

Getting Started with ASP.NET 4.5

Web Forms and Visual Studio 2013

By Erik Reitan | January 8, 2014

Summary: This series of tutorials guides you through the steps required to create an

ASP.NET Web Forms application using Visual Studio Express 2013 for Web and ASP.NET

4.5.

Category: Step-by-Step

Applies to: ASP.NET Web Forms

Source: Getting Started with ASP.NET 4.5 Web Forms and Visual Studio 2013

E-book publication date: January, 2014

For more titles, visit the E-Book Gallery for Microsoft

Technologies.

http://twitter.com/ReitanErik
http://www.asp.net/web-forms/tutorials/aspnet-45/getting-started-with-aspnet-45-web-forms/introduction-and-overview
http://social.technet.microsoft.com/wiki/contents/articles/11608.e-book-gallery-for-microsoft-technologies.aspx
http://social.technet.microsoft.com/wiki/contents/articles/11608.e-book-gallery-for-microsoft-technologies.aspx

Copyright © 2014 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means

without the written permission of the publisher.

Microsoft and the trademarks listed at

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the

Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events

depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,

logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any

express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors

will be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Getting Started with ASP.NET 4.5 Web

Forms and Visual Studio 2013
By Erik Reitan | January 8, 2014

Table of Contents
Introduction and Overview .. 6

Introduction .. 6

Overview .. 7

The Wingtip Toys Sample Application ... 8

Prerequisites .. 14

Download the Sample Application ... 15

Tutorial Support and Comments ... 16

Create the Project .. 17

What you'll learn: ... 17

Creating the Project .. 17

ASP.NET Web Forms Background ... 23

Summary ... 28

Additional Resources ... 28

Create the Data Access Layer ... 29

What you'll learn: ... 29

Creating the Data Models .. 29

Building the Application ... 41

Summary ... 41

Additional Resources ... 42

UI and Navigation ... 43

What you'll learn: ... 43

Modifying the UI .. 43

Summary ... 60

http://twitter.com/ReitanErik

Additional Resources ... 60

Display Data Items and Details .. 62

What you'll learn: ... 62

Adding a Data Control to Display Products .. 62

Displaying Products .. 63

Summary ... 71

Additional Resources ... 71

Shopping Cart .. 72

What you'll learn: ... 72

Code features in this tutorial: .. 72

Creating a Shopping Cart ... 72

Testing the Completed Shopping Cart.. 101

Summary ... 102

Addition Information.. 102

Checkout and Payment with PayPal .. 103

What you'll learn: ... 103

Adding Order Tracking .. 103

Adding Checkout Access .. 106

Enabling Logins from Other Sites Using OAuth and OpenID ... 110

Migrating the Shopping Cart .. 114

Integrating PayPal ... 118

Running the Application ... 139

Reviewing the Database.. 148

Summary ... 149

Additional Resources ... 149

Disclaimer ... 149

Membership and Administration .. 151

What you'll learn: ... 151

These features are included in the tutorial: ... 151

Adding an Administrator .. 152

Running the Application ... 164

Summary ... 171

Additional Resources ... 171

URL Routing ... 172

What you'll learn: ... 172

ASP.NET Routing Overview .. 172

Retrieving and Using Route Data .. 175

Running the Application ... 177

Summary ... 178

Additional Resources ... 178

ASP.NET Error Handling ... 179

What you'll learn: ... 179

Overview ... 179

Adding Error Logging Support ... 182

Using ELMAH .. 195

Summary ... 198

Conclusion .. 198

Additional Resources ... 198

Acknowledgements .. 198

Community Contributions .. 199

Introduction and Overview

DOWNLOAD ASSETS: Getting Started with ASP.NET 4.5 Web Forms and Visual Studio

2013 - Wingtip Toys (C#)

This tutorial series will teach you the basics of building an ASP.NET Web Forms application using

ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web.

Introduction

This series of tutorials guides you through the steps required to create an ASP.NET Web Forms

application using Visual Studio Express 2013 for Web and ASP.NET 4.5.

The application you'll create is named WingtipToys. It's a simplified example of a store front

web site that sells items online. This tutorial series highlights new features available in ASP.NET

4.5.

Comments are welcome, and we'll make every effort to update this tutorial series based on your

suggestions.

Download completed project

You can download a C# project that contains the completed tutorial.

