

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2009 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means

without the written permission of the publisher.

Library of Congress Control Number: 2009930292

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about

international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at

fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Active Accessibility, MSDN, Silverlight, Win32, Windows, Windows Server, and Windows

Vista are either registered trademarks or trademarks of the Microsoft group of companies. Other product and company

names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events

depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,

logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any

express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will

be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan

Developmental Editor: Devon Musgrave

Project Editor: Lynn Finnel

Editorial Production: Online Training Solutions, Inc.

Cover: Tom Draper Design

Body Part No. X15-66460

iii

Table of Contents

Introduction ... vii

1 The UI Automation Environment .. 1

Providers and Clients .. 1

Providers .. 2

Clients ... 2

Main Components ... 3

Automation Elements.. 3

The UIA Tree ... 3

Control Patterns .. 5

Control Types ... 5

Properties .. 6

Events .. 7

Custom Control Patterns, Properties, and Events ... 7

Planning Your Hierarchy ... 8

2 Designing the Logical Hierarchy ... 9

The Logical Hierarchy ... 10

Mapping Basics ... 11

Elements and Controls .. 11

Element Relationships and Navigation ... 12

Getting Started ... 14

How to Do It .. 16

Example: Employee Timecard .. 17

iv Table of Contents

Using the Logical Hierarchy for Planning Accessibility Settings 23

Keyboard Navigation .. 24

Graphics: Decorative vs. Contextual ... 24

Complex User Interfaces ... 24

Designing Element Functionality ... 25

3 Designing Your Implementation ... 27

Product Example Continued: Employee Timecard ... 28

Prep Work: Creating the Implementation Table .. 29

Process A: Control Maps to a UIA Control Type ... 31

Step 1: Gathering Required Control Patterns ... 31

Step 2: Gathering Required Control Type Properties 32

Step 3: Gathering Requirements for Additional Control

Functionality ... 36

Process B: Control Does Not Map to a UIA Control Type 40

Methods and Events ... 41

Framework-Dependent Decisions .. 42

Implementing Your Native UIA Solution .. 43

Rounding Up Native Solutions ... 43

4 Testing and Delivery .. 45

Accessibility Testing and Test Automation ... 46

Tools ... 47

Investigation Tools ... 47

UIA Verify Test Automation Framework .. 48

Keyboard ... 49

Users and AT Devices.. 50

Delivery ... 50

Conclusion: 7 Steps to a Better Computing World .. 51

References .. 51

 Table of Contents v

 Appendix A: Windows Automation API: Overview 53

Microsoft Active Accessibility and UI Automation Compared 54

Architecture and Interoperability .. 54

Microsoft Active Accessibility Architecture ... 55

UI Automation Architecture .. 56

Interoperability Between Microsoft Active Accessibility-Based

Applications and UI Automation-Based Applications 56

Limitations of Microsoft Active Accessibility ... 58

UI Automation Specification .. 58

UI Automation Elements .. 59

UI Automation Tree ... 60

UI Automation Properties .. 61

UI Automation Control Patterns ... 61

UI Automation Control Types .. 61

UI Automation Events ... 62

The IAccessibleEx Interface .. 62

Choosing Microsoft Active Accessibility, UI Automation, or

IAccessibleEx .. 62

 Appendix B: UI Automation Overview .. 65

UI Automation Components .. 66

UI Automation Header Files ... 66

UI Automation Model .. 67

UI Automation Providers .. 68

 Glossary ... 69

 Index ... 75

About the Authors

Jason Grieves is a Program Manager in the Windows Accessibility Group.

Jason works with students of all ages to identify their abilities rather than

disabilities. In turn, he finds solutions to use those abilities to live, work,

and play.

Masahiko Kaneko is a Senior Program Manager for UI Automation. A

program manager in accessibility at Microsoft for more than 10 years, he

has been involved with several releases of the Windows Operating System

as well as many other Microsoft products.

Technical Contributors

Larry Waldman has been a Program Manager working on Microsoft Office and accessibility

for more than four years. While working on Office, he has led research in graphics acces-

sibility, and recently became the driver for accessibility across the entire line of Office

products.

Annuska Perkins is a Senior Accessibility Strategist at Microsoft. She is passionate about

improving the usability and effectiveness of accessible technology solutions. She does product

planning and incubation, in collaboration with business groups across Microsoft.

Greg Rolander is a programming writer in the Windows Experience division. Greg writes the

documentation for the Windows SDK for the Windows Automation API, as well as several

other Windows components.

vii

Introduction
What comes to mind when you think of accessibility? If you’re like most people, you might

conjure up images of a wheelchair or perhaps someone who is blind. What about someone

with a broken arm, a child with a learning disability, or a 65-year-old who needs high-

prescription eyeglasses to read? When it comes to technology, accessibility pertains to a

wide range of people with a wide range of abilities, not just the folks with disabilities.

Accessible technology is technology that users can adapt to meet their visual, hearing,

dexterity, cognitive, and speech needs and interaction preferences. Accessible technology

includes accessibility options and utilities built into products, as well as specialty hardware

and software add-ons called assistive technology (AT) that help individuals interact with a

computer.

There are essentially two types of users of accessible technology: (1) those who need it,

because of disabilities or impairments, age-related conditions, or temporary conditions (such

as limited mobility from a broken arm), and (2) those who use it out of preference, for a more

comfortable or convenient computing experience. The majority of computer users (54 per-

cent) are aware of some form of accessible technology, and 44 percent of computer users use

some form of it, but many of them are not using AT that would benefit them (Forrester 2004).

A 2003–2004 study commissioned by Microsoft and conducted by Forrester Research

found that over half—57 percent—of computer users in the United States between the

ages of 18 and 64 could benefit from accessible technology. Most of these users did not

identify themselves as having a disability or impaired but expressed certain task-related

difficulties or impairments when using a computer. Forrester (2003) also found the

following number of users with these specific difficulties:

 One in four experiences a visual difficulty.

 One in four experiences pain in the wrists or hands.

 One in five experiences hearing difficulty.

Besides permanent disabilities, the severity and type of difficulty or impairment an individual

experiences can vary throughout a person’s life. Table I-1 lists the four key classes of disabil-

ities and the types of accessibility options, utilities, or AT devices your users might use to

address their difficulties or impairments.

Introduction viii

TABLE I-1 Possible AT solutions users might use to address their difficulties or

impairments

Class of Disability User Experience Without AT Possible AT Solutions

Vision

Mild (low vision, color

blindness)

Difficulty with legibility of soft-

ware and hardware interfaces

 Setting changes to font size

and colors

 Alternative font style and

rasterization

 Larger screens

Severe (blindness) Unable to use computer monitor,

need the option of receiving

information through hearing or

touch

 Screen reader (for text-to-

speech and sound cues)

 Audio description of video

 Refreshable Braille display

 Keyboard navigation

Dexterity

Mild (temporary pain, reduced

dexterity such as from a broken

arm) to severe (paralysis, maybe

carpal tunnel syndrome)

Using standard mouse or

keyboard is painful or difficult

 Fine-tuning mouse and

keyboard

 Software (on-screen) keyboard

and mouse alternative

 Speech recognition utility

 Alternative input device, such

as a joystick or head-tracking

mouse

Hearing

Mild (hard of hearing) to

severe (deaf)

Difficulty distinguishing words

and sounds or not at all, need to

receive information visually

 Volume adjustments

 Sounds supplemented by

visual cues

 Multimedia captioning

 Sign language

Cognitive

Mild (learning difficulties) to

severe (Alzheimer’s, dementia)

Difficulty with word recognition,

memory, concentration, and

reasoning; UI might be over-

whelming

 Reading and learning aids

 Word prediction programs

 Audio speech paired with

visual presentation

 Simplified UI

 Task reminders

 Introduction ix

By 2010, the number of accessible technology users is expected to rise to 70 million, up from

57 million users in 2003 (Forrester 2004). Among users who use built-in accessibility options

and utilities, 68 percent have mild or severe difficulties or impairments, whereas the remaining

32 percent have no difficulties or impairments (Forrester 2004). Among users who use AT

products, such as trackballs or screen magnifiers, 65 percent did not report health issues as

reasons for using AT products, but rather cited that these products make computers easier to

use, more comfortable, and more convenient, or that they wish to avoid developing a future

health issue (Forrester 2004).

If a majority of your users could benefit from your product being accessible, doesn’t it just

make sense to build an accessible product? If you have decided to do so, you are sending a

message to your customers that their needs matter. Populations in many countries are getting

older. Civil rights for people with disabilities are gradually being extended to encompass

digital inclusion. Governments are requiring procurement officials to purchase products that

are the most accessible (mandated in the U.S. by Section 508 of the Rehabilitation Act). For

technology producers, creating accessible products is just the right thing to do, and it makes

good business sense.

Who Should Read This Book
This book is intended to be an introduction to create accessible software products. If you want

to understand how to incorporate programmatic access and keyboard access into your inter-

faces and how accessibility fits into the software development cycle, this book is for you. If

you are a project manager or someone who is overseeing the development of an accessible

product, you should also find this book helpful in understanding how accessibility is inte-

grated at each stage of the development cycle.

What This Book Covers
As you might guess, accessibility should be integrated from the beginning of the product

development cycle, when the application or product is in the planning or design phase, rather

than later, when retrofitting your product for accessibility can be extremely costly—and

sometimes impossible, because part of accessibility development requires attention at the

architecture level. This book will guide you through the process of planning for the two crit-

ical pieces for accessibility, programmatic access and keyboard access, from the beginning of

the software development lifecycle and integrating it throughout. It is, therefore, suggested

that you first read the chapters in this book sequentially and then afterwards use this book as

a reference as you develop your product. This book will also show you how to map out the

logical hierarchy for your product and plan for implementation using UI Automation (UIA),

Microsoft’s accessibility API, to create products that work with assistive technologies.

Introduction x

Here is what to expect in each chapter:

 Chapter 1, “The UI Automation Environment,” provides definitions and an

overview of UIA and its role in accessibility.

 Chapter 2, “Designing the Logical Hierarchy,” walks you through the steps for

designing a logical hierarchy of your product, which will serve as a model for your

accessibility implementation.

 Chapter 3, “Designing Your Implementation,” guides you through the process

of designing the implementation of the controls in your UI.

 Chapter 4, “Testing and Delivery,” discusses testing for the programmatic access

and keyboard access in your product and documentation for delivery, as well as a

brief summary of steps for incorporating accessibility into your product.

The Basics
As mentioned, programmatic access and keyboard access are two critical pieces to accessi-

bility and are the basis for this book. Let’s go over these two areas a little further, as well as

some basic information and settings you should be aware of when developing for accessi-

bility.

Programmatic Access

Programmatic access is critical for creating accessibility in applications. Programmatic access is

achieved when an application or library of UI functionality exposes the content, interactions,

context, and semantics of the UI via a discoverable and publicly documented application pro-

gramming interface (API). Another program can use the API to provide an augmentative,

automated, or alternate user interaction. Basic information conveyed through programmatic

access includes: navigation, interactive controls, asynchronous changes to the page, keyboard

focus, and other important information about the UI.

Programmatic access involves ensuring all UI controls are exposed programmatically to the

AT. Without it, the APIs for AT cannot interpret information correctly, leaving the user unable

to use the products sufficiently or forcing the AT to use undocumented programming inter-

faces or techniques never intended to be used as an ―accessibility‖ interface. When UI controls

are exposed to AT, the AT is able to determine what actions and options are available to the

user. Without proper programmatic access, a user may receive useless, erroneous, or even no

information about what they are doing in the program.

 Introduction xi

Keyboard Access

Keyboard access pertains to the keyboard navigation and keyboard focus of an application.

For users who are blind or have mobility issues, being able to navigate the UI with a keyboard

is extremely important; however, only those UI controls that require user interaction to func-

tion should be given keyboard focus. Components that don’t require an action, such as static

images, do not need keyboard focus.

It is important to remember that unlike navigating with a mouse, keyboard navigation is

linear. So, when considering keyboard navigation, think about how your user will interact with

your product and what the logical navigation for a user will be. In Western cultures, people

read from left to right, top to bottom. It is, therefore, common practice to follow this pattern

for keyboard navigation, though there are exceptions to this practice.

When designing keyboard navigation, examine your UI, and think about these questions:

 How are the controls laid out or grouped in the UI?

 Are there a few significant groups of controls?

o If yes, do those groups contain another level of groups?

 Among peer controls, should navigation be done by tabbing around, or via special

navigation (such as arrow keys), or both?

The goal is to help the user understand how the UI is laid out and identify the controls that

are actionable. If you are finding that there are too many tab stops before the user completes

the navigation loop, consider grouping related controls together. Some controls that are

related, such as a hybrid control, may need to be addressed at this early exploration stage.

Once you begin to develop your product, it is difficult to rework the keyboard navigation, so

plan carefully and plan early!

Go further: For guidelines on designing keyboard focus and keyboard navigation, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Respect Your User

When developing accessible products, a key thing to keep in mind is to respect your end

user’s preferences and requirements. Whether they are selecting larger icons, choosing high

contrast, or using a screen reader, users configure their system settings for a more comfor-

table user experience. It is absolutely essential, then, that you allow system-wide settings to

work with your product. Overriding those settings through hard-coding might impede or

even prevent a user from accessing parts of your products.

Introduction xii

Visual UI Design Settings

When designing the visual UI, ensure that your product has a high contrast setting, uses the

default system fonts and smoothing options, correctly scales to the dots per inch (dpi) screen

settings, has default text with at least a 5:1 contrast ratio with the background, and has color

combinations that will be easy for users with color deficiencies to differentiate.

High Contrast Setting

One of the built-in accessibility features in Microsoft’s Windows operating systems is the High

Contrast mode, which heightens the color contrast of text and images on the computer

screen. For some people, increasing the contrast in colors reduces eyestrain and makes it

easier to read. When you verify your UI in high contrast, you want to check that controls, such

as links, have been coded consistently and with system colors (not with hard-coded colors) to

ensure that they will be able to see all the controls on the screen that a user not using high

contrast would see.

System Font Settings

To ensure readability and minimize any ―unexpected‖ distortions to the text, make sure that

your product always adheres to the default system fonts and uses the anti-aliasing and

smoothing options. If your product uses custom fonts, users may face significant readability

issues and distractions when they customize the presentation of their UI (through the use of

a screen reader or by using different font styles to view your UI, for instance).

High DPI Resolutions

For users with vision impairments, having a scalable UI is important. UIs that do not scale

correctly in high dpi resolutions may cause important UI components to overlap or hide other

components and can become inaccessible. Since the release of Windows Vista, the Windows

platform replaced large font settings with dpi configurations.

Go further: For more information on how to write high dpi applications, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

 Introduction xiii

Color Contrast Ratio

The updated Section 508 of the Americans with Disability Act, as well as other legislations,

requires that the default color contrasts between text and its background must be 5:1. For

large texts (18-point font sizes, or 14 points and bolded) the required default contrast is 3:1.

Go further: For more information on checking color contrast, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Color Combinations

About 7 percent of males (and less than 1 percent of females) have some form of color defi-

ciency. Users with colorblindness have problems distinguishing between certain colors, so it is

important that color alone is never used to convey status or meaning in an application. As for

decorative images (such as icons or backgrounds), color combinations should be chosen in a

manner that maximizes the perception of the image by colorblind users.

Go further: For more information on color combinations, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

How Accessibility Fits into the Development Cycle
Now that we’ve covered some of the basics, let’s talk about how accessibility fits into each

stage of the development cycle—requirements, design, implementation, verification, and

release. You can adapt this model to the development cycle for your product. Figure I-1

provides a comprehensive view of a traditional software development cycle and activities

you can do to incorporate accessibility into your product.

Introduction xiv

FIGURE I-1 The development cycle

 Introduction xv

Requirements Stage

There may be a variety of reasons why you may want to incorporate accessibility into your

product for a variety of reasons: you want to create software that’s accessible for a loved one,

you hope to sell your product to the U.S. government, you want to expand your market base,

your company or the law requires it, or you simply desire to do the right thing for your cus-

tomers. When you decide to create a new product or update an existing one, you should

know whether you will incorporate accessibility into your product.

Once you have set your requirements, generate personas that exemplify users of varying types

of abilities. Create scenarios to determine what design features will delight and assist your

users, and illustrate how your users will accomplish tasks with your product. Prioritize your

features, and make sure that all users can complete your use cases. Beware of blanks in your

specifications! Your goal is to ensure that your product will be usable by people of varying

abilities.

Go further: For more information on personas, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Design Stage

In the design stage, the framework you will use is critical to the development of your product.

If you have the luxury of choosing your framework, think about how much effort it will take to

create your controls within the framework. What are the default or built-in accessibility prop-

erties that come with it? Which controls will you need to customize? When choosing your

framework, you are essentially choosing how much of the accessibility controls you will get

―for free‖ (that is, how much of the controls are already built-in) and how much will require

additional costs because of control customizations. If accessibility was implemented in the

past, look at the design docs for those earlier versions to see how accessibility features were

implemented in them.

Once you have your framework, design a logical hierarchy to map out your controls (Chapter

2 covers this topic in more detail). If your design is too complex, or your framework won’t

even support the features that you are thinking of, it may not be worth the time, money, or

effort to develop them. Accessibility can sometimes be a way to measure the usability and

approachability of your product’s overall design. For instance, if you are finding that the

design of your keyboard navigation or logical hierarchy is becoming way too complex, it’s

likely that your user will have a hard time navigating your UI and will have a bad experience

with your product. Go back to the drawing board, and make sure you are following funda-

mental user experience (UX) and accessible design practices. It’s likely that somebody has

already addressed the same design issues you’re facing.

mhopkins
Sticky Note
Start here.

