availability
group with DTC support

CREATE AVAILABLITY GROUP [2016DEMO] WITH

DTC_SUPPORT=PER_DB

Note Because each database in an availability
group is synchronized independently while the
cross-database transaction manager operates
at the SQL Server instance level, an active
cross-database transaction might be lost during
an availability group failover. Consequently,
cross-database transactions are not supported
for databases hosted by one SQL Server or
within the same availability group.

Scaling out read workloads

You can use availability groups for scale-out

reads across multiple secondary copies of the

availability group. In SQL Server 2016, as in the

67 of 270 C H A P T E R 3 | Higher availability

previous version, you can scale up to as many as

eight secondary replicas, but the scale-out reads

feature is not enabled by default. To support

scale-out reads, you must configure read-only

routing by using the T-SQL commands shown in

Example 3-2. You must also create an availability

group listener and direct connections to this

listener. In addition, the connection string must

include the ApplicationIntent=ReadOnly

keyword.

Example 3-2: Configuring read-only
routing

ALTER AVAILABILITY GROUP [AG1]

 MODIFY REPLICA ON

N'COMPUTER01' WITH

(SECONDARY_ROLE (ALLOW_CONNECTIONS =

READ_ONLY));

ALTER AVAILABILITY GROUP [AG1]

 MODIFY REPLICA ON

N'COMPUTER01' WITH

(SECONDARY_ROLE (READ_ONLY_ROUTING_URL =

N'TCP://COMPUTER01.contoso.com:1433'));

ALTER AVAILABILITY GROUP [AG1]

 MODIFY REPLICA ON

N'COMPUTER02' WITH

(SECONDARY_ROLE (ALLOW_CONNECTIONS =

READ_ONLY));

ALTER AVAILABILITY GROUP [AG1]

68 of 270 C H A P T E R 3 | Higher availability

 MODIFY REPLICA ON

N'COMPUTER02' WITH

(SECONDARY_ROLE (READ_ONLY_ROUTING_URL =

N'TCP://COMPUTER02.contoso.com:1433'));

ALTER AVAILABILITY GROUP [AG1]

 MODIFY REPLICA ON

N'COMPUTER01' WITH

(PRIMARY_ROLE

(READ_ONLY_ROUTING_LIST=('COMPUTER02','COMPUTE

R01')));

ALTER AVAILABILITY GROUP [AG1]

 MODIFY REPLICA ON

N'COMPUTER02' WITH

(PRIMARY_ROLE

(READ_ONLY_ROUTING_LIST=('COMPUTER01','COMPUTE

R02')));

GO

Note You can also use Windows PowerShell to
configure a read-only routing list as described
at https://msdn.microsoft.com/en-
us/library/hh710054.aspx.

In SQL Server 2012 and SQL Server 2014, the

read traffic is directed to the first available

replica, without consideration for load balancing.

An alternative solution requires the use of third-

party hardware or software load balancers to

route traffic equally across the secondary copies

of the databases. In SQL Server 2016, you can

https://msdn.microsoft.com/en-us/library/hh710054.aspx
https://msdn.microsoft.com/en-us/library/hh710054.aspx

69 of 270 C H A P T E R 3 | Higher availability

now balance loads across replicas by using

nested parentheses in the read-only routing list,

as shown in Example 3-3. In this example,

connection requests first try the load-balanced

set containing Server1 and Server2. If neither

replica in that set is available, the request

continues by sequentially trying other replicas

defined in the list, Server3 and Server4 in this

example. Only one level of nested parentheses is

supported at this time.

Example 3-3: Defining a load-balanced
replica list

READ_ONLY_ROUTING_LIST =

(('Server1','Server2'), 'Server3', 'Server4')

Defining automatic failover
targets

In SQL Server 2012 and SQL Server 2014, you

can define a maximum of two replicas running in

an automatic failover set, but now SQL Server

2016 allows for a third replica to support a

topology such as is shown in Figure 3-4. In this

example, the replicas on Node01, Node02, and

Node03 are configured as an automatic failover

set. As long as data is synchronized between the

70 of 270 C H A P T E R 3 | Higher availability

primary replica and one of the secondary

replicas, failover can take place in an automatic

fashion with no data loss.

Figure 3-4: Availability Group topology with three
automatic failover targets.

When configuring availability group failover, you

can choose from among the following failover

modes:

 Automatic Failover A failover that occurs

automatically on the failure of the primary

replica, which is supported only when both

the primary replica and at least one

secondary replica are configured with

AUTOMATIC failover mode and the

secondary replica is currently synchronized.

 Planned Manual Failover (without data

loss) A failover that is typically initiated by

an administrator for maintenance purposes.

This requires synchronous-commit mode,

71 of 270 C H A P T E R 3 | Higher availability

and the databases must currently be

synchronized.

 Forced Failover (with possible data loss)

A failover that occurs when the availability

group is configured with asynchronous-

commit mode, or the databases in the

availability group are not currently

synchronized.

For automatic failover to work, you must

configure all members of the availability group

for synchronous-commit mode and for

automatic failover. You typically configure

automatic failover for high-availability scenarios,

such as rolling updates to SQL Server. In this

configuration, any uncommitted transactions

that have not reached the secondary replica are

rolled back in the event of failover, thereby

providing near zero data loss.

Reviewing the improved log
transport performance

When AlwaysOn Availability Groups were first

introduced in SQL Server 2012, solid-state

storage devices (SSDs) were far less prevalent in

enterprise IT architectures than they are now.

SSDs enable more throughput, which can be

72 of 270 C H A P T E R 3 | Higher availability

problematic on a standalone system and can

overwhelm the ability to write to the secondary

database. In prior versions of SQL Server, the

underlying processes responsible for

synchronizing data between replicas are shared

among availability groups, database mirroring,

Service Broker, and replication. In SQL Server

2016, these processes are completely rewritten,

resulting in a streamlined protocol with better

throughput and lower CPU utilization.

Although the process has been refactored, the

sequence of internal operations for the log

transport, shown in Figure 3-5, continues to

include the following steps:

1. Log flush Log data is generated and

flushed to disk on the primary replica in

preparation for replication to the secondary

replica. It then enters the send queue.

2. Log capture Logs for each database are

captured on the primary replica,

compressed, and sent to the corresponding

queue on the secondary replica. This process

runs continuously as long as database

replicas are connecting. If this process is not

able to scan and enqueue the messages

73 of 270 C H A P T E R 3 | Higher availability

quickly enough, the log send queue

continues to grow.

3. Send The messages are removed from the

queue and sent to each secondary replica

across the network.

4. Log receive/Log cache Each secondary

replica gets messages from the primary

replica and then caches the messages.

5. Log hardened The log is flushed on the

secondary replica, and then a notification is

sent to the primary replica to acknowledge

completion of the transaction.

6. Redo pages The flushed pages are

retrieved from the redo queue and applied

to the secondary replica.

Figure 3-5: Log transport operations for AlwaysOn
Availability Groups.

74 of 270 C H A P T E R 3 | Higher availability

Bottlenecks can occur in this process during the

log-capture step on the primary replica and the

redo step on the secondary replica. In previous

versions of SQL Server, both steps were single-

threaded. Consequently, bottlenecks might occur

during large index rebuilds on availability groups

with high-speed storage and on local networks,

because these single-threaded steps had trouble

keeping up with the stream of log records.

However, in SQL Server 2016 these steps can use

multiple threads that run in parallel, resulting in

significant performance improvements.

Furthermore, the compression functions in the

log-capture step have been replaced by a newer

Windows compression function that delivers up

to five times better performance. During testing

with high-throughput storage devices, speeds up

to 500 MB/s have been observed. Considering

that this throughput is a compressed stream, the

redo step is receiving 1 GB/s, which should

support the busiest applications on the fastest

storage.

Microsoft Azure high-availability/disaster-
recovery licensing changes

Hybrid disaster-recovery scenarios are
becoming increasingly popular. If you choose

75 of 270 C H A P T E R 3 | Higher availability

to implement hybrid disaster recovery, be sure
to maintain symmetry between on-premises
and cloud solutions. The license mobility
benefit included with software assurance (SA)
allows you to use a secondary copy of SQL
Server in any high-availability or disaster-
recovery scenario without purchasing another
license for it. In the past, you could not use this
benefit with the SQL Server images on Azure
Virtual Machines. Now you can deploy a new
SQL Server image on an Azure Virtual Machine
without incurring charges as long as the
secondary replica is not active. This means you
can automate the scale-out of your high-
availability/disaster-recovery solutions with a
minimum of effort and cost.

Windows Server 2016
Technical Preview high-
availability
enhancements
Nearly every version of Windows Server since

Windows Server 2008 R2 has had major

enhancements to the operating system’s failover

clustering stack as a result of development

investments in related technologies. First, Hyper-

76 of 270 C H A P T E R 3 | Higher availability

V, the virtualization platform in the operating

system, uses the clustering stack for its high-

availability and disaster-recovery scenarios.

Microsoft Azure also uses this same functionality.

Because SQL Server has failover clustering at the

center of its high-availability/disaster-recovery

technologies, it also takes advantage of the

clustering features in the operating system.

Sometimes these features are visible from the

database tier, allowing you to make

configuration changes, but other features from

the operating system, such as dynamic quorum,

enhance SQL Server’s uptime without requiring

configuration. Windows Server 2016 Server

Technical Preview includes the following features

that enhance SQL Server’s uptime:

 Workgroup clusters

 Cloud witness

 Storage Spaces Direct

 Site-awareness

 Troubleshooting enhancements to Windows

Server Failover Clusters (WSFC)

 Cluster operating system rolling upgrade

77 of 270 C H A P T E R 3 | Higher availability

Creating workgroup clusters

Earlier in this chapter, we explained how basic

availability groups replace nearly all the

functionality in database mirroring. The one

advantage that database mirroring has over

availability groups in prior versions of SQL Server

is the ability to provide data protection across

Active Directory (AD) domains or without an AD

domain. Starting with Windows Server 2016

Technical Preview and SQL Server 2016, you can

now create a workgroup cluster with nondomain

servers as well as servers attached to different

AD domains. However, there is no mechanism

for using a file share witness. Instead, you must

create a cloud witness, as we describe in the next

section, or a shared disk.

Each server that you want to add to a workgroup

cluster requires a primary DNS suffix in the full

computer name, as shown in Figure 3-6. You can

add this suffix by clicking the More button in the

Computer Name/Domain Changes dialog box,

which you access from System Properties for the

server.

78 of 270 C H A P T E R 3 | Higher availability

Figure 3-6: A server with a DNS suffix assigned to a
workgroup.

Note In the current release of Windows Server
2016 Technical Preview, this feature is enabled
by default. However, you must use PowerShell
to create a workgroup cluster because the
Failover Cluster Manager snap-in does not
support this functionality. Furthermore,
configuring a cross-domain cluster is more
complex than configuring a workgroup cluster
because Kerberos is required to make cross-

79 of 270 C H A P T E R 3 | Higher availability

domain authentication work correctly. You can
learn more about configuration requirements
for both scenarios by referring to “Workgroup
and Multi-domain clusters in Windows Server
2016” at
http://blogs.msdn.com/b/clustering/archive/20
15/08/17/10635825.aspx.

Configuring a cloud witness

Maintaining quorum is the most important

function of any clustering software. In SQL

Server, the most frequently deployed model is

Node And File Share Majority. One of the

challenges when you are designing a disaster-

recovery architecture is to decide where to place

the file share witness. Microsoft’s official

recommendation is to place it in a third data

center, assuming you have a primary/secondary

availability group configuration. Many

organizations already have two data centers, but

fewer have a third data center. Windows Server

2016 Technical Preview introduces a new feature,

the cloud witness, that address this problem.

You create a cloud witness by using the Cluster

Quorum Wizard. Before you launch this wizard,

you must have an active Azure subscription and

a storage account. To launch the wizard, right-

http://blogs.msdn.com/b/clustering/archive/2015/08/17/10635825.aspx
http://blogs.msdn.com/b/clustering/archive/2015/08/17/10635825.aspx

80 of 270 C H A P T E R 3 | Higher availability

click the server in the Failover Cluster Manager,

point to More Actions, select Configure Cluster

Quorum Settings, select the Select The Quorum

Witness option, and then select the Configure A

Cloud Witness option, as shown in Figure 3-7.

Figure 3-7: Creating a cloud witness for a cluster
quorum.

On the next page of the wizard, provide the

name of your Azure storage account, copy the

storage account key from the Azure portal to the

clipboard, and type the Azure service endpoint,

as shown in Figure 3-8.

81 of 270 C H A P T E R 3 | Higher availability

Figure 3-8: Addition of Azure credentials to cloud
witness configuration.

When you successfully complete the wizard, the

cloud witness is displayed in the Cluster Core

Resources pane in the Failover Configuration

Manager snap-in, as shown in Figure 3-9.

Figure 3-9: Successful addition of a cloud witness to
cluster core resources.

82 of 270 C H A P T E R 3 | Higher availability

Because you select the Azure region when you

create a storage account, you have control over

the placement of your cloud witness. All

communications to and from Azure storage are

encrypted by default. This new feature is suitable

for most disaster-recovery architectures and is

easy to configure at minimal costs.

Note More information on this topic is
available in “Understanding Quorum
Configurations in a Failover Cluster” at
https://technet.microsoft.com/en-
us/library/cc731739.aspx.

Using Storage Spaces Direct

Windows Server 2016 Technical Preview

introduces the Storage Spaces Direct feature,

which seamlessly integrates several existing

Windows Server features to build a software-

defined storage stack, as shown in Figure 3-10.

These features include Scale-Out File Server,

Clustered Shared Volume File Systems (CSVFS),

and Failover Clustering.

https://technet.microsoft.com/en-us/library/cc731739.aspx
https://technet.microsoft.com/en-us/library/cc731739.aspx

83 of 270 C H A P T E R 3 | Higher availability

Figure 3-10: Storage options in Storage Spaces Direct.

The main use case for this feature is high-

performance primary storage for Hyper-V virtual

files. Additionally, storage tiers are built into the

solution. If you require a higher tier of

performance for TempDB volumes, you can

configure Storage Spaces Direct accordingly.

SQL Server can take full advantage of this feature

set because the infrastructure supports

AlwaysOn Availability Groups and AlwaysOn

Failover Cluster Instances, thereby providing a

84 of 270 C H A P T E R 3 | Higher availability

much lower total cost of ownership compared

with traditional enterprise storage solutions.

Note See “Storage Spaces Direct in Windows
Server 2016 Technical Preview” at
https://technet.microsoft.com/en-
us/library/mt126109.aspx to learn more.

Introducing site-aware failover
clusters

Windows Server 2016 Technical Preview also

introduces site-aware clusters. As a

consequence, you can now group nodes in

stretched clusters based on their physical

location. This capability enhances key clustering

operations such as failover behavior, placement

policies, heartbeat between nodes, and quorum

behavior.

One of the key features of interest to SQL Server

professionals is failover affinity, which allows

availability groups to fail over within the same

site before failing to a node in a different site.

Additionally, you can now configure the

threshold and site delay for heartbeating, which

is the network ping that ensures the cluster can

talk to all its nodes.

https://technet.microsoft.com/en-us/library/mt126109.aspx
https://technet.microsoft.com/en-us/library/mt126109.aspx

85 of 270 C H A P T E R 3 | Higher availability

You can not only specify a site for a cluster node,

you can also define a primary location, known as

a preferred site, for your cluster. Dynamic

quorum ensures that the preferred site stays

online in the event of a failure by lowering the

weights of the disaster-recovery site.

Note Currently (in Windows Server 2016 TP4),
the site-awareness functionality is only enabled
through PowerShell and not through Failover
Cluster Manager. More information is available
at “Site-aware Failover Clusters in Windows
Server 2016” at
http://blogs.msdn.com/b/clustering
/archive/2015/08/19/10636304.aspx.

Windows Server Failover Cluster
logging

Troubleshooting complex cluster problems has

always been challenging. One of the goals of

WSFC logging in Windows Server 2016 is to

simplify some of these challenges. First, the top

of the cluster log now shows the UTC offset of

the server and notes whether the cluster is using

UTC or local time. The cluster log also dumps all

cluster objects, such as networks, storage, or

roles, into a comma-separated list with headers

http://blogs.msdn.com/b/clustering/archive/2015/08/19/10636304.aspx
http://blogs.msdn.com/b/clustering/archive/2015/08/19/10636304.aspx

86 of 270 C H A P T E R 3 | Higher availability

for easy review in tools such as Excel. In addition,

there is a new logging model call

DiagnosticVerbose that offers the ability to keep

recent logs in verbose logging while maintaining

a history in normal diagnostic mode. This

compromise saves space but also provides

verbose logging as needed.

Note Additional information is available at
“Windows Server 2016 Failover Cluster
Troubleshooting Enhancements – Cluster Log”
at
http://blogs.msdn.com/b/clustering/archive/20
15/05/15/
10614930.aspx.

Performing rolling cluster
operating system upgrades

In prior versions of SQL Server, if your SQL Server

instance was running in any type of clustered

environment and an operating system upgrade

was required, you built a new cluster on the new

operating system and then migrated the storage

to the new cluster. Some DBAs use log shipping

to bring the downtime to an absolute minimum,

but this approach is complex and, more

importantly, requires a second set of hardware.

http://blogs.msdn.com/b/clustering/archive/2015/05/15/10614930.aspx
http://blogs.msdn.com/b/clustering/archive/2015/05/15/10614930.aspx
http://blogs.msdn.com/b/clustering/archive/2015/05/15/10614930.aspx

87 of 270 C H A P T E R 3 | Higher availability

With rolling cluster operating system upgrades

in Windows Server 2016, the process is more

straightforward.

Specifically, SQL Server requires approximately

five minutes of downtime in the rolling upgrade

scenario illustrated in Figure 3-11. In general, the

process drains one node at a time from the

cluster, performs a clean install of Windows

Server 2016, and then adds the node back into

the cluster. Until the cluster functional level is

raised in the final step of the upgrade process,

you can continue to add new cluster nodes with

Windows Server 2012 R2 and roll back the entire

cluster to Windows Server 2012 R2.