 Getting Started with ASP.NET 4.5 Web Forms and Visual Studio 2013 - Wingtip Toys (C#)

Audience

The intended audience of this tutorial series is experienced developers who are new to ASP.NET

Web Forms. A developer interested in this tutorial series should have the following skills:

 Familiar with an object oriented programming (OOP) language

 Familiar with Web development concepts (HTML, CSS, JavaScript)

 Familiar with relational database concepts

 Familiar with n-tier architecture concepts

If you are interested in reviewing the areas listed above, consider reviewing the following

content:

 Getting Started with Visual C#

 Web Development, HTML, CSS, JavaScript, SQL, PHP, JQuery

 Relational database

 Multitier architecture

Application Features

http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409
http://msdn.microsoft.com/library/a72418yk.aspx
http://msdn.microsoft.com/beginner/bb308760.aspx
http://w3schools.com/
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Multitier_architecture

The ASP.NET Web Form features presented in this series include:

 The Web Application Project (not Web Site Project)

 Web Forms

 Master Pages, Configuration

 Bootstrap

 Entity Framework Code First, LocalDB

 Request Validation

 Strongly Typed Data Controls, Model Binding, Data Annotations, and Value Providers

 OAuth and OpenID

 ASP.NET Identity, Configuration, and Authorization

 Unobtrusive Validation

 Routing

 ASP.NET Error Handling

Application Scenarios and Tasks

Tasks demonstrated in this series include:

 Creating, reviewing and running the new project

 Creating the database structure

 Initializing and seeding the database

 Customizing the UI using styles, graphics and a master page

 Adding pages and navigation

 Displaying menu details and product data

 Creating a shopping cart

 Adding OpenID support

 Adding a payment method

 Including an administrator role and a user to the application

 Restricting access to specific pages and folder

 Uploading a file to the web application

 Implementing input validation

 Registering routes for the web application

 Implementing error handling and error logging

Overview

If you are new to ASP.NET Web Forms but have familiarity with programming concepts, you

have the right tutorial. If you are already familiar with ASP.NET Web Forms, you can benefit from

this tutorial series by the new features available in ASP.NET 4.5. If you are unfamiliar with

programming concepts and ASP.NET Web Forms, see the additional tutorials provided in the

Web Forms Getting Started section on the ASP.NET Web site.

http://www.asp.net/web-forms

ASP.NET 4.5 Web Forms and Visual Studio 2013 features presented in this Web Forms tutorial

series include the following:

 A simple UI for creating projects that offer support for multiple ASP.NET frameworks

(Web Forms, MVC, and Web API).

 Bootstrap, a layout and theming framework that provides responsive design and

theming capabilities.

 ASP.NET Identity, a new ASP.NET membership system that works the same in all ASP.NET

frameworks and works with web hosting software other than IIS.

 Entity Framework 6, an update to the Entity Framework which allows you retrieve and

manipulate data as strongly typed objects, access data asynchronous, handle transient

connection faults, and log SQL statements.

For a complete list of ASP.NET 4.5 features, see ASP.NET and Web Tools for Visual Studio 2013

Release Notes.

The Wingtip Toys Sample Application

The following screen shots provide a quick view of the ASP.NET Web forms application that you

will create in this tutorial series. When you run the application from Visual Studio Express 2013

for Web, you will see the following web Home page.

http://www.asp.net/visual-studio/overview/2013/creating-web-projects-in-visual-studio#add
http://www.asp.net/visual-studio/overview/2013/creating-web-projects-in-visual-studio#bootstrap
http://www.asp.net/identity
http://msdn.microsoft.com/data/ef.aspx
http://www.asp.net/visual-studio/overview/2013/release-notes
http://www.asp.net/visual-studio/overview/2013/release-notes

You can register as a new user, or log in as an existing user. Navigation is provided at the top for

each product category by retrieving the available products from the database.

By selecting the Products link, you will be able to see a list of all available products.

You can also see individual product details by selecting any of the listed products.

As a user, you can register and log in using the default functionality of the Web Forms template.

This tutorial also explains how to login using an existing gmail account. Additionally, you can

login as the administrator to add and remove products from the database.

Once you have logged in as a user, you can add products to the shopping cart and checkout

with PayPal. Note that this sample application is designed to function with PayPal’s developer

sandbox. No actual money transaction will take place.

PayPal will confirm your account, order, and payment information.