Introduction xvi

When you have designed your programmatic access and keyboard access implementation,

ensure that all accessibility API information is noted in the specs, including all the basic

development settings touched on earlier (settings for high contrast, system font defaults, a

dpi-aware UI, a 5:1 text-to-background contrast ratio, and color combinations that will be

easy for users with color deficiencies to differentiate). Keep in mind that it may be harder (or

easier) to adhere to certain accessibility settings, depending on the framework. Programmatic

access is often limited by the UI framework for the application, so it is crucial in the design

stage to reconfirm the standards and expectations of the accessibility API supported by the UI

framework. Keyboard navigations and the flexibility of accessibility implementations are

usually tied to the architecture of the UI framework.

It is absolutely critical to note that when designing your programmatic access, you should

avoid creating new custom controls as much as possible, because the cost for development,

documentation, and help on how to interact with the control is significant, and ATs may not

know how to interact with the control.

Implementation Stage

In the implementation stage, you will need to make sure that the chosen architecture and

specs will work. If the specs do not work, go back to the design stage, and figure out a more

effective or less expensive alternative.

When you implement the specs, be sure to keep the user experience in mind as you develop

your product. Accessibility personas are great for reminding you of who your users are!

Verification Stage

In the verification or test stage, ensure that all the specs were implemented correctly and that

the accessibility API is reporting correctly for programmatic access. Your accessibility API,

such as UIA, must expose correctly to AT. For testing, use both accessibility test tools and full-

featured, third-party accessibility aids. Write test cases and build verification tests for your

accessibility scenarios to ensure that all the specs were implemented correctly.

 Introduction xvii

Consider leveraging automated testing, and establish a process and metrics for accessibility

bugs. You want to have clear and consistent severity ratings for these problems. Such ratings

may look something like the following:

 High severity means that no workarounds are available for your target users, or the bug

blocks the user from completing the task.

 Moderate severity means that workarounds are available, or that the bug does not block

the user’s ability to complete the operation. Do not overlook moderate severity issues,

just because there is a workaround. These issues can sometimes introduce other,

significant usability or product quality issues.

 Low severity means that the bug’s impact to accessibility with workarounds is low.

The verification stage is a good time to start documenting all the accessibility options and

features of your product. Just be sure to create documentation for your users in accessible

formats! If you hope to sell your product to the U.S. government, you may also start funneling

this information into a Section 508 Voluntary Product Accessibility Template (VPAT), which is a

standardized form developed by the Information Technology Industry Council (ITIC) to show

how a software product meets key regulations of Section 508 of the Rehabilitation Act. You

absolutely want to address any high severity issues before the VPAT process, as any problems

with your product will be subject to VPAT documentation.

Before your final release, be sure to obtain and incorporate feedback from your customers

and partners throughout the development cycle. Include people with disabilities in your

usability studies and beta testing. Work with your usability team to plan for specific accessi-

bility studies. Include AT vendors in feedback programs, and collaborate with them to ensure

that their products work with yours. Ideally, you should not need to make any major changes

to your product at this stage. Any major (or expensive) changes should be reserved for your

next revision.

Go further: For more information on accessibility tools and declarations of conformance, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Release Stage

In the release stage, continue to engage with AT vendors and users. Include accessible docu-

mentation both internally and externally with your product, and collaborate with your

marketing group on go-to-launch activities and external messaging for your product.

Introduction xviii

Ready, Set, Go!
At this point, you should now have a general understanding of what accessibility is, the types

of AT your users may be relying on to use your product, the basic development settings you

should include in your product, and how accessibility fits into the development cycle. You are

now ready to learn more about the various components in the UIA architecture, how to

design a logical hierarchy, design your implementation, and how to test your implementation

and deliver your product. Through each stage of the process, you will continue to learn how

to set the foundation for accessibility through programmatic access and keyboard access. For

more information on the visual UI design settings mentioned earlier (such as high contrast,

default font, and high dpi settings), which are also necessary for an accessible product, check

out the sample of resources we provide to get you started.

Remember, designing and developing for accessibility is one of the best ways to give you

clarity about the user experience in general. By creating accessible products, you are working

to improve the user experience for all people. The next chapter proceeds with an introduction

to UIA, Microsoft’s accessibility API, which will help you integrate accessibility into your

product.

Find Additional Content Online As new or updated material becomes available that com-

plements your book, it will be posted online on the Microsoft Press Online Developer Tools Web

site. The type of material you might find includes updates to book content, articles, links to com-

panion content, errata, sample chapters, and more. This Web is available at www.microsoft.com/

learning/books/online/developer, and is updated periodically.

Support for This Book
Every effort has been made to ensure the accuracy of this book. As corrections or changes are

collected, they will be added to a Microsoft Knowledge Base article.

Microsoft Press provides support for books at the following Web site:

http://www.microsoft.com/learning/support/books/

 Introduction xix

Questions and Comments

If you have comments, questions, or ideas regarding the book, or questions that are not

answered by visiting the sites above, please send them to Microsoft Press via e-mail to

mspinput@microsoft.com.

Or via postal mail to

Microsoft Press

Attn: Engineering Software for Accessibility Editor

One Microsoft Way

Redmond, WA 98052-6399.

Please note that Microsoft software product support is not offered through these addresses.

References
Forrester Research, Inc. 2004. ―Accessible Technology in Computing: Examining Awareness,

Use, and Future Potential.‖ Cambridge, MA: 22–41.

————. 2003. ―The Wide Range of Abilities and Its Impact on Technology.‖ Cambridge, MA:

7–18.

 1

Chapter 1

The UI Automation Environment
Intended for interoperable implementations by other companies, Microsoft’s UI Automation

(UIA) Community Promise is a specification that provides information about Microsoft's

accessibility frameworks, including Active Accessibility (MSAA), UI Automation (UIA), and its

shared implementations. In this chapter, we provide a summary of descriptions from the UIA

Community Promise to show how the components of UIA fit together to enable accessibility.

UIA provides programmatic access to UI controls on the desktop, enabling assistive technol-

ogy (AT) products, such as screen readers, to provide information about the UI to end users.

ATs enable the user to manipulate the UI by means other than the standard mouse and

keyboard, such as through speech recognition.

UIA improves upon Microsoft’s legacy accessibility framework, MSAA, by aiming to address

the following goals:

 Enable efficient access and security over MSAA’s architecture

 Expose more robust information about the UI

 Offer interoperability with MSAA implementations

 Provide developers the option of using either native interfaces or managed interfaces

For demonstration purposes, examples are in native code (unmanaged interfaces based on

COM); however, the same principles and techniques are applied to managed practices (the

programming model of the Microsoft .NET Framework). Whether you will use native or

managed code depends upon your framework and preferences.

Go further: For more information on the UIA Community Promise, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Providers and Clients
In UIA, applications, such as word processing programs, are called Providers. ATs, such as

screen readers, are called Clients. Providers expose properties and features of the UI by

implementing UIA interfaces. Clients can then obtain information about the UI through a

client interface from the UIA framework.

Providers communicate to Clients through UIA Events. Events are crucial for notifying Clients

of changes to the UIA Tree (discussed later in this chapter), UI states, or UI controls. Unlike

 Engineering Software for Accessibility 2

WinEvents used in MSAA, UIA Events use a subscription mechanism, rather than a broadcast

mechanism, to obtain information. UIA Clients register for UIA Events for specific user inter-

faces or even parts of the UI and can also request that some UIA Properties and Control

Pattern information be cached along with registration for better performance.

Figure 1-1 is a simplified illustration of a UIA Provider and Client.

FIGURE 1-1 Simplified illustration of a UIA Provider and Client

Providers

An application may support UIA through one of two ways:

 Designing the UI based on standard framework controls and libraries that support UIA

 Implementing the UIA Provider interfaces

The following are just some of the common actions performed by UIA Providers:

 Expose UI controls by describing their functionality through Control Patterns, Properties,

and Methods

 Expose the relationships of UIA Elements through the UIA Tree

 Report changes and actions related to the UI by raising UIA Events

Clients

UIA Clients can perform many different actions. The following are just some of the common

actions performed:

 Search for elements within the UIA Tree

 Navigate among UIA Elements

 Chapter 1 The UI Automation Environment 3

 Subscribe to UIA Events

 Manipulate the UI by using UIA Control Patterns

Main Components
Now that you have a general sense of how UIA works, let’s talk further about the main

components of the framework: the Automation Elements and the UIA Tree.

Automation Elements

UIA exposes every component of the UI to Client applications as an Automation Element.

Elements are contained in a tree structure, with the desktop as the root element.

Automation Elements are associated with pairs of Properties and Control Patterns, represent-

ing the functionality of an element in the UI. One of these properties is the UIA Control Type,

which defines its basic appearance and functionality as a single recognizable entity, such as a

button or check box. Table 1-1 lists a few Control Types and Patterns associated with a typical

Automation Element.

TABLE 1-1 Example set of Control Types and Patterns associated with a typical

Automation Element

Name Control Type Control Pattern

OK Button Invoke

Open ComboBox Value, Expand/Collapse

Installed Programs List Selection, Scroll

The UIA Tree

The UIA Tree allows UIA Clients to navigate through the structure of the UI. The root element

of the Tree is the desktop, whose child elements are programs running on it, such as an

application or the operating system’s UI. Each of the child elements can contain elements

representing parts of the UI, such as menus, buttons, toolbars, and lists. These elements in

turn can also contain sub-elements, such as items in a list.

The UIA Tree is not a fixed structure and is seldom seen in its totality, because it might contain

thousands of elements. Parts of it are built as they are needed, and it can undergo changes as

elements are added, moved, or removed. UIA enables reparenting and repositioning, so that

an element can move to another part of the tree, despite the hierarchy imposed by ownership

of the underlying architecture.

 Engineering Software for Accessibility 4

Navigation in the UIA Tree is hierarchical: from parents to children and from one sibling to

the next. UIA Providers support the UIA Tree by implementing navigation among items within

a fragment, which consists of its root and sub-elements. Simple parts of the UI, however, do

not need navigation implemented. The UIA framework manages navigations between frag-

ments based on the underlying architecture.

A simple UIA Provider can be seen in Figure 1-2. Created on a Win32 framework, the Email

Address window contains two child elements: the Email text label and its corresponding edit

box. The Email text label and the edit box are siblings and would be positioned next to each

other in the fragment of the UIA Tree. In Chapter 2, “Designing the Logical Hierarchy,” we

discuss in more detail why correctly mapping sibling relationships is important for navigation

and giving users of AT context about the UI.

FIGURE 1-2 UIA Provider with two child elements: the Email text label and its corresponding edit box

UIA offers three default views of the UIA Tree for Clients. Clients can customize the view by

defining new conditions for the UIA Properties.

 Raw view The raw view is a UIA Tree with no filtering. All elements are available

in this view.

 Control view The control view of the UIA Tree simplifies the AT product's task of

describing the UI to the end user and helping that end user interact with the

application. The view maps to the UI structure perceived by an end user. It includes

all Automation Elements that an end user would understand as interactive or

contributing to the logical structure of the control in the UI. Examples of UI items

that contribute to the logical structure of the UI, but are not interactive themselves,

are list view headers, toolbars, menus, and the status bar. Non-interactive items

used simply for layout or decorative purposes will not appear in the control view.

An example would be a panel that is used only to lay out the controls in a dialog

box, decorative graphics, and static text in a dialog box. UIA Providers can specify

the elements appearing in control view by setting the UIA IsControlElement

Property to True.

 Chapter 1 The UI Automation Environment 5

 Content view The content view of the UIA Tree is a subset of the control view. It

contains UI items that convey the true information in a UI, including UI items that

can receive keyboard focus and some text that are not labels for other UI items

nearby. For example, the values in a drop-down combo box will appear in the

content view because they represent the information being used by an end user.

UIA Providers can specify the elements appearing in content view by setting the

UIA IsContentElement Property to True.

Control Patterns

Control patterns represent common UI behaviors (such as invoking a button) and support the

properties, methods, and events. Each UIA Control Pattern is its own interface with properties

and methods that provide a way to categorize and expose a control's functionality, indepen-

dent of the UIA Control Type or the appearance of the control. Table 1-2 provides examples

of the functionality represented by different UIA Control Patterns.

TABLE 1-2 Examples of functionality for different Control Patterns

Functionality Control Pattern

Ability to share three states of on / off /

indeterminate
Toggle

Ability to support a numeric value within a

range
RangeValue

Ability to support a string value Value

Ability to move / resize / rotate Transform

Go further: For more information on UIA Control Patterns, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Control Types

UIA Control Types are well-known identifiers that can be used to indicate what kind of con

trol a particular element represents, such as a Button, Check Box, Combo Box, Data Grid,

Document, Hyperlink, Image, ToolTip, Tree, or Window. Each Control Type has a set of

conditions, which include specific guidelines for the UIA Tree, Property values, Control

Patterns, and Events that a control must meet to use a Control Type defined in the UIA

Specification.

 Engineering Software for Accessibility 6

Having a well-known identifier makes it easier for Client programs to determine what kinds of

controls they must interact with in the UI. The Control Types included with UIA offer a clearer

identification for the controls than ones defined by MSAA’s accRole property.

Controls do not have to set a Control Type, however. If there is no Control Type that

represents your control well, set the Control Type to “custom,” and expose your control

properly through the patterns and properties (including the LocalizedControlType

property) that makes the most sense for your control. The UIA Specification defines required,

recommended, or prohibited control patterns and properties. Custom controls can implement

additional Control Patterns or Properties while being mapped to a specific Control Type.

Go further: For more information on UIA Control Types, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Properties

In UIA, there are two kinds of properties that provide information about a UI element:

 Automation Element Properties Properties that are applicable to most

elements. For example, two properties that apply to all Automation Elements are

the Name and AutomationId properties. Having these properties properly filled is

highly recommended because most Clients use these properties for every

Automation Element, but there may be times when the Name property may be

blank for valid reasons. For example, elements used solely for layout purposes are

often kept nameless, but interactive controls should not be left with a blank Name

property.

 Control Pattern Properties Properties specific to the functionality represented

in the Control Pattern interfaces. For instance, the UIA Value Pattern will support

the Value property to represent the context of controls such as a progress bar or

calendar.

To ensure that you are providing the right information for clients to consume, be sure to

adhere to the Specification. Certain properties have very strict requirements set. At other

times, sometimes leaving the default property values is the right course of action.

Go further: For more information on UIA Properties, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

 Chapter 1 The UI Automation Environment 7

Events

UIA Events correspond to activities occurring in the UI and are crucial pieces of information

for UIA Clients. As mentioned, UIA uses a subscription model for UIA Events; a UIA Provider

will not process an Event unless a Client is listening for them. Table 1-3 lists the four different

types of UIA Events.

TABLE 1-3 UIA Events

Event Description

Property change Raised when a UIA property changes. For example, if a Client needs to monitor an

application's check box control, it can register to listen for a Property change Event

on the ToggleState property of the Toggle Pattern. When the check box control

is checked or unchecked, the property change Event for the Property gets raised.

Element action Raised when an action is made in the UI, often related to UIA Control Patterns. For

example, when an item is selected, an ElementSelected Event gets raised.

Structure change Raised when the structure of the UIA Tree changes. The structure changes when

new UI items become visible, hidden, or removed on the desktop.

General event Raised when actions of global interest to the Client occur, such as when the focus

shifts from one element to another, or when a window closes.

Go further: For more information on UI Automation Events, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Custom Control Patterns, Properties, and Events

UIA features several Control Patterns, Properties, and Events, but the Windows implemen-

tation of UIA also offers further extensibility by registration of custom control patterns,

properties, and events. As of today, this functionality is not available for managed applications

of both UIA Providers and Clients.

New custom control patterns, properties, and events are only necessary if the standard UIA

Control Patterns, Properties, and Events are not sufficient. Because of the extraordinary costs

associated with creating new custom control patterns, properties, and events, you should

avoid doing so whenever possible.

Go further: For more information on UIA Custom Control Patterns, Properties, and Events and

future interoperable specifications, go to http://go.microsoft.com/fwlink/?LinkId=150842.

 Engineering Software for Accessibility 8

Planning Your Hierarchy
Now that we have covered how each of the components of UIA fit together and enable

programmatic access, you are ready to learn how to design a navigational tree, called the

logical hierarchy, for your product. In the next chapter, we walk you through the steps for

designing a logical hierarchy, using an employee timecard application as an example.

 9

Chapter 2

Designing the Logical Hierarchy
Imagine that you need to use WordPad, and you need to access it from the Start menu. How

would you open the menu if you couldn’t see the screen? How would you get to the applica-

tion among the different items in the menu? How would you know where you were in the

menu and what item your keyboard focus was on? By thinking about these questions, you

have put yourself in the shoes of some of your users who need a way to navigate and interact

with your UI.

Unlike users who can use a mouse and monitor to navigate the UI, users who use a screen

reader primarily use a keyboard for navigating through the UI and audio devices to listen to

where they are in the UI. It is, therefore, extremely important that the navigation and structure

of the UI be useful, accurate, and logical. The following steps during the design phase will

help to ensure that your product provides such structure and navigation:

 1. Design what your UI should look like and how it will operate. The navigation and

programmatic access of the UI should closely match its visual counterpart. If you make

changes to the visual design, then you will need to make changes to the application’s

navigation and programmatic access as well.

 2. Determine which UI framework you are going to use. Each framework has a different set

of controls, flexibilities, and accessibility support. Depending on your UI scenarios, a

particular choice may work better or worse. Take time to assess your scenarios with the

framework’s accessibility support. You may end up with painful costs because of your

ignorance about the framework’s limitations.

 3. Identify the controls to create the UI. Use framework controls whenever possible and

not custom controls. When using framework controls, use them as they were intended.

Any irregular or nonstandard use of a control often leads to bad usability and

accessibility.

 4. After studying the logic of your navigation and the structure of your UI, design a logical

hierarchy, which will enable you to plan out the accessibility in your product. An acces-

sible solution is only possible when you fully understand the logic and structure of your

own UI.