Figure 3-11: State transitions during a rolling operating
system upgrade.

Note You use Failover Cluster Manager and
PowerShell to manage the cluster upgrade. See
“Cluster Operating System Rolling Upgrade” at
https://technet.microsoft.com/en-us/library
/dn850430.aspx to learn more.

https://technet.microsoft.com/en-us/library/dn850430.aspx
https://technet.microsoft.com/en-us/library/dn850430.aspx

88 of 270 C H A P T E R 3 | Higher availability

89 of 270 C H A P T E R 4 | Improved database engine

C H A P T E R 4

Improved database
engine

In past releases of SQL Server,

Microsoft has targeted specific

areas for improvement. In SQL

Server 2005, the storage engine

was new. In SQL Server 2008, the

emphasis was on server

consolidation. Now, in SQL Server

2016, you can find enhanced

functionality across the entire

database engine. With Microsoft

now managing more than one

million SQL Server databases

through its Database as a Service

90 of 270 C H A P T E R 4 | Improved database engine

(DBaaS) offering—Microsoft Azure

SQL Database—it is able to

respond more quickly to

opportunities to enhance the

product and validate those

enhancements comprehensively

before adding features to the on-

premises version of SQL Server.

SQL Server 2016 is a beneficiary of

this new development paradigm

and includes many features that are

already available in SQL Database.

In this chapter, we explore a few of

the key new features, which enable

you to better manage growing data

volumes and changing data

systems, manage query

91 of 270 C H A P T E R 4 | Improved database engine

performance, and reduce barriers

to entry for hybrid cloud

architectures.

TempDB enhancements
TempDB is one of the components for which

performance is critical in SQL Server because the

database engine uses it for temporary tables,

query memory spills, index rebuilds, Service

Broker, and a multitude of other internal

functions. TempDB file behavior has been

enhanced and automated in SQL Server 2016 to

eliminate many performance problems related to

the basic configuration of the server. These

changes allow administrators to focus their

efforts on more pressing performance and data

issues in their environments.

Configuring data files for
TempDB

In earlier versions of SQL Server, the default

configuration uses one data file for TempDB.

This limitation sometimes results in page-latch

contention, which has frequently been

92 of 270 C H A P T E R 4 | Improved database engine

misdiagnosed by administrators as a storage

input/output (I/O) problem for SQL Server.

However, the pages for TempDB are typically in

memory and therefore not contributing to I/O

contention issues. Instead, three special types of

pages are the cause of the page-latch contention

issue: Global Allocation Map (GAM), Shared

Global Allocation Map (SGAM), and Page Free

Space (PFS). Each database file can contain many

of these page types, which are responsible for

identifying where to write incoming data in a

physical data file. Whenever a process in SQL

Server needs to use any of these files, a latch is

taken. A latch is similar to a lock but is more

lightweight. Latches are designed to be quickly

turned on and just as quickly turned off when

not needed. The problem with TempDB is that

each data file has only one GAM, SGAM, and PFS

page per four gigabytes of space, and a lot of

processes are trying to access those pages, as

shown in Figure 4-1. Subsequent requests begin

to queue, and wait times for processes at the

end of the queue increase from milliseconds to

seconds.

93 of 270 C H A P T E R 4 | Improved database engine

Figure 4-1: Contention in TempDB.

An easy way to remedy TempDB page-latch

contention in SQL Server is to add more data

files. In turn, SQL Server creates more of the

three special types of pages and gives SQL

Server more throughput to TempDB.

Importantly, the files should all be the same size.

SQL Server uses a proportional fill algorithm that

tries to fill the largest files first, leading to

94 of 270 C H A P T E R 4 | Improved database engine

hotspots and more latch contention. However,

because the default setting creates only one file,

many database administrators have not been

aware of the solution. Even after learning about

the need to create multiple files, there was often

confusion about the correct number of files to

configure, especially when factoring in virtual

machines, hyperthreading, and cores versus CPU

sockets.

In 2011, Microsoft released the following

guidance for TempDB configuration:

As a general rule, if the number of logical

processors is less than or equal to 8, use the same

number of data files as logical processors. If the

number of logical processors is greater than 8, use

8 data files and then if contention continues,

increase the number of data files by multiples of 4

(up to the number of logical processors) until the

contention is reduced to acceptable levels or make

changes to the workload/code.

Note For more detail, see “Recommendations
to reduce allocation contention in SQL Server
tempdb database,” at
https://support.microsoft.com/en-
us/kb/2154845.

https://support.microsoft.com/en-us/kb/2154845
https://support.microsoft.com/en-us/kb/2154845

95 of 270 C H A P T E R 4 | Improved database engine

Accordingly, in SQL Server 2016, this

recommendation is built into the product setup.

When you install SQL Server, the default

configuration for TempDB now adapts to your

environment, as shown in Figure 4-2. The setup

wizard no longer creates a single file by default;

instead, it assigns a default number of files

based on the number of logical processors that it

detects on the server, up to a maximum of 8.

You can adjust the size of the files and the

autogrowth rate if you like. Always monitor the

growth of these files carefully, as performance is

affected by file growth even when instant file

initialization is enabled.

Figure 4-2: Configuring TempDB in SQL Server 2016.

96 of 270 C H A P T E R 4 | Improved database engine

Note SQL Server defaults to a conservative
setting of 8 megabytes (MB) for Initial Size and
64 MB for Autogrowth. A best practice is to
start with an initial file size of 4,092 MB, with an
autogrowth setting of 512 MB, as the initial file
size is still small by most standards. Many DBAs
dedicate a standard-size file system (typically
100–200 GB) to TempDB and allocate 90
percent of it to the data files. This sizing can
reduce contention and also prevents any
uncontrolled TempDB growth from impacting
user databases.

Eliminating specific trace flags

Trace flags are commonly used by administrators

to perform diagnostics or to change the

behavior of SQL Server. With TempDB in earlier

releases of SQL Server, administrators use trace

flags 1117 and 1118 to improve performance. In

SQL Server 2016, the effect achieved by enabling

these two trace flags has been built into the

database engine, rendering them unnecessary.

Trace flag 1117

Trace flag (TF) 1117 is related strictly to file

groups and how data files grow within them. A

file group is a logical container for one or more

97 of 270 C H A P T E R 4 | Improved database engine

data files within a database. TF 1117 forces all

data files in the same file group to grow at the

same rate, which prevents one file from growing

more than others, leading to the hotspot issue

described earlier in this chapter. Enabling this

trace flag in earlier versions of SQL Server is a

minor tradeoff in performance. For example, if

you were using multiple data files in user

databases, this trace flag affects them as well as

TempDB’s data files. Depending on your

scenario, that could be problematic—an example

would be if you had a file group that you did not

want to grow as a single unit. Starting with SQL

Server 2016, the behavior to grow all data files at

the same rate is built into TempDB by default,

which means you no longer need this trace flag.

Trace flag 1118

Administrators use trace flag 1118 to change

page allocation from a GAM page. When you

enable TF 1118, SQL Server allocates eight

pages, or one extent, at a time to create a

dedicated (or uniform) extent, in contrast to the

default behavior to allocate a single page from a

mixed extent. Unlike with TF 1117, there was no

potential downside to enabling TF 1118—it is

generally recommended for all SQL Server

implementations in earlier releases. Starting with

98 of 270 C H A P T E R 4 | Improved database engine

SQL Server 2016, all allocations of TempDB

pages use uniform extent allocation, thus

eliminating the need to use TF 1118.

Query Store
One of the most common scenarios you likely

encounter is a user reporting that a query is

suddenly running more slowly than in the past or

that a long-running job that once took 3 hours is

now taking 10. These performance degradations

could be the result of changes in data causing

out-of-date statistics or changes in execution

parameters or be caused simply by reaching a

tipping point in hardware capabilities. In

previous versions of SQL Server, troubleshooting

these issues requires you to gather data from the

plan cache and parse it by using XML Query

(xQuery), which can take considerable effort.

Even then, you might not have all the

information you need, unless you are actively

running traces to baseline the user’s

environment.

The new Query Store feature in SQL Server 2016

simplifies identification of performance outliers,

manages execution plan regression, and allows

for easier upgrades between versions of SQL

Server. It has two main goals—to simplify

99 of 270 C H A P T E R 4 | Improved database engine

identification of performance issues and to

simplify performance troubleshooting for queries

caused by changes in execution plans. The query

store also acts as a flight data recorder for the

database, capturing query run-time statistics and

providing a dashboard to sort queries by

resource consumption. This vast collection of

data serves not only as a resource for the

automated functions of the query store, but also

as a troubleshooting resource for the DBA.

This feature is one of the biggest enhancements

to the SQL Server database engine since the

introduction of dynamic management views

(DMVs) into the database engine in SQL Server

2005. The query store gives unprecedented

insight into the operations of a database.

Whether you want to find the workloads in an

instance, perform an in-depth analysis across

executions of the same code, or fix a pesky

parameter-sniffing problem, the query store

offers a vast metastore of data, allowing you to

quickly find performance issues.

Enabling Query Store

Query Store manages its metadata in the local

database, but it is disabled by default. To enable

it in SQL Server Management Studio (SSMS),

100 of 270 C H A P T E R 4 | Improved database engine

open Object Explorer, connect to the database

engine, navigate to the database for which you

want to enable Query Store, right-click the

database, select Properties, and then click Query

Store in the Database Properties dialog box. You

can change the Operation Mode (Requested)

value from Off to Read Only or Read Write. By

selecting Read Write, as shown in Figure 4-3, you

enable Query Store to record the run-time

information necessary to make better decisions

about queries.

Figure 4-3: Enabling Query Store.

101 of 270 C H A P T E R 4 | Improved database engine

You can also use the T-SQL ALTER DATABASE

command to enable Query Store, as shown in

Example 4-1.

Example 4-1: Enabling Query Store

ALTER DATABASE AdventureWorks2014

SET QUERY_STORE = ON

 (

 OPERATION_MODE = READ_WRITE

 , CLEANUP_POLICY = (

STALE_QUERY_THRESHOLD_DAYS = 5)

 , DATA_FLUSH_INTERVAL_SECONDS = 2000

 , MAX_STORAGE_SIZE_MB = 10

 , INTERVAL_LENGTH_MINUTES = 10

);

Understanding Query Store
components

The query store contains two stores: a plan store

that persists the execution plans, and a run-time

stats store that persists the statistics surrounding

query execution, such as CPU, I/O, memory, and

other metrics. SQL Server retains this data until

the space allocated to Query Store is full. To

reduce the impact on performance, SQL Server

102 of 270 C H A P T E R 4 | Improved database engine

writes information to each of these stores

asynchronously.

Note The default space allocation for Query
Store is 100 MB.

You can use the following five catalog views, as

shown in Figure 4-4, to return metadata and

query execution history from the query store:

 query_store_runtime_stats Run-time

execution statistics for queries.

 query_store_runtime_stats_interval Start

and end times for the intervals over which

run-time execution statistics are collected.

 query_store_plan Execution plan

information for queries.

 query_store_query Query information and

its overall aggregated run-time execution

statistics.

 query_store_query_text Query text as

entered by the user, including white space,

hints, and comments.

103 of 270 C H A P T E R 4 | Improved database engine

Figure 4-4: Query Store catalog views.

Reviewing information in the
query store

The change in query execution plans over time

can be a troubleshooting challenge unless you

periodically mine the procedure cache to capture

query plans. However, plans might be evicted

from the cache as a server comes under memory

pressure. If you use real-time querying, you have

access only to the most recently cached plan. By

using Query Store, as long as it is properly

configured, you always have access to the

information you need. One way to review this

104 of 270 C H A P T E R 4 | Improved database engine

information is by using the dashboard views

available in SSMS when you expand the Query

Store folder for the database node, as shown in

Figure 4-5. By taking advantage of this data, you

can quickly isolate problems and be more

productive in your tuning efforts.

Figure 4-5: Query Store dashboards available in SSMS.

105 of 270 C H A P T E R 4 | Improved database engine

After enabling Query Store for a database, you

have access to the following four dashboards:

 Regressed Queries Use this dashboard to

review queries that might have regressed

because of execution plan changes. The

dashboard allows you to view the queries

and their plans as well as to select queries

based on statistics (total, average, minimum,

maximum, and standard deviation) by query

metric (duration, CPU time, memory

consumption, logical reads, logical writes,

and physical reads) for the top 25 regressed

queries over the last hour.

 Overall Resource Consumption Use this

dashboard to visualize overall resource

consumption during the last month in four

charts: duration, execution count, CPU time,

and logical reads. You have the option to

toggle between a chart view and a grid view

of the query store data.

 Top Resource Consuming Queries Use

this dashboard to review queries in the set of

top 25 resource consumers during the last

hour. You can filter the queries by using the

same criteria available in the Regressed

Queries dashboard.

106 of 270 C H A P T E R 4 | Improved database engine

 Tracked Queries Use this dashboard to

monitor a specify query.

All the dashboards except Overall Resource

Consumption allow you to view the execution

plan for a query. In addition, you have the option

to force an execution plan at the click of a

button in the dashboard, which is one of the

most powerful features of the query store.

However, the plan must still exist in the query

plan cache to use this feature.

You can customize Query Store dashboards to

show more data or to use a different time

interval. To do this, double-click a dashboard to

open it, and then click the Configure button at

the top of the dashboard to display and edit the

configuration dialog box, as shown in Figure 4-6.

107 of 270 C H A P T E R 4 | Improved database engine

Figure 4-6: Configuring a Query Store dashboard.

Alternatively, you can query a DMV directly,

which is a powerful approach for quickly

isolating poorly performing queries. Example 4-2

shows a T-SQL statement to return the poorest

performing queries over the last hour.

108 of 270 C H A P T E R 4 | Improved database engine

Example 4-2: Finding the poorest
performing queries over the last hour

SELECT TOP 10 rs.avg_duration,

qt.query_sql_text, q.query_id,

 qt.query_text_id, p.plan_id, GETUTCDATE()

AS CurrentUTCTime,

 rs.last_execution_time

FROM sys.query_store_query_text AS qt

JOIN sys.query_store_query AS q

 ON qt.query_text_id = q.query_text_id

JOIN sys.query_store_plan AS p

 ON q.query_id = p.query_id

JOIN sys.query_store_runtime_stats AS rs

 ON p.plan_id = rs.plan_id

WHERE rs.last_execution_time > DATEADD(hour, -

1, GETUTCDATE())

ORDER BY rs.avg_duration DESC;

Using Force Plan

The generation of an execution plan is CPU

intensive. To reduce the workload on the

database engine, SQL Server generates a plan

once and stores it in a cache. Generally, caching

the plan is good for database performance, but

it can also lead to a situation known as

parameter sniffing. The query optimizer uses

parameter sniffing to minimize the number of

recompiled queries. This situation occurs when a

stored procedure is initially run with a given

109 of 270 C H A P T E R 4 | Improved database engine

parameter against a table having a skewed

number of values. You can use the query store’s

Force Plan option to address this problem.

To better understand parameter sniffing,

consider an example in which you create a

stored procedure like the one shown in Example

4-3.

Example 4-3: Understanding parameter
sniffing

CREATE PROCEDURE sniff_demo

 @PARAMETER1 INT

AS

 UPDATE SNIFF_TABLE

 SET value=2

 WHERE ID=@PARAMETER1;

Now let’s assume that you have a table such as

the one shown here:

ID Value

1 3

1 4

1 5

1 6

1 7

110 of 270 C H A P T E R 4 | Improved database engine

1 8

1 9

2 9

In this simple example of skewed values in a

table, seven values have an ID of 1, and one

value has an ID of 2. If you first run this

procedure with a parameter value of 2, the

execution plan generated by the database

optimizer is likely to be less than optimal. Then,

when you later execute the procedure with a

parameter value of 1, SQL Server reuses the

suboptimal plan.

Because skewed data might force your

procedures into plans that are less than optimal

for many queries, you have the opportunity to

force the plan that is best optimized for all

executions of a given stored procedure. While

this approach might not offer the best

performance for all values of a procedure’s

parameter, forcing a plan can give you more

consistent overall performance and better

performance on average. SQL Server honors plan

forcing during recompilation for in-memory,

natively compiled procedures, but the same is

not true for disk-based modules.

111 of 270 C H A P T E R 4 | Improved database engine

You can also unforce a plan by using either the

Query Store interface in SSMS or the

sp_query_store_unforce_plan stored procedure.

You might unforce a plan after your data

changes significantly or when the underlying

code changes enough to render the existing plan

invalid.

Managing the query store

The query store is extremely helpful, but it does

require some management. As we explained

earlier in this chapter, the query store is not

enabled by default. You must enable it on each

user database individually. In addition, a best

practice is to enable it on the model database.

Note At the time of this writing, Query Store is
not currently included in the Database
Properties dialog box in SSMS for the model
database. To add it, you must enable Query
Store by using the following code:

ALTER DATABASE MODEL SET QUERY_STORE=ON

After enabling the query store, you might need

to change the space allocated to the query store

from the default of 100 MB per database. If you

have a busy database, this allocation might not

112 of 270 C H A P T E R 4 | Improved database engine

be large enough to manage execution plans and

their related metadata. When this space fills up,

the query store reverts to a read-only mode and

no longer provides up-to-date execution

statistics.

The size of your query store is also directly

related to the statistics collection interval. The

default for this value is 60 minutes, but you can

adjust it to a higher frequency if you need more

finely grained data. However, capturing data at a

higher frequency requires more space for the

query store.

Another setting to consider is size-based

cleanup mode. By default, the query store

converts to read-only mode when full. When you

enable size-based cleanup, SQL Server flushes

older queries and plans as new data comes in,

thereby continually providing the latest data.

Another option for space conservation is

adjusting the capture mode of the query store

from ALL to AUTO, which eliminates the capture

of queries having insignificant compile and

execution detail.