After returning from PayPal, you can review and complete your order.

Prerequisites

Before you start, make sure that you have the following software installed on your computer:

 Microsoft Visual Studio 2013 or Microsoft Visual Studio Express 2013 for Web. The .NET

Framework is installed automatically.

http://www.microsoft.com/visualstudio/11/en-us/downloads#vs
http://www.microsoft.com/visualstudio/11/en-us/downloads#express-web

This tutorial series uses Microsoft Visual Studio Express 2013 for Web. You can use either

Microsoft Visual Studio Express 2013 for Web or Microsoft Visual Studio 2013 to complete this

tutorial series.

Note

Microsoft Visual Studio 2013 and Microsoft Visual Studio Express 2013 for Web will often be

referred to as Visual Studio throughout this tutorial series.

If you already have a Visual Studio version installed, the installation process will install Visual

Studio 2013 or Microsoft Visual Studio Express 2013 for Web next to the existing version. Sites

that you created in earlier versions can be opened in Visual Studio 2013 and continue to open in

previous versions.

Note

This walkthrough assumes that you selected the Web Development collection of settings the first

time that you started Visual Studio. For more information, see How to: Select Web Development

Environment Settings.

Download the Sample Application

After installing the prerequisites, you are ready to begin creating the new Web project that is

presented in this tutorial series. If you would like to optionally run the sample application that

this tutorial series creates, you can download it from the MSDN Samples site. This download

contains the following:

 The sample application in the WingtipToys folder.

 The resources used to create the sample application in the WingtipToys-Assets folder in

the WingtipToys folder.

Download the file from MSDN Samples site:

Getting Started with ASP.NET 4.5 Web Forms and Visual Studio 2013 - Wingtip Toys (C#)

The download is a .zip file. To see the completed project that this tutorial series creates, find and

select the C# folder in the .zip file. Save the C# folder to the folder you use to work with Visual

Studio 2013 projects. By default, the Visual Studio 2013 projects folder is the following:

C:\Users\<username>\Documents\Visual Studio 2013\Projects

Rename the C# folder to WingtipToys.

Note

If you already have a folder named WingtipToys in your Projects folder, temporarily rename that

existing folder before renaming the C# folder to WingtipToys.

http://msdn.microsoft.com/en-us/library/ff521558.aspx
http://msdn.microsoft.com/en-us/library/ff521558.aspx
http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409

To run the completed project, open the WingtipToys folder and double-click the WingtipToys.sln

file. Visual Studio 2013 will open the project. Next, right-click the Default.aspx file in the

Solution Explorer window and click View In Browser from the right-click menu.

Tutorial Support and Comments

Use the Q AND A section included with the Getting Started with ASP.NET 4.5 Web Forms and

Visual Studio 2013 - Wingtip Toys (C#) sample for any questions or comments.

Comments on this tutorial series are welcome, and when this tutorial series is updated every

effort will be made to take into account corrections or suggestions for improvements that are

provided in the tutorial comments.

When an error happens during development, or if the Web site does not run correctly, the error

messages may give complex clues to the source of the problem or might not explain how to fix

it. To help you with some common problem scenarios, you can also use the ASP.NET forums or

the Q AND A section included with the Getting Started with ASP.NET 4.5 Web Forms and Visual

Studio 2013 - Wingtip Toys (C#) sample. If you get an error message or something doesn't work

as you go through the tutorials, be sure to check the above locations.

http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409
http://forums.asp.net/
http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409

Create the Project
This tutorial series will teach you the basics of building an ASP.NET Web Forms application using

ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project

with C# source code is available to accompany this tutorial series.

In this tutorial you will create, review, and run the default project in Visual Studio, which will

allow you to become familiar with features of ASP.NET. Also, you will review the Visual Studio

environment.

What you'll learn:

 How to create a new Web Forms project.

 The file structure of the Web Forms project.

 How to run the project in Visual Studio.

 The different features of the default Web forms application.

 Some basics about how to use the Visual Studio environment.

Creating the Project

1. Open Visual Studio.

2. Select New Project from the File menu in Visual Studio.

3. Select the Templates -> Visual C# -> Web templates group on the left.

4. Choose the ASP.NET Web Application template in the center column.

5. Name your project WingtipToys and choose the OK button.

Note

The name of the project in this tutorial series is WingtipToys. It is recommended that

you use this exact project name so that the code provided throughout this tutorial series

functions as expected.