 5. Plan for UI Automation (UIA) for any of your custom controls identified in step 3, includ-

ing those custom controls based on framework controls. Remember that creating new

custom controls is extremely costly. If you have no custom controls, you can skip this

step.

 Engineering Software for Accessibility 10

In this chapter, we focus on step 4, how to design a logical hierarchy for your UI, and the

next chapter walks through step 5 in detail. Both chapters may provide you with helpful

information for steps 1 through 3, which may be part of the business planning and

investigation of your application.

The Logical Hierarchy
What do we mean by the term ―logical hierarchy?‖ When AT programs, such as screen

readers, read your UI, visual presentation is not sufficient; you must provide a programmatic

alternative that makes sense structurally to the users. A logical hierarchy can help you do that.

It is a way of studying the layout of your UI and structuring each element so that users can

understand it. A logical hierarchy is mainly used:

 1. To provide programs context for the logical (reading) order of the elements in the UI.

 2. To identify clear boundaries between custom controls and standard controls in the UI.

 3. To determine how pieces of the UI interact together.

A logical hierarchy is a great way to address any potential usability issues. If you cannot

structure the UI in a relatively simple manner, you may have problems with usability in your

UI. A logical representation of a simple dialog box should not result in pages of diagrams. For

logical hierarchies that become too deep or too wide, you may need to redesign your UI.

Figure 2-1 shows what an e-mail address window containing two child elements and its

corresponding logical hierarchy looks like.

FIGURE 2-1 UIA Provider with two child elements and its corresponding logical hierarchy

When diagrammed, a logical hierarchy will look like a tree, but this ―tree-like‖ structure should

not be confused with the UIA Tree. The logical hierarchy is a tool in your specification used to

help design the user experience. It is an abstraction of your application’s UI and the founda-

 Chapter 2 Designing the Logical Hierarchy 11

tion for accessible software design. Designing a logical hierarchy will also help you understand

how to map the control’s functionality and features in UIA, which we cover in the next

chapter, and it will help to reveal any constraints or hidden costs in advance, as well.

By taking the time to identify and design the logical hierarchy of your UI, you will be on your

way to turning over a very usable and accessible product.

Mapping Basics
To create a logical hierarchy, you will examine the layout of your UI to determine how you

want your user to navigate through the elements. Then, for each control, you will identify

whether they are common or custom controls and map them accordingly. Before we walk

through these steps in greater detail, let’s go over some basics you should know about

elements, controls, element relationships, and navigation when mapping a logical hierarchy.

Elements and Controls

UI elements are the most basic ―building blocks‖ in a logical hierarchy. They are either con-

trols provided by the framework or are exposed as an element with separate functionality by

other elements.

Some frameworks have controls that other frameworks do not. If you are using the frame-

work’s control as is, you do not need to break down the control any further and map out any

child elements that make up that control in your logical hierarchy. The framework already

provides a majority of the programmatic access for the control, so the control can be mapped

as a single element. For example, because Win32 common controls have a ―Menu‖ control,

you would only need to map the Menu control as a single element.

On the other hand, in the case of a developer using HTML, the ―Menu‖ control does not exist.

So, the individual elements that make up the control, such as a menu bar, menu items, and

pop-up menus, would need to be represented in a logical hierarchy to ensure that

programmatic access for these items are implemented.

Naming Elements

As you learned in Chapter 1, ―The UI Automation Environment,‖ AT programs and their users

depend on the Name Property of an element, so be sure to include an accessible name with

each element that you map. Consistent naming practices are very important. An accessible

name should be consistent with the UI text on-screen, for example.

For images and visual UI elements, the accessible name can sometimes be alternative text,

which gives users context about the graphic. For instance, an icon with only an exclamation

mark may have a name of ―Alert‖ to tell users what the graphic is about.

 Engineering Software for Accessibility 12

Containers

Any element that bounds another object or group of objects is called a ―container.‖ For

example, a data grid is a container, composed of individual grid items. Those individual grid

items may also have elements that contain other elements.

When designing a logical hierarchy, you should only focus on containers that are useful for UI

operations and providing context. Avoid including any grouping elements that are purely

programmatic or only for visual design. For example, do not include a layout element that

only adds redundancy or a graphical element that is hardly named (such as a background

image for branding). Without these types of elements, AT clients can more easily filter

elements when navigating different views of the UIA Tree.

Element Relationships and Navigation

You should already be familiar with parent/child and sibling relationships. Every element has a

relationship, relative to the application window, which contains all UI elements in the applica-

tion. Elements that share the same parent, such as the application window, are siblings.

The order in which sibling elements appear in the logical hierarchy is particularly important

because the exact model will be used by screen readers and other AT to relay to users what

they will hear and experience.

Take a look at how the elements in a data entry group box are numbered in Figure 2-2.

FIGURE 2-2 Elements in a data entry group box using a poor navigational order

 Chapter 2 Designing the Logical Hierarchy 13

If a screen reader were to read and follow the UI structure by the exact order in Figure 2-2, it

would read the UI incorrectly, as in Figure 2-3. It may read the UI as follows: ―...Data Entry,

Date, Hours, Work Log, Work Log date: Monday, March 2, 2009, (blank) nameless editable

text, (blank) nameless editable text...‖ The user would have a very difficult time trying to fill

out the crucial pieces of information in their timecard. Because the Date, Hours, and Work

Log labels are not read with their corresponding fields, the user may have a hard time

entering information for these three things.

FIGURE 2-3 UI representation of a data entry group box to a screen reader following the poor navigational

order of Figure 2-2

Be sure to examine the layout of your UI and the relationships between elements. How would

you want your user to read through the interface? What navigational order makes the most

sense? What sequence would allow a user to understand the UI most intuitively? Determine

what controls relate to each other (for example, a label and its corresponding edit box).

Someone who is blind must be able to navigate your UI in a logical and easy way. It is not

surprising that accessible UI design shares a lot of best practices and guidelines with usability

and UI design guidelines.

 Engineering Software for Accessibility 14

Standard Mapping Scheme: Top to Bottom, Left to Right

Although the standard mapping of the logical hierarchy follows a top-to-bottom, left-to-right

scheme (a depth-first search tree traversal pattern) of the UI, AT clients can interpret the

logical hierarchy however they want. That is, the clients can examine or navigate through the

elements following a different pattern, such as from the bottom up or right to left. As long as

the parent/child and sibling relationships are represented correctly and optimally, the logical

hierarchy can be localized to fit the users’ needs.

Getting Started
There are four things that you need before you start to design a logical hierarchy:

 1. Format How you format your logical hierarchy is up to you, but your engineering

team should decide how you want it represented before you begin mapping. You can

map the logical hierarchy visually using a node-link diagram (as in Figure 2-1) or

textually using an outline or table format.

Mapping in an outline format may look something like the following:

I. Window: Product Name

A. Element: Name (top-level child)

B. Element: Name (top-level child)

a. Element: Name (second-level child)

b. Element: Name (second-level child)

i. Element: Name (third-level child)

C. Element: Name (top-level child)

Mapping in a table format may look something like Table 2-1.

TABLE 2-1 Template for Mapping in a Table Format

Window: Product Name

Parent Element Child Elements

Element: Name (top-level child) Element: Name (second-level child)

 Element: Name (second-level child)

 Element: Name (third-

level child)

Element: Name (top-level child) Element: Name (second-level child)

 Chapter 2 Designing the Logical Hierarchy 15

When mapping with a diagram, use the mapping symbols in Table 2-2 for your logical

hierarchy.

TABLE 2-2 Logical Hierarchy Mapping Symbols

Symbol Represents

Circle O UI element

Solid line — Parent/child relationship

Ellipsis … More siblings or repeat elements

Asterisk * Custom control

In addition, you can use color to further differentiate custom controls from standard

controls.

 2. UI prototypes Paper prototypes, computer drawings, UI code mockups, etc. Any

prototype will do, just make sure you have enough variations of the prototype to

consider different modes of the UI if there are any.

 3. Control libraries of your choice You will refer to the control library to determine

whether a control is provided by the UI framework, as well as to help you correctly

identify the control type to add to your logical hierarchy.

 4. UIA Specifications for Control Types, Patterns, and Properties The technical

reference will help you determine whether a custom control can map to a UIA Control

Type or other Properties. The specifications can be found at http://go.microsoft.com/

fwlink/?LinkId=150842. Table 2-3 lists 39 Control Types supported in UIA.

TABLE 2-3 Control Types supported in UI Automation

UI Automation Control Types

Button

Calendar

CheckBox

ComboBox

Custom

DataGrid

DataItem

Document

Edit

Group

Header

HeaderItem

Hyperlink

Image

List

ListItem

Menu

MenuBar

MenuItem

Pane

ProgressBar

RadioButton

ScrollBar

Separator

Slider

Spinner

SplitButton

StatusBar

Tab

TabItem

Table

Text

Thumb

TitleBar

ToolBar

ToolTip

Tree

TreeItem

Window

 Engineering Software for Accessibility 16

How to Do It
The steps in this section should provide you with a quick start on how to design your logical

hierarchy. The example that follows provides further discussion.

 1. The product window is parent to all the elements contained in it. Map the product win-

dow at the top of your logical hierarchy, and label the element using its Control Type

and the name you assign it, such as the ―Window: Email Address‖ node in Figure 2-1. If

you are using an outline or a table format, this element would be the first item in your

outline or a header 1 (see the previous section, ―Getting Started‖).

 2. Examine the layout of your UI to determine how you want your user to navigate

through the elements in it. Note which elements are grouped together or relate to one

another, such as labels and their corresponding fields. Navigation between siblings

should be by tab stops and arrow keys for elements within a grouping. As you design

your logical hierarchy, you must ensure that the structure reflects the parent/child and

sibling relationships of your UI to allow for AT users to easily navigate through it.

Prototyping can help with this step.

 3. Identify custom controls, whether brand new or ones that have been modified with a

different functionality on an existing framework control. For instance, the Win32 list

view control does not support a check box, but if you modified the control so that it

does have a check box, you would identify the control as a custom control.

 4. For each programmatically significant element (that is, an element necessary for UI

operations or for giving ATs context), map the control type and name the element (and

child elements) as follows:

o Standard Map the node as a single element if the control is based on standard

control customizations. For a standard combo box, for instance, you would not

need to map an element for the open and close button or list box in the control

because the detailed mapping within the ―combo box control‖ is already implied.

o Custom Map the individual elements that make up that control in the logical

hierarchy, if the control is new or customized based on a standard control of the

UI framework. If possible, try to find an associated UIA Control Type. Chapter 3,

―Designing Your Implementation,‖ touches more on this topic.

Table 2-4 lists a series of questions that will help you identify elements that should be

included in your logical hierarchy.

 Chapter 2 Designing the Logical Hierarchy 17

TABLE 2-4 Questions to identify an element to be mapped in a logical hierarchy

Question Considerations

Question 1: Does the

framework provide the

control?

If yes, map the control as a single element in your logical

hierarchy, and move on to the next control in your UI. If no,

proceed to Question 2.

Question 2: Does the control

map to a Control Type in UIA?

Each UIA Control Type has required and optional Properties and

Control Patterns. If it is difficult to map an element to a UIA

Control Type, identify the types of UI functions it exhibits, and

map the functionalities to the appropriate UIA Control Patterns

and Properties.

While UIA allows for a ―Custom‖ Control Type, a control can be

identified by the levels (different elements) or enhancements

(different functionalities) used for the existing Control Type. For

example, the RangeValue Control Pattern could be an enhance-

ment in a combo box Control Type used to support loading

status information.

If the element does not meet any of the specifications for a UIA

Control Type, consider splitting the element into sub-elements

if the control is a mix of multiple Control Types, and return to

Question 1 for each sub-element.

Question 3: Can you interact

with parts of the control with

the keyboard alone?

Every action that is provided by the mouse must also be

provided by the keyboard. Be careful not to confuse selection

for focus. Mouse ―hot tracking‖ is also sometimes confused as

selection or focus. If keyboard-only navigation becomes too

difficult, consider an alternate way of grouping the elements in

your UI or redesigning the hierarchy.

Question 4: Can the control’s

functionality be defined com-

pletely by Control Patterns and

Properties?

You may have already answered this question in Question 2 if

the element maps to a UIA Control Type. Make sure all possible

Patterns and Properties are mapped based on UI scenarios and

functions, and reconfirm that you’re not violating rules and

requirements for each Control Type specification.

If the answer to this question is no, identify missing features and

functions. Consider using a different Control Type or logical

structure. Breaking down the control into smaller elements can

sometimes help avoid missing features or functions.

Example: Employee Timecard

To demonstrate how to design one logical hierarchy, we will use an employee timecard

application built on a Win32 framework, as an example. Figure 2-4 shows what the timecard

looks like.

 Engineering Software for Accessibility 18

FIGURE 2-4 Employee timecard built on a Win32 framework

In the timecard, employees can:

 Click a date on the grid to see their hours or work log notes populate in the Data Entry

fields.

 Use the arrow keys on the keyboard to navigate through the days in the grid.

 Enter their hours in the Hours field.

 Enter notes about their work in the Work Log field.

 Click the Previous Week button to see the previous week, and the Next Week button for

the next week.

o At the start of the fiscal year, the Previous Week button will not be available

because the system archives the previous year, and employees will no longer have

access to those weeks.

o If employees are on the current week, the Next Week button will not be available

because they cannot log their hours or work for future weeks.

 Chapter 2 Designing the Logical Hierarchy 19

 Save an entry without submitting.

 Submit a week for payroll review.

Except for the grid, all controls in the timecard are standard Win32 controls.

Navigational Order

Looking at the timecard, we see that there are two visual containers in the UI: the grid, made

up of columns for each day of the week, and the Data Entry box, which contains the Date,

Hours, and Work Log fields. Because these items are grouped together, and the fields within

the container are closely related, we must ensure that the order in which we map these items

must follow one another logically. Following a general top-to-bottom, left-to-right scheme,

Figure 2-5 shows the navigational order in which we will map the logical hierarchy.

FIGURE 2-5 Navigational order for mapping the timecard’s logical hierarchy

 Engineering Software for Accessibility 20

Mapping the First Element: Window

Now, we can start mapping. The window element containing the timecard application is

mapped at the top of the logical hierarchy and named ―Window: Timecard.‖

Standard Controls: First Three, Top-Level Children

The next three controls are the calendar image, the ―Welcome, Yukako Souza!‖ label next to it,

and the Previous Week push button. Looking at the Win32 control library, we see that the

framework provides controls for these items, so they are standard controls and can be

mapped as single elements on our logical hierarchy.

Below the window element, we plot the first three, top-level child elements from left to right

according to their numerical navigational order (Figure 2-6). To indicate the parent-child

relationships to the window, we draw lines from the child elements to the parent element.

FIGURE 2-6 First three, top-level child elements of the employee timecard

Custom Control: Grid

The next control that we need to map is the grid. Looking at the Win32 control library, we see

that there is not a control that captures all of the functionality of our timecard grid. It is,

therefore, a custom control, which means we must break down the grid control into elements

that make up the UI fragment for that control (as it might be seen in the UIA Tree). But which

elements do we map? Using the questions in Table 2-4, we can identify these elements:

 Question 1: Does the framework provide the control? No. We move onto Question 2.

 Question 2: Does the control map to a Control Type in UIA? Yes. Looking at the UIA

Specification for some sort of grid control, we see that our timecard grid supports the

requirements for the DataGrid control. We also see that the required tree structure

includes any headers and data items. In our timecard, the header is the row of labels

running underneath the columns (Su, M, T, W, Th, F, and Sa), and the columns are the

data items.

 Chapter 2 Designing the Logical Hierarchy 21

Our logical hierarchy now looks like Figure 2-7. Note that because there are several grid item

and header elements, we mark those nodes with an ellipsis to indicate that there is more than

one element for that Control Type (see Table 2-1 for mapping symbols).

FIGURE 2-7 Grid element added to the employee timecard’s logical hierarchy

Determining the elements to map for the grid may have seemed fairly straightforward, but

sometimes it is not that easy. Let’s say that we weren’t sure about the grid’s functionality.

Instead of mapping the grid to the DataGrid control, we make the mistake of identifying the

columns as push buttons, because when we click them, they interact very much like push

buttons. Let’s see how we might have worked through this process.

 Question 1: Does the framework provide the control? No. We move onto Question 2.

 Question 2: Does the control map to a Control Type in UIA? Yes. When we click one of

the columns, the interaction is very much like clicking a push button. For now, let’s say

that the columns are all push buttons, which can be mapped to the Button Control Type

in UIA.

 Engineering Software for Accessibility 22

o Does the element meet the UIA Control Type Specification requirements com-

pletely? No. We see that one of the Properties for the Button control is that

buttons are self-labeled by their contents, as with an ―OK‖ or ―Save‖ button. In

our timecard, our ―buttons‖ (the clickable columns) are not labeled as such, but

instead have labels with the days of the week running underneath them. We could

argue that the number of hours that appear on the columns are labels for the

―buttons,‖ but the value (―8‖ for 8 hours, for instance) does not accurately describe

the column nor is it constant (some days may not even have any hours entered,

for instance). We must, therefore, start the process over again.

Taking a step back and looking at the grid as a whole, we see that that the grid is (and by

definition, should be) made up of rows and columns. Each day is a clickable column, and the

group of labels that runs in a row underneath the columns is actually a header for the days of

the week. Looking at the UIA requirements for the DataGrid Control Type, we see that a data

grid must have data items within that control. At this point, we can deduce that the clickable

columns are data items (and not buttons). To verify, we check the requirements for the

Control Type in the UIA Specification and confirm that the clickable columns meet the con-

ditions for the DataItem Control Type. The columns are, in fact, data items, elements that we

can map in a logical hierarchy. A close examination of the UIA Specification can save you time

and answer a lot of design questions because the structures for controls are clearly defined.