113 of 270 C H A P T E R 4 | Improved database engine

Tuning with the query store

After enabling the query store and collecting

data over a baseline period, you now have a

wealth of data and options to start

troubleshooting performance issues. The query

store allows you to spend more time

troubleshooting problem queries and improving

them, rather than on trying to find the proverbial

needle in a haystack. A simple approach is to

start troubleshooting queries on the basis of

highest resource consumption. For example, you

can look at queries consuming the most CPU

and logical I/Os. After identifying poorly

performing queries, you can then consider the

following options:

 If multiple plans are associated with a

query, identify the best-performing plan

and use the Force Plan option to request

it for future executions.

 If you observe a large gap between the

estimated rows and the actual rows in a

query, updating statistics might help

performance.

 If query logic is problematic overall,

work with your development team to

optimize the query logic.

114 of 270 C H A P T E R 4 | Improved database engine

Stretch Database
One of the more common refrains in IT

infrastructure organizations in recent years has

been the high costs of storage. A combination of

regulatory and business requirements for long-

term data retention, as well as the presence of

more data sources, means enterprises are

managing ever-increasing volumes of data.

While the price of storage has dropped, as

anyone who owns enterprise storage knows, the

total cost of ownership (TCO) for enterprise

storage commonly used for databases is still very

high. Redundant arrays of independent disks

(RAID), support contracts, management software,

geographical redundancy, and storage

administrators all add to the high total cost of

enterprise storage.

Another factor in the cost of storage is the lack

of support for online data archiving in many

third-party applications. To address this problem,

a common approach is to use file groups and

partitioning to move older data to slower disks.

Although this approach can be effective, it also

comes with high managerial overhead because it

involves storage administrators in provisioning

the storage and requires active management of

partitions.

115 of 270 C H A P T E R 4 | Improved database engine

Perhaps more important than the TCO of

enterprise storage is the impact of large

databases and tables on overall administration

and availability of the systems. As tables grow to

millions and even billions of rows, index

maintenance and performance tuning become

significantly more complex. These large

databases also affect availability service-level

agreements as restore times can often exceed

service-level agreements required by the

business.

SQL Server 2016 introduces a new hybrid feature

called Stretch Database that combines the power

of Azure SQL Database with an on-premises SQL

Server instance to provide nearly bottomless

storage at a significantly lower cost, plus

enterprise-class security and near-zero

management overhead. With Stretch Database,

you can store cold, infrequently accessed data in

Azure, usually with no changes to application

code. All administration and security policies are

still managed from the same local SQL Server

database as before.

116 of 270 C H A P T E R 4 | Improved database engine

Understanding Stretch Database
architecture

Enabling Stretch Database for a SQL Server 2016

table creates a new Stretch Database in Azure,

an external data source in SQL Server, and a

remote endpoint for the database, as shown in

Figure 4-7. User logins query the stretch table in

the local SQL Server database, and Stretch

Database rewrites the query to run local and

remote queries according to the locality of the

data. Because only system processes can access

the external data source and the remote

endpoint, user queries cannot be issued directly

against the remote database.

117 of 270 C H A P T E R 4 | Improved database engine

Figure 4-7: Stretch Database architecture.

Security and Stretch Database

One of the biggest concerns about cloud

computing is the security of data leaving an

organization’s data center. In addition to the

world-class physical security provided at Azure

data centers, Stretch Database includes several

additional security measures. If required, you

have the option to enable Transparent Data

Encryption to provide encryption at rest. All

traffic into and out of the remote database is

118 of 270 C H A P T E R 4 | Improved database engine

encrypted and certificate validation is

mandatory. This ensures that data never leaves

SQL Server in plain text and the target in Azure is

always verified.

The external resource that references the Azure

SQL Stretch Database can only be used by

system processes and is not accessible by users.

(See Figure 4-8.) Furthermore, it has no impact

on the underlying security model of a stretch

table.

Figure 4-8: External resource for Stretch Database.

The security model in your on-premises

database has a couple of components. The first

requirement is to enable “remote data archive”

for the instance. You will need to have either

119 of 270 C H A P T E R 4 | Improved database engine

sysadmin or serveradmin permission. Once you

have enabled this feature, you can configure

databases for stretch, move data to your stretch

database, and query data in your stretch

database. To enable Stretch Database at the

individual database level, you must have the

CONTROL DATABASE permission. You will also

need ALTER privileges on the tables you are

looking to stretch.

As you would for a SQL Database that you

provision manually, you must also create a

firewall rule for the remote SQL Stretch Database

database. That way, only safe IP addresses can

connect to it. The creation of this firewall rule is

part of the automation in the Stretch Database

wizard if you enable your SQL Server database

for stretch via SQL Server Management Studio.

Identifying tables for Stretch
Database

Not all tables are ideal candidates for Stretch

Database. In the current release, you cannot

enable stretch for a table if it has any of the

following characteristics:

 More than 1,023 columns

 Memory-optimized tables

120 of 270 C H A P T E R 4 | Improved database engine

 Replication

 Common language runtime (CLR) data

types

 Check constraints

 Default constraints

 Computed columns

After eliminating tables with these characteristics

from consideration, you have two options for

identifying which of the remaining eligible tables

in your environment are good candidates for

stretching. First, you can use T-SQL to find large

tables and then work with your application

teams to determine the typical rate of change. A

table with a high number of rows that are

infrequently read is a good candidate. The other,

more automated option is to use the Stretch

Database Advisor, which is part of the SQL Server

2016 Upgrade Advisor. This advisor checks the

current limitations for Stretch Database and then

shows the best candidates for stretching based

on benefits and costs, as shown in Figure 4-9.

121 of 270 C H A P T E R 4 | Improved database engine

Figure 4-9: Analyzing candidates for Stretch Database in
SQL Server 2016 Upgrade Advisor.

The best applications for Stretch Database are

systems for which you are required to keep cold

data for extended periods. By working with your

application teams to understand which of your

systems fit these scenarios, you can implement

Stretch Database strategically to meet business

requirements while reducing overall storage TCO

and meeting business SLAs.

Configuring Stretch Database

Before you can configure Stretch Database in

SQL Server, you must have an Azure account in

place and change the REMOTE DATA ARCHIVE

configuration option at the SQL Server instance

level. To make this change, execute the

command shown in Example 4-4.

122 of 270 C H A P T E R 4 | Improved database engine

Example 4-4: Changing the REMOTE
DATA ARCHIVE configuration option

EXEC sp_configure 'remote data archive', '1';

GO

RECONFIGURE;

GO

You can then configure stretch, using the wizard

that you launch by right-clicking the database in

Object Explorer, pointing to Stretch, and clicking

Enable. The wizard prompts you to supply a

password for a database master key and select

the table to stretch and then validates whether

the table is eligible for stretch. Next, you sign in

with your Azure credentials, select a subscription,

and then select an Azure region. For

performance reasons, choose the Azure region

closest to your on-premises location.

Next, you have the option to create a new server

or use an existing server. There is no impact on

your existing SQL Databases if you choose to use

an existing server. Your next step is to provide

administrator credentials for the new SQL

Database and to create a firewall rule allowing

your on-premises databases to connect to SQL

Database. When you click Finish on the last page

of the wizard, the wizard provisions Stretch

123 of 270 C H A P T E R 4 | Improved database engine

Database and begins migrating data to the new

SQL Database.

Note As an alternative to using the wizard, you
can perform the steps necessary to configure a
database and a table for stretch by using T-SQL
commands. For more information, see “Enable
Stretch Database for a database” at
https://msdn.microsoft.com/en-
US/library/mt163698.aspx.

Monitoring Stretch Database

SQL Server 2016 includes a dashboard in SSMS

to monitor Stretch Database. To view it, right-

click the database name in Object Explorer,

select Stretch Database, and then select Monitor

to display the dashboard shown in Figure 4-10.

https://msdn.microsoft.com/en-US/library/mt163698.aspx
https://msdn.microsoft.com/en-US/library/mt163698.aspx

124 of 270 C H A P T E R 4 | Improved database engine

Figure 4-10: Monitoring Stretch Database in SSMS.

In this dashboard, you can see which tables are

configured for stretch in addition to the number

of rows eligible for stretch and the number of

local rows. In Figure 4-10, all rows are stretched.

You can also change the migration state of a

table. The default state is Outbound, which

means data is moving into Azure. However, you

can pause the migration of the data.

Enabling Stretch Database also creates an

Extended Events session called

StretchDatabase_Health. You can view the

125 of 270 C H A P T E R 4 | Improved database engine

extended events associated with this session by

clicking the View Stretch Database Health Events

link above the Stretch Configured Tables section

of the dashboard. Additionally, you can explore

two DMVs associated with Stretch Database:

sys.dm_db_rda_migration_status and

sys.dm_db_rda_schema_update_status.

Note Most common problems you encounter
with Stretch Database are likely to be network
or firewall related. As your first troubleshooting
step, work with a network administrator to
ensure that you can reach your SQL Database
over port 1433, which is a commonly blocked
outbound port on many networks.

Another monitoring tool at your disposal is the

new Remote Query operator in the execution

plan for a stretch table, as shown in Figure 4-11.

SQL Server 2016 also includes the Concatenation

operator to merge the results of the on-premises

data with the remote query results.

126 of 270 C H A P T E R 4 | Improved database engine

Figure 4-11: Reviewing the execution plan for a stretch
table.

An important design pattern with Stretch

Database is to ensure that your queries do not

regularly retrieve unnecessary rows. Running

poorly written queries against a stretch table can

apply adverse performance. When

troubleshooting performance issues on

stretched tables, start your tuning effort as you

would on a regular on-premises database. After

eliminating issues related to your on-premises

instance, examine the Azure portal to

understand how the workload affects the stretch

database.

If your remote query performance is still not

sufficient, you have several options for tuning.

First, ensure that your remote database is in the

Azure data center nearest your on-premises data

center to reduce latency. Next, monitor the

Azure portal to observe the performance

127 of 270 C H A P T E R 4 | Improved database engine

characteristics of the underlying Azure database.

You might need to increase the service tier of

the SQL Stretch Database. Last, work with your

network administrator to guarantee quality of

service between your site and your remote

database.

Backup and recovery with Stretch
Database

Backup and recovery of a stretch-enabled

database does not include the SQL Stretch

Database containing your remote tables.

Nonetheless, your data remains protected

because SQL Stretch Database leverages the

built-in backup features of SQL Database.

Accordingly, SQL Database is constantly making

full and transaction log backups. The retention

period for these backups is determined by the

service tier of the database. However, when you

back up your on-premises database, you are

taking a shallow backup. In other words, your

backup contains only the data that remains on-

premises and does not include the migrated

data.

128 of 270 C H A P T E R 4 | Improved database engine

To restore a database, follow these steps:

1. Restore your on-premises SQL Server

database.

2. Create a master key for the stretch-enabled

database.

3. Create a database-scoped credential for your

SQL Database.

4. Run the restore procedure.

129 of 270 C H A P T E R 6 | More analytics

C H A P T E R 6

More analytics

Better and faster analytics

capabilities have been built into

SQL Server 2016. Enhancements to

tabular models provide greater

flexibility for the design of models,

and an array of new tools helps you

develop solutions more quickly and

easily. As an option in SQL Server

2016, you can now use SQL Server R

Services to build secure, advanced-

analytics solutions at enterprise

scale. By using R Services, you can

explore data and build predictive

models by using R functions in-

130 of 270 C H A P T E R 6 | More analytics

database. You can then deploy

these models for production use in

applications and reporting tools.

Tabular enhancements
In general, tabular models are relatively easy to

develop in SQL Server Analysis Services. You can

build such a solution directly from a wide array

of sources in their native state without having to

create a set of tables as a star schema in a

relational database. You can then see the results

of your modeling within the design environment.

However, there are some inherent limitations in

the scalability and complexity of the solutions

you can build. In the latest release of SQL Server,

some of these limitations have been removed to

better support enterprise requirements. In

addition, enhancements to the modeling process

make controlling the behavior and content of

your model easier. In this section, we review the

following enhancements that help you build

better analytics solutions in SQL Server 2016:

 More data sources accessible in DirectQuery

mode

131 of 270 C H A P T E R 6 | More analytics

 Choice of using all, some, or no data during

modeling in DirectQuery mode

 Calculated tables

 Bidirectional cross-filtering

 Formula bar enhancements

 New Data Analysis Expressions (DAX)

functions

 Using DAX variables

Accessing more data sources with
DirectQuery

One of the benefits of using tabular models in

Analysis Services is the ability to use data from a

variety of data sources, both relational and

nonrelational. Although prior versions of SQL

Server support a quite extensive list of data

sources, not all of those sources are available to

use with DirectQuery, the feature in tabular

models that retrieves data from the data source

when a query is run instead of importing data

into memory in advance of querying. Having live

access to more data sources means that users

can get answers to questions more quickly, and

132 of 270 C H A P T E R 6 | More analytics

you have less administrative overhead to

maintain in your analytic infrastructure.

In previous versions of SQL Server, you are

limited to using SQL Server 2005 or later for a

model in DirectQuery mode. In SQL Server 2016,

the list of data sources supported for

DirectQuery now includes the following:

 SQL Server 2008 or later

 Azure SQL Database

 Analytics Platform System (formerly Parallel

Data Warehouse)

 Oracle 9i, 10g, 11g, and 12g

 Teradata V2R6, V2

When should you use DirectQuery?

Tabular models can compress and cache large
volumes of data in memory for high-
performance queries. DirectQuery might be a
better option in some cases, but only if you are
using a single data source. In general, you
should use DirectQuery if any of the following
situations apply: your users require real-time
access to data, the volume of data is larger than
the memory available to Analysis Services, or

133 of 270 C H A P T E R 6 | More analytics

you prefer to rely on row-level security in the
database engine.

Using DirectQuery can potentially have an
adverse impact on query performance. If your
source is SQL Server 2012 or later, you should
consider implementing columnstore indexes so
that DirectQuery can take advantage of query
optimization provided by the database engine.

Even if you create a tabular model in in-
memory mode, you can always switch to
DirectQuery mode at any time. If you do this,
any data previously stored in the cache is
flushed, but the metadata is retained.

There are some drawbacks to using
DirectQuery mode that you should consider
before choosing it for your model. First, you
cannot create calculated columns or calculated
tables in the model, nor can you add a pasted
table. An alternative is to use corresponding
logic to create a derived column or a view in
the underlying source. Second, because
Analysis Services translates the DAX formulas
and measures of your model into SQL
statements, you might encounter errors or
inconsistent behavior for some DAX functions
that do not have a counterpart in SQL, such as
time-intelligence functions or some statistical
functions. In that case, you might be able to
create a derived column in the source. You can
see a list of functions that are not supported in
DirectQuery mode at
https://msdn.microsoft.com/en-

https://msdn.microsoft.com/en-us/library/hh213006.aspx%23bkmk_NotSupportedFunc

134 of 270 C H A P T E R 6 | More analytics

us/library/hh213006.aspx#bkmk_NotSupported
Func.

To learn more about DirectQuery mode in
general, see https://msdn.microsoft.com/en-
us/library/hh230898.aspx.

Modeling with a DirectQuery
source

During the tabular modeling process, you import

data from data sources into the design

environment, unless your model is configured in

DirectQuery mode. A new element in this

process in SQL Server 2016 is that you can

specify whether to create a model by using all

the data (which is the only option in earlier

versions of SQL Server), no data (which is the

new default), or a subset of data based on a

query you supply.

To use the later two options, double-click the

Model.bim file in Solution Explorer (if it is not

already open in SQL Server Data Tools), and then

click the file again to display its properties in the

Properties window. If necessary, select SQL

Server 2016 RTM (1200) in the Compatibility

Level drop-down list. Then select On in the

DirectQuery Mode drop-down list.

https://msdn.microsoft.com/en-us/library/hh213006.aspx%23bkmk_NotSupportedFunc
https://msdn.microsoft.com/en-us/library/hh213006.aspx%23bkmk_NotSupportedFunc
https://msdn.microsoft.com/en-us/library/hh230898.aspx
https://msdn.microsoft.com/en-us/library/hh230898.aspx

135 of 270 C H A P T E R 6 | More analytics

Important If you upgrade the model from in-
memory to DirectQuery mode, you cannot
revert to a lower compatibility level.

To connect your model to the data source, you

still use the Table Import Wizard, which you

launch by selecting Import From Data Source

from the Model menu. You select a relational

database and then the tables for your model, but

the data is no longer imported for DirectQuery-

mode models. Instead, you work with an empty

model that contains only metadata, such as

column names and relationships, as shown in

Figure 6-1. You can continue by configuring

properties for columns, defining relationships, or

working with the model in diagram view, just as

you normally would if you import data instead.

In DirectQuery mode, the data stays in the

source until you generate a query in Excel or

another presentation-layer application.

136 of 270 C H A P T E R 6 | More analytics

Figure 6-1: Working with a model in DirectQuery mode.

When you work without data in the model

designer, the modeling process is likely to be

faster because you no longer have to wait for

calculations to be performed against the entire

data set as you add or change measures.

However, you might prefer to view sample data

to help you better review the model during its

design. To do this, select a table, and then select

Partitions on the Table menu. Select the existing

partition, which has the prefix DirectQuery, click

the Copy button, and then select the copy of the

partition (which has the prefix Sample). Click the

Edit SQL Query button to add a WHERE clause to

137 of 270 C H A P T E R 6 | More analytics

the partition query, as shown in Figure 6-2,

which returns a subset of the original partition

query. When you close the Partition Manager

and process the partition, the subset of rows

defined by your query is displayed in the model

designer.

Figure 6-2: Configuring sample data for a partition in
DirectQuery mode.

Note If you create multiple sample partitions,
the model designer displays the combined
results from all the queries.

138 of 270 C H A P T E R 6 | More analytics

Notice the Set As DirectQuery button below the

list of partitions in Figure 6-2. This button

appears only when you select a sample partition

in the list. When you click this button, you reset

the partition that Analysis Services uses to

retrieve data for user queries. For this reason,

there can be only one DirectQuery partition

defined for a table at any time. If you select the

DirectQuery button, the button’s caption

displays Set As Sample instead.