6. Next, select the Web Forms template and chooks the Create Project button.

The project will take a little time to create. When it’s ready, open the Default.aspx page.

You can switch between Design view and Source view by selecting an option at the bottom of

the center window. Design view displays ASP.NET Web pages, master pages, content pages,

HTML pages, and user controls using a near-WYSIWYG view. Source view displays the HTML

markup for your Web page, which you can edit.

Understanding the ASP.NET Frameworks

ASP.NET Web Forms lets you build dynamic websites using a familiar drag-and-drop, event-

driven model. A design surface and hundreds of controls and components let you rapidly build

sophisticated, powerful UI-driven sites with data access. The Wingtip Toy Store is based on

ASP.NET Web Forms, but many of the concepts you learn in this tutorial series are applicable to

all of ASP.NET.

ASP.NET offers four primary development frameworks:

 ASP.NET Web Forms

The Web Forms framework targets developers who prefer declarative and control-based

programming, such as Microsoft Windows Forms (WinForms) and WPF/XAML/Silverlight.

It offers a WYSIWYG designer-driven development model, so it's popular with developers

looking for a rapid application development (RAD) environment for web development. If

you are new to web programming and are familiar with the traditional Microsoft RAD

http://www.asp.net/web-forms

client development tools (for example, for Visual Basic and Visual C#), you can quickly

build a web application without having experience in HTML and JavaScript.

 ASP.NET MVC

ASP.NET MVC targets developers who are interested in patterns and principles like test-

driven development, separation of concerns, inversion of control (IoC), and dependency

injection (DI). This framework encourages separating the business logic layer of a web

application from its presentation layer.

 ASP.NET Web Pages

ASP.NET Web Pages targets developers who want a simple web development story,

along the lines of PHP. In the Web Pages model, you create HTML pages and then add

server-based code to the page in order to dynamically control how that markup is

rendered. Web Pages is specifically designed to be a lightweight framework, and it's the

easiest entry point into ASP.NET for people who know HTML but might not have broad

programming experience — for example, students or hobbyists. It's also a good way for

web developers who know PHP or similar frameworks to start using ASP.NET.

 ASP.NET Single Page Application

ASP.NET Single Page Application (SPA) helps you build applications that include

significant client-side interactions using HTML 5, CSS 3 and JavaScript. The ASP.NET and

Web Tools 2012.2 Update ships a new template for building single page applications

using knockout.js and ASP.NET Web API. In addition to the new SPA template, new

community-created SPA templates are also available for download.

In addition to the four main development frameworks, ASP.NET also offers additional

technologies that are important to be aware of and familiar with, but are not covered in this

tutorial series:

 ASP.NET Web API – A framework for building HTTP services that reach a broad range of

clients, including browsers and mobile devices.

 ASP.NET SignalR - A library that makes developing real-time web functionality easy.

Reviewing the Project

In Visual Studio, the Solution Explorer window lets you manage files for the project. Let’s take a

look at the folders that have been added to your application in Solution Explorer. The web

http://www.asp.net/mvc
http://www.asp.net/web-pages
http://www.asp.net/single-page-application
http://www.asp.net/web-api
http://www.asp.net/signalr

application template adds a basic folder structure:

Visual Studio creates some initial folders and files for your project. The first files that you will be

working with later in this tutorial are the following:

File Purpose

Default.aspx Typically the first page displayed when the application is run in a

browser.

Site.Master A page that allows you to create a consistent layout and use

standard behavior for pages in your application.

Global.asax An optional file that contains code for responding to application-

level and session-level events raised by ASP.NET or by HTTP

modules.

Web.config The configuration data for an application.

Running the Default Web Application

The default Web application provides a rich experience based on built-in functionality and

support. Without any changes to the default Web forms project, the application is ready to run

on your local Web browser.

1. Press the F5 key while in Visual Studio.

The application will build and display in your Web browser.

2. Once you have completed review the running application, close the browser window.

There are three main pages in this default Web application: Default.aspx (Home), About.aspx,

and Contact.aspx. Each of these pages can be reached from the top navigation bar. There are

also two additional pages contained in the Account folder, the Register.aspx page and

Login.aspx page. These two pages allow you to use the membership capabilities of ASP.NET to

create, store, and validate user credentials.