Container: Data Entry Group Box

The remaining controls are all Win32 common controls and can be mapped as single,

standard elements. As mentioned earlier, however, the Data Entry group box is a visual

container in the UI for the Date, Hours, and Work Log fields and their corresponding labels.

We must be sure to reflect these parent/child relationships in the logical hierarchy. Figure 2-8

illustrates what the completed logical hierarchy looks like for the timecard application.

 Chapter 2 Designing the Logical Hierarchy 23

FIGURE 2-8 Completed logical hierarchy for employee timecard

Using the Logical Hierarchy for Planning Accessibility
Settings

After plotting out the elements of your UI, the logical hierarchy can be used to assist with

planning other accessibility settings, such as keyboard navigation and graphics.

 Engineering Software for Accessibility 24

Keyboard Navigation

Because your controls are already laid out in a logical hierarchy, it is easy to design your

keyboard navigation. Controls that the user can interact with, such as buttons, links, or list

boxes, should receive keyboard focus and may need to be part of a tab-stop loop in the

keyboard navigation. Users should be able to move between controls using the TAB key and

SHIFT+TAB. For grouped elements, you may need to ensure sub-navigation routines using

arrow keys within two dimensional grids, or even CTRL+TAB to move between the grouped

elements. If your UI supports multiple-selection, you may need to support SHIFT+RIGHT

ARROW and SHIFT+LEFT ARROW key combinations.

Go further: For more information on designing keyboard navigation and UI design, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Graphics: Decorative vs. Contextual

Your logical hierarchy can also help you identify decorative elements from contextual

elements in your UI and the order in which they should be read by an AT program. Because

the logical hierarchy is a rather primitive representation of your UI design, you should not

have very many decorative UI elements in the hierarchy, because the user does not typically

need to interact with graphics. Only graphics that play a crucial role in the UI’s messaging

should be included, such as notification or information icons, and the order of the information

about the graphical information should not interfere with other important information in the

UI. For instance, information about a background graphic in the UI should not appear in the

logical hierarchy where it would interfere with critical information for the user. Identifying

which graphics are decorative and contextual and determining where they should appear in

the logical hierarchy will help with filtering any trivial elements in the object model.

Go further: UIA can filter out non-control or non-content elements by allocating elements with

both the IsContentElement and IsControlElement Properties set to FALSE. For more information

about how to choose and set values for those Properties, go to http://go.microsoft.com/fwlink/

?LinkId=150842.

Complex User Interfaces
The logical hierarchy for the employee timecard that we just designed was fairly simple, but

user interfaces are becoming more complex with richer functionality. As you create logical

hierarchies for your UI, keep these principles in mind:

 Create logical hierarchies for all UIs that you design to ensure ―seamless accessibility‖ for

your users. Any new child window that your application creates, such as pop-up windows,

should have its own logical hierarchy and accessible implementation.

 Chapter 2 Designing the Logical Hierarchy 25

 Take advantage of UI framework–provided controls and components. Just as you want to

use built-in controls, using standard controls enables you to get some programmatic

access ―for free.‖ Again, using these components may require you to adhere to certain

accessibility guidelines and restrictions on the controls, but those have a much lower cost

than a completely native UIA solution. For example, Windows Common Controls provides

a list view control that can easily be implemented into your design, but the accessibility

support for an irregular customization of a list view control may be extremely expensive

when what you really wanted was an ―engineering shortcut.‖

 Keep the UI as intuitive as possible. As mentioned, accessibility shares best practices and

requirements with many usability and UI design guidelines. Always remember that the

more complex and unique your user interface, the more work you will have to do to

make it accessible. If you can accomplish your requirements in a usable, accessible, and

aesthetically pleasing manner using framework controls and components, then your costs

for implementation and testing will be much less than when you have to use custom

controls.

Go further: For other components provided by Windows, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Designing Element Functionality
Elements are the building blocks of your UI’s logical hierarchy. By mapping out the

programmatic access for your application in a logical hierarchy, you help to ensure that

client programs, such as AT and automation tools, can navigate the UI and that users can

confidently use your product. In the next chapter, we discuss how to determine the

implementation of your controls, with particular focus on the design of custom controls in

your logical hierarchy.

 27

Chapter 3

Designing Your Implementation
After you have finished designing your logical hierarchy, you should know which controls in

your product are provided by the UI framework and which are not. Designing the imple-

mentation of your controls depends upon this distinction:

 For controls provided by the framework, you must adhere to the UI framework’s

guidelines to make them accessible. For example, if you are using the Windows

Presentation Foundation (WPF) framework, you would adhere to WPF’s guidelines for

accessibility.

 For custom controls not provided by the UI framework, you must implement a native UI

Automation (UIA) solution. You have already mapped these custom controls to individual

elements in the logical hierarchy, so now you must design the native UIA solution for

each of these elements.

The key to designing a native solution for programmatic access is to fully expose the ele-

ment’s functionality so that a user of assistive technology (AT) can use the control. There are

two different processes for designing the implementation of a native solution:

 A. Control maps to a UIA Control Type. If your custom control can map directly to

a UIA Control Type, you must design the control’s functionality according to the UIA

Control Type Specification, including any additional requirements for other Patterns

and Properties that the control may exhibit. Unless it is prohibited, a Control Type can

support additional Patterns and Properties than what is required or suggested by the

UIA Specification.

 B. Control does not map to a UIA Control Type. In the case where your custom

control does not map to a UIA Control Type, then you must determine the control’s

functionality and design the control around the Control Patterns and Properties using

the requirements of the UIA Specification. It is worth noting again that you should avoid

creating new custom controls as much as possible because the cost for development,

documentation, and help on how to interact with the control is significant, and ATs may

not know how to interact with the control.

In this chapter, we talk about both of these design processes, focusing on controls that do

map directly to a UIA Control Type. We also touch on the UIA Methods and Events that are

needed to implement your controls and point you to resources for actually implementing

them.

 Engineering Software for Accessibility 28

Product Example Continued: Employee Timecard
In the last chapter, we used an employee timecard, built on a Win32 framework (Figure 3-1),

to design a logical hierarchy. We continue to use the timecard in this chapter to demonstrate

how to design the implementation of custom controls.

FIGURE 3-1 Product example: employee timecard built on a Win32 framework

As you may recall, all the elements in the timecard, except for the grid, were Win32 common

controls. By mapping out a logical hierarchy for our timecard (Figure 3-2), we can see where

custom accessibility support is needed. Because Win32 does not provide a “Grid” control, we

needed to map out the individual elements that make up that the control, so that the control

will expose correctly to AT.

 Chapter 3 Designing Your Implementation 29

FIGURE 3-2 Logical hierarchy for the employee timecard

Prep Work: Creating the Implementation Table
By now, you should have an understanding of what Control Types, Control Patterns, and

Properties are. Before we proceed, let’s briefly recap these terms:

 Control Type A pre-defined set of patterns, properties, and conditions used to

define a control’s basic appearance and functionality.

 Control Pattern Defines the control’s actions or behaviors.

 Properties Provides specific information about the UI element or the Control

Patterns supported.

When you design a native solution for a custom control in UIA, you are essentially creating an

engineering “recipe” using the UIA Specification for UIA Control Types, Control Patterns,

 Engineering Software for Accessibility 30

Properties, and Events. These “ingredients” together will be used to implement an accessible

custom control.

Before we proceed with designing our controls, let’s do some prep work. We will create an

implementation table for the primary components of the UI:

 1. Create columns with the following headers:

o Control For the elements identified as custom in your logical hierarchy.

o Control Type For the UIA Control Type of the element.

o Control Patterns For the required patterns necessary to implement the

accessibility of the control.

o Properties For the required automation element and control pattern properties

necessary to implement the accessibility of a UI element feature.

 2. Using your logical hierarchy as a reference, list each custom element in the Control

column. You can omit duplicate elements, such as list items or data items that share the

same characteristics with its peers. For example, the employee timecard has seven

unique controls for “Grid Item: Days,” but the design for each instance will be the same

(except for unique Properties such as the Automation Id).

 3. In the Control Type column, list the UIA Control Type that the element maps to. Again,

you should have this information as a result of mapping out the logical hierarchy for

your product.

Table 3-1 illustrates what the implementation table looks like for the employee timecard so

far.

TABLE 3-1 Employee Timecard Custom Controls

Control Control

Type

Control

Patterns

Properties

 Automation Element

Properties

Control Pattern

Properties

Data Grid: Calendar Data Grid

Grid Item: Days Grid Item

Header: Days Header

Header Items: Days of

Week

Header Item

 Chapter 3 Designing Your Implementation 31

Process A: Control Maps to a UIA Control Type
Designing the implementation for custom controls that map to a UIA Control Type is a two-

part process. You will:

 1. Gather all the UIA Specification requirements for the UIA Control Type and list them in

your implementation table.

 2. List any additional Patterns or Properties for the controls if they exhibit any additional

functionality, but make sure those additional Patterns or Properties do not contradict

with the UIA Specification.

All of the controls map to UIA Control Types in our employee timecard application, so we

proceed with Process A.

Step 1: Gathering Required Control Patterns

The first control in our table is the calendar grid, which maps to the DataGrid Control Type.

The UIA Specification provides a table of required Patterns supported by the Data Grid

Control Type (Table 3-2). We must go through each of these Patterns to verify which apply to

our specific custom control.

TABLE 3-2 Required UI Automation Control Patterns for the DataGrid Control Type

from the UIA Specification

Control Pattern Support Notes

Grid Pattern Yes The data grid control itself always supports the Grid Control Pattern

because the items that it contains have metadata that is laid out in a

grid.

Scroll Pattern Depends The ability to scroll the data grid depends on content and whether

scroll bars are present.

Selection Pattern Depends The ability to select the data grid depends on content.

Table Pattern Depends A data grid control that has a header should support the Table

Control Pattern.

Among the Patterns listed, only the Grid Pattern must always be supported by controls using

the DataGrid Control Type. The Scroll Pattern, Selection Pattern, and Table Pattern, however,

are dependent upon the specific data grid. Because the calendar grid in our timecard appli-

cation does not scroll, the Scroll Pattern does not apply. The user can, however, select items in

our grid, so the Selection Pattern also applies. Finally, our grid does support headers (which

run underneath each column), so it supports the Table Pattern, as well. In our implementation

table, we would, thus, list the Grid, Selection, and Table Patterns under the Control Patterns

column for our timecard grid (Table 3-3).

 Engineering Software for Accessibility 32

TABLE 3-3 Required Control Patterns for the employee timecard’s calendar grid

custom control

Control Control

Type

Control

Patterns

Properties

 Automation Element

Properties

Control Pattern

Properties

Grid: Calendar DataGrid Grid

Selection

Table

Step 2: Gathering Required Control Type Properties

The next step is to fill out our columns for the two types of Control Properties:

 1. Automation Element Properties

 2. Control Pattern Properties

Go further: For UI Automation Element and Control Pattern Properties, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

2a. Required Automation Element Properties

The Automation Element Properties listed for each Control Type is a subset of all the Auto-

mation Elements available that are likely to describe the element. The AutomationId and

Name Properties appear on all Property lists for UIA Control Types. For the DataGrid Control

Type, the UIA Specification lists Automation Element Properties whose value or definition is

particularly relevant to DataGrid controls (Table 3-4).

TABLE 3-4 UI Automation Properties for the DataGrid Control Type from the UIA

Specification

Property Value Notes

AutomationId See notes The value of this Property needs to be unique across all

controls in an application.

BoundingRectangle See notes The outermost rectangle that contains the whole control.

ClickablePoint See notes Supported if there is a bounding rectangle. If not every

point within the bounding rectangle is clickable, and you

perform specialized hit testing, then override and provide a

clickable point.

ControlType DataGrid This value is the same for all UI frameworks.

 Chapter 3 Designing Your Implementation 33

Property Value Notes

IsContentElement True The value of this Property must always be True. This means

that the data grid control must always be in the content

view of the UI Automation tree.

IsControlElement True The value of this Property must always be True. This means

that the data grid control must always be in the control view

of the UI Automation Tree.

IsKeyboardFocusable See notes If the control can receive keyboard focus, it must support

this Property.

LabeledBy See notes If there is a static text label, then this Property must expose

a reference to that control.

LocalizedControlType See notes Localized string corresponding to the DataGrid Control

Type. The default value is "data grid" for en-US or English

(United States).

Name See notes The data grid control typically gets the value for its Name

Property from a static text label. If there is not a static text

label, an application developer must assign a value for the

Name Property. The value of the Name Property must never

be the textual contents of the edit control.

For all 10 Properties, we can apply values specific to the timecard’s calendar grid. For the

AutomationId, BoundingRectangle, ClickablePoint, IsKeyboardFocusable, LabeledBy,

Name, and LocalizableControlType Properties, which have no specified value, we must refer

to the UIA Specification to find the data type for the values needed for the Property. For each

of these variable Properties, we specify the Property values for the timecard in Table 3-5. Note

that the ClickablePoint Property is omitted because it is irrelevant for the timecard’s grid.

TABLE 3-5 Variable Automation Element Property values assigned for custom calendar

grid control

Automation Element

Property

Value Data Type Notes

AutomationId TimecardGrid VT_BSTR The value for the AutomationId

should be unique among siblings.

BoundingRectangle Coordinates

of table

onscreen

VT_R8|VT_ARRAY The value of the rectangle is expressed

in physical screen coordinates.

IsKeyboardFocusable False VT_BOOL The grid itself cannot receive keyboard

focus; only the grid items can.

LabeledBy Null VT_UNKNOWN Null because there is no text label for

the grid.

 Engineering Software for Accessibility 34

Automation Element

Property

Value Data Type Notes

Name “Calendar” VT_BSTR Typically, the value for the Name

Property should match the label

 text on screen. Because there is no

on-screen label, “Calendar” is

 assigned. In combination with the

LocalizedControlType Property,

the control may read as “Calendar

timecard grid.”

LocalizedControlType “timecard

grid”

VT_STR LocalizedControlType can be

modified to be more understand

able to the user. For English, it is

suggested that the string for the

LocalizedControlType Property

be typed in small caps because it will

be used in-line with the Name

Property.

With the required Automation Element Property values now defined, you can fill out the

Automation Element Properties column for the calendar grid. Table 3-6 shows what our table

looks like so far.

TABLE 3-6 Implementation table with the required Automation Element Properties and

their values for the employee timecard’s calendar grid custom control

Control Control

Type

Control

Patterns

Properties

 Automation Element Properties Control

Pattern

Properties

Grid: Calendar DataGrid Grid

Selection

Table

 AutomationId: TableHeader

 BoundingRectangle:

Coordinates of table onscreen

 ControlType: DataGrid

 IsContentElement: True

 IsControlElement: True

 IsKeyboardFocusable: False

 LabeledBy: Null

 LocalizedControlType:

“timecard grid”

 Name: “Calendar”

Go further: For data types and properties, go to http://go.microsoft.com/fwlink/?LinkId=150842.

 Chapter 3 Designing Your Implementation 35

2b. Required Control Pattern Properties

Each Control Pattern in UIA has Properties of their own that we need to implement. Using the

UIA Specification again, we can see what Properties are required for each Control Pattern and

assign a value for each Pattern Property. Table 3-7 lists the Property name, value assigned,

and notes about the Property for each Control Pattern.

TABLE 3-7 Control Pattern Property names and values for the timecard’s calendar grid

Control Pattern Property Name (Data

Type)

Value Notes

Grid Pattern ColumnCount

(VT_I4)

7 The total number of columns in a

grid. The control has seven

columns, one column for each day.

 RowCount

(VT_I4)

1 The total number of rows in a grid.

The control has one row of

columns.

Selection Pattern CanSelectMultiple

(VT_BOOL)

False A value that specifies whether the

container allows more than one

child element to be selected

concurrently. The user can only

select one column at a time, so the

value is false.

 IsSelectionRequired

(VT_BOOL)

False A value that specifies whether the

container requires at least one

child item to be selected.

Employees are not required to

select a column when viewing their

timecard, so the value is false.

Table Pattern RowOrColumnMajor

(VT_I4)

Column The primary direction of traversal

for the table. Column is chosen for

the timecard because users would

generally read the control by date,

which is in a column.

Now that we have determined what our Property values should be for each of the calendar

grid’s required UIA Control Patterns, we can fill out the Control Pattern Properties column as

shown in Table 3-8.

 Engineering Software for Accessibility 36

TABLE 3-8 Implementation table with the required Control Pattern Properties and

their values for the employee timecard’s calendar grid custom control

Control Control

Type

Control

Patterns

Properties

 Automation Element Properties Control Pattern Properties

Grid:

Calendar

DataGrid Grid

Selection

Table

 AutomationID: TableHeader

 BoundingRectangle:

Coordinates of table onscreen

 ControlType: DataGrid

 IsContentElement: True

 IsControlElement: True

 IsKeyboardFocusable: False

 LabeledBy: Null

 LocalizedControlType:

“timecard grid”

 Name: Calendar

Grid Pattern

 ColumnCount: 7

 RowCount: 1

Selection Pattern

 CanSelectMultiple: False

 IsSelectionRequired: False

Table Pattern

 RowOrColumnMajor: Column

Step 3: Gathering Requirements for Additional Control

Functionality

Now that we have finished listing in our implementation table all the Control Patterns and

Properties required by the UIA Specification for a DataGrid control, we need to list any

additional Control Patterns and Properties that apply specifically to our control.

The question now is “Does my control exhibit additional functionality, aside from the required

Control Patterns?” If the answer is yes, then determine what additional UIA Patterns or Prop-

erties the control maps to in UIA. If you absolutely cannot find a Control Pattern or Property

that exhibits the additional functionality of your control, then you must create custom Control

Patterns and Properties to describe your control, or its functionality, and include those in your

implementation table. Be aware, however, that your custom specifications are only useful if

UIA Clients can share and adopt your specifications. Refer to the UIA Community Promise

Specification and resources from the Accessibility Interoperability Alliance (AIA) for best

practices and guidance on maximizing usability.