You can also use a sample data partition with the

Analyze Table In Excel feature to test the model

from the presentation layer. It’s helpful to test

the results of calculations in measures and to

check relationships between tables even when

you are using only a subset of data. To do this,

select Analyze In Excel from the Model menu.

When the model is in DirectQuery mode, the

Analyze In Excel dialog box requires you to

choose one of two options, Sample Data View or

Full Data View, as shown in Figure 6-3.

139 of 270 C H A P T E R 6 | More analytics

Figure 6-3: Using the sample data view in DirectQuery
mode to analyze data in Excel.

If you create a sample partition for one table,

you should create sample partitions for all tables.

Otherwise, when you use the Analyze Table In

Excel option, you see null values for columns in

tables without a sample partition. For example,

in Figure 6-4, CalendarYear is placed in rows but

displays null values, and Total Sales is a measure

140 of 270 C H A P T E R 6 | More analytics

added to the Internet Sales table for which

sample data is defined.

Figure 6-4: Viewing sample data for multiple tables in
Excel in which a sample partition is defined for Internet
Sales only.

Your sample partition can be a copy of the

partition’s data, if you prefer that. Simply make a

copy of the DirectQuery partition and omit the

addition of a WHERE clause. This approach is

useful if your table is relatively small, and it also

allows you to better confirm that the sample

partitions defined for other tables are correct, as

shown in Figure 6-5.

Figure 6-5: Viewing sample data for multiple tables in
Excel after adding a sample partition for the Date table.

141 of 270 C H A P T E R 6 | More analytics

Working with calculated tables

A new feature for tabular models in SQL Server

2016 is the calculated table—as long as you are

working with a model that is not in DirectQuery

mode. A calculated table is built by using a DAX

expression. A model that includes calculated

tables might require more memory and more

processing time than a model without calculated

tables, but it can be useful in situations for which

you do not have an existing data warehouse with

cleansed and transformed data. This technique is

useful in the following situations:

 Creating small data sets to satisfy simple

requirements without adding a lot of

overhead to your technical infrastructure.

 Prototyping a solution before building a

complete solution.

 Creating a simple date table by using the

new CALENDAR() or CALENDARAUTO()

functions.

 Separating a role-playing dimension into

multiple tables for simpler modeling.

When you create a calculated table, you can

choose to use only a few columns from a source

142 of 270 C H A P T E R 6 | More analytics

table, combine columns from multiple tables, or

apply complex expressions to filter and

transform existing data into a new table. As a

simple example, the FactInternetSales table in

the AdventureWorksDW sample database

contains the following three columns:

OrderDateKey, ShipDateKey, and OrderDateKey.

These three columns have a foreign-key

relationship to a single role-playing dimension,

DimDate. Instead of activating a relationship to

change the context of a query from Order Date

to Ship Date or Due Date, as required in earlier

versions, you can now create one calculated

table for ShipDate and another for DueDate.

To create a calculated table, you must set your

model to compatibility level 1200. Select New

Calculated Table from the Table menu or click

the Create A New Table Calculated From A DAX

Formula tab at the bottom of the model

designer, as shown in Figure 6-6. The designer

displays a new empty table in the model. In the

formula bar above the table, enter a DAX

expression or query that returns a table.

Figure 6-6: Adding a new calculated table.

143 of 270 C H A P T E R 6 | More analytics

To continue with our example, you can use a

simple expression such as =Date to copy an

existing role-playing dimension table, Date

(renamed from DimDate). The model evaluates

the expression and displays the results. You can

then rename the calculated table, add

relationships, add calculated columns, and

perform any other activity that you normally

would with a regular table. The tab at the

bottom of the model designer includes an icon

that identifies the table as a calculated table, as

shown in Figure 6-7.

Figure 6-7: Viewing a calculated table in the model
designer.

144 of 270 C H A P T E R 6 | More analytics

Note Some interesting uses for calculated
tables are described at
http://www.sqlbi.com/articles/transition-matrix-
using-calculated-tables/ and
https://pbidax.wordpress.com/2015/09/27/use-
calculated-table-to-figure-out-monthly-
subscriber-numbers/. Although these articles
describe uses for calculated tables in Power BI,
you can now use the same approach in tabular
models.

Bidirectional cross-filtering

Another feature new to tabular models is

bidirectional cross-filtering. This rather complex-

sounding name allows cross-filtering across a

table relationship in two directions rather than

one direction, which has always been a feature in

tabular models. This means that you no longer

need to create complex DAX expressions to

produce specific results, as long as you set your

model to compatibility level 1200.

To better understand the implications of this

new feature, we’ll start by reviewing one-

directional cross-filtering. A one-directional

cross-filter applies in a one-to-many relationship

such as that between a dimension table and a

fact table. Typically, the fact table contains a

http://www.sqlbi.com/articles/transition-matrix-using-calculated-tables/
http://www.sqlbi.com/articles/transition-matrix-using-calculated-tables/
https://pbidax.wordpress.com/2015/09/27/use-calculated-table-to-figure-out-monthly-subscriber-numbers/
https://pbidax.wordpress.com/2015/09/27/use-calculated-table-to-figure-out-monthly-subscriber-numbers/
https://pbidax.wordpress.com/2015/09/27/use-calculated-table-to-figure-out-monthly-subscriber-numbers/

145 of 270 C H A P T E R 6 | More analytics

column with a relationship to a corresponding

column in the dimension table. In a tabular

model based on AdventureWorksDW,

FactInternetSales (which you can rename as

Internet Sales) has the ProductKey column, and

you can use this column to define a relationship

in a single direction from the DimProduct

dimension table (renamed as Product) to the fact

table. If you import these tables into the model

at the same time, the foreign-key relationship

defined in the tables is automatically detected

and configured for you. Otherwise, you can

manually create the relationship.

When you use a PivotTable to query the model,

you see how the dimension labels in the rows

become the filter context to the value from the

fact table, which appears on the same row, as

shown in Figure 6-8. In this example, each row is

a product line from the Product table. To derive

the aggregate value in the Sales Count column

in each row, the Analysis Services engine filters

the table for the current product line value and

computes the count aggregate for sales having

that value. Because of the one-directional filter in

the relationship, each entry for Sales Count is not

only an aggregate value but also a filtered value

based on the current row’s dimension value. If

no relationship existed between the two tables,

146 of 270 C H A P T E R 6 | More analytics

the Sales Count value would display the total

aggregated value of 60,398 in each row because

no filter would be applicable.

Figure 6-8: Viewing the effect of a one-directional filter
between Product and Internet Sales.

Although you can create measures in any table

in a tabular model, the behavior you see in a

PivotTable might not produce the results you

want if you add a measure to a dimension table.

Let’s say that you add a distinct count of

products to the Product table and then add

Calendar Year to your query. In this case, a one-

directional relationship exists between Date and

Internet Sales, which can be combined with the

one-directional relationship between Product

and Internet Sales to compute Sales Count by

year and by product line, as shown in Figure 6-9.

However, because the relationship between

Product and Internet Sales is one-directional

from Product to Internet Sales, terminating at

Internet Sales, there is no relationship chain that

goes from Date to Internet Sales to Product that

147 of 270 C H A P T E R 6 | More analytics

provides the filter context necessary to compute

the distinct count measure. Consequently, the

distinct count by product line, which is in the

same table and thereby provides filter context,

repeats across all years for each product line.

Figure 6-9: Viewing the effect of a one-directional filter
between Product and Internet Sales and Date and
Internet Sales on measures in the Product table.

148 of 270 C H A P T E R 6 | More analytics

You can override this behavior by changing the

relationship between Product and Internet Sales

to a bidirectional relationship. To do this, select

Manage Relationships from the Table menu,

double-click the relationship between these two

tables, and select To Both Tables in the Filter

Direction drop-down list, as shown in Figure 6-

10.

Figure 6-10: Setting a bidirectional cross-filter in a table
relationship.

With this change, the filter context of the current

year applies to both the Internet Sales table (as it

did previously) to correctly aggregate Sales

Count, and to the Product table to correctly

aggregate Distinct Product Count, as shown in

Figure 6-11.

149 of 270 C H A P T E R 6 | More analytics

Figure 6-11: Viewing the effect of a bidirectional filter
between Product and Internet Sales and a one-
directional filter between Date and Internet Sales on
measures in the Product table.

Another problem that bidirectional cross-

filtering can solve is the modeling of a many-to-

many relationship, which in earlier versions of

SQL Server required you to create complex DAX

expressions. An example of a many-to-many

relationship in the AdventureWorksDW database

is the one in which the Internet Sales table stores

150 of 270 C H A P T E R 6 | More analytics

individual sales orders by line number. The

DimSalesReason table stores the reasons a

customer indicated for making the purchase,

such as price or quality. Because a customer

could choose zero, one, or more reasons for any

item sold, a factless fact table called

FactInternetSalesReason is in the database to

relate the sales reasons by sales order and line

number. You can add this table to a tabular

model and easily aggregate values in the

Internet Sales table by sales reason after making

a few adjustments to the model.

Because the structure of the two fact tables in

this example does not allow you to define a

relationship between them, you must add a

calculated column called Sales Key (or another

unique name that you prefer) to each of them to

uniquely identify the combination of sales order

and line number. To do this, you use a DAX

expression similar to this:

=[SalesOrderNumber]&"-

"&[SalesOrderLineNumber] in each fact table.

You can then create a relationship between the

two tables using this common column and set

the direction to To Both Tables, as shown in

Figure 6-12.

151 of 270 C H A P T E R 6 | More analytics

Figure 6-12: Defining a many-to-many relationship.

Then, when you create a PivotTable to review

sales counts by sales reason, the many-to-many

relationship is correctly evaluated, as shown in

Figure 6-13, even though there is no direct

relationship between the Sales Reason table and

Internet Sales. The grand total continues to

correctly reflect the count of sales, which is less

than the sum of the individual rows in the

PivotTable. This is expected behavior for a many-

to-many relationship because of the inclusion of

the same sale with multiple sales reasons.

152 of 270 C H A P T E R 6 | More analytics

Figure 6-13: Viewing the effect of a many-to-many
relationship in a PivotTable.

Important Although you might be tempted
to configure bidirectional filtering on all
relationships to address all possible situations,
it is possible for this configuration to overfilter
results unexpectedly. Therefore, you should test
the behavior of each filter direction change to
ensure that you get the results you want.

By default, a relationship between two tables is

one-directional unless you change this behavior

at the model or environment level. At the model

level, open the model properties, and then

choose Both Directions in the Default Filter

Direction drop-down list. This change applies

only to your current model; any new models you

create will default to single direction. If you

153 of 270 C H A P T E R 6 | More analytics

prefer to change the default for all new models,

select Options from the Tools menu, expand

Analysis Services Tabular Designers in the

navigation pane on the left, select New Project

Settings, and then select Both Directions in the

Default Filter Direction drop-down list, as shown

in Figure 6-14.

Figure 6-14: Setting the default filter direction for new
projects.

Writing formulas

The user interface for the formula bar in the

model designer has been improved by the

addition of the following changes, which help

you write and review DAX formulas more easily:

154 of 270 C H A P T E R 6 | More analytics

 Syntax coloring Functions are now

displayed in a blue font, variables in a cyan

font, and string constants in a red font to

distinguish these expression elements more

easily from fields and other elements.

 IntelliSense Errors are now identified by a

wavy red underscore, and typing a few

characters displays a function, table, or

column name that begins with matching

characters.

 Formatting You can persist tabs and

multiple lines by pressing Alt+Enter in your

expression to improve legibility. You can also

include a comment line by typing // as a

prefix to your comment.

 Formula fixup In a model set to

compatibility level 1200, the model designer

automatically updates measures that

reference a renamed column or table.

 Incomplete formula preservation In a

model set to compatibility level 1200, you

can enter an incomplete formula, save and

close the model, and then return to your

work at a later time.

155 of 270 C H A P T E R 6 | More analytics

Introducing new DAX functions

The current release of SQL Server 2016 includes

many new functions, which are described in the

following table:

Function

type

Function Description

Date and

time

CALENDAR() Returns a

table with

one column

named Date,

containing a

date range

based on

start and end

dates that

you provide

as

arguments.

CALENDARAUTO() Returns a

table with

one column

named Date,

containing a

date range

based on

156 of 270 C H A P T E R 6 | More analytics

minimum

and

maximum

dates present

in the

model’s

tables.

DATEDIFF() Returns the

count of

intervals

(such as DAY

or WEEK)

between the

start and end

dates

provided as

arguments.

Filter ADDMISSINGITEMS() Includes rows

with missing

values in the

result set.

SUBSTITUTEWITHIND

EX()

Returns a

table

containing

the results of

157 of 270 C H A P T E R 6 | More analytics

a left semi-

join between

two tables,

replacing

common

columns in

these tables

with a single

index

column.

Informati

on

ISONORAFTER() Returns a

Boolean

value for

each row to

indicate

whether two

values (such

as a column

value and a

constant

value) are the

same.

Math and

Trig

ACOS() Returns the

arccosine, or

inverse

158 of 270 C H A P T E R 6 | More analytics

cosine, of a

number.

ACOSH() Returns the

inverse

hyperbolic

cosine of a

number.

ASIN() Returns the

arcsine, or

inverse sine,

of a number.

ASINH() Returns the

inverse

hyperbolic

sine of a

number.

ATAN() Returns the

arctangent,

or inverse

tangent, of a

number.

ATANH() Returns the

inverse

hyperbolic

159 of 270 C H A P T E R 6 | More analytics

tangent of a

number.

COMBIN() Returns the

total number

of possible

groups of a

number for a

specified

number of

items.

COMBINA() Returns the

number of

combinations

with

repetitions of

a number for

a specified

number of

items.

COS() Returns the

cosine of a

number.

COSH() Returns the

hyperbolic

160 of 270 C H A P T E R 6 | More analytics

cosine of a

number.

DEGREES() Converts

radians into

degrees.

EVEN() Rounds a

number up to

the nearest

even integer.

EXP() Returns a

decimal

number for e

raised to the

power of a

given

number.

GCD() Returns the

greatest

common

divisor

between two

specified

numbers as

an integer

161 of 270 C H A P T E R 6 | More analytics

without a

remainder.

ISO.CEILING() Rounds a

number up to

the nearest

integer or to

the nearest

multiple of

significance.

LCM() Returns the

least

common

multiple

between two

specified

integers.

MROUND() Returns a

number

rounded to

the nearest

multiple of a

specified

number.

ODD() Rounds a

number up to

162 of 270 C H A P T E R 6 | More analytics

the nearest

odd integer.

PI() Returns the

value of pi

with 15-digit

accuracy.

PRODUCT() Returns the

product of

values in a

column.

PRODUCTX() Returns the

product of an

expression

evaluated for

each row in a

table.

QUOTIENT() Performs

division on

the

numerator

and

denominator

provided as

arguments

and returns

163 of 270 C H A P T E R 6 | More analytics

the integer

portion of

the result.

RADIANS() Converts

degrees to

radians.

SIN() Returns the

sine of a

number.

SINH() Returns the

hyperbolic

sine of a

number.

SQRTPI() Returns the

square root

of pi

multiplied by

a specified

number.

TAN() Returns the

tangent of a

number.

TANH() Returns the

hyperbolic

164 of 270 C H A P T E R 6 | More analytics

tangent of a

number.

XIRR() Returns the

internal rate

of return.

XNPV() Returns the

net present

value.

Statistical BETA.DIST() Returns the

beta

distribution

of a sample.

BETA.INV() Returns the

inverse of the

beta

cumulative

probability

density

function.

CHISQ.INV() Returns the

inverse of the

left-tailed

probability of

the chi-

165 of 270 C H A P T E R 6 | More analytics

squared

distribution.

CHISQ.INV.RT() Returns the

inverse of the

right-tailed

probability of

the chi-

squared

distribution.

CONFIDENCE.NORM(

)

Returns the

confidence

interval as a

range of

values.

CONFIDENCE.T() Returns the

confidence

interval for a

population

mean using a

student’s t

distribution.

EXPON.DIST() Returns the

exponential

distribution.

166 of 270 C H A P T E R 6 | More analytics

GEOMEAN() Returns the

geometric

mean of

numbers in a

column.

GEOMEANX() Returns the

geometric

mean of an

expression

evaluated for

each row in a

column.

MEDIAN() Returns the

median of

numbers in a

column.

MEDIANX() Returns the

median of an

expression

evaluated for

each row in a

column.

PERCENTILE.EXC() Returns the

kth percentile

of values in a

167 of 270 C H A P T E R 6 | More analytics

range, where

k is in the

range 0 to 1,

exclusive.

PERCENTILE.INC() Returns the

kth percentile

of values in a

range, where

k is in the

range 0 to 1,

inclusive.

PERCENTILEX.EXC() Returns the

kth percentile

of an

expression

evaluated for

each row in a

column,

where k is in

the range 0

to 1,

exclusive.

PERCENTILEX.INC() Returns the

kth percentile

of an

168 of 270 C H A P T E R 6 | More analytics

expression

evaluated for

each row in a

column,

where k is in

the range 0

to 1,

inclusive.

Text CONCATENATEX() Concatenates

the results of

an expression

evaluated for

each row in a

table.

Other GROUPBY() Returns a

table with

selected

columns with

the results of

evaluating an

expression

for each seat

of GroupBy

values.

169 of 270 C H A P T E R 6 | More analytics

INTERSECT() Returns a

table

containing

values in one

table that are

also in a

second table.

ISEMPTY() Returns a

Boolean

value

indicating

whether a

table is

empty.

NATURALINNERJOIN(

)

Returns a

table after

performing

an inner join

of two tables.

NATURALLEFTOUTER

JOIN()

Returns a

table after

performing a

left outer join

of two tables.

170 of 270 C H A P T E R 6 | More analytics

SUMMARIZECOLUM

NS()

Returns a

table

containing

combinations

of values

from two

tables for

which the

combination

is nonblank.

UNION() Returns a

table

containing all

rows from

two tables.

Using variables in DAX

You can now include variables in a DAX

expression to break up a complex expression

into a series of easier-to-read expressions.