ASP.NET Web Forms Background

ASP.NET Web Forms are pages that are based on Microsoft ASP.NET technology, in which code

that runs on the server dynamically generates Web page output to the browser or client device.

An ASP.NET Web Forms page automatically renders the correct browser-compliant HTML for

features such as styles, layout, and so on. Web Forms are compatible with any language

supported by the .NET common language runtime, such as Microsoft Visual Basic and Microsoft

Visual C#. Also, Web Forms are built on the Microsoft .NET Framework, which provides benefits

such as a managed environment, type safety, and inheritance.

When an ASP.NET Web Forms page runs, the page goes through a life cycle in which it performs

a series of processing steps. These steps include initialization, instantiating controls, restoring

and maintaining state, running event handler code, and rendering. As you become more familiar

with the power of ASP.NET Web Forms, it is important for you to understand the ASP.NET page

life cycle so that you can write code at the appropriate life-cycle stage for the effect you intend.

When a Web server receives a request for a page, it finds the page, processes it, sends it to the

browser, and then discards all page information. If the user requests the same page again, the

server repeats the entire sequence, reprocessing the page from scratch. Put another way, a

server has no memory of pages that it has processed—pages are stateless. The ASP.NET page

framework automatically handles the task of maintaining the state of your page and its controls,

and it provides you with explicit ways to maintain the state of application-specific information.

Web Application Features in the Web Forms Application Template

The ASP.NET Web Forms Application template provides a rich set of built-in functionality. It not

only provides you with a Home.aspx page, an About.aspx page, a Contact.aspx page, but also

includes membership functionality that registers users and saves their credentials so that they

can log in to your website. This overview provides more information about some of the features

contained in the ASP.NET Web Forms Application template and how they are used in the

Wingtip Toys application.

Membership

ASP.NET Identity stores your users’ credentials in a database created by the application. When

your users log in, the application validates their credentials by reading the database. Your

project's Account folder contains the files that implement the various parts of membership:

registering, logging in, changing a password, and authorizing access. Additionally, ASP.NET Web

Forms supports OAuth and OpenID. These authentication enhancements allow users to log into

your site using existing credentials, from such accounts as Facebook, Twitter, Windows Live, and

Google.

http://msdn.microsoft.com/en-US/vstudio/aa496123
http://msdn.microsoft.com/library/ms178472(v=vs.100).aspx
http://msdn.microsoft.com/library/ms178472(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/yh26yfzy.aspx

By default, the template creates a membership database using a default database name on an

instance of SQL Server Express LocalDB, the development database server that comes with

Visual Studio Express 2013 for Web.

SQL Server Express LocalDB

SQL Server Express LocalDB is a lightweight version of SQL Server that has many

programmability features of a SQL Server database. SQL Server Express LocalDB runs in user

mode and has a fast, zero-configuration installation that has a short list of installation

prerequisites. In Microsoft SQL Server, any database or Transact-SQL code can be moved from

SQL Server Express LocalDB to SQL Server and SQL Azure without any upgrade steps. So, SQL

Server Express LocalDB can be used as a developer environment for applications targeting all

editions of SQL Server. SQL Server Express LocalDB enables features such as stored procedures,

http://technet.microsoft.com/library/hh510202.aspx

user-defined functions and aggregates, .NET Framework integration, spatial types and others

that are not available in SQL Server Compact.

Master Pages

An ASP.NET master page defines a consistent appearance and behavior for all of the pages in

your application. The layout of the master page merges with the content from an individual

content page to produce the final page that the user sees. In the Wingtip Toys application, you

modify the Site.master master page so that all the pages in the Wingtip Toys website share the

same distinctive logo and navigation bar.

HTML5

The ASP.NET Web Forms Application template supports HTML5, which is the latest version of

the HTML markup language. HTML5 supports new elements and functionality that make it easier

to create Web sites.

Modernizr

For browsers that do not support HTML5, you can use Modernizr. Modernizr is an open-source

JavaScript library that can detect whether a browser supports HTML5 features, and enable them

if it does not. In the ASP.NET Web Forms Application template, Modernizr is installed as a NuGet

package.

Bootstrap

The Visual Studio 2013 project templates use Bootstrap, a layout and theming framework

created by Twitter. Bootstrap uses CSS3 to provide responsive design, which means layouts can

dynamically adapt to different browser window sizes. You can also use Bootstrap's theming

feature to easily effect a change in the application's look and feel. By default, the ASP.NET Web

Application template in Visual Studio 2013 includes Bootstrap as a NuGet package.