In the case of our timecard’s calendar grid, it does exhibit some additional functionality. When

the user clicks one of the days in the grid, the Data Entry fields populate with any information

that has been previously entered for that day. The grid affects another part of the application,

 Chapter 3 Designing Your Implementation 37

the fields in the Data Entry group box. Because our grid exhibits additional functionality, we

must, then, identify and map this functionality to a UIA Control Pattern or Property and list

the requirements for that Pattern or Property in our implementation table. Looking at the UIA

Specification, we see that the ControllerFor Property best describes this other functionality

(Table 3-9).

TABLE 3-9 Description of the ControllerFor Property from the UIA Specification

Property Name (Data Type) Description

ControllerFor

(VT_UNKNOWN|VT_ARRAY)

An array of elements that are manipulated by the Automation

Element that supports this Property.

ControllerFor is used when an Automation Element affects

one or more segments of the application UI or the desktop;

otherwise, it is hard to associate the impact of the control

operation with UI elements.

Other than the ControllerFor Property, our calendar grid does not appear to exhibit any

additional functionality. We will go ahead and add these Properties to our table (Table 3-10).

TABLE 3-10 Completed implementation table for calendar grid custom control

Control Control

Type

Control

Patterns

Properties

 Automation Element

Properties

Control Pattern Properties

Grid:

Calendar

DataGrid Grid

Selection

Table

 AutomationID:

TableHeader

 BoundingRectangle:

Coordinates of table

onscreen

 ControlType: DataGrid

 IsContentElement: True

 IsControlElement: True

 IsKeyboardFocusable:

False

 LabeledBy: Null

 LocalizedControlType:

“data grid”

 Name: Calendar

 ControllerFor: Date

Picker, Hours Edit Box, and

Work Log Edit Box (This

Property can have multiple

things.)

Grid Pattern

 ColumnCount: 7

 RowCount: 1

Selection Pattern

 CanSelectMultiple:

False

 IsSelectionRequired:

False

Table Pattern

 RowOrColumnMajor:

Column

 Engineering Software for Accessibility 38

We have now finished designing the implementation solution for our first custom control

element in UIA. Before moving to the next element, it’s a good idea to check the UIA

Specification’s list of Properties to make sure that you have listed all the requirements for your

control’s functionality. As mentioned, all of our custom controls in the example can map to a

UIA Control Type, so we use the same process as the first control (Process A) for each of the

remaining elements and fill out the rest of our implementation table (Table 3-11).

TABLE 3-11 Completed implementation table for employee timecard custom controls

Control Control

Type

Control

Patterns

Properties

 Automation Element Properties Control Pattern Properties

Grid:

Calendar

DataGrid Grid

Selection

Table

 AutomationID: TableHeader

 BoundingRectangle:

Coordinates of table onscreen

 ControlType: DataGrid

 IsContentElement: True

 IsControlElement: True

 IsKeyboardFocusable: False

 LabeledBy: Null

 LocalizedControlType:

“data grid”

 Name: Calendar

 ControllerFor: Date Picker,

Hours Edit Box, and Work Log

Edit Box (This Property can have

multiple things)

Grid Pattern

 ColumnCount: 7

 RowCount: 1

Selection Pattern

 CanSelectMultiple:

False

 IsSelectionRequired:

False

Table Pattern

 RowOrColumnMajor:

Column

 Chapter 3 Designing Your Implementation 39

Control Control

Type

Control

Patterns

Properties

 Automation Element Properties Control Pattern Properties

Grid

Item:

Days

Data Item Grid

Item

Selection

Item

Table

Item

 AutomationId: “TC#” (# is

replaced by the number of the

column from 1 through 7, where

“TC1” would be Sunday)

 BoundingRectangle: Coor-

dinates of grid item onscreen

 ClickablePoint: any point on

screen clicked to select or focus

the grid item reliably.

 ControlType: GridItem

 IsContentElement: True

 IsControlElement: True

 IsKeyboardFocusable: True

 HasKeyboardFocus: True if the

grid item is focused, false

otherwise

 ItemStatus: “data entered” if

the grid data is entered, “empty”

otherwise

 LabeledBy: Null

 LocalizedControlType:

“timecard”

 Name: date of the grid (e.g.,

“Mon, March 02, 2009”)

Grid Item Pattern

 Column: 1 through 7

 ColumnSpan: 1

 ContainingGrid: Parent

Control

 Row: 1

 RowSpan: 1

Selection Item Pattern

 IsSelected: True if the

grid item is selected, false

otherwise

 SelectionContainer:

Parent table/grid control

(No Properties for Table Item

Pattern)

Header:

Days

Header None AutomationId: “Header”

 BoundingRectangle: Coor-

dinates of grid item onscreen

 ControlType: Header

 IsContentElement: False

 IsControlElement: True

 IsKeyboardFocusable: False

 Labeled By: Null

 LocalizedControlType:

“header”

 Orientation: Horizontal

 Name: “” (Nameless because

there is no other header in this

control)

 Engineering Software for Accessibility 40

Control Control

Type

Control

Patterns

Properties

 Automation Element Properties Control Pattern Properties

Header

Items:

Days of

Week

Header

Item

None AutomationId: “H#” (# is

replaced by the numer from 1

through 7 where H1 is for

Sunday)

 BoundingRectangle: coor-

dinate of header item on screen

 ClickablePoint: any point on

screen clicked to select or focus

the associated column

 ControlType: HeaderItem

 IsContentElement: False

 IsControlElement: True

 IsKeyboardFocusable: False

 LabeledBy: Null

 LocalizedControlType:

“header item”

 Name: label string of the element

(e.g., “Su” for Sunday header

item)

Go further: For the UIA Community Promise and best practices and guidance on maximizing

usability with interoperable implementations, go to http://go.microsoft.com/fwlink/

?LinkId=150842.

 Chapter 3 Designing Your Implementation 41

Process B: Control Does Not Map to a UIA Control Type
So far, we have walked through designing solutions for custom controls if the controls can

map directly to Control Types in UIA. What if your custom control does not map to a UIA

Control Type? If you find yourself in this situation, then you need to take every step to be

absolutely sure that your control cannot be mapped to another Control Type. To avoid

unnecessary development, documentation, and help costs associated with custom controls,

complete the following steps:

 1. Try to identify all Patterns and Properties required to describe them.

 2. Look at the UIA Control Type list again to see if there is a Control Type sufficient to map

to your control. If there is a Control Type that can be used for your control, fill out the

appropriate columns in your implementation table with the control’s requirements.

Note that because UIA allows you to add extra Control Patterns and Properties to an

existing Control Type (unless prohibited by the UIA Control Type Specification) without

making it into a completely new custom control, it is not necessary to match your

custom control exactly to a UIA Control Type. You can also offer a customized

description of the element based on the existing Control Type with an alternative

LocalizedControlType Property value.

 3. If there is absolutely no Control Type that can be used for your control, the “Custom”

Control Type can be applied. Fill out the appropriate columns in your implementation

table with the control’s requirements, and fill out the LocalizedControlType Property

with a string that would make sense to AT users.

 4. Document and publish your custom Control Type specifications where it is publicly

available, following the process defined by a UIA working group of the AIA, so that the

specification of the custom control is clear to the users and AT makers. To facilitate the

publishing process, it may also be helpful to ask a member of the AIA to publish your

specification.

 Engineering Software for Accessibility 42

Methods and Events
After determining your Control Types, Patterns, and Properties, you also need to know what

UIA Methods and Events are required. Methods, as you may recall from Chapter 1, provide a

way to expose a control's functionality per the UIA Specification. Events in UIA are raised to

notify clients, such as screen readers or screen magnifiers, that there is a change to the

Automation Element in the UI. Determining these Methods and Events is straightforward and

usually only requires checking the corresponding Method and Event specifications for Control

Patterns and Properties that your control supports. Table 3-12 lists the Properties and

Methods that are required to expose the functionality of the three Control Patterns in the

timecard data grid.

TABLE 3-12 Control Properties and Methods for the employee timecard’s Control

Patterns

Control Pattern Control Properties Methods

Grid ColumnCount

RowCount

GetItem

Selection CanSelectMultiple

IsSelectionRequired

GetSelection

Table RowOrColumnMajor GetColumnHeaders

GetRowHeaders

As you learned in Chapter 1, there are many different UIA Events. The UIA Specification

directs you on what Events you must raise for your custom control. Table 3-13 lists all the

Events that are supported by the data grid element and whether the Event is applicable to our

timecard application.

TABLE 3-13 Data Grid UI Automation Events applicable to the timecard’s custom grid

control

UI Automation Event Supported

AutomationFocusChangedEvent Yes

BoundingRectangleProperty

Property-changed Event

Yes

IsEnabledProperty Property-

changed Event

Yes

IsOffscreenProperty Property-

changed Event

Yes

LayoutInvalidatedEvent Not applicable. Timecard does not invalidate the layout.

StructureChangedEvent Yes

 Chapter 3 Designing Your Implementation 43

UI Automation Event Supported

CurrentViewProperty Property-

changed Event.

Not applicable. Timecard does not change its view mode.

HorizontallyScrollableProperty

Property-changed Event

Not applicable. Timecard does not support scrolling.

HorizontalScrollPercentProperty

Property-changed Event

Not applicable. Timecard does not support scrolling.

HorizontalViewSizeProperty

Property-changed Event

Not applicable. Timecard does not support scrolling.

VerticalScrollPercentProperty

Property-changed Event

Not applicable. Timecard does not support scrolling.

VerticallyScrollableProperty

Property-changed Event

Not applicable. Timecard does not support scrolling.

VerticalViewSizeProperty

Property-changed Event

Not applicable. Timecard does not support scrolling.

InvalidatedEvent Yes

Framework-Dependent Decisions
This chapter focused on designing your custom controls to meet the UIA Specification, but

the design stage does not stop here. Three areas that are framework-dependent that must be

determined (if they have not already been determined) are:

 1. Your framework’s requirements for providing programmatic access to the controls,

whether provided by the framework or custom. While standard controls of the UI

framework may support the basics for programmatic access, the flexibility for

accessibility can be limited to modifications.

 2. Determine how UI elements will handle keyboard focus. Controls that are actionable,

such as buttons and links, should receive keyboard focus. For Win32 common controls,

use the control styles in the resource file, and handle the system focus as needed.

 3. Ensure that your UI adheres to other accessibility requirements discussed in the

introduction of this book, such as high contrast, high dpi, and other system settings.

Once you have addressed these three areas, you are ready to take your designs into the

implementation stage.

Go further: For more information on adhering to accessibility requirements other than

programmatic access, go to http://go.microsoft.com/fwlink/?LinkId=150842.

 Engineering Software for Accessibility 44

Implementing Your Native UIA Solution
Your next challenge is determining how to implement the native solutions you have designed

over the last two chapters. How does your design actually map out to its implementation?

How do you take the requirements in your implementation table and actually use the UIA

framework to implement it? Because implementation is framework-dependent, this book

does not provide specific implementation details, but depending on the complexity of your

control, you do need to implement one or more of the UIA interfaces. These interfaces allow

you to implement the Control Patterns, Properties, Methods, and Events that you specified in

your implementation table.

Go further: For more information on how to implement your solution, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Rounding Up Native Solutions
As you design a logical hierarchy, you can see which controls are provided by the UI frame-

work and which are not. For controls that are not provided by the framework, you must create

a native accessibility solution to implement those controls. In this chapter, we walked through

the process of designing your implementation for those controls in UIA:

 For custom controls that map to a UIA Control Type, refer to the UI Automation

Specifications and list all the Patterns and Properties necessary. If your control exhibits

additional functionality other than those required by the UIA Specifications, then you

must also include those Patterns and Properties in your table.

 For custom controls that do not map to a UIA Control Type, you must identify and map

the functionality to Control Patterns or Properties that best exhibits the functionality of

your custom control and list those requirements in your implementation table.

Methods and Events are required for completing your UIA implementation. Although you still

need to specify how you will implement Methods and Events, the UIA Specifications detail

which Methods and Events are required for the specific Control Patterns and Properties.

Implementation for each custom control varies, so after designing the native solutions for

your custom controls, refer to the MSDN Web site on how to take your custom controls from

the design stage to actually implementing them in your product. The next chapter provides a

more in-depth discussion about testing the programmatic access and keyboard access of your

implementation and delivery of your product.

Go further: For common frameworks and their accessibility guidelines, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

 45

Chapter 4

Testing and Delivery
In our final chapter, we end with a discussion on testing the programmatic access of the UI

and the keyboard access in your product. Testing for these two things can be done through a

combination of software test tools, manual testing, and user scenario testing with assistive

technology (AT) devices. In addition, we discuss documenting your implementation for deliv-

ery and summarize our recommendation for incorporating accessibility into your product in

seven steps.

When it comes time to test your product, you want to focus on the most critical requirements

or scenarios for your product first. For software that is complex, focus on the parts that are

most critical to your scenarios or are most commonly used (for example, the Start menu in

Windows). Once your core scenarios have been tested and verified, you can move onto any

secondary requirements or scenarios.

Programmatic access and keyboard access are two critical requirements for accessibility.

Without them, many different users of AT (such as screen reader and on-screen keyboard

users) would be affected and would not be able to use your product at all.

To test programmatic access that is designed using UI Automation (UIA) on a Windows

platform, Microsoft offers two types of test tools: (1) investigation tools and (2) a UIA testing

framework called UIA Verify. Investigation tools are manual, ad-hoc test tools that allow you

to quickly check the UI’s underlying structure and properties. Investigation tools can also help

you check the implementation of your logical hierarchy as well. UIA Verify, on the other hand,

provides automated testing, where the framework has the ability to integrate into the test

code and conduct regular, automated testing or spot checks of UIA test scenarios. The goal of

the test framework is to promote consistent implementation across products and platforms

(even those other than the Windows operating system). Because the source code is available

for the framework, the code can be ported or enhanced for more advanced testing scenarios.

In addition to verifying the programmatic access, some of these tools can help you assess the

implementation of your keyboard access, but, as you will learn, the tools can only go so far.

So, it is important to manually verify that all of your scenarios can be accomplished with only

the keyboard.

 Engineering Software for Accessibility 46

Although test tools can aid in confirming that your implementation meets the UIA Specifi-

cation, ultimately, your end user’s experience is what’s vital to your product’s success. Not

only should the “nuts and bolts” of your application work and meet your users’ needs as

expected, but it should also be easy and intuitive for them to use, as well. In addition to

obtaining feedback from a public beta release, observe users’ overall experiences with your

product through usability testing. You can also do heuristic evaluations internally by having

employees within your company try your product and give you feedback. Because acces-

sibility shares many requirements and best practices with many usability and UI design

guidelines, you can focus on important user scenarios that impact many more users than you

might have thought.

Accessibility Testing and Test Automation
While programmatic access to the UI is crucial for making software accessible today, the

implementation for it is often reused by automated test tools and ATs in many different ways.

Screen readers, for instance, announce desktop actions and keyboard input in speech recog-

nition programs. On the other hand, automated test tools would use the accessibility API

support for hit testing. Because of the diverse use of the accessibility API support, conflicts of

interest can occur.

Before UIA, test automation used Microsoft Active Accessibility (MSAA), properties, such as

accName, as unique and persistent identifiers to keep track of UI elements on-screen. The

Name property was never intended to be used as a unique identifier among siblings, and using

it as such can lead to unwanted results, polluting the accessibility object model by rendering a

non-“human readable” string. The same rule applies to invisible or layout elements in the

accessibility objects. The Name property should never be given a value of “MyAppHost,” for

instance, even if it is a layout object that is invisible to the users, or screen reader users may

hear “MyAppHost” somewhere in your application. With UIA, a few new properties such as

AutomationId, RuntimeId, and ClassName are introduced to help identify objects among

siblings.

Go further: For UIA Properties and definitions go to

http://go.microsoft.com/fwlink/?LinkId=150842.

 Chapter 4 Testing and Delivery 47

Tools
For programmatic and keyboard requirements, there is no one tool that can verify your full

implementation. Investigation tools and the UIA Verify framework are complementary.

Investigation tools will allow you to manually check your implementation, while UIA Verify is

automated and apply heuristics to help you verify that your implementation meets UIA

Specification requirements. For keyboard access, manual testing should also be used to ensure

access works for all navigation and user scenarios.

Depending on your control framework, there may be a variety of tools you may need to use

for testing. The tools that we introduce are available on the Windows platform and can test

UIA implementations. Regardless of the tools you use, remember that tools are only indicators

your implementation may be wrong (or right). Try to use a variety of tools to verify your

implementation and, when possible, find users of ATs, such as screen readers, to use your UI.

Investigation Tools

Investigation tools are manual test tools that allow you to quickly assess the UI for incorrect

programmatic access implementations.

Inspect Objects (Inspect) and UI Spy are two investigation tools in the Microsoft Windows

Software Development Kit (SDK) that provide a view of the programmatic implementation for

the UI that uses a Windows Automation API, such as MSAA or UIA. They allow you to view the

UI’s underlying structure and properties, as well as interact with the elements, but they will

only show you what was implemented and not indicate where your implementation is incor-

rect. As a result, you must understand the UI and all aspects of the accessibility framework

that your product is built on, as well the output of results coming from the tool. Table 4-1 lists

the pros and cons of these tools.

TABLE 4-1 Pros and cons of investigation tools

Pros Cons

 Allows you to quickly investigate a UI.

 Provides a raw view of the programmatic

access in your product.

 You must understand the UI as well as output

results from the tool.

 Does not point out if there are problems with

your implementation; you must rely on your

knowledge to resolve any issues.

UI Spy also offers logging for UIA Events by types, as well as by scope. For instance, UI Spy can

listen for StructureChanged UIA Events coming from a specific dialog box.

 Engineering Software for Accessibility 48

Accessible Event Watcher (AccEvent) is another investigation tool that will help you to assess

your programmatic access. AccEvent is included in the MSAA SDK and allows you to review

the WinEvents raised by the Windows Automation API.