Another benefit of using variables is the

reusability of logic within the same expression,

which might possibly improve query

performance.

171 of 270 C H A P T E R 6 | More analytics

Here’s an example that focuses on sales of

products in categories other than bikes and finds

the ratio of the sales of these products with a

unit price less than $50 to all sales of these

products. First, to create this measure without

variables and without using intermediate

measures, you would use the expression shown

in Example 6-1.

Example 6-1: Creating a complex DAX
expression without variables

Non Bikes Sales Under $50 % of Total:=

sumx(

 filter(values(Category[CategoryName]),

Category[CategoryName]<> "Bikes"),

 calculate(sum([SalesAmount]),'Internet

Sales'[UnitPrice]<50)

)

/

sumx(

 filter(values(Category[CategoryName]),

Category[CategoryName]<> "Bikes"),

 calculate(sum([SalesAmount]))

)

To reproduce the same results by using an

expression with variables, you can use the

expression shown in Example 6-2. You can use as

many variables as you like in the expression. Use

172 of 270 C H A P T E R 6 | More analytics

the VAR keyword to introduce each variable,

then use the RETURN keyword for the final

expression to resolve the expression and return

to the Analysis Services engine. Notice that a

variable can be a scalar variable or a table.

Example 6-2: Creating a complex DAX
expression with variables

Non Bikes Sales Under $50 % of Total:=

// create a table for all categories except

Bikes

var

 tNonBikes =

filter(values(Category[CategoryName]),

Category[CategoryName]<> "Bikes")

// get the total of sales for tNonBikes table

where UnitPrice is less than 50

var

 NonBikeSalesUnder50 = sumx(tNonBikes,

calculate(sum([SalesAmount]),'Internet

Sales'[UnitPrice]<50))

// get the total of all sales for tNonBikes

table

var

 NonBikeAllSales = sumx(tNonBikes,

calculate(sum([SalesAmount])))

// divide the first total by the second total

173 of 270 C H A P T E R 6 | More analytics

return

 NonBikeSalesUnder50 / NonBikeAllSales

As an alternative, you could create intermediate

measures for NonBikeSalesUnder50 and

NonBikeAllSales and then divide the former by

the latter to obtain the final result. That

approach would be preferable if you were to

require the results of the intermediate measures

in other expressions because variables are

limited in scope to a single expression. If these

results are not required elsewhere, consolidating

the logic into one expression and using variables

helps you to more easily see the flow of the

expression evaluation.

R integration
R is a popular open-source programming

language used by data scientists, statisticians,

and data analysts for advanced analytics, data

exploration, and machine learning. Despite its

popularity, the use of R in an enterprise

environment can be challenging. Many tools for

R operate in a single-threaded, memory-bound

desktop environment, which puts constraints on

the volume of data that you can analyze. In

addition, moving sensitive data from a server

174 of 270 C H A P T E R 6 | More analytics

environment to the desktop removes it from the

security controls built into the database.

SQL Server R Services, the result of Microsoft’s

acquisition in 2015 of Revolution Analytics,

resolves these challenges by integrating a

unique R distribution into the SQL Server

platform. You can execute R code directly in a

SQL Server database and reuse the code in

another platform, such as Hadoop. The workload

shifts from the desktop to the server, where R

Services performs multithreaded, multicore, and

parallelized multiprocessor computations at high

speed while maintaining the necessary levels of

security for your data. Using R Services, you can

build intelligent, predictive applications that you

can easily deploy to production.

Installing and configuring R
Services

To use SQL Server R Services, you must install a

collection of components to prepare a SQL

Server instance to support the R distribution. In

addition, each client workstation requires an

installation of the R distribution and libraries

specific to R Services. In this section, we provide

the links to download the requisite files and

175 of 270 C H A P T E R 6 | More analytics

additional information necessary to prepare your

environment to use R Services.

Server configuration

In the server environment, you start by installing

the following components on the computer

hosting SQL Server 2016:

 Advanced Analytics Extensions A

database engine feature that you select

during installation of a SQL Server instance.

 Microsoft R Open (MRO) 3.2.2 for

Revolution R Enterprise 7.5.0 An

enhanced open-source R distribution that

you download from

https://www.microsoft.com/en-

us/download/details.aspx?id=49525. This is a

prerequisite for Revolution R Enterprise.

 Revolution R Enterprise 7.5.0 (RRE-7.5.0)

A collection of libraries that you download

from https://www.microsoft.com/en-

us/download/details.aspx?id=49505. This

provides connectivity to SQL Server and

executes R packages in a high-performance,

parallel architecture.

At the time of writing, you must perform several

postinstallation tasks. Because this information is

https://www.microsoft.com/en-us/download/details.aspx?id=49525
https://www.microsoft.com/en-us/download/details.aspx?id=49525
https://www.microsoft.com/en-us/download/details.aspx?id=49505
https://www.microsoft.com/en-us/download/details.aspx?id=49505

176 of 270 C H A P T E R 6 | More analytics

subject to change, refer to “Post-Installation

Server Configuration (SQL Server R Services)” at

https://msdn.microsoft.com/library/mt590536(S

QL.130).aspx for the most up-to-date

instructions.

Note The default memory-allocation settings
might allow SQL Server to consume most of the
available physical memory without leaving
adequate memory for R. Consider changing the
maximum memory for SQL Server to 80 percent
of available physical memory. Refer to “Server
Memory Server Configuration Options” at
https://msdn.microsoft.com/en-
us/library/ms178067.aspx for more information
about configuring server memory.

Client workstation

To prepare a client workstation to work with R

Services, install the following components:

 Microsoft .NET Framework 3.5 If this

version of the .NET Framework is not yet

installed on the client workstation, you can

manually install it by following the

instructions at

https://msdn.microsoft.com/en-

us/library/hh506443(v=vs.110).aspx.

https://msdn.microsoft.com/library/mt590536(SQL.130).aspx
https://msdn.microsoft.com/library/mt590536(SQL.130).aspx
https://msdn.microsoft.com/en-us/library/ms178067.aspx
https://msdn.microsoft.com/en-us/library/ms178067.aspx
https://msdn.microsoft.com/en-us/library/hh506443(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/hh506443(v=vs.110).aspx

177 of 270 C H A P T E R 6 | More analytics

 MRO 3.2.2 for RRE-7.5.0 Download this

component from

https://www.microsoft.com/en-

us/download/details.aspx?id=49525, and

install it to load the open-source R run-time

libraries onto the workstation. This is a

prerequisite for RRE.

 RRE-7.5.0 Download this component from

https://www.microsoft.com/en-

us/download/details.aspx?id=49505, and

install it to add connectivity to SQL Server

and enhanced R packages for high-

performance.

 An R integrated development

environment (IDE) You can use any R IDE

that you prefer.

Note At the time of writing, the integration of
Revolution R into SQL Server is not complete. A
list of current limitations is available at
https://msdn.microsoft.com/en-
US/library/mt590540.aspx.

Getting started with R Services

Although you execute your R code and run

computations on SQL Server, you develop and

https://www.microsoft.com/en-us/download/details.aspx?id=49525
https://www.microsoft.com/en-us/download/details.aspx?id=49525
https://www.microsoft.com/en-us/download/details.aspx?id=49505
https://www.microsoft.com/en-us/download/details.aspx?id=49505
https://msdn.microsoft.com/en-US/library/mt590540.aspx
https://msdn.microsoft.com/en-US/library/mt590540.aspx

178 of 270 C H A P T E R 6 | More analytics

test by using an R IDE of your choice. In this

section, we describe how to prepare your data

for exploration with R functions, how to build

and use a predictive model, and how to test the

accuracy of your model.

Note The examples in this chapter are
derived from “Data Science End-to-End
Walkthrough,” available at
https://msdn.microsoft.com/en-
US/library/mt612857.aspx, which includes
additional topics about working with R and
provides a PowerShell script you can download
and use to prepare the data set used in the
examples. This data set contains public data
about New York City taxi fares, passenger
counts, pickup and drop-off locations, and
whether a tip was given.

You can also learn more about working with R
Services in “Data Science Deep Dive: Using the
RevoScaleR Packages” at
https://msdn.microsoft.com/en-US
/library/mt637368.aspx.

User permissions

Before users can begin executing R on a

database, you must ensure that each user has

read permissions to the data. In addition, you

must add each user to the db_rrerole in SQL

https://msdn.microsoft.com/en-US/library/mt612857.aspx
https://msdn.microsoft.com/en-US/library/mt612857.aspx
https://msdn.microsoft.com/en-US/library/mt637368.aspx
https://msdn.microsoft.com/en-US/library/mt637368.aspx

179 of 270 C H A P T E R 6 | More analytics

Server Management Studio (SSMS) by running

the code shown in Example 6-3.

Example 6-3: Adding a user to the
db_rrerole

USE [master]

GO

CREATE USER [<user name>] FOR LOGIN [<login

name>] WITH

 DEFAULT_SCHEMA=[db_rrerole];

ALTER ROLE [db_rrerole] ADD MEMBER [<user

name>];

Compute context

Before you can execute R on your data, you must

use the RxSetComputeContext function in the R

IDE to set the compute context for functions in

the RevoScaleR package in RRE to run on SQL

Server. Although you can use a single line of

code to run this command, you can assign values

to variables in separate lines of code and then

use the variables as arguments to the function,

as shown in Example 6-4.

Example 6-4: Setting compute context to
SQL Server

180 of 270 C H A P T E R 6 | More analytics

connStr <- "Driver=SQL Server; Server=<srv>;

Database=NYCTaxi_Sample; Uid=<login>;

 Pwd=<password>"

sqlShareDir <-

paste("C:\\AllShare\\",Sys.getenv("USERNAME"),

sep="")

sqlWait <- TRUE

sqlConsoleOutput <- FALSE

cc <- RxInSqlServer(connectionString =

connStr, shareDir = sqlShareDir,

 wait = sqlWait,

consoleOutput = sqlConsoleOutput)

rxSetComputeContext(cc)

Creating variables and assigning values is simple

to do in R. As shown in Example 6-4, you define

a name for the variable and then use the

assignment operator (<-) followed by the value

to assign. The value can be a string, a Boolean

value, or an array, to name only a few object

types.

In Example 6-4, several variables store values for

use as arguments in the RxInSqlServer function.

This function is responsible for creating the

connection to a SQL Server database and sharing

objects between the server context and your

local computer context. In this example, it takes

the following arguments:

181 of 270 C H A P T E R 6 | More analytics

 connectionString An ODBC connection

string for SQL Server. At the time of this

writing, you must use a SQL login in the

connection string.

 shareDir A temporary directory in which to

store R objects shared between the local

compute context and the server compute

context.

 wait A Boolean value to control whether

the job will be blocking or nonblocking. Use

TRUE for blocking, which prevents you from

running other R code until the job

completes. Use FALSE for nonblocking,

which allows you to run other R code while

the job continues to execute.

 consoleOutput A Boolean value that

controls whether the output of R execution

on the SQL Server displays locally in the R

console.

Another variable stores the result of the

RxInSQLServer function and is passed as an

argument to the rxSetComputeContext function.

Now your subsequent RevoScaleR functions run

on the server instance.

182 of 270 C H A P T E R 6 | More analytics

Note The RevoScaleR package enables the
scalable, high-performance, multicore analytic
functions. In this chapter, we explore several
functions in this package. Setting the compute
context affects only the RevoScaleR functions.
Open-source R functions continue to execute
locally.

Important At the time of this writing, the
RevoScaleR package requires a SQL login with
the necessary permissions to create tables and
read data in a database.

Data source

To execute R commands against data, you define

a data source. A data source is a subset of data

from your database and can be a table, a view,

or a SQL query. By creating a data source, you

create only a reference to a result set. Data never

leaves the database. Example 6-5 shows how to

create a data source object in the R IDE by first

assigning a T-SQL query string to a variable,

passing the variable to the RxSqlServerData

function, and storing the data source reference

in another variable.

183 of 270 C H A P T E R 6 | More analytics

Example 6-5: Creating a data source

sampleDataQuery <- "select top 1000 tipped,

fare_amount, passenger_count,

trip_time_in_secs,

 trip_distance, pickup_datetime,

dropoff_datetime, pickup_longitude,

pickup_latitude,

 dropoff_longitude, dropoff_latitude from

nyctaxi_sample"

inDataSource <- RxSqlServerData(sqlQuery =

sampleDataQuery, connectionString = connStr,

 colClasses = c(pickup_longitude =

"numeric", pickup_latitude = "numeric",

 dropoff_longitude = "numeric",

dropoff_latitude = "numeric"),

 stringsAsFactors=TRUE, rowsPerRead=500)

In this example, the RxSqlServerData function

takes the following arguments:

 sqlQuery A string representing a valid SQL

query.

 connectionString An ODBC connection

string for SQL Server. At the time of this

writing, you must use a SQL login in the

connection string.

 colClasses A character vector that maps

the column types between SQL Server and R.

184 of 270 C H A P T E R 6 | More analytics

For the purposes of this section, a character

vector is a string. In this case, the string must

contain the names of columns in the query

paired with one of the following allowable

column types: logical, integer, float32,

numeric, character, factor, int16, uint16, or

date.

 rowsPerRead Number of rows read into a

chunk. R Services processes chunks of data

and aggregates the results. Use this

argument to control the chunk size to

manage memory usage. If this value is too

high, processing can slow as the result of

inadequate memory resources, although a

value that is too low might also adversely

affect processing.

Note You can replace the sqlQuery argument
with the table argument if you prefer to
reference an entire table. You cannot use both
arguments together.

Tip The sample data in this section does not
contain categorical data. When your data
contains categories, such as age groups or
geographic regions, you should consider

185 of 270 C H A P T E R 6 | More analytics

including the stringsAsFactors argument with
the RxSqlServerData function. This argument is
a Boolean value that controls whether to
convert strings to factors. A factor is an R
object type that is used in statistical functions.
Functions such as rxSummary return more
complete results for factors as compared to
strings.

Data exploration

After creating a data source, you can use

statistical functions or create plots and graphic

objects with which to explore your data in the R

IDE. A good starting point is the rxGetVarInfo

function to display basic information about the

structure of your data source. To do this, use the

following code in your R IDE:

rxGetVarInfo(data = inDataSource)

Executing this code returns the results shown in

Figure 6-14. The rxGetVarInfo function returns

metadata about the columns of your data, which

are called variables when working in R. The

metadata includes the name and data type for

each variable.

186 of 270 C H A P T E R 6 | More analytics

Figure 6-14: Executing the rxGetVarInfo function in the R
console.

Another common function to use for becoming

familiar with your data is rxSummary. For a basic

statistical summary of your data, as shown in

Figure 6-15, use the following code:

rxSummary(~., data = inDataSource)

Figure 6-15: Executing the rxSummary function in the R
console.

You can also use graphical objects such as a

histogram to explore your data. Figure 6-16

shows the results of the rxHistogram function,

187 of 270 C H A P T E R 6 | More analytics

which plots the count of observations in your

data for each distinct value of fare_amount under

50 (to ignore outliers) by using the following

code:

rxHistogram(~(fare_amount), data =

inDataSource, title = "Fare Amounts Under $50",

endVal=50)

Figure 6-16: Viewing the plot created by executing the
rxHistogram function.

Note To achieve the results shown in Figure 6-
16, the code shown in Example 6-5 was
modified to select the top 100,000 rows from
the table and then executed again prior to
executing the rxHistogram function. You can
further fine-tune the appearance of the
histogram by adding arguments to apply
formatting to the axes and configure other

188 of 270 C H A P T E R 6 | More analytics

style settings. For more information, refer to
the function documentation at
http://www.rdocumentation.org/packages/Revo
ScaleR
/functions/rxHistogram.

Spatial data can be plotted on a map as another

option for exploring data. Because a common

security practice is to prevent SQL Server from

accessing the Internet, you cannot perform the

complete operation on the server. Instead, you

use the local context to make a geocoding call to

Google Maps to obtain a graphical layer for the

map and send it to the server context to get the

plot points for individual locations. To start the

process, create a custom function to get the plot

points, as shown in Example 6-6.

Example 6-6: Creating a custom function
to plot spatial data

mapPlot <- function(inDataSource, googMap){

 library(ggmap)

 library(mapproj)

 ds <- rxImport(inDataSource)

 p <- ggmap(googMap)+

 geom_point(aes(x = pickup_longitude,

y =pickup_latitude), data=ds, alpha =.5,

 color="darkred", size = 1.5)

http://www.rdocumentation.org/packages/RevoScaleR/functions/rxHistogram
http://www.rdocumentation.org/packages/RevoScaleR/functions/rxHistogram
http://www.rdocumentation.org/packages/RevoScaleR/functions/rxHistogram

189 of 270 C H A P T E R 6 | More analytics

 return(list(myplot=p))

}

In this example, you use the function function to

define a custom function and supply an

argument list in parentheses. The arguments in

this case are inDataSource, which is the

RxSqlServerData object created in an earlier

example, and googMap, which you create in a

later step. R allows you to reference this

argument in the definition without testing for its

existence because you are not yet attempting to

execute the function.

The body of the function appears between the

two braces. The first two lines use the library

function to load the ggmap1 and mapproj

packages to ensure that the functions they

provide are available and ready to use on your

server. When you install MRO, a core set of

packages and libraries is available for immediate

use. A package is a collection of objects that can

include code, data, or documentation that you

1 D. Kahle and H. Wickham, “ggmap: Spatial

Visualization with ggplot2,” The R Journal no.

5(1): 144–61, http://journal.r-

project.org/archive/2013-1/kahle-wickham.pdf.

http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf

190 of 270 C H A P T E R 6 | More analytics

use to extend base R, whereas a library is a

directory containing packages. There are

thousands of add-on packages contributed by

the open-source community that you can

download and use to build your analytical

application.

Next, the rxImport function loads your data into

server memory as a data frame called ds. This

step prepares the data for use in open-source R

functions because these functions cannot run in-

database.