NuGet Packages

The ASP.NET Web Forms Application template includes a set of NuGet packages. These

packages provide componentized functionality in the form of open source libraries and tools.

There is a wide variety of packages to help you create and test your applications. Visual Studio

makes it easy to add, remove, and update NuGet packages. Developers can create and add

packages to NuGet as well.

http://msdn.microsoft.com/en-us/library/wtxbf3hh.aspx
http://www.w3schools.com/html/html5_intro.asp
http://www.modernizr.com/
http://getbootstrap.com/
http://www.nuget.org/

When you install a package, NuGet copies files to your solution and automatically makes

whatever changes are needed, such as adding references and changing you’re the configuration

associated with your Web application. If you decide to remove the library, NuGet removes files

and reverses whatever changes it made in your project so that no clutter is left. NuGet is

available from the Tools menu in Visual Studio.

jQuery

jQuery is a fast and concise JavaScript Library that simplifies HTML document traversing, event

handling, animating, and Ajax interactions for rapid web development. The jQuery JavaScript

library is included in the ASP.NET Web Forms Application template as a NuGet package.

Unobtrusive Validation

Built-in validator controls have been configured to use unobtrusive JavaScript for client-side

validation logic. This significantly reduces the amount of JavaScript rendered inline in the page

markup and reduces the overall page size. Unobtrusive validation is added globally to the

ASP.NET Web Forms Application template based on the setting in the <appSettings> element of

the Web.config file at the root of the application.

Entity Framework Code First

Besides the features in the ASP.NET Web Forms Application template, the Wingtip Toys

application uses Entity Framework Code First, which is a NuGet library that enables code-centric

development when you work with data. Put simply, it creates the database portion of your

application for you based on the code that you write. Using the Entity Framework, you retrieve

and manipulate data as strongly typed objects. This lets you focus on the business logic in your

application rather than the details of how data is accessed.

http://jquery.com/
http://weblogs.asp.net/scottgu/archive/2010/12/08/announcing-entity-framework-code-first-ctp5-release.aspx

For additional information about the installed libraries and packages included with the ASP.NET

Web Forms template, see the list of installed NuGet packages. To do this, In Visual Studio create

a new Web Forms project, select Tools -> Library Package Manager -> Manage NuGet

Packages for Solution, and select Installed packages in the Manage NuGet Packages dialog

box.

Touring Visual Studio

The primary windows in Visual Studio include the Solution Explorer, the Server Explorer

(Database Explorer in Express), the Properties Window, the Toolbox, the Toolbar, and the

Document Window.

For more information about Visual Studio, see Visual Guide to Visual Web Developer.

Summary

In this tutorial you have created, reviewed and run the default Web Forms application. You have

reviewed the different features of the default Web forms application and learned some basics

about how to use the Visual Studio environment. In the following tutorials you'll create the data

access layer.

Additional Resources

Choosing the Right Programming Model

Web Application Projects versus Web Site Projects

ASP.NET Web Forms Pages Overview

http://msdn.microsoft.com/library/ee410104.aspx
http://www.asp.net/web-forms/videos/how-do-i/choosing-the-right-programming-model
http://msdn.microsoft.com/en-us/library/dd547590.aspx
http://msdn.microsoft.com/en-us/library/428509ah.aspx

Create the Data Access Layer
This tutorial series will teach you the basics of building an ASP.NET Web Forms application using

ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project

with C# source code is available to accompany this tutorial series.

This tutorial describes how to create, access, and review data from a database using ASP.NET

Web Forms and Entity Framework Code First. This tutorial builds on the previous tutorial “Create

the Project” and is part of the Wingtip Toy Store tutorial series. When you've completed this

tutorial, you will have built a group of data-access classes that are in the Models folder of the

project.

What you'll learn:

 How to create the data models.

 How to initialize and seed the database.

 How to update and configure the application to support the database.