Go further: For the Microsoft Windows SDK, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

UIA Verify Test Automation Framework

Intended to verify the implementation of the Windows Automation API, UIA Verify is a suite

of test libraries that will help you test your UIA Provider implementations.

Using UIA Verify, you can write an automated test driver that runs a set of UIA test scenarios

per the UIA Specification. You can also use the visual, front-end UI to run spot tests on built-in

test scenarios. The tool will report the test results in XML or HTML format, and you can use

that as a source for investigation requirements. Not all errors are obvious, and some errors

suggest checking the validity of the problem. For example, because we rarely see a button

control that can be accessible without a name, the test will report an error if your button

control is left without a Name Property.

When UIA Verify alerts you to an error, use an investigation tool to look at the issue. Does the

error seem reproducible? Visual UIA Verify, the front-end GUI of UIA Verify, can be handy to

re-run the test with specific UI elements on screen. For some types of issues, you may need to

use other investigation tools, such as Inspect or AccEvent, to keep track of object information

at run time in greater details.

UIA Verify provides bugs about your accessible implementation, but their results are not

conclusive. For instance, suppose you had a button visually labeled “OK.” If you set its Name

property to “Cancel,” UIA Verify would only recognize that a button should have a

programmatic name, but it would not be able to verify that the name is correct. In this case,

UIA Verify would not raise an error. Final confirmation that the accessibility name matched

the exact UI text on-screen would have to be done visually (optical character recognition

technology may help to resolve such issues in the future, but it is still difficult to get to 100

percent accuracy as of today). Table 4-2 lists the pros and cons of UIA Verify.

TABLE 4-2 Pros and cons of the UIA Verify Test Automation Framework

Pros Cons

 Can identify problems in your implementation.

 Provides recommendations on how to them.

 Can quickly give a rough idea on how well your

implementation is working.

 Cannot fully review your implementation.

 Errors indicated by UIA Verify are not

conclusive.

 Chapter 4 Testing and Delivery 49

Table 4-3 provides a summary and resource links for the investigation and verification

test tools mentioned for testing the programmatic access and keyboard access of Win32

applications.

TABLE 4-3 Tools for Testing Programmatic and Keyboard Access

Tool Description

Inspect Objects (Inspect) Investigation tool that allows you to examine the element’s patterns

and properties as well as navigate the tree. Inspect allows you to

interact with the elements through the accessibility APIs and navigate

the elements by keyboard, mouse, or navigation methods provided by

the framework.

Accessible Event Watcher

(AccEvent)

Investigation tool that allows you to review events raised by the

Windows Automation API. You can scope the events you want to listen

to, the properties that should be included with those events, and which

window to listen to for the events.

UI Spy Investigation tool that allows you to examine the UIA Tree, Elements,

and Events. UI Spy enables developers and testers to view and interact

with the user interface (UI) elements of an application. By viewing the

application's UI hierarchical structure, Property values, and raised

Events, developers and testers can verify that the UI they are creating is

programmatically accessible to assistive technology devices such as

screen readers.

UI Automation Verify (UIA

Verify) Test Automation

Framework

Verification tool that checks your implementation at run time to

confirm whether the UIA Provider is implementing correct tree,

Patterns, and Properties. The UIA Verify facilitates manual and

automated testing of the UIA Providers.

Go further: For more information and to download test tools, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Keyboard
Because all applications must be navigable using only a keyboard, be sure to test your

keyboard access. Try unplugging your mouse, and use only a keyboard to access all the

functionality of your software. Ensure that the navigation via keyboard follows the order of

controls that need keyboard focus.

Go further: For more information on testing keyboard accessibility and guidelines on designing

keyboard access, go to http://go.microsoft.com/fwlink/?LinkId=150842.

 Engineering Software for Accessibility 50

Users and AT Devices
Throughout the development cycle, it is important to keep your users in mind. The earlier you

can get feedback from actual users on your product, the less costly it is to incorporate their

changes into your product. Although you may supplement your testing with third-party AT

programs to test your work, beware that ATs can be complex, and you can very easily mis-

interpret the information you receive from them. So, it’s a good idea to get users of AT to

interact with your application by using the AT devices to (1) alert you to problems that your

test tools might have missed and (2) to assess your users’ experience with your product. If an

issue does arise when using AT programs, try to isolate the scenario, and analyze the cause

using the test tools mentioned in this chapter.

Delivery
Once your product has gone through testing, and necessary corrections have been made, it’s

time to deliver your product. Make sure that your implementation is properly documented

and that the documentation is available in accessible formats. In your documentation, be sure

to address the following questions:

 How did you address your users’ needs? What did your programmatic access provide?

 How do you use your software with a keyboard? Do you expose a new UI that may be

difficult to learn without the ability to see the screen? Your users may not use a mouse, so

describing how to navigate a new UI by keyboard is very valuable information.

 What is the structure and implementation of your design? While end-users may not

necessarily be interested in the technical details, AT vendors would find your specification

very useful for optimizing the user experience.

 What did you not implement? Explain what was not implemented and what is not

supported in your accessibility documentation. Document any workarounds if available.

Go further: For examples on declarations of conformance, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

 Chapter 4 Testing and Delivery 51

Conclusion: 7 Steps to a Better Computing World
We now leave you with seven steps that we recommend for incorporating accessibility into

your software development lifecycle:

 1. Decide if accessibility is an important aspect to your software. If it is, learn and

appreciate how it enables real users to live, work, and play, to help guide your design.

 2. As you design solutions for your requirements, use controls provided by your framework

(standard controls) as much as possible, and avoid any unnecessary effort and costs of

custom controls.

 3. Design a logical hierarchy for your product, noting where the standard controls, any

custom controls, and keyboard focus are in the UI.

 4. Design basic accessibility system settings (such as keyboard navigation, high contrast,

and high dpi) into your product, according to your framework’s accessibility

requirements.

 5. Implement your design, using the Microsoft Accessibility Developer Center and your

framework’s accessibility specification as a reference point.

 6. Test your product to ensure that end users will be able to take advantage of the

accessibility techniques implemented in it.

 7. Deliver your finished product and document your accessible implementation.

It’s very easy to get lost in the details of providing accessibility in your software, but with UIA,

we believe that you can create flexible and intuitive products that support accessibility. With

the number of accessible technology users expected to rise to 70 million by 2010, up from 57

million in 2003 (Forrester 2004), and with more than half of computer users today that could

benefit from accessible technology (Forrester 2003), creating accessible products makes good

business sense and is the right thing to do. Not only are you addressing the needs of those

who need it, you are working to make the experience for all of your users better.

Go further: For more information on developing accessible products and to share ideas with

other accessibility developers, go to http://go.microsoft.com/fwlink/?LinkId=150842.

References
Forrester Research, Inc. 2004. “Accessible Technology in Computing: Examining Awareness,

Use, and Future Potential.” Cambridge, MA. 41.

——. 2003. “The Wide Range of Abilities and Its Impact on Technology.” Cambridge, MA. 10.

 53

Appendix A

Windows Automation API:
Overview

Source: “Windows Automation API SDK” from the Microsoft Developer Network (MSDN)

Web site. To view this content online, go to http://msdn.microsoft.com/en-us/library/

aa163327.aspx.

Windows offers two application programming interface (API) specifications for user interface

accessibility and software test automation: Microsoft Active Accessibility, and User Interface

Automation (UI Automation). Microsoft Active Accessibility is the legacy API that was intro-

duced in Windows 95 as a platform add-in. UI Automation is a Windows implementation of

the User Interface Automation specification.

This section provides a high-level overview of Microsoft Windows Automation API 3.0, which

includes the legacy Microsoft Active Accessibility API and the new UI Automation API. The

overview highlights the similarities and differences between Microsoft Active Accessibility and

UI Automation, describes the components and features that enable the two technologies to

work together, and provides guidelines for choosing which technology to implement.

This section includes the following topics:

 Microsoft Active Accessibility and UI Automation Compared

 Architecture and Interoperability

 Limitations of Microsoft Active Accessibility

 UI Automation Specification

 The IAccessibleEX Interface

 Choosing Microsoft Active Accessibility, UI Automation, or IAccessibleEx

 Engineering Software for Accessibility 54

Microsoft Active Accessibility and UI Automation
Compared

Although Microsoft Active Accessibility and Microsoft UI Automation are two different

technologies, the basic design principles are similar. Both expose the UI object model as a

hierarchical tree, rooted at the desktop. Microsoft Active Accessibility represents individual

UI elements as accessible objects, and UI Automation represents them as automation elements.

Both refer to the accessibility tool or software automation program as the client. However,

Microsoft Active Accessibility refers to the application or control offering the UI for accessi-

bility as the server, while UI Automation refers to this as the provider.

Microsoft Active Accessibility offers a single COM interface with a fixed, small set of

properties. UI Automation offers a richer set of properties, as well as a set of extended

interfaces called Control Patterns to manipulate accessible objects in ways Microsoft Active

Accessibility cannot.

While UI Automation previously had both managed and unmanaged APIs for providers, the

original release had no unmanaged interfaces for clients. Now, UI Automation clients can be

written entirely in unmanaged code.

The latest framework also provides support for transitioning from Microsoft Active

Accessibility servers to UI Automation providers. The IAccessibleEx interface specification

enables support for specific UI Automation Patterns and Properties to be added to legacy

Microsoft Active Accessibility servers without needing to rewrite the entire implementation.

The specification also allows in-process Microsoft Active Accessibility clients to access UI

Automation provider interfaces directly, rather than through UI Automation client interfaces.

The ecosystem of Windows automation technologies, called the Windows Automation API,

includes classic Microsoft Active Accessibility and Windows implementations of the UI Auto-

mation specification. The UI Automation specification is implemented on many Microsoft

products, including Windows 7, Windows Vista, Windows Server 2008, Windows Presentation

Foundation (WPF), and Microsoft Silverlight.

Architecture and Interoperability
This section briefly describes the architecture of the Windows Automation technologies

Microsoft Active Accessibility and Microsoft UI Automation, and the components that allow

interoperability between applications based on the two different technologies.

 Appendix A Windows Automation API: Overview 55

Microsoft Active Accessibility Architecture

Microsoft Active Accessibility exposes basic information about custom controls such as control

name, location on screen, and type of control, as well as state information such as visibility

and enabled/disabled status. The UI is represented as a hierarchy of accessible objects;

changes and actions are represented as WinEvents.

Microsoft Active Accessibility consists of the following components:

 Accessible object A logical UI element (such as a button) that is represented by

an IAccessible COM interface and an integer child identifier (ChildID).

 WinEvents An event system that enables servers to notify clients when an

accessible object changes.

 OLEACC.dll The run-time, dynamic-link library that provides the Microsoft Active

Accessibility API and the accessibility system framework. OLEACC implements

proxy objects that provide default accessibility information for standard UI

elements, including USER controls, USER menus, and common controls.

For Microsoft Active Accessibility, the system component of the accessibility framework

(OLEACC) helps the communication between accessibility tools and applications, as the

following illustration shows.

The applications (Microsoft Active Accessibility servers) provide UI accessibility information to

tools (Microsoft Active Accessibility clients), which interact with the UI on behalf of users. The

code boundary is both a programmatic and a process boundary.

 Engineering Software for Accessibility 56

UI Automation Architecture
With UI Automation, the UI Automation Core component (UIAutomationCore.dll) is loaded

into both the accessibility tools' and applications' processes. The core component manages

cross-process communication, provides higher level services such as searching for elements by

Property values, and enables bulk fetching or caching of Properties, which provides better

performance than the Microsoft Active Accessibility implementation.

UI Automation includes proxy objects that provide UI information about standard UI elements

such as USER controls, USER menus, and common controls. It also includes proxies that enable

UI Automation clients to get UI information from Microsoft Active Accessibility servers.

The following illustration shows the relationships among the various components in UI

Automation providers (Accessibility Tools) and clients (Applications).

Interoperability Between Microsoft Active Accessibility-

Based Applications and UI Automation-Based Applications

The UI Automation to Microsoft Active Accessibility Bridge enables Microsoft Active

Accessibility clients to access UI Automation providers by converting the UI Automation

object model to a Microsoft Active Accessibility object model. The following illustration

shows the role of the UI Automation-to-Microsoft Active Accessibility Bridge.

 Appendix A Windows Automation API: Overview 57

Similarly, the Microsoft Active Accessibility-to-UI Automation Proxy translates Microsoft Active

Accessibility-based server object models for UI Automation clients. The following illustration

shows the role of the Microsoft Active Accessibility-to-UI Automation Proxy.

By using the IAccessibleEx interface, you can improve existing Microsoft Active Accessibility

Server implementations by adding only required UI Automation object model information.

The Microsoft Active Accessibility-to-UI Automation Proxy takes care of incorporating the

added UI Automation object model. For more information, see the section of this appendix

titled “The IAccessibleEx Interface.”

 Engineering Software for Accessibility 58

Limitations of Microsoft Active Accessibility
Microsoft designed the Microsoft Active Accessibility object model about the same time as

Windows 95 released. The model is based on “roles” defined a decade ago, and you cannot

support new UI behaviors or merge two or more roles together. There is no text object model,

for example, to help assistive technologies deal with complex Web content. UI Automation

overcomes these limitations by introducing Control Patterns that enable objects to support

more than one role, and the UI Automation Text Control Pattern offers a full-fledged text

object model.

Another limitation involves navigating the object model. Microsoft Active Accessibility

represents the UI as a hierarchy of accessible objects. Clients navigate from one accessible

object to another using interfaces and methods available from the accessible object. Servers

can expose the children of an accessible object with properties of the IAccessible interface, or

with the standard IEnumVARIANT COM interface. Clients, however, must be able to deal with

both approaches for any server. This ambiguity means extra work for client implementers, and

broken accessible object models for server implementers.

UI Automation represents the UI as a hierarchical tree of Automation Elements, and provides

a single interface for navigating the tree. Clients can customize the view of elements in the

tree by scoping and filtering.

Finally, Microsoft Active Accessibility properties and functions cannot be extended without

breaking or changing the IAccessible COM interface specification. The result is that new

control behavior cannot be exposed through the object model; it tends to be static.

With UI Automation, as new UI elements are created, application developers can introduce

custom Properties, Control Patterns, and Events to describe the new elements.

UI Automation Specification
The UI Automation specification provides flexible programmatic access to UI elements on the

Windows desktop, enabling assistive technology products such as screen readers to provide

information about the UI to end users and to manipulate the UI by means other than stan-

dard input. The specification can be supported across platforms other than Windows.

 Appendix A Windows Automation API: Overview 59

The implementation of UI Automation specification in Windows is also called UI Automation

(UI Automation). UI Automation is broader in scope than just an interface definition. UI

Automation provides:

 An object model and functions that make it easy for client applications to receive events,

retrieve property values, and manipulate UI elements.

 A core infrastructure for finding and fetching across process boundaries.

 A set of interfaces for providers to express the tree structure, general properties, and

functionality of UI elements.

 A ”Control Type“ property that allows clients and providers to clearly indicate the

common properties, functionality, and structure of a UI object.

UI Automation improves on Microsoft Active Accessibility by:

 Enabling efficient out-of-process clients, while continuing to allow in-process access.

 Exposing more information about the UI in a way that allows clients to be out-of-process.

 Coexisting with and leveraging Microsoft Active Accessibility without inheriting its

limitations. For more information, see the section of this appendix titled “Limitations of

Microsoft Active Accessibility.”

The implementation of the UI Automation specification in Windows features COM-based

interfaces and managed interfaces.

UI Automation Elements

UI Automation exposes every piece of the UI to client applications as an automation element.

Providers supply Property values for each element. Elements are exposed as a tree structure,

with the desktop as the root element.

Automation Elements expose common properties of the UI elements they represent. One of

these properties is the Control Type, which describes its basic appearance and functionality

(for example, a button or a check box).

 Engineering Software for Accessibility 60

UI Automation Tree

The UI Automation tree represents the entire UI: the root element is the current desktop, and

child elements are application windows. Each of these child elements can contain elements

representing menus, buttons, toolbars, and so on. These elements in turn can contain

elements like list items, as the following illustration shows.

Be aware that the order of the siblings in the UI Automation tree is quite important. Objects

that are next to each other visually should also be next to each other in the UI Automation

tree.

UI Automation providers for a particular control support navigation among the child elements

of that control. However, providers are not concerned with navigation between these control

sub-trees. This is managed by the UI Automation core, using information from the default

window providers.

To help clients process UI information more effectively, the framework supports alternative

views of the automation tree: raw view, control view, and content view. As the following table

shows, the type of filtering determines the views, and the client defines the scope of a view.

 Appendix A Windows Automation API: Overview 61

Automation Tree Description

Raw view The full tree of Automation Element objects for which the desktop is the

root.

Control view A subset of the raw view that closely maps to the UI structure as the user

perceives it.

Content view A subset of the control view that contains content most relevant to the user,

like the values in a drop-down combo box.

UI Automation Properties

The UI Automation specification defines two kinds of properties: Automation Element

Properties and Control Pattern Properties. Automation Element Properties apply to most

controls, providing fundamental information about the element, such as its name. Control

Pattern Properties apply to Control Patterns, which are described next.

Unlike with Microsoft Active Accessibility, every UI Automation Property is identified by a

GUID and a programmatic name, which makes new Properties easier to introduce.

UI Automation Control Patterns

A Control Pattern describes a particular aspect of the functionality of an Automation Element.

For example, a simple ”click-able“ control like a button or hyperlink should support the Invoke

Control Pattern to represent the ”click“ action.

Each Control Pattern is a canonical representation of possible UI features and functions. The

current implementation of UI Automation defines 22 Control Patterns. The Windows Auto-

mation API can also support custom Control Patterns. Unlike Microsoft Active Accessibility

role or state properties, one Automation Element can support multiple UI Automation Control

Patterns.