The variable p is a plot object consisting of two

layers. The ggmap function produces a map from

the object passed in as an argument, which we

explain later in this section. The + operator adds

another layer to the plot object. You can add as

many layers as necessary by using this

technique. The geom_point function creates a

scatterplot of pickup_longitude on the x-axis and

pickup_latitude on the y-axis from the in-

memory data frame. The alpha, color, and size

arguments set point transparency, point color,

and point size, respectively. The final line of code

assigns a tag, myplot, to the p variable and

converts the object to a list data type, which is

the return value of the custom function.

191 of 270 C H A P T E R 6 | More analytics

Next you execute the geocoding call to get the

map, call the custom function to send the map

and combine it with your plot points, and render

the results in the local context, as shown in

Example 6-7.

Example 6-7: Creating a custom function
to plot spatial data

library(ggmap)

library(mapproj)

gc <- geocode("Manhattan", source = "google")

googMap <- get_googlemap(center =

as.numeric(gc), zoom = 12, maptype =

'roadmap',

 color = 'color')

myplots <- rxExec(mapPlot, inDataSource,

googMap, timesToRun = 1)

plot(myplots[[1]][["myplot"]]);

The first two lines are calls to load ggmap and

mapproj again, but this time in the local context.

Then the geocode function takes a street address

or a place name as its first argument and sets the

source to google as the second argument. The

other possible source is dsk, which is the Data

Science Toolkit (http://datasciencetoolkit.org),

but this source tends to return results more

slowly or timeout.

http://datasciencetoolkit.org/

192 of 270 C H A P T E R 6 | More analytics

Next, the get_googlemap function uses the

latitude and longitude coordinates stored in the

gc variable to set the center of the map that it

downloads from Google. The zoom argument

takes an integer value ranging from 3 (for

continent) to 21 (for building) to indicate the

level of detail to display in the map. You can set

the color argument to either color or black and

white. The resulting map is stored in the

googMap variable that you pass to the mapPlot

function.

In the next line, the rxExec function executes the

function specified as the first argument (the

custom function mapPlot, in this case) on SQL

Server, using the arguments passed as a list as

subsequent arguments, until it encounters rxExec

arguments such as timesToRun. The variable

myplots stores the results of execution, which is a

list containing one item called myplot.

Last, the plot function takes the first item in the

myplots list and renders the object on the local

computer. The result is a static map of

Manhattan with multiple points representing

pickup locations overlayed on the map, as shown

in Figure 6-17.

193 of 270 C H A P T E R 6 | More analytics

Figure 6-17: Viewing the map plot created by executing
the custom mapPlot function.

Note Before executing this code, the data
source query was adjusted to return only 1,000
rows. It is important to note that the map is
created locally and passed by a function that
runs in the server context. The data is serialized
back to the local computer where you view it in
the Plot window in the R IDE.

194 of 270 C H A P T E R 6 | More analytics

Data transformation

Besides exploring data with R, you can also use R

to transform data to enhance it for use in

predictive modeling. However, when working

with large data volumes, R transformations

might not perform as optimally as similar

transformations done by using a T-SQL function.

You are not limited to these options, though.

You might prefer to use T-SQL scripts or

Integration Services to preprocess the data

before using the data with R Services.

Note You use the rxDataStep function in
conjunction with custom functions to perform
transformations by using the RevoScaleR
package on the server. You can learn more
about this function at
http://www.rdocumentation.org/packages/Revo
ScaleR/functions/rxDataStep.

The taxi data currently includes coordinates for

pickup and drop-off locations, which you can use

to compute the linear distance. The database

also includes a custom function,

fnCalculateDistance, to use for this computation.

To set up a new data source using a random

sample that includes the computed distance,

http://www.rdocumentation.org/packages/RevoScaleR/functions/rxDataStep
http://www.rdocumentation.org/packages/RevoScaleR/functions/rxDataStep

195 of 270 C H A P T E R 6 | More analytics

execute the code shown in Example 6-8 in your

R IDE.

Example 6-8: Adding a data source with a
feature computed in T-SQL

modelQuery = "SELECT tipped, fare_amount,

passenger_count,

trip_time_in_secs,trip_distance,

 pickup_datetime, dropoff_datetime,

 dbo.fnCalculateDistance(pickup_latitude,

pickup_longitude, dropoff_latitude,

 dropoff_longitude) as

direct_distance,

 pickup_latitude, pickup_longitude,

dropoff_latitude, dropoff_longitude

 FROM nyctaxi_sample

 tablesample (1 percent) repeatable

(98052)"

modelDataSource = RxSqlServerData(sqlQuery =

modelQuery,

 colClasses =

c(pickup_longitude = "numeric",

pickup_latitude = "numeric",

dropoff_longitude = "numeric",

dropoff_latitude = "numeric",

passenger_count = "numeric", trip_distance =

"numeric",

trip_time_in_secs = "numeric",

196 of 270 C H A P T E R 6 | More analytics

direct_distance = "numeric"),

 connectionString = connStr)

Predictive model creation

After preparing your data, you can create a

model by using any of the functions available in

the RevoScaleR package. The RxLogit function is

a good choice for classification problems. It uses

logistic regression to estimate the probability of

a variable with two possible values. In the sample

code shown in Example 6-9, the goal is to

predict whether a tip was given. The summary

function provides statistical information about

the resulting model, as shown in Figure 6-18.

Example 6-9: Creating a logistic
regression model

logitObj <- rxLogit(tipped ~ passenger_count +

trip_distance + trip_time_in_secs +

 direct_distance, data =

modelDataSource)

summary(logitObj)

197 of 270 C H A P T E R 6 | More analytics

Figure 6-18: Viewing the summary of a logistic
regression predictive model.

Note To learn more about the rxLogit function,
see http://www.rdocumentation.org/packages
/RevoScaleR/functions/rxLogit.

Model usage

After you build a predictive model, you can apply

it to a data source to predict the dependent

variable value, score the prediction, and store

the results in a table by using the rxPredict

function. You can see the code necessary to

perform these steps in Example 6-10. In this

example, you define a table without a schema in

the rxSqlServerData function. The output from

the rxPredict function returns the schema and

http://www.rdocumentation.org/packages/RevoScaleR/functions/rxLogit
http://www.rdocumentation.org/packages/RevoScaleR/functions/rxLogit

198 of 270 C H A P T E R 6 | More analytics

creates the table, which means the SQL login

associated with the rxSqlServerData function (as

defined in the connection string) must have

permissions to create a table, or the execution of

the code fails.

Example 6-10: Predicting values

scoredOutput <- RxSqlServerData(

 connectionString = connStr,

 table = "taxiScoreOutput")

rxPredict(modelObject = logitObj, data =

modelDataSource, outData = scoredOutput,

 predVarNames = "Score", type =

"response", writeModelVars = TRUE, overwrite =

TRUE)

Figure 6-19 shows the results of the output

stored in the table. A value below 0.5 in the

Score column indicates a tip is not likely.

199 of 270 C H A P T E R 6 | More analytics

Figure 6-19: Viewing the output of the rxPredict function
in the taxiScoreOutput table in SSMS.

Note For simplicity in this example, the data
used to train the model is also used to test the
model. Typically, you partition the data, using
one set to train the model and one set to test
the model.

To learn more about the rxPredict function, see
http://www.rdocumentation.org/packages
/RevoScaleR/functions/rxPredict.

Model accuracy

After you create a model, you can use R

functions to test its accuracy. ROCR is a useful

package for testing the performance of

classification models. Example 6-11 shows the

code to install and load this library by using the

install.packages and library functions.

Example 6-11: Testing a model’s accuracy

if (!('ROCR' %in%

rownames(installed.packages()))){

 install.packages('ROCR')

}

library(ROCR)

scoredOutput <- rxImport(scoredOutput)

pr <- prediction(scoredOutput$Score,

http://www.rdocumentation.org/packages/RevoScaleR/functions/rxPredict
http://www.rdocumentation.org/packages/RevoScaleR/functions/rxPredict

200 of 270 C H A P T E R 6 | More analytics

scoredOutput$tipped)

prf <- performance(pr, measure = "tpr",

x.measure = "fpr")

plot(prf)

To use the functions in ROCR, you must bring

data from the server into your local environment

by using the rxImport function. Next, you need to

load the results of your predictions into a

prediction object by using the prediction

function, which takes the score from your model

as its first argument and the predicted value as

the second argument. Notice that the format of

these arguments uses the name of the data

source first, then a $ symbol, which is followed

by the data source column.

The performance function takes the prediction

object as the first argument and then you specify

measures to return. In this case, tpr and fpr

represent true positive rate and false positive

rate and are only two of many different types of

performance metrics that the performance

function returns. You can store the performance

results in a variable that you can then plot, as

shown in Figure 6-20.

201 of 270 C H A P T E R 6 | More analytics

Figure 6-20: Viewing the plot of the prediction model
performance.

Note You can see the other performance
metrics accessible with the performance
function at
http://www.rdocumentation.org/packages/ROC
R/functions/performance.

Using an R Model in SQL Server

After creating an R model, you can deploy it to

SQL Server for use in applications and other

tools. You can then invoke the model by calling

the sp_execute_external_script stored procedure.

You can call a model to score data in batch

mode or to score data for an individual case. The

sample database includes two stored procedures

that allow you to perform each of these tasks.

http://www.rdocumentation.org/packages/ROCR/functions/performance
http://www.rdocumentation.org/packages/ROCR/functions/performance

202 of 270 C H A P T E R 6 | More analytics

Model deployment

This process requires you to serialize your model

as a hexadecimal string that you send to the

server and store in a varbinary(max) column in a

database, as shown in Example 6-12. The

serialize function produces the string, and the

paste function ensures that the result is a single

string. Then the RODBC package is installed to

use the odbcDriverConnect function to open a

connection to SQL Server. Next, the paste

function concatenates the serialized string with a

call to the PersistModel stored procedure to

produce a query string that is passed into the

sqlQuery function and executed. The

PersistModel stored procedure is a custom stored

procedure in the sample database that inserts a

record into the nyc_taxi_models table.

Example 6-12: Deploying a model to SQL
Server

modelbin <- serialize(logitObj, NULL)

modelbinstr=paste(modelbin, collapse="")

if (!('RODBC' %in%

rownames(installed.packages()))){

 install.packages('RODBC')

}

library(RODBC)

conn <- odbcDriverConnect(connStr)

203 of 270 C H A P T E R 6 | More analytics

q<-paste("EXEC PersistModel @m='",

modelbinstr,"'", sep="")

sqlQuery (conn, q)

Batch mode invocation of a model

The stored procedure in the sample database

that invokes the model in batch mode is shown

in Example 6-13. This stored procedure,

PredictTipBatchMode, retrieves the stored model

and stores it in a variable that becomes a

parameter for the sp_execute_external_script

stored procedure. You pass the data to score as

a query string into PredictTipBatchMode. It

becomes a data frame called InputDataSet used

in the rxPredict function that

sp_execute_external_script executes. The output

of this stored procedure is a set of rows

containing a score for each row in the input.

Example 6-13: Creating a stored
procedure to invoke a model in batch
mode

CREATE PROCEDURE [dbo].[PredictTipBatchMode]

@inquery nvarchar(max)

AS

BEGIN

 DECLARE @lmodel2 varbinary(max) = (SELECT

TOP 1 model

204 of 270 C H A P T E R 6 | More analytics

 FROM nyc_taxi_models);

 EXEC sp_execute_external_script @language =

N'R',

 @script = N'

mod <- unserialize(as.raw(model));

print(summary(mod))

OutputDataSet<-rxPredict(modelObject = mod,

data = InputDataSet, outData = NULL,

 predVarNames = "Score", type =

"response", writeModelVars = FALSE, overwrite

= TRUE);

str(OutputDataSet)

print(OutputDataSet)',

@input_data_1 = @inquery,

 @params =

N'@model varbinary(max)',

 @model =

@lmodel2

 WITH RESULT SETS ((Score float));

END

Individual scoring mode invocation of a
model

Rather than score a set of rows in batch mode,

you can score a single case. Example 6-14 shows

the PredictTipSingleMode stored procedure in the

sample database, which illustrates this approach.

It is similar to the previous example, except the

PredictTipSingleMode stored procedure defines

input parameters for each of the variables in

205 of 270 C H A P T E R 6 | More analytics

your training data set. These parameters are then

sent to a table-valued helper function in the

sample database that computes the linear

distance, and the result becomes the

InputDataSet data frame. The output is a single

value that represents the probability of a tip.

Example 6-14: Creating a stored
procedure to invoke a model in single
mode

CREATE PROCEDURE [dbo].[PredictTipSingleMode]

@passenger_count int = 0,

@trip_distance float = 0,

@trip_time_in_secs int = 0,

@pickup_latitude float = 0,

@pickup_longitude float = 0,

@dropoff_latitude float = 0,

@dropoff_longitude float = 0

AS

BEGIN

 DECLARE @inquery nvarchar(max) = N'

 SELECT * FROM [dbo].[fnEngineerFeatures](

@passenger_count, @trip_distance,

@trip_time_in_secs,

 @pickup_latitude, @pickup_longitude,

@dropoff_latitude, @dropoff_longitude)'

 DECLARE @lmodel2 varbinary(max) = (SELECT

TOP 1 model FROM nyc_taxi_models);

 EXEC sp_execute_external_script @language =

N'R',

 @script = N'

206 of 270 C H A P T E R 6 | More analytics

mod <- unserialize(as.raw(model));

print(summary(mod))

OutputDataSet<-rxPredict(modelObject = mod,

data = InputDataSet, outData = NULL,

 predVarNames = "Score", type =

"response", writeModelVars = FALSE, overwrite

= TRUE);

str(OutputDataSet)

print(OutputDataSet)',

@input_data_1 = @inquery,

 @params =

N'@model varbinary(max), @passenger_count int,

@trip_distance float, @trip_time_in_secs int,

@pickup_latitude float, @pickup_longitude

float, @dropoff_latitude float,

@dropoff_longitude float',

 @model =

@lmodel2,

@passenger_count =@passenger_count ,

@trip_distance=@trip_distance,

@trip_time_in_secs=@trip_time_in_secs,

@pickup_latitude=@pickup_latitude,

@pickup_longitude=@pickup_longitude,

@dropoff_latitude=@dropoff_latitude,

@dropoff_longitude=@dropoff_longitude

207 of 270 C H A P T E R 6 | More analytics

 WITH RESULT SETS ((Score float));

END

208 of 270 C H A P T E R 7 | Better reporting

C H A P T E R 7

Better reporting

For report developers, Reporting

Services in SQL Server 2016 has a

more modern development

environment, two new data

visualizations, and improved

parameter layout options. Users

also benefit from a new web portal

that supports modern web

browsers and mobile access to

reports. In this chapter, we’ll explore

these new features in detail.

Report content types
This release of Reporting Services includes both

enhanced and new report content types:

209 of 270 C H A P T E R 7 | Better reporting

 Paginated reports Paginated reports are

the traditional content type for which

Reporting Services is especially well suited.

You use this content type when you need

precise control over the layout, appearance,

and behavior of each element in your report.

Users can view a paginated report online,

export it to another format, or receive it on a

scheduled basis by subscribing to the report.

A paginated report can consist of a single

page or hundreds of pages, based on the

dataset associated with the report. The need

for this type of report continues to persist in

most organizations, as well as the other

report content types that are now available

in the Microsoft reporting platform.

 Mobile reports In early 2015, Microsoft

acquired Datazen Software to make it easier

to deploy reports to mobile devices,

regardless of operating system and form

factor. This content type is best when you

need touch-responsive and easy-to-read

reports that are displayed on smaller

screens, communicate key metrics effectively

at a glance, and support drill-through to

view supporting details. In SQL Server 2016,

users can view both paginated and mobile

210 of 270 C H A P T E R 7 | Better reporting

reports through the web portal interface of

the on-premises report server.

 Key performance indicators (KPIs) A KPI

is a simple type of report content that you

can add to the report server to display

metrics and trends at a glance. This content

type uses colors to indicate progress toward

a goal and an optional visualization to show

how values trend over time.

Paginated report
development
enhancements
In this release of Reporting Services, the

authoring tools for paginated reports work much

like they did in previous releases, but with some

enhancements. The first noticeable change is the

overall appearance of the authoring tools. In

addition, these tools have been augmented by

the addition of new visualizations and a new

interface for working with parameters.

211 of 270 C H A P T E R 7 | Better reporting

Introducing changes to paginated
report authoring tools

As in prior versions of Reporting Services, there

are two methods for authoring paginated

reports:

 Report Designer A full-featured report

development environment available as one

of the business intelligence templates

installed in the new SQL Server Data Tools

for Visual Studio 2015 (SSDT).

 Report Builder A standalone application

that shares many common features with

Report Designer.

Report Designer

Microsoft has released a new updated business

intelligence template in SSDT that you download

from http://go.microsoft.com/fwlink

/?LinkID=690931. This business intelligence

template includes an updated version of Report

Designer that allows you to develop reports for

multiple versions of Reporting Services. By

default, you can develop reports for SQL Server

2016 Reporting Services or later, as shown in

Figure 7-1, but you can change the

TargetServerVersion property in the project’s

http://go.microsoft.com/fwlink/?LinkID=690931
http://go.microsoft.com/fwlink/?LinkID=690931

212 of 270 C H A P T E R 7 | Better reporting

properties to target SQL Server 2008, SQL Server

2008 R2, SQL Server 2012, or SQL Server 2014.

Report authors may continue to use SQL Server

Data Tools for Business Intelligence in Visual

Studio 2013 to develop reports for these earlier

versions, but the new features specific to SQL

Server 2016 that we discuss later in this chapter

are not supported.

Figure 7-1: A new default value for the
TargetServerVersion property in the project’s
properties.