These are the features introduced in the tutorial:

 Entity Framework Code First

 LocalDB

 Data Annotations

Creating the Data Models

Entity Framework is an object-relational mapping (ORM) framework. It lets you work with

relational data as objects, eliminating most of the data-access code that you'd usually need to

write. Using Entity Framework, you can issue queries using LINQ, then retrieve and manipulate

data as strongly typed objects. LINQ provides patterns for querying and updating data. Using

Entity Framework allows you to focus on creating the rest of your application, rather than

focusing on the data access fundamentals. Later in this tutorial series, we’ll show you how to use

the data to populate navigation and product queries.

Entity Framework supports a development paradigm called Code First. Code First lets you define

your data models using classes. A class is a construct that enables you to create your own

custom types by grouping together variables of other types, methods and events. You can map

classes to an existing database or use them to generate a database. In this tutorial, you’ll create

the data models by writing data model classes. Then, you’ll let Entity Framework create the

database on the fly from these new classes.

You will begin by creating the entity classes that define the data models for the Web Forms

application. Then you will create a context class that manages the entity classes and provides

data access to the database. You will also create an initializer class that you will use to populate

the database.

http://msdn.microsoft.com/en-us/data/aa937723
http://msdn.microsoft.com/en-us/library/bb397926.aspx

Entity Framework and References

By default, Entity Framework is included when you create a new ASP.NET Web Application

using the Web Forms template. Entity Framework can be installed, uninstalled, and updated as

a NuGet package.

This NuGet package includes the following runtime assemblies within your project:

 EntityFramework.dll – All the common runtime code used by Entity Framework

 EntityFramework.SqlServer.dll – The Microsoft SQL Server provider for Entity Framework

Entity Classes

The classes you create to define the schema of the data are called entity classes. If you’re new to

database design, think of the entity classes as table definitions of a database. Each property in

the class specifies a column in the table of the database. These classes provide a lightweight,

object-relational interface between object-oriented code and the relational table structure of the

database.

In this tutorial, you’ll start out by adding simple entity classes representing the schemas for

products and categories. The products class will contain definitions for each product. The name

of each of the members of the product class will be ProductID, ProductName,

Description, ImagePath, UnitPrice, CategoryID, and Category. The category class will

contain definitions for each category that a product can belong to, such as Car, Boat, or Plane.

The name of each of the members of the category class will be CategoryID, CategoryName,

Description, and Products. Each product will belong to one of the categories. These entity

classes will be added to the project’s existing Models folder.

1. In Solution Explorer, right-click the Models folder and then select Add -> New Item.

The Add New Item dialog box is displayed.

2. Under Visual C# from the Installed pane on the left, select Code.

3. Select Class from the middle pane and name this new class Product.cs.

4. Click Add.

The new class file is displayed in the editor.

5. Replace the default code with the following code:

using System.ComponentModel.DataAnnotations;

namespace WingtipToys.Models

{

 public class Product

 {

 [ScaffoldColumn(false)]

 public int ProductID { get; set; }

 [Required, StringLength(100), Display(Name = "Name")]

 public string ProductName { get; set; }

 [Required, StringLength(10000), Display(Name = "Product Description"),

DataType(DataType.MultilineText)]

 public string Description { get; set; }

 public string ImagePath { get; set; }

 [Display(Name = "Price")]

 public double? UnitPrice { get; set; }

 public int? CategoryID { get; set; }

 public virtual Category Category { get; set; }

 }

}

6. Create another class by repeating steps 1 through 4, however, name the new class

Category.cs and replace the default code with the following code:

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace WingtipToys.Models

{

 public class Category

 {

 [ScaffoldColumn(false)]

 public int CategoryID { get; set; }

 [Required, StringLength(100), Display(Name = "Name")]

 public string CategoryName { get; set; }

 [Display(Name = "Product Description")]

 public string Description { get; set; }

 public virtual ICollection<Product> Products { get; set; }

 }

}

As previously mentioned, the Category class represents the type of product that the

application is designed to sell (such as "Cars", "Boats", "Rockets", and so on), and the Product

class represents the individual products (toys) in the database. Each instance of a Product

object will correspond to a row within a relational database table, and each property of the

Product class will map to a column in the relational database table. Later in this tutorial, you’ll

review the product data contained in the database.

Data Annotations

You may have noticed that certain members of the classes have attributes specifying details

about the member, such as [ScaffoldColumn(false)]. These are data annotations. The

data annotation attributes can describe how to validate user input for that member, to specify

formatting for it, and to specify how it is modeled when the database is created.

Context Class

To start using the classes for data access, you must define a context class. As mentioned

previously, the context class manages the entity classes (such as the Product class and the

Category class) and provides data access to the database.