UI Automation Control Types

A Control Type is an Automation Element Property that specifies a well-known control that

the element represents. Currently, UI Automation defines 38 Control Types, including Button,

CheckBox, ComboBox, DataGrid, Document, Hyperlink, Image, ToolTip, Tree, and Window.

Before you can assign a Control Type to an element, the element needs to meet certain con-

ditions, including a particular automation tree structure, Property values, Control Patterns,

and Events. However, you are not limited to these. You can extend a control with custom

Patterns and Properties, as well as with the pre-defined ones.

 Engineering Software for Accessibility 62

The total number of pre-defined Control Types is significantly lower than Microsoft Active

Accessibility accRole definitions, because UI Automation Control Types can be combined to

express a larger set of features while Microsoft Active Accessibility roles cannot.

UI Automation Events

UI Automation Events notify applications of changes to, and actions taken with Automation

Elements. There are four different types of UI Automation Events, and they do not necessarily

mean that the visual state of the UI has changed. The UI Automation Event model is indepen-

dent of the WinEvent framework in Windows, although the Windows Automation API makes

UI Automation Events interoperable with the Microsoft Active Accessibility framework.

The IAccessibleEx Interface
The IAccessibleEx interface enables existing applications or UI libraries to extend their

Microsoft Active Accessibility object model to support UI Automation without rewriting the

implementation from scratch. With IAccessibleEx, you can implement only the additional

UI Automation Properties and Control Patterns needed to fully describe the UI and its

functionality.

Because the Microsoft Active Accessibility-to-UI Automation Proxy translates the object

models of IAccessibleEx-enabled Microsoft Active Accessibility servers as UI Automation

object models, UI Automation clients do not need to do any extra work. The IAccessibleEx

interface can also enable in-process Microsoft Active Accessibility clients to interact directly

with UI Automation providers.

Choosing Microsoft Active Accessibility, UI Automation,
or IAccessibleEx

If you are developing a new application or control, Microsoft recommends using UI Auto-

mation. Although Microsoft Active Accessibility can be easier to implement in the short term,

the limitations inherent in this technology, such as its aging object model and inability to

support new UI behaviors or merge rolls, makes it more difficult and costly over the long

term. These limitations become especially apparent when introducing new controls. For more

information, see the section of this appendix titled “Limitations of Microsoft Active

Accessibility.”

The UI Automation object model is easier to use and is more flexible than that of Microsoft

Active Accessibility. The UI Automation Elements reflect the evolution of modern user inter-

faces, and developers can define custom UI Automation Control Patterns, Properties, and

Events.

 Appendix A Windows Automation API: Overview 63

Microsoft Active Accessibility tends to run slowly for clients that run out of process. To

improve performance, developers of accessibility tool programs often choose to hook into

and run their programs in the target application process: an extremely difficult and risky

approach. UI Automation is much easier to implement for out-of-process clients, and offers

much better performance and reliability.

If you are updating an existing Microsoft Active Accessibility-based application or control,

consider adding support for UI Automation by implementing the IAccessibleEx interface. First,

ensure that your application or control meets the following requirements:

 The baseline Microsoft Active Accessibility server's hierarchy of accessible objects must be

well-organized and error-free. IAccessibleEx cannot fix problems with existing accessible

object hierarchies.

 Your IAccessibleEx implementation must comply with both the Microsoft Active Acces-

sibility specification, and the UI Automation specification. Microsoft provides a set of

tools for validating compliance with both specifications.

If either of these requirements is not met, consider implementing UI Automation natively. You

can keep legacy Microsoft Active Accessibility server implementations for backward compati-

bility if it is necessary. From a UI Automation client’s perspective, there is no difference

between UI Automation providers and Microsoft Active Accessibility servers that implement

IAccessibleEx correctly.

 65

Appendix B

UI Automation Overview
Source: “Windows Automation API SDK” from the Microsoft Developer Network (MSDN)

Web site. To view this content online, go to http://msdn.microsoft.com/en-us/library/

aa163327.aspx.

Microsoft UI Automation is an accessibility framework for Windows. It provides programmatic

access to most user interface (UI) elements on the desktop. It enables assistive technology

products, such as screen readers, to provide information about the UI to end users and to

manipulate the UI by means other than standard input. UI Automation also allows automated

test scripts to interact with the UI.

UI Automation was first available in Windows XP as part of the Microsoft .NET Framework.

Although an unmanaged C++ API was also published at that time, the usefulness of client

functions was limited because of interoperability issues. For Windows 7, the API has been

rewritten in the Component Object Model (COM).

Note Although the library functions introduced in the earlier version of UI Automation are still

documented, they should not be used in new applications.

UI Automation client applications can be written with the assurance that they will work on

multiple Windows control frameworks. The UI Automation core masks any differences in the

frameworks that underlie various pieces of the UI. For example, the Content property of a

Windows Presentation Foundation (WPF) button, the Caption property of a Win32 button,

and the ALT property of an HTML image are all mapped to a single Property, Name, in the UI

Automation view.

UI Automation provides full functionality in Windows XP, Windows Server 2003, and later

operating systems.

UI Automation providers are components that implement UI Automation support on controls

and offer some support for Microsoft Active Accessibility client applications, through a built-in

bridging service.

Note UI Automation does not enable communication between processes that are started by

different users through the Run as command.

 Engineering Software for Accessibility 66

This appendix contains the following sections:

 UI Automation Components

 UI Automation Header Files

 UI Automation Model

 UI Automation Providers

UI Automation Components
UI Automation has four main components, as shown in the following table.

Component Description

Provider API A set of COM interfaces that are implemented by UI Automation providers. UI

Automation providers are objects that provide information about UI elements

and respond to programmatic input.

Client API A set of COM interfaces that enable client applications to obtain information

about the UI and to send input to controls.

Note The functions described in Deprecated Control Pattern Functions and

Deprecated Node Functions are obsolete and in the process of being removed.

Instead, client applications should use the UI Automation COM interfaces

described in UI Automation Element Interfaces for Clients.

UiAutomationCore.dll The run-time library, sometimes called the UI Automation core, that handles

communication between providers and clients.

OLEACC.dll The run-time library for Microsoft Active Accessibility and the proxy objects.

The library also provides proxy objects used by the MSAA-to-UIA Proxy to

support Win32 controls.

There are two ways of using UI Automation: to create support for custom controls by using

the provider API, and to create client applications that use the UI Automation core to com-

municate with UI elements. Depending on your focus, you should refer to different parts of

the documentation.

UI Automation Header Files
The UI Automation API is defined in several different C/C++ header files that are included

with the Microsoft Windows Software Development Kit (SDK). The UI Automation header files

are described in the following table.

 Appendix B UI Automation Overview 67

Header file Description

uiautomationclient.h Defines the interfaces and related programming elements used by UI

Automation clients.

uiautomationcore.h Defines the interfaces and related programming elements used by UI

Automation providers.

uiautomationcoreapi.h Defines general constants, GUIDs, data types, and structures used by UI

Automation clients and providers. It also contains definitions for the

deprecated node and Control Pattern functions.

uiautomation.h Includes all of the other UI Automation header files. Because most UI

Automation applications require elements from all UI Automation header

files, it is best to include uiautomation.h in your UI Automation application

projects instead of including each file individually.

If you are developing an application that uses the UI Automation API, you should include

uiautomation.h in your project. If your application supports Microsoft Active Accessibility,

include the oleacc.h header file. UI Automation applications that use GUIDs also require the

initguid.h header file. If needed, initguid.h should be included before uiautomation.h.

UI Automation Model
UI Automation exposes every element of the UI to client applications as an object represented

by the IUIAutomationElement interface. Elements are contained in a tree structure, with the

desktop as the root element. Clients can filter the raw view of the tree as a control view or a

content view. These standard views of the structure can easily be seen by using the UI Spy

application that is included with the Windows SDK. Applications can also create custom views.

A UI Automation Element exposes properties of the control or UI element that it represents.

One of these properties is the Control Type, which defines the basic appearance and

functionality of the control or UI element as a single recognizable entity, for example, a

button or check box.

In addition, a UI Automation Element exposes one or more Control Patterns. A Control

Pattern provides a set of Properties that are specific to a particular Control Type. A Control

Pattern also exposes methods that enable client applications to get more information about

the element and to provide input to the element.

 Engineering Software for Accessibility 68

Note There is no one-to-one correspondence between Control Types and Control Patterns. A

Control Pattern may be supported by multiple Control Types, and a control may support multiple

Control Patterns, each of which exposes different aspects of its behavior. For example, a combo

box has at least two Control Patterns: one that represents its ability to expand and collapse, and

another that represents the selection mechanism. However, a control can exhibit only a single

Control Type.

UI Automation provides information to client applications through events. Unlike WinEvents,

UI Automation Events are not based on a broadcast mechanism. UI Automation clients

register for specific Event notifications and can request that specific Properties and Control

Pattern information be passed to their event handlers. In addition, a UI Automation Event

contains a reference to the element that raised it. Providers can improve performance by

raising Events selectively, depending on whether any clients are listening.

Go further: Go to http://go.microsoft.com/fwlink/?LinkId=150842 for more information on the

following topics:

 Deprecated Control Pattern Functions

 Deprecated Node Functions

 UI Automation Element Interfaces for Clients

 UI Automation Control Types Overview

 UI Automation Control Patterns Overview

 UI Automation Events Overview

UI Automation Providers
After designing your implementation, you must implement a provider interface to support

your implementation. For more details on how to do so, go to http://go.microsoft.com/

fwlink/?LinkId=150842.

 69

Glossary

Accessibility The quality of a system incorpor-

ating hardware or software that makes it

usable by people with one or more physical

disabilities, such as restricted mobility,

blindness, or deafness.

Accessibility Interoperability Alliance (AIA)

A group of information technology (IT) and

assistive technology (AT) companies,

content providers, and other engineering

organizations that collaborate together to

create standards and design solutions for

interoperable accessible technology.

Accessible Event Watcher (AccEvent)

An investigation tool that allows you to

review events raised by the Windows

Automation API.

Alternative Text (Alt Text) A short descrip-

tive summary of the content shown in a

figure. The text provides an alternative

means of understanding what the art

depicts if a user cannot see the art. It is

particularly useful for users who are visually

impaired (whether or not they use screen

readers to interpret the text in a document)

and those who prefer to turn off images,

such as users who have slow Internet

connections, use a text-only browser, or

prefer to work more rapidly than image

downloading allows.

Application Programming Interface (API)

A set of routines, data structures, object

classes, or protocols provided by libraries or

operating system services in order to

support the building of applications.

Assistive Technology (AT) A specialty

product designed to provide additional

accessibility to individuals who have physical

or cognitive difficulties, impairments, and

disabilities.

Automation Element An element in UI

Automation that exposes common

properties of the UI element it represents.

Automation ID An Automation Element

Property used to identify an element. This

Property should be filled out for most

elements.

Beta A new software or hardware product, or

one that is being updated, that is released

to users for the purpose of evaluation in the

real world.

Bug An error in coding or logic that causes a

program to malfunction or to produce

incorrect results. Minor bugs, such as a

cursor that does not behave as expected,

can be inconvenient or frustrating, but do

not damage information. More severe bugs

can require the user to restart the program

or the computer, losing whatever previous

work had not been saved.

Child In a tree structure, the relationship of a

node to its immediate predecessor. Also see

parent/child. In contrast to sibling.

Client An accessibility or test automation tool

that uses an accessibility API to program-

matically access application user interfaces.

Common Controls A set of windows that are

implemented by the common control

library, which is a dynamic-link library (DLL)

included with the Windows operating

system.

70 Glossary

Control A component in an application with a

visual representation in the UI that can be

manipulated by the user to perform an

action.

Control Pattern In UI Automation, a control

attribute or functionality that represents

common UI behaviors (such as invoking a

button) and supports the UIA Properties,

Methods, and Events.

Control Type A pre-defined set of patterns,

properties, and conditions used to define a

control’s basic appearance and function-

ality. A well-known identifier that indicates

the kind of control a particular UI element

represents, such as a combo box or a

button.

Custom Control A control that is not

provided by the UI framework; or a

modified control based on a standard

control.

Depth-First Search Generally following a top-

to-bottom, left-to-right scheme, a tree

traversal pattern that starts at the root of a

tree (located at the top of the tree) and

moves down any branches of each top-level

node before traversing the next top-level

node.

Digital Inclusion The idea of using technol-

ogy to its fullest potential by looking for

opportunities to innovate and improve the

user experience for all users, including

improving issues of accessibility.

Disability A temporary or permanent impair-

ment that may involve visual, hearing,

mobility, cognitive, or speech abilities.

Element In a logical hierarchy, a node

representing a control in the UI.

Event An action or occurrence, often gen-

erated by the user, to which a program

might respond (for example, key presses,

button clicks, or mouse movements). In UI

Automation, Events are action notifications

that correspond to an activity occurring in

the UI.

Framework In object-oriented programming,

a reusable basic design structure, consisting

of abstract and concrete classes, which

assists in building applications.

High Contrast A system setting that height-

ens the color contrast of some text and

images on your computer screen, making

those items more distinct and easier to

identify. Increasing the contrast in colors

reduces eyestrain and makes things easier

to read for many people.

High Dots Per Inch (High DPI) Dots per inch

is a measure of screen and printer resolution

that is expressed as the number of dots that

a device can print or display per linear inch.

Resolutions of 144 dpi or higher are consid-

ered high dpi. Since the release of Windows

Vista, the Windows platform replaced large

font settings with dpi configurations.

IAccessible A COM-based interface in MSAA

that exposes information about UI elements.

IAccessible is always paired with ChildId to

make up one UI element representation

(called “Accessible Object” in MSAA).

Implementation Table A table that lists the

control types, patterns, and properties for

implementing accessible controls.

 Glossary 71

In-Process In the context of accessibility APIs,

in-process refers to a program that is

running within the process of a target

application. For instance, some programs

use in-process hooks and load a part of

their code to target applications.

Inspect Objects (Inspect) A Windows

Automation API investigation tool that

allows you to examine the element’s

Patterns and Properties as well as navigate

the tree. Inspect allows you to interact with

the elements through the accessibility APIs

and navigate the elements by keyboard,

mouse, or navigation methods provided by

the framework.

Investigation Tools Investigation tools are

manual test tools that allow you to quickly

assess the UI for issues. Allows you to look

at your UI’s underlying structure and

properties, as well as interact with the

elements. Investigation tools do not

“problem-solve” for you.

Information Technology Industry Council

(ITIC) A lobbying organization based in

Washington, D.C., that assists member high-

tech companies to achieve legislative policy

objectives.

Library In programming, a collection of

routines stored in a file. Each set of

instructions in a library has a name, and

each performs a different task.

Logical Hierarchy A systematic mapping of

the controls in an application to program-

matically exposed elements in UIA. The

logical hierarchy provides context for the

controls' location and relationships in the

UI and helps to determine the controls'

implementation. It can also be used for

planning keyboard navigation and other

system settings.

Microsoft Accessibility Developer Center

A portal for guidance, essential information,

and tools and technologies for developing

accessible applications and writing acces-

sible code for Microsoft developers.

Microsoft Developer Network (MSDN)

A portal for developers using Microsoft

products, which allows developers to learn,

share information, and download tools.

Microsoft UI Automation Community

Promise A specification that provides

information about Microsoft's accessibility

frameworks, including Active Accessibility,

UI Automation, and its shared imple-

mentations. Intended for interoperable

implementations by other companies.

Access the UI Automation Specification

from the Microsoft Accessibility Developer

Center at http://msdn.microsoft.com/en-

us/accessibility/default.aspx.

Microsoft Active Accessibility (MSAA)

A COM-based accessibility API, first released

in 1997 as an add-on for Windows 95.

Node In tree structures, a location on the tree

that can have links to one or more nodes

below it. Some authors make a distinction

between node and element, with an ele-

ment being a given data type and a node

comprising one or more elements as well as

any supporting data structures.

Oleacc.dll A Windows operating system

component that provides the platform

support for MSAA.

72 Glossary

On-Screen Keyboard An assistive technology

that allows users to type and interact with

their computer using an alternative input

device like a switch, rather than the physical

keyboard. An on-screen keyboard displays a

visual keyboard with all of the standard

keys.

Out-of-Process In the context of accessibility

APIs, out-of-process refers to a program or

script running outside of the target appli-

cation processes.

Parent/child Pertaining to or constituting a

relationship between nodes in a tree data

structure in which the parent is one step

closer to the root (that is, one level higher)

than the child. In contrast to sibling.

Persona A fictional person who represents a

major user group, based on real user data.

Platform In everyday usage, the type of

computer or operating system being used.

In this book, platform is only used when

referring to the Windows platform.

Product Lifecycle The process by which a

product is designed, developed, and

released to market. The product lifecycle

consists of three phases: (1) product def-

inition, (2) product development, and (3)

product servicing. Within these phases are

the iterative stages of establishing require-

ments, design, implementation, verification,

and release.

Programmatic Access Achieved when an

application or library of UI functionality

exposes the content, interactions, context,

and semantics of the UI via a discoverable

and publicly-documented application

programming interface (API). The API can

be used by another program to provide an

augmentative, automated, or alternate, user

interaction. Basic information conveyed

through programmatic access includes:

navigation, interactive elements, asynch-

ronous changes to the page, keyboard

focus, and other important information

about the UI.

Property A characteristic or parameter

expressed as a value used to describe a UI

element. In UIA, Properties enable client

applications to retrieve information about

controls.

Provider In the context of UI Automation,

providers expose information about the UI.

Providers can be a full scale application or

UI framework that supplies accessible UI

parts to programs for agile software

development. Providers are referred to as

"servers" in MSAA because its role appears

as a component object model (COM) server

of the IAccessible interface paired with the

ChildId.