Report Builder

Report Builder is an alternative report-

development tool for power users and report

developers who need only to create or edit one

report at a time. You can start the ClickOnce

version of the Report Builder by clicking the

Report Builder button on the web portal toolbar

213 of 270 C H A P T E R 7 | Better reporting

on your report server at

http://<servername>/reports. You can also

download and install a standalone version of

Report Builder from

https://www.microsoft.com/en-

us/download/confirmation.aspx?id=49528 and

then use the Windows Start menu to open it

after installation. Previous versions of Report

Builder use the light blue Office 2007

appearance, but the most recent version of

Report Builder, shown in Figure 7-2, uses the

same darker theme that appears in both Office

2016 and the Power BI Desktop application and

continues to use a ribbon interface like Office

applications.

https://www.microsoft.com/en-us/download/confirmation.aspx?id=49528
https://www.microsoft.com/en-us/download/confirmation.aspx?id=49528

214 of 270 C H A P T E R 7 | Better reporting

Figure 7-2: New Report Builder interface.

Exploring new data visualizations

All data visualizations included in prior versions

of Reporting Services continue to be available,

but the SQL Server 2016 version includes two

new types of data visualizations:

 Tree map A tree map represents

hierarchical categories as rectangles with

relative sizes.

 Sunburst A sunburst chart is a hierarchical

representation of data that uses circles for

each level.

215 of 270 C H A P T E R 7 | Better reporting

Tree map

A tree map is useful to show how parts

contribute to a whole. Each rectangle represents

the sum of a value and is sized according to the

percentage of its value relative to the total of

values for all rectangles in the tree map. The

rectangles are positioned within the tree map

with the largest category in the upper-left corner

of the parent rectangle and the smallest

category in the lower-right corner. Each

rectangle can contain another collection of

rectangles that break down its values by another

category that represents a lower level in a

hierarchy.

As an example, in the tree map shown in Figure

7-3, the first level shows the United States as the

largest category, followed by Canada, with the

second largest category, and then progressively

smaller rectangles are displayed for France,

United Kingdom, Germany, and Australia. For

each of these country/region categories,

business type is the next lower level in the

hierarchy, and rectangles for each distinct

business type are displayed using the same

pattern of largest to smallest from top left to

bottom right within a country’s/region’s

rectangle. In this example, the largest business

216 of 270 C H A P T E R 7 | Better reporting

type in the United States is Value Added Reseller,

followed by Warehouse, and then Specialty Bike

Shop.

Figure 7-3: Tree map showing sales hierarchically by
country/region and by business type.

To add a tree map to your report, you use the

same technique as you do for any chart. Whether

using Report Designer or Report Builder, you

insert a chart into the report by choosing Chart

from the toolbox or ribbon, and then select Tree

Map in the Shape collection of chart types in the

Select Chart Type dialog box, as shown in Figure

7-4.

217 of 270 C H A P T E R 7 | Better reporting

Figure 7-4: Selection of a tree map in the Select Chart
Type dialog box.

To configure the chart, click anywhere on its

surface to open the Chart Data pane. Then click

the button with the plus symbol to add fields to

the Values, Category Groups, or Series Groups

areas, as shown in Figure 7-5. The value field

determines the size of a rectangle for category

groups and series groups. Each series group field

is associated with a different color and becomes

the outermost collection of rectangles. For

example, with SalesTerritoryCountry as a series

group, each country/region is identifiable by

color in the tree map. Within each

country’s/region’s rectangle, each distinct value

218 of 270 C H A P T E R 7 | Better reporting

within a category group is represented by a

separate rectangle. In this case, each

country’s/region’s rectangle contains three

rectangles—Specialty Bike Shop, Value Added

Reseller, and Warehouse. The proportion of an

individual business type’s sales amount value

relative to a country’s/region’s total sales

determines the size of its rectangle.

Figure 7-5: Configuring the Chart Data pane for a tree
map.

219 of 270 C H A P T E R 7 | Better reporting

To improve the legibility of a tree map, you

should consider making the following changes

to specific chart properties:

 Size You should increase the size of the

chart because the default size, 3 inches wide

by 2 inches high, is too small to view the

data labels that are enabled by default. Click

the chart object, but take care to click an

element such as the Chart Title or a series in

the chart, and then adjust the Size

properties, Width and Height, in the

Properties pane.

 Legend To maximize the space of the chart

area allocated to the tree map, consider

moving the legend above or below the chart.

To do this, right-click the legend, select

Legend Properties, and then select one of

the Legend Position options to reposition

the legend.

 Data labels Even after resizing the chart,

you might find that the default 10 point font

size used for the labels is too large to display

labels in each rectangle or that the black

font is difficult to read when the series color

is dark. To reduce the size of the font and

change its color to improve the visibility of

220 of 270 C H A P T E R 7 | Better reporting

the data labels, click the chart to display the

Chart Data pane, click the field in the Values

area, and then locate the Labels section in

the Properties pane. When you expand this

section, you can change font properties such

as size and color as needed.

Note The size of rectangles in a tree map
might continue to affect the visibility of the
data labels even if you reduce the font size to 6
points. If the smaller label text cannot fit within
the width of its rectangle, the label is not
displayed.

 Tooltip One way to compensate for

missing data labels in small rectangles, or to

add more context to a tree map, is to add a

tooltip, as shown in Figure 7-6. To do this,

right-click a rectangle in the chart, select

Series Properties, click the expression button

next to the Tooltip box in the Series

Properties dialog box, and type an

expression such as this:

=Fields!BusinessType.Value + " : " +

Format(Sum(Fields!SalesAmount.Value), "C0")

221 of 270 C H A P T E R 7 | Better reporting

Figure 7-6: Tooltip displayed above a selected rectangle
in a tree map.

You can add more than one field to the Category

Groups or Series Groups areas of the Chart Data

pane. However, the meaning of the chart is

easier to discern if you add the second field only

to the Series Groups area so that different colors

help viewers distinguish values, as shown in

Figure 7-7. If you add a second field to the

Category Groups area, more rectangles are

displayed in the tree map, but it’s more difficult

to interpret the hierarchical arrangement without

extensive customization of the tree map’s

elements.

222 of 270 C H A P T E R 7 | Better reporting

Figure 7-7: Tree map displaying two series groups.

Sunburst

A sunburst chart is a type of visualization that is

a hybrid of a pie chart, using slices of a circle to

represent the proportional value of a category to

the total. However, a sunburst chart includes

multiple circles to represent levels of hierarchical

data. Color is the highest level of a hierarchy if a

series group is added to the chart, but it is not

required. If no series group is defined, the

innermost circle becomes the highest level of the

hierarchy. Each lower level moves farther from

the center of the circle, with the outermost circle

as the lowest level of detail. Within each type of

223 of 270 C H A P T E R 7 | Better reporting

grouping, color or circle, the slices are arranged

in clockwise order, with the largest value

appearing first and the smallest value appearing

last in the slice.

As an example, in Figure 7-8, color is used to

identify sales amount by year across all circles,

with the largest color slice starting at the twelve

o’clock position in the circle. At a glance, a

viewer can easily see the relative contribution of

each year to total sales and which year had the

greatest number of sales. Next, the inner circle

slices each color by country/region, again sorting

the countries/regions from largest to smallest in

clockwise order. The outer circle further

subdivides the countries/regions by business

type. In this example, some of the slices are too

small for the labels to be displayed.

224 of 270 C H A P T E R 7 | Better reporting

Figure 7-8: Example of a sunburst chart.

To produce a sunburst, you insert a chart into

the report and select Sunburst from the Shape

collection of chart types. Click the chart to open

the Chart Data pane and use the button with the

plus symbol to add fields to the Values, Category

Groups, or Series Groups areas, as shown in

Figure 7-9. The value field determines the size of

a slice for category groups and series groups.

225 of 270 C H A P T E R 7 | Better reporting

Each series group field is associated with a

different color and becomes the first division of

the total value into proportional slices, although

the inclusion of a series group is optional.

Category groups then further subdivide values

into slices, with the first category group in the

list as the inner circle, and each subsequent

category group added to the chart as another

outer circle moving from the center.

226 of 270 C H A P T E R 7 | Better reporting

Figure 7-9: Chart Data pane configured for a sunburst
chart.

As for a tree map, a sunburst chart’s default

properties are likely to produce a chart that is

difficult to read. Therefore, you should consider

modifying the following chart properties:

 Size The minimum recommended size for a

sunburst chart is 5 inches wide. Click the

chart object (but not an element such as the

Chart) and then increase the Size properties,

Width and Height, in the Properties pane.

 Legend More space is allocated to the

sunburst chart when you move the legend

above or below the chart. To do this, right-

click the legend, select Legend Properties,

and select one of the Legend Position

options to reposition the legend.

 Data labels Reducing the label size and

changing the font color are likely to improve

legibility. To fix these properties, click the

chart to display the Chart Data pane, click

the field in the Values area, expand the

Labels section in the Properties pane, and

change the font size and color properties.

227 of 270 C H A P T E R 7 | Better reporting

Note Some sunburst slices can still be too
small for some data labels even if you reduce
the font size to 6 points.

 Tooltip To help users understand the

values in a sunburst chart when data labels

are missing from small slices, consider

adding a tooltip by right-clicking a slice in

the chart, selecting Series Properties, clicking

the expression button next to the Tooltip

box in the Series Properties dialog box, and

then typing an expression such as this:

=Fields!BusinessType.Value + " : " +

Fields!SalesTerritoryCountry.Value + " : "

+ Format(Sum(Fields!SalesAmount.Value),

"C0")

Managing parameter layout in
paginated reports

In previous versions of Reporting Services, there

was no option for configuring the layout of

parameters unless you designed a custom

interface to replace Report Manager for

accessing reports. Now in both Report Designer

and Report Builder, you can use a Parameters

pane to control the relative position of

parameters and to organize parameters into

groups.

228 of 270 C H A P T E R 7 | Better reporting

Note In Report Builder, you can change the
visibility of the Parameters pane by selecting or
clearing the new Parameters check box on the
View tab of the ribbon.

The new Parameters pane is a 4x2 grid that

displays above the report design surface. To add

a report parameter to the grid, you can continue

to use the Report Data pane as you have in

previous versions of Reporting Services. As an

alternative, in the Parameters pane, right-click an

empty cell and select Add Parameter, as shown

in Figure 7-10, to open the Report Parameter

Properties dialog box. Notice that the context

menu that appears when you right-click a cell

also includes commands to add or remove rows

or columns, delete a parameter, or view a

selected parameter’s properties.

Figure 7-10: Adding a new parameter to a report by
using the Parameters pane in Report Builder.

229 of 270 C H A P T E R 7 | Better reporting

Note When you add a report parameter by
using the Parameters pane, the parameter is
added automatically to the Report Data pane.
You can easily access a parameter’s properties
by double-clicking it in either location.

After adding a parameter, you can drag it to a

new location. Consider using empty rows or

columns to create groupings of parameters, as

shown in Figure 7-11.

Figure 7-11: Using separate columns to group
parameters in the Parameter pane.

Note If you design a report with cascading
parameters, the sequence of parameters in the
Report Data pane remains important.
Cascading parameters are a set of at least two
parameters in which a child parameter’s
available list of values is dependent on the
user’s selection of another parameter value, the
parent parameter. The parent parameter must
be displayed above the child parameter in the
Report Data pane.

You cannot control the size of an unused

parameter column, but the rendered report

230 of 270 C H A P T E R 7 | Better reporting

displays each column with enough separation to

clearly distinguish groups, as shown Figure 7-12.

You can create more separation between column

groups by inserting another empty column in

the Parameters pane.

Figure 7-12: Parameter groups in a rendered report.

Mobile report
development
Mobile reports display data concisely for use on

mobile devices. The acquisition of Datazen by

Microsoft brings a suite of tools supporting the

development of mobile reports into the

Reporting Services platform, but these tools are

currently in various states of integration. To

create mobile reports, you use the SQL Server

Mobile Report Publisher (which you can

download from the Microsoft Store for Windows

8 and Windows 10).

Note The Mobile Report Publisher is not
available at the time of this writing. This section
will be updated with more details about Mobile

231 of 270 C H A P T E R 7 | Better reporting

Report Publisher in the final version of this
ebook.

Mobile reports enable you to create data mash-

ups from a variety of data sources. You can use

the same data sources and shared data sets

published to the report server to connect data to

mobile report elements such as gauges and

charts, among others.

KPI development
In the CTP 3.2 release of SQL Server 2016, you

use the Reporting Services web portal to create

KPIs. From the main portal page at

http://<yourserver>/reports, click the Preview

The New Reporting Services link at the top of the

page, click New in the toolbar, and then click KPI.

A new KPI screen is displayed, as shown in Figure

7-13.

232 of 270 C H A P T E R 7 | Better reporting

Figure 7-13: Creating a new KPI.

To configure a KPI, you specify up to four values:

Value, the amount to monitor; Goal, the target

amount to compare with Value; Status, a value to

set the color of the background; and Trend, a set

of values to visualize. For each of these values,

you can set its value manually, associate it with a

field in a shared dataset on the report server, or

leave its value empty. (If you choose to use a

shared dataset, remember that you can specify a

cache refresh plan to update the KPI as

frequently as necessary.) Last, you can choose to

optionally include one of the following

visualizations: column chart, line chart, step

chart, or area chart.

233 of 270 C H A P T E R 7 | Better reporting

Note Datasets for Value, Goal, and Status must
return a single row of data. If you choose to use
a query for Status, the query must return -1 for
red, 0 for amber, and 1 for green. A query for
Trend must return a sorted set of one or more
values for use as data points in the
visualization.

Report access
enhancements
The user-facing side of Reporting Services also

benefits from several enhancements in this

release. First, browser rendering and broader

support has been upgraded to accommodate

modern web standards. Furthermore, the ActiveX

control is no longer required to print from the

web portal. Next, users can export reports

directly to PowerPoint. Last, the process of

working with subscriptions in the web portal has

been improved with several new capabilities to

streamline and simplify subscription

management.

234 of 270 C H A P T E R 7 | Better reporting

Accessing reports with modern
browsers

When Reporting Services was initially added to

the SQL Server platform, it was optimized for

Internet Explorer 5. Since then, web standards

have changed. As a result, modern browsers that

are optimized for newer web standards such as

HTML5 and CSS3 have emerged and grown in

popularity. But however popular these browsers

might be for users on a day-to-day basis, earlier

versions of Reporting Services do not render

reports consistently in these browsers at best or

do not render them at all at worst. In SQL Server

2016, Reporting Services is redesigned with a

new renderer that supports HTML5 and has no

dependency on features specific to Internet

Explorer, so users can have a consistent

experience across supported browsers. The

following table shows the browsers currently

supported by the latest version of Reporting

Services by operating system:

Bro

wse

r

Win

do

Win

do

ws

Win

do

Win

do

ws

Win

do

ws

M

a

c

i

O

S

235 of 270 C H A P T E R 7 | Better reporting

ws

10

8

and

8.1

ws

7

Ser

ver

201

2

and

201

2

R2

Ser

ver

200

8

R2

O

S

X

1

0.

7-

1

0.

1

0

6

-

9

f

o

r

iP

a

d

Mic

ros

oft

Edg

e

Yes - - - - -

Mic

ros

oft

Inte

rnet

Expl

orer

10

and

11

Yes Yes Yes Yes Yes - -

236 of 270 C H A P T E R 7 | Better reporting

Go

ogl

e

Chr

om

e

Yes Yes Yes Yes Yes - -

Mo

zilla

Fire

fox

Yes Yes Yes Yes Yes Y

es

-

App

le

Saf

ari

- - - - - Y

es

Y

e

s

Regardless of which browser you use, the first

time you attempt to open a report, an error

message is displayed if you have not configured

the browser to run scripts. In response to the

message, you can click to continue to view the

report without scripts. In that case, the report

renders in HTML, but the features supported by

the report viewer are not displayed, such as the

report toolbar and the document map.

237 of 270 C H A P T E R 7 | Better reporting

Note Enhancing the renderer to work across
all browsers is a huge undertaking. Despite
extensive testing, it is possible that a particular
combination of report elements that worked
well in an earlier version of Reporting Services
no longer renders properly. If you find that a
report does not render correctly with the new
rendering engine, you can click the Switch To
Compatibility Mode link on the right side of the
report viewer toolbar to revert rendering to
Reporting Services’ prior style of rendering. You
can also click the Send Feedback button next to
this link if you continue to have a problem
rendering a report. Clicking this link opens the
SQL Server Reporting Services Forum on
MSDN, where you can use the Ask A Question
button to create a post describing the problem
you are experiencing.

Not only is the rendering engine updated, but

the Report Manager web application used for

report access is no longer available. Instead,

users access reports by using the new Reporting

Services web portal, shown in Figure 7-14. The

web portal includes a Favorites page on which

you can organize reports by type: KPIs, mobile

reports, and paginated reports. You can switch

to the Browse page to view reports by

navigating through folders.

238 of 270 C H A P T E R 7 | Better reporting

Figure 7-14: The home page of the new Reporting
Services web portal displaying the Favorites tab.

Note Mobile reports are not available in the
new web portal in SQL Server 2016 CTP 3.2 but
will be available in a future release of SQL
Server 2016. This section will be updated in the
final ebook.

Viewing reports on mobile
devices

In addition to using the web portal to view

mobile reports rendered as HTML5 pages in a

web browser, you can also interact with these

239 of 270 C H A P T E R 7 | Better reporting

reports through a native user interface on the

following major mobile platforms:

 Windows 8 or later On your tablets and

touch-enabled devices, you can use

semantic zoom while viewing reports. In

addition, you can pin dashboards and KPIs

to the Start screen.

 iOS8 or later You can access published

dashboards and KPIs while online and review

KPI summary data when offline.

Printing without ActiveX

Earlier versions of Reporting Services require

users to install ActiveX to enable a control in

Internet Explorer that allows them to print a

paginated report from the browser. However, for

security reasons, many enterprise users do not

have the necessary permissions to install

software on their computers, including ActiveX

controls. Furthermore, many modern browsers

do not support ActiveX. Consequently, in SQL

Server 2016, Reporting Services provides a new

solution by generating a printer-friendly PDF

version of the report with the option to override

the default page size.

240 of 270 C H A P T E R 7 | Better reporting

When you click the printer icon in the report

viewer toolbar, Reporting Services checks for the

existence of the Acrobat PDF browser plug-in in

Internet Explorer. If it does not exist, an error

message prompts you to install the plug-in.

However, if your browser does not have the

plug-in, you are still able to print if you clear the

error message. After you clear the error

message, or if you are using a browser other

than Internet Explorer, the Print dialog box is

displayed, as shown in Figure 7-15. This dialog

box allows you to adjust the paper size and page

orientation by using the respective drop-down

lists before printing your report.

241 of 270 C H A P T E R 7 | Better reporting

Figure 7-15: Print dialog box for browser without PDF
control.

When you click the Print button in this dialog

box in Internet Explorer, the operating system’s

Print dialog box displays more options for

selecting which pages to print, the number of

copies to print, and so on. If you choose to

cancel at this point, the operating system’s Print

dialog box closes, and you then see another type

of Print dialog box that displays a preview of the

first page of your report, as shown in Figure 7-

16. At the bottom of this dialog box is the Click

Here To View The PDF Of Your Report link, which

allows you to open your report in Acrobat

Reader if it is installed on your computer.

242 of 270 C H A P T E R 7 | Better reporting

Otherwise, you can download the PDF to store it

for later viewing once you have installed the

necessary software.

Note When you use Edge as your browser
and click the Print button in Reporting Services’
Print dialog box, another tab opens in the
browser and displays your report because Edge
has a built-in PDF viewer.

In Chrome, when you click Print, a message
appears and indicates that the report is being
converted to PDF, and then Chrome’s Print
dialog box displays.

In Safari, a message indicates that your PDF file
is ready and includes the link Click Here To
View The PDF Of Your Report. When you click
the link, the PDF file downloads and the
Preview application opens to display your
report.

243 of 270 C H A P T E R 7 | Better reporting

Figure 7-16: Print dialog box with option to view the
PDF of your report.

244 of 270 C H A P T E R 7 | Better reporting

Just as in prior versions, report server

administrators can control whether users see the

print icon in the report viewer toolbar. However,

the Enable Download For the ActiveX Client Print

Control check box is no longer available for this

purpose when configuring report server

properties because this control is no longer

supported. Instead, you change one of the

advanced properties that controls the presence

of the print icon. To do this, open SQL Server

Management Studio by using Run As

Administrator, connect to the Report Server,

right-click the server node, select Properties,

select the Advanced tab in the Server Properties

dialog box, and change the EnableClientPrinting

property from its default setting of True to False.

Exporting to PowerPoint

One of the many benefits of Reporting Services

is the ability to export a report to a variety of

different formats, such as Excel or Word. In the

SQL Server 2016 release, the list of available

options is expanded to include another popular

Office application, PowerPoint. When you click

the Export button in the report viewer toolbar,

you now see PowerPoint listed as an option, as

shown in Figure 7-17.

245 of 270 C H A P T E R 7 | Better reporting

Figure 7-17: Choosing PowerPoint as an option for
exporting a report.

Note You can also now use PowerPoint as a
rendering format when configuring a
subscription.

When you select the PowerPoint export option

from the list, the PPTX file downloads to your

computer. You then have the option to save it or,

if you have PowerPoint installed on your

computer, to open the file. In general, each page

246 of 270 C H A P T E R 7 | Better reporting

of your report becomes a separate slide in

PowerPoint, as shown in Figure 7-18, although

some report items might span multiple slides.

Just as you must factor in the rendered page size

during report development if you know that

users plan to export to PDF or Word, you must

ensure report items can fit on a single

PowerPoint slide where possible. Otherwise, the

Reporting Services rendering engine will divide

the report item into two or more smaller pieces

and allocate each piece to a separate slide, as

shown in the third and fourth PowerPoint slides

in Figure 7-18, which collectively represents the

third page of a report when the page is rendered

in HTML. Notice that objects from a report do

not consume the entire vertical space within a

PowerPoint slide.

247 of 270 C H A P T E R 7 | Better reporting

Figure 7-18: A report rendered as a PowerPoint file.

Note Although in an earlier section of this
chapter we recommend placing legend items
above or below a tree map or sunburst chart to
maximize chart space, this recommendation is
not applicable to reports that you plan to
export to PowerPoint because the vertical
space is more constrained.

If you click the Enable Editing button that

appears when PowerPoint opens the file, you can

interact with the objects added to the file. For

example, you can edit freestanding text boxes

containing static text such as a report title or

page numbers from the page header or footer.

Report items such as a chart or a matrix are

248 of 270 C H A P T E R 7 | Better reporting

added as picture objects and cannot be edited,

although they can be resized and rearranged by

moving them to a different location on the same

slide or copying and pasting them to a different

slide.

Pinning reports to Power BI

One of the ways that Reporting Services is

integrating hybrid and on-premises reporting is

a new feature that allows you to pin a report in

the web portal to a Power BI dashboard. This

capability has several requirements, however.

You must be using Azure Active Directory (Azure

AD), and the Power BI dashboard that you want

to use must be part of an Azure AD managed

tenant.

To enable this feature, your Windows login must

be a member of the Azure AD managed tenant

and also be the system administrator for both

Reporting Services and the database hosting the

Reporting Services databases. Using these

administrative credentials, launch Reporting

Services Configuration Manager, click the Power

BI Integration tab, click the Register With Power

BI button, and provide your Power BI login

details.

249 of 270 C H A P T E R 7 | Better reporting

Before you can pin a report to the dashboard, it

must be configured to use stored credentials

and SQL Server Agent must be running because

Power BI uses a Reporting Services subscription

to manage the scheduled refresh of the report.

Furthermore, you can pin a report that contains

only charts, gauges, or maps that are not nested

inside other report items. To pin a report

meeting these requirements, open the report in

the web portal and click the Pin To Power BI

Dashboard button in the web portal toolbar. A

sign-in dialog box is displayed in which you must

supply your Power BI login credentials. The first

time you pin a report, another dialog box asks

for permission to update your Power BI app.

Next, items in your report that are eligible for

pinning are displayed in the browser. Click the

item, select a dashboard, and then choose an

hourly, daily, or weekly frequency for updating

the report, as shown in Figure 7-19.

250 of 270 C H A P T E R 7 | Better reporting

Figure 7-19: Selecting a dashboard for pinning a report.

A dialog box confirms the success or failure of

the operation. If the pinning operation succeeds,

you can click a link in the dialog box to open a

web browser window and view your dashboard

in Power BI. Your report shows as a tile in the

dashboard, as shown in Figure 7-20, and will

refresh periodically according to the schedule

you set. When you click the report tile in the

dashboard, a new browser window opens to

display your report in the web portal from the

report server from which it originated.

251 of 270 C H A P T E R 7 | Better reporting

Figure 7-20: Displaying a Reporting Services report as a
report tile in a Power BI dashboard.

Managing subscriptions

Subscription functionality does not change in

SQL Server 2016 in general. You still configure

subscriptions to deliver reports to named

recipients or to a designated file share. However,

there are a few new subscription-management

features that we explore in this section:

 Subscription description You can include

a subscription description when creating or

changing a subscription, which makes it

252 of 270 C H A P T E R 7 | Better reporting

easier to identify a specific subscription

when many exist for a single report.

 Subscription owner change After adding

a subscription to the report server, you can

easily change its owner.

 Interface support for changing

subscription status Whether you have one

or many subscriptions set up on the server,

the web portal interface now includes Enable

and Disable buttons to quickly change the

status of subscriptions.

 File share credentials File share

subscriptions have a new option to use

administrator-defined credentials to add files

to a file share.

Subscription description

The subscription definition page now includes a

Subscription Properties section, as shown in

Figure 7-21, that is displayed when you create or

edit a subscription. You can use this description

to distinguish this subscription from others,

which is helpful when you have several

subscriptions associated with a single report. For

example, use this column to describe recipients,

the schedule, the delivery type, and other report

253 of 270 C H A P T E R 7 | Better reporting

delivery options so that you no longer have to

edit the subscription to determine its settings.

Figure 7-21: A portion of a subscription definition
showing the new Subscription Properties section.

When you add a description to a subscription,

the description is displayed in the web portal on

the Subscriptions page that you can access for a

specific report or on the My Subscriptions page,

where you can see all reports for which you have

created subscriptions, as shown in Figure 7-22.

You can sort subscriptions by the Description

column by clicking the column header.

Figure 7-22: My Subscriptions page in the web portal
with a new column for the subscription description.

254 of 270 C H A P T E R 7 | Better reporting

Subscription owner change

By default, the user credentials are set as the

owner of a subscription when a new subscription

is created and cannot be changed during

subscription creation. In prior versions of

Reporting Services, a change of owner was

possible only programmatically. Now you can

edit a subscription in the web portal to change

its owner. This feature is particularly helpful

when users change roles in an organization. Both

the current owner and the report server

administrator have permissions to change the

owner when editing the subscription in the web

portal.

Note This feature is available in both native
and SharePoint-integrated modes.

Interface support for changing
subscription status

In previous versions of Reporting Services, you

can pause and resume a schedule to control

when related subscriptions are active. Now there

are an Enable and a Disable button in the web

portal toolbar when you view subscriptions for

an individual report or view the My Subscriptions

page. This capability allows you more fine-

255 of 270 C H A P T E R 7 | Better reporting

grained control over the execution of specific

subscriptions. When you disable a subscription,

the icon to the left of the subscription displays a

warning symbol and the Status column value

changes to Disabled, as shown in Figure 7-23.

Figure 7-23: My Subscriptions page in the web portal
displaying a disabled report.

Note This feature is available in both native
and SharePoint-integrated modes.

File share credentials

Rather than instructing users how to define

credentials required to save a subscription to a

file share, report server administrators can

configure the report server to use a single

domain user account that users can select when

defining a file share subscription. To do this,

open Reporting Services Configuration Manager

and access the new Subscription Settings page.

You enable this feature by selecting the Specify

A File Share check box and adding a domain

user account and password, as shown in Figure

7-24.

256 of 270 C H A P T E R 7 | Better reporting

Figure 7-24: Subscription Settings page in Reporting
Services Configuration Manager.

Note This feature is available only in native
mode.

When this feature is enabled, the user can

choose to associate the configured file share

account with a subscription when setting the

report delivery options for a file share

subscription, as shown in Figure 7-25. Using this

file share account is not required, however. The

user can instead select Use The Following

Windows User Credentials and supply the

domain user name and password.

257 of 270 C H A P T E R 7 | Better reporting

Figure 7-25: The Use File Share Account option when
configuring a file share subscription.

258 of 270

About the authors
Stacia Varga is a consultant, educator, mentor,

and writer who has specialized in business-

intelligence solutions since 1999. During that

time she authored or coauthored several books

about BI as Stacia Misner. Her last book was

Introducing Microsoft SQL Server 2014 (Microsoft

Press, 2014). She has also written articles for SQL

Server Magazine and Technet and has produced

multiple BI video courses available through

Pluralsight. In addition, she has been recognized

for her contributions to the technical community

as a Microsoft Data Platform MVP since 2011.

Stacia provides consulting and custom education

services through her company, Data Inspirations;

speaks frequently at conferences serving the SQL

Server community worldwide; and serves as the

chapter leader of her local PASS user group, SQL

Server Society of Las Vegas. She holds a BA in

social sciences from Washington State

University. Stacia writes about her experiences

with BI at blog.datainspirations.com and tweets

as @_StaciaV_.

Joseph D'Antoni is a principal consultant for

Denny Cherry and Associates Consulting. He is

well versed in SQL Server performance tuning

and database infrastructure design, with more

http://blog.datainspirations.com/

259 of 270

than a decade of experience working in both

Fortune 500 and smaller firms. Joseph is a

frequent speaker at major technical events

worldwide. In addition, he blogs about a variety

of technology topics at joeydantoni.com and

tweets as @jdanton. Joseph holds a BS in

computer information systems from Louisiana

Tech and an MBA from North Carolina State

University.

Denny Cherry is the owner, founder, and

principal consultant for Denny Cherry and

Associates Consulting. His primary areas of focus

are system architecture, performance tuning, and

data replication. Denny has been recognized in

the technical community as a Microsoft Data

Platform MVP, VMware vExpert, and EMC Elect.

He holds certifications for SQL Server from the

MCDBA for SQL Server 2000 up through

Microsoft Certified Master for SQL Server 2008.

He is also a Microsoft Certified Trainer. Denny

has written dozens of articles for SQL Server

Magazine, Technet, and SearchSQLServer.com,

among others. In addition, he has authored and

coauthored multiple books, including The Basics

of Digital Privacy: Simple Tools to Protect Your

Personal Information and Your Identity Online

(Syngress, 2013) and Securing SQL Server:

Protecting Your Database from Attackers, 2nd

Edition (Syngress, 2012). Denny speaks at events

http://www.joeydantoni.com/
http://searchsqlserver.techtarget.com/

260 of 270

worldwide, blogs at www.dcac.co/blogs, and

tweets as @mrdenny.

http://www.dcac.co/blogs

Microsoft Press

Free ebooks

From technical overviews to drilldowns on special topics, get
free ebooks from Microsoft Press at:

www.microsoftvirtualacademy.com/ebooks

Download your free ebooks in PDF, EPUB, and/or Mobi for
Kindle formats.

Look for other great resources at Microsoft Virtual Academy,
where you can learn new skills and help advance your career
with free Microsoft training delivered by experts.

Microsoft Press

Free ebooks

From technical overviews to drilldowns on special topics, get
free ebooks from Microsoft Press at:

www.microsoftvirtualacademy.com/ebooks

Download your free ebooks in PDF, EPUB, and/or Mobi for
Kindle formats.

Look for other great resources at Microsoft Virtual Academy,
where you can learn new skills and help advance your career
with free Microsoft training delivered by experts.

From technical overviews to drilldowns on
special topics, get free ebooks from
Microsoft Press at:

www.microsoftvirtualacademy.com/ebooks

Download your free ebooks in three formats:

• PDF
• EPUB
• Mobi for Kindle

Look for other great resources at Microsoft
Virtual Academy, where you can learn new
skills and help advance your career with free
Microsoft training delivered by experts.

Get the latest news from Microsoft Press sent
to your inbox.

• New and upcoming books
•	 Special	offers
• Free eBooks
• How-to articles

Sign up today at
MicrosoftPressStore.com/Newsletters

Hear
about
it first.

MicrosoftPressStore.com

• Hundreds of titles available – Books,
eBooks, and online resources from
industry experts

• Free U.S. shipping

• eBooks in multiple formats – Read on your
computer, tablet, mobile device, or e-reader

• Print & eBook Best Value Packs

• eBook Deal of the Week – Save up
to 60% on featured titles

• Newsletter and special offers – Be
the first to hear about new
releases, specials, and more

• Register your book – Get
additional benefits

Visit us today at

	Cover
	Title page
	Contents at a glance
	Contents
	Chapter 2: Better security
	Always Encrypted
	Getting started with Always Encrypted
	Column master key definition
	Column encryption keys

	Creating a table with encrypted values
	Encryption types
	CREATE TABLE statement for encrypted columns
	Indexing and Always Encrypted
	Application changes

	Migrating existing tables to Always Encrypted
	Step 1: Build a new staging table
	Steps 2 and 3: Write a .NET application to encrypt the data and move it to the new table
	Step 4: Rename the table
	Step 5: Update the application’s connection string

	Row-Level Security
	Creating inline table functions
	Application using one login per user
	Application using one login for all users

	Creating security policies
	Using block predicates

	Dynamic data masking
	Dynamic data masking of a new table
	Dynamic data masking of an existing table
	Understanding dynamic data masking and permissions
	Masking encrypted values
	Using dynamic data masking in SQL Database

	Chapter 3: Higher availability
	AlwaysOn Availability Groups
	Supporting disaster recovery with basic availability groups
	Using group Managed Service Accounts
	Triggering failover at the database level
	Supporting distributed transactions
	Scaling out read workloads
	Defining automatic failover targets
	Reviewing the improved log transport performance

	Windows Server 2016 Technical Preview high-availability enhancements
	Creating workgroup clusters
	Configuring a cloud witness
	Using Storage Spaces Direct
	Introducing site-aware failover clusters
	Windows Server Failover Cluster logging
	Performing rolling cluster operating system upgrades

	Chapter 4: Improved database engine
	TempDB enhancements
	Configuring data files for TempDB
	Eliminating specific trace flags
	Trace flag 1117
	Trace flag 1118

	Query Store
	Enabling Query Store
	Understanding Query Store components
	Reviewing information in the query store
	Using Force Plan
	Managing the query store
	Tuning with the query store

	Stretch Database
	Understanding Stretch Database architecture
	Security and Stretch Database
	Identifying tables for Stretch Database
	Configuring Stretch Database
	Monitoring Stretch Database
	Backup and recovery with Stretch Database

	Chapter 6: More analytics
	Tabular enhancements
	Accessing more data sources with DirectQuery
	Modeling with a DirectQuery source
	Working with calculated tables
	Bidirectional cross-filtering
	Writing formulas
	Introducing new DAX functions
	Using variables in DAX

	R integration
	Installing and configuring R Services
	Server configuration
	Client workstation

	Getting started with R Services
	User permissions
	Compute context
	Data source
	Data exploration
	Data transformation
	Predictive model creation
	Model usage
	Model accuracy

	Using an R Model in SQL Server
	Model deployment
	Batch mode invocation of a model
	Individual scoring mode invocation of a model

	Chapter 7: Better reporting
	Report content types
	Paginated report development enhancements
	Introducing changes to paginated report authoring tools
	Report Designer
	Report Builder

	Exploring new data visualizations
	Tree map
	Sunburst

	Managing parameter layout in paginated reports

	Mobile report development
	KPI development
	Report access enhancements
	Accessing reports with modern browsers
	Viewing reports on mobile devices
	Printing without ActiveX
	Exporting to PowerPoint
	Pinning reports to Power BI
	Managing subscriptions
	Subscription description
	Subscription owner change
	Interface support for changing subscription status
	File share credentials
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

	About the authors
	Free ebooks
	Microsoft Press newsletter
	Microsoft Press store