Rasterization The conversion of vector

graphics (images described in terms of

mathematical elements, such as points and

lines) to equivalent images composed of

pixel patterns that can be stored and

manipulated as sets of bits.

Screen Magnifier Also called a "screen

enlarger,” an assistive technology that

works like a magnifying glass for the

computer by enlarging a portion of the

screen, which can increase legibility and

make it easier to see items on the computer.

Some screen magnifiers allow a person to

zoom in and out on a particular area of the

screen.

 Glossary 73

Screen Reader A software program that

presents graphics and text as speech. A

screen reader is used to verbalize, or

"speak," everything on the screen include

ing names and descriptions of control

buttons, menus, text, and punctuation.

Section 508 of the Rehabilitation Act of

1996 An act for U.S. federal agencies

procuring electronic and information

technology. For further details, see

http://www.section508.gov/.

Sibling A process or node in a data tree that

is descended from the same immediate

ancestor(s) as other processes or nodes. The

order of sibling relationships is important

when designing navigation. In contrast to

parent/child.

Specification (spec) An explicit set of

requirements to be satisfied by a material,

product, or service.

System-Wide Settings Settings, such as font,

screen resolution, or color settings, that

allow users to customize the UI to fit their

needs and preferences. System-wide

settings should be respected and should

work with your product.

Tab Order The specified sequential order by

which users navigate through the UI using

the TAB key or SHIFT+TAB.

Tab Stop The location, usually on an element

that receives keyboard focus, where the

cursor stops when the TAB key is pressed.

UI Automation (UIA) The new accessibility

and automation framework for Windows.

UIA provides programmatic access to user

interface (UI) elements on the desktop,

enabling assistive technology (AT) products

such as screen readers to provide infor-

mation about the UI to end users.

UI Automation (UIA) Tree A UIA-specific

solution that helps assistive technologies

gather information about the UI and its

elements. The root element of the UIA Tree

is the desktop, whose child elements are

programs running on it, such as an appli-

cation or the operating system’s UI. The UIA

Tree is not a fixed structure and is seldom

seen in its totality, because it might contain

thousands of elements. Parts of it are built

as they are needed, and it can undergo

changes as elements are added, moved, or

removed. The UIA Tree should not be con-

fused with the logical hierarchy, another

treelike structure used for design purposes.

UI Spy An investigation tool that allows you

to examine the UIA Tree, Elements, and

Events. UI Spy enables developers and

testers to view and interact with the user

interface (UI) elements of an application. By

viewing the application's UI hierarchical

structure, Property values, and raised Events,

developers and testers can verify that the UI

they are creating is programmatically

accessible to assistive technology devices

such as screen readers.

UI Automation Verify (UIA Verify) Test

Automation Framework A verification

tool that checks your implementation at run

time to confirm that you are implementing

the correct tree, Patterns, and Properties.

The framework facilitates manual and

automated testing of the Microsoft UIA

Provider implementation of a control or

application.

74 Glossary

Usability The extent to which a product can

be used by specified users to achieve

specified goals with effectiveness, efficiency

and satisfaction in a specified context of use

(ISO 9241-11). In general, how well users

can learn and use a product to achieve their

goals and how satisfied they are with that

process.

User Experience (UX) The end-user’s overall

experience and satisfaction interacting with

a product or service. In UI design, UX can

touch on many fields of study, such as

usability, human-computer interaction, and

behavioral psychology.

User Interface (UI) The means by which

humans can interact with a computer,

technical device, or some other complex

tool to accomplish a task.

User Scenario A test scenario in which a

feature of the program is highly visible or

necessary to successfully use your program.

The feature tested is used by a majority of

the application's users.

Voluntary Product Accessibility Template

(VPAT) A standardized form developed by

the Information Technology Industry

Council (ITI) used to show how a software

product meets key regulations of Section

508 of the Rehabilitation Act. VPATs were

created as a collaborative effort between

industry and ITI, and the U.S. government's

General Services Administration (GSA) to

evaluate and describe the accessibility of a

product.

Windows Automation API The ecosystem of

Windows automation technologies, which

includes classic Microsoft Active Accessibility

(MSAA) and Windows implementations of

the UI Automation (UIA) specification.

Windows Presentation Foundation (WPF)

A framework for programming that keeps

the business code and the design layers

separate. It uses Microsoft's newest

accessibility API, UI Automation (UIA), to

programmatically expose information to

users of assistive technology (AT). Devel-

opers use the WPF code as well as its

declarative markup language XAML to

create products with amazing capabilities.

WinEvents A cross-process event system in

the Windows platform that allows programs

to notify others with a defined set of IDs

and the information.

Workaround A way of bypassing a problem

or functionality issue in a program.

Go further: The terms used in this book are based on definitions from the UI Automation (UIA)

Specification, Windows Accessibility Software Developer Kit (SDK), the Microsoft Developer

Network (MSDN), and the Microsoft Press Computer Dictionary. To access or learn more about

these sources, go to http://go.microsoft.com/fwlink/?LinkId=150842.

 75

Index

A
accessibility

defined, 69
incorporating into

development lifecycle, 51
Accessibility Interoperability

Alliance (AIA), 69
Accessible Event Watcher,

48–49, 69
alternative text for graphics,

11, 69
APIs, 69. See also Microsoft

Active Accessibility API; UI
Automation API

application programming
interfaces (APIs), 69. See
also Microsoft Active
Accessibility API; UI
Automation API

applications. See providers
arrow keys, navigating with, 24
assistive technology (AT)

products. See ATs (assistive
technology products)

ATs (assistive technology
products). See also clients

defined, 69
order in which elements read,

13
overview of, 1
standard mapping scheme, 14
user feedback on, 50

automated test drivers, 48
Automation Elements

Control Types and Patterns, 3
defined, 69
overview of, 59
properties, 6, 32–34, 61
structure of, 3

Automation Events, 62
Automation IDs, 69
automation tree. See UIA Tree

B
beta products, 69
bugs, 69
button control, 3

C
calendar grid control, 33–34
child elements, 69
clients

actions performed by, 2–3
defined, 69
provider communication with,

1–2
ComboBox control, 3
Common Controls, 69
containers

defined, 12
in logical hierarchies, 12

content view of UIA Tree, 5, 61
contextual elements, vs.

decorative, 24
control libraries, 15
Control Patterns

correlation to Control Types,
68

custom, 7
for custom controls,

determining which apply,
31–32, 36–37

defined, 29, 70
examples of, 3, 5
overview of, 5, 61
properties. See properties
Properties, required, 35–36
supported in UI Automation,

15
in Windows Automation API,

61
Control Types

assigning to elements, 61
Automation Element

Properties, 32–34
correlation to Control

Patterns, 68
defined, 29, 70
examples of, 3
generic, 6
mapping, 16
mapping custom controls to,

27, 31–38
multiple elements for,

marking, 21

overview of, 5, 61
pre-defined, number of, 62
supported in UI Automation,

15
control view of UIA Tree, 4, 61
controls. See also custom

controls
Control Patterns and

Properties, determining, 36
defined, 70
designing, 9
determining which need

custom UIA solutions, 28
functionality, determining,

36–37
generic control type for, 6
mapping, 11, 22
programmatic access to, 43
standard, advantages of, 25
standard, identifying, 20
standard, UI framework

guidelines and, 27
structures, examining, 22

custom controls
Control Patterns, determining

which apply, 31–32
defined, 70
identifying, 16, 20
implementation table for, 30
mapping to UIA Control Type,

27, 31–38, 40
native UIA solutions. See

native UIA solutions for
controls

publishing Control Type
specifications, 41

UIA Methods, determining
required, 42

UIA Specification list, checking
against, 37–38

D
data grids, 12. See also

containers
DataGrid Control Type, 32–33
decorative elements, vs.

contextual, 24

delivering product, 50
depth-first search tree traversal

pattern, 14, 70
designing UI, 9–10
desktop, as root element of UIA

Tree, 3
development lifecycle. See

product lifecycle
diagram format for logical

hierarchy, 15
diagramming user elements.

See logical hierarchy
digital inclusion, 70
disability, 70

E
elements. See UI elements
end user experience,

importance of, 46
events, 7, 62, 70

F
formatting logical hierarchy,

14–15
framework, UI

choosing, 9
decisions dependent on, 43
defined, 70

G
graphics

alternative text for, 11, 69
decorative vs. contextual, 24

Grid Pattern property, 35
grouping elements. See

containers

H
header files for UIA, 66–67
high contrast, 70
high dots per inch (DPI), 70

I
IAccessibleEx interface, 62, 70
icons. See graphics
images. See graphics
implementation table, 30, 70

Information Technology
Industry Council (ITIC), 71

in-process, 71
Inspect Objects tool, 47–49, 71
investigation tools, 45–46

Accessible Event Watcher,
48–49

defined, 71
Inspect Objects, 47
pros and cons, 47
UI Spy, 49
UIA Verify, 49

K
keyboard access, testing, 45, 49
keyboard focus, 43
keyboard navigation, designing,

24

L
libraries, 71
List control, 3
logging UIA Events, 47
logical hierarchy

containers in, 12
defined, 71
designing, 16, 24–25
diagram format, 15
diagramming, 10–11
elements, identifying which to

include, 16
elements and controls in, 11
ellipses in nodes, 21
formatting, 14–15
keyboard navigation and, 24
mapping symbols, 21
navigation and, 12
navigational order, 19
outline format, 14
overview of, 10
relationships in, 22–23
standard mapping scheme, 14
table format, 14
timecard example, 18–19
UI element mapping, 11
vs. UIA Tree, 10–11

M
mapping scheme, 14

mapping symbols for logical
hierarchy, 21

Microsoft Accessibility
Developer Center, 71

Microsoft Active Accessibility
(MSAA) API

architecture of, 55
COM interface, 54
components of, 55
defined, 71
IAccessibleEx interface, 62
interoperability with UI

Automation API, 56–57
limitations of, 58
supporting UI Automation, 62
vs. UI Automation API, 54
UI element representation

in, 54
Microsoft Active Accessibility

(MSAA) properties, 46
Microsoft Developer Network

(MSDN), 71
Microsoft UI Automation

Community Promise, 71
mouse actions, correlating

keyboard actions to, 17

N
Name property, 46
naming UI elements, 11
native UIA solutions for

controls, 27
navigational order in UI, 12–13,

16, 19
decorative elements vs.

contextual elements, 24
nodes, 71

O
OLEACC.dll, 55, 66, 71
on-screen keyboard, 72
outlining logical hierarchy, 14
out-of-process, 72

P
patterns. See Control Patterns
persona, 72
pictures. See graphics
platform, 72

76 delivering product

product lifecycle
accessibility considerations

for, 51
defined, 72

programmatic access
defined, 72
testing, 45

programmatically significant
elements, defined, 16

properties, 61
changes in, event for, 7
for Control Patterns, 35–36
custom, 7
for custom controls, 32–34
for custom controls,

determining which apply,
36–37

defined, 29, 72
specifications for, 6
in UI Automation

specification, 61
prototypes, 15
providers

actions performed by, 2
communication with clients,

1–2
defined, 72
overview of, 1

R
rasterization, 72
raw view of UIA Tree, 4, 61
relationships, element, 12

in logical hierarchies, 22–23

S
screen magnifiers, 72
screen readers. See also ATs

(assistive technology
products); clients

defined, 73
order of elements read by, 13

Selection Pattern property, 35
specifications, 73
standard controls

advantages of, 25
UI framework guidelines and,

27
structuring UI. See logical

hierarchy
system-wide settings, 73

T
tab order, 73
tab stops, 73
table format for logical

hierarchy, 14
Table Pattern property, 35
testing

automated drivers for, 48
conflicts of interest when, 46
with investigation tools. See

investigation tools
keyboard access, 45, 49
programmatic access, 45
tools for, using variety of, 47
with UIA Verify. See UIA Verify

timecard example of logical
hierarchy, 18–19

tree structure. See UIA Tree

U
UI accessibility APIs. See UI

Automation API
UI Automation. See UIA (UI

Automation)
UI Automation API, 66

architecture of, 56
benefits of, 59
interoperability with Microsoft

Active Accessibility API,
56–57

vs. Microsoft Active
Accessibility API, 54

properties in, 61
proxy objects in, 56
recommended, 62–63
specification for, 58–59
UI element representation

in, 54
unmanaged code, 54
updating Microsoft Active

Accessibility with, 63
UI Automation core, 66
UI Automation Elements. See

Automation Elements
UI Automation Events, 62
UI design, 9–10

intuitive, 25
navigational order, 12–13,

16, 19
UI elements

binding other objects. See
containers

control types for. See Control
Types

decorative vs. contextual, 24
defined, 70
diagramming. See logical

hierarchy
functionality, designing, 25
grouping. See containers
identifying for logical

hierarchy, 16
keyboard focus, 43
MSAA properties as

identifiers, 46
multiple, for Control Type, 21
naming, 11
navigational order, 19
order in which read by ATs, 13
overview of, 11
programmatically significant,

16
properties. See properties
relationships, in logical

hierarchy, 12, 22–23
UI framework

choosing, 9
decisions dependent on, 43
defined, 70

UI hierarchy. See logical
hierarchy

UI implementation table, 30, 70
UI prototypes, 15
UI Spy, 47, 49, 67, 73
UI testing. See testing
UIA (UI Automation)

applications in. See providers
ATs and, 1. See also ATs

(assistive technology
products)

components of, 66
Control Types supported in,

15
defined, 73
events. See UIA Events
goals of, 1
header files, 66–67
history of, 65
interface for, 67–68
model for, 67–68
native solutions for controls.

See native UIA solutions for
controls

navigation through UI. See
UIA Tree

 UIA (UI Automation) 77

UIA (UI Automation) continued
operating system

compatibility, 65
overview of, 1, 65
planning for custom controls,

9
properties, 6
providers. See providers
run-time library, 66
specifications, creating native

solutions for controls with,
29–30

technical specifications, 15
testing framework, 45–46

UIA Control Patterns. See
Control Patterns

UIA Control Types, mapping
custom controls to, 41

UIA Events, 68
for custom controls,

determining, 42
logging, 47
overview of, 1–2
subscription model, 7
types of, 7

UIA Methods for custom
controls, 42

UIA Providers
example of, 4
UIA Tree and, 4

UIA Specification list, checking
custom controls against,
37–38

UIA Tree
child elements, 3, 69
defined, 73
fluidity of, 3
vs. logical hierarchy, 10–11
navigation in, 4
nodes, 71
overview of, 60
parent elements, 72
purpose of, 3
root element of, 3
structure change, event for, 7
UIA Providers and, 4
views for, 4–5
views in, 60–61

UIA Verify, 45–46, 49
bug reports in, 48
defined, 73
error alerts, 48
overview of, 48
pros and cons, 48
visual interface for, 48

usability
checking for, 10
defined, 74

user elements. See UI elements
user experience, 74
user feedback, 50
user interface, 74
user scenario, 74

V
Verify. See UIA Verify
Voluntary Product Accessibility

Template (VPAT), 74

W
Windows Automation API, 54

Control Patterns in, 61
defined, 74

Windows Presentation
Foundation (WPF), 74

WinEvents, 55, 74
word processing programs. See

providers
workaround, 74

78 UIA Control Patterns

	Cover
	Copyright page

	Table of Contents
	About the Authors
	Introduction
	Who Should Read This Book
	What This Book Covers
	The Basics
	Programmatic Access
	Keyboard Access
	Respect Your User
	Visual UI Design Settings

	How Accessibility Fits into the Development Cycle
	Requirements Stage
	Design Stage
	Implementation Stage
	Verification Stage
	Release Stage

	Ready, Set, Go!
	Support for This Book
	Questions and Comments

	References

	Chapter 1: The UI Automation Environment
	Providers and Clients
	Providers
	Clients

	Main Components
	Automation Elements
	The UIA Tree
	Control Patterns
	Control Types
	Properties
	Events
	Custom Control Patterns, Properties, and Events

	Planning Your Hierarchy

	Chapter 2: Designing the Logical Hierarchy
	The Logical Hierarchy
	Mapping Basics
	Elements and Controls
	Element Relationships and Navigation

	Getting Started
	How to Do It
	Example: Employee Timecard

	Using the Logical Hierarchy for Planning Accessibility Settings
	Keyboard Navigation
	Graphics: Decorative vs. Contextual

	Complex User Interfaces
	Designing Element Functionality

	Chapter 3: Designing Your Implementation
	Product Example Continued: Employee Timecard
	Prep Work: Creating the Implementation Table
	Process A: Control Maps to a UIA Control Type
	Step 1: Gathering Required Control Patterns
	Step 2: Gathering Required Control Type Properties
	Step 3: Gathering Requirements for Additional Control Functionality

	Process B: Control Does Not Map to a UIA Control Type
	Methods and Events
	Framework-Dependent Decisions
	Implementing Your Native UIA Solution
	Rounding Up Native Solutions

	Chapter 4: Testing and Delivery
	Accessibility Testing and Test Automation
	Tools
	Investigation Tools
	UIA Verify Test Automation Framework

	Keyboard
	Users and AT Devices
	Delivery
	Conclusion: 7 Steps to a Better Computing World
	References

	Appendix A: Windows Automation API: Overview
	Microsoft Active Accessibility and UI Automation Compared
	Architecture and Interoperability
	Microsoft Active Accessibility Architecture

	UI Automation Architecture
	Interoperability Between Microsoft Active Accessibility-Based Applications and UI Automation-Based Applications

	Limitations of Microsoft Active Accessibility
	UI Automation Specification
	UI Automation Elements
	UI Automation Tree
	UI Automation Properties
	UI Automation Control Patterns
	UI Automation Control Types
	UI Automation Events

	The IAccessibleEx Interface
	Choosing Microsoft Active Accessibility, UI Automation, or IAccessibleEx

	Appendix B: UI Automation Overview
	UI Automation Components
	UI Automation Header Files
	UI Automation Model
	UI Automation Providers

	Glossary
	Index