This procedure adds a new C# context class to the Models folder.

1. Right-click the Models folder and then select Add -> New Item.

The Add New Item dialog box is displayed.

2. Select Class from the middle pane, name it ProductContext.cs and click Add.

3. Replace the default code contained in the class with the following code:

using System.Data.Entity;

namespace WingtipToys.Models

{

 public class ProductContext : DbContext

 {

 public ProductContext() : base("WingtipToys")

 {

 }

 public DbSet<Category> Categories { get; set; }

 public DbSet<Product> Products { get; set; }

 }

}

This code adds the System.Data.Entity namespace so that you have access to all the core

functionality of Entity Framework, which includes the capability to query, insert, update, and

delete data by working with strongly typed objects.

The ProductContext class represents Entity Framework product database context, which

handles fetching, storing, and updating Product class instances in the database. The

ProductContext class derives from the DbContext base class provided by Entity Framework.

Initializer Class

You will need to run some custom logic to initialize the database the first time the context is

used. This will allow seed data to be added to the database so that you can immediately display

products and categories.

This procedure adds a new C# initializer class to the Models folder.

1. Create another Class in the Models folder and name it ProductDatabaseInitializer.cs.

2. Replace the default code contained in the class with the following code:

using System.Collections.Generic;

using System.Data.Entity;

namespace WingtipToys.Models

{

 public class ProductDatabaseInitializer :

DropCreateDatabaseAlways<ProductContext>

 {

 protected override void Seed(ProductContext context)

 {

 GetCategories().ForEach(c => context.Categories.Add(c));

 GetProducts().ForEach(p => context.Products.Add(p));

 }

 private static List<Category> GetCategories()

 {

 var categories = new List<Category> {

 new Category

 {

 CategoryID = 1,

 CategoryName = "Cars"

 },

 new Category

 {

 CategoryID = 2,

 CategoryName = "Planes"

 },

 new Category

 {

 CategoryID = 3,

 CategoryName = "Trucks"

 },

 new Category

 {

 CategoryID = 4,

 CategoryName = "Boats"

 },

 new Category

 {

 CategoryID = 5,

 CategoryName = "Rockets"

 },

 };

 return categories;

 }

 private static List<Product> GetProducts()

 {

 var products = new List<Product> {

 new Product

 {

 ProductID = 1,

 ProductName = "Convertible Car",

 Description = "This convertible car is fast! The engine is

powered by a neutrino based battery (not included)." +

 "Power it up and let it go!",

 ImagePath="carconvert.png",

 UnitPrice = 22.50,

 CategoryID = 1

 },

 new Product

 {

 ProductID = 2,

 ProductName = "Old-time Car",

 Description = "There's nothing old about this toy car,

except it's looks. Compatible with other old toy cars.",

 ImagePath="carearly.png",

 UnitPrice = 15.95,

 CategoryID = 1

 },

 new Product

 {

 ProductID = 3,

 ProductName = "Fast Car",

 Description = "Yes this car is fast, but it also floats in

water.",

 ImagePath="carfast.png",

 UnitPrice = 32.99,

 CategoryID = 1

 },

 new Product

 {

 ProductID = 4,

 ProductName = "Super Fast Car",

 Description = "Use this super fast car to entertain guests.

Lights and doors work!",

 ImagePath="carfaster.png",

 UnitPrice = 8.95,

 CategoryID = 1

 },

 new Product

 {

 ProductID = 5,

 ProductName = "Old Style Racer",

 Description = "This old style racer can fly (with user

assistance). Gravity controls flight duration." +

 "No batteries required.",

 ImagePath="carracer.png",

 UnitPrice = 34.95,

 CategoryID = 1

 },

 new Product

 {

 ProductID = 6,

 ProductName = "Ace Plane",

 Description = "Authentic airplane toy. Features realistic

color and details.",

 ImagePath="planeace.png",

 UnitPrice = 95.00,

 CategoryID = 2

 },

 new Product

 {

 ProductID = 7,

 ProductName = "Glider",

 Description = "This fun glider is made from real balsa

wood. Some assembly required.",

 ImagePath="planeglider.png",

 UnitPrice = 4.95,

 CategoryID = 2

 },

 new Product

 {

 ProductID = 8,

 ProductName = "Paper Plane",

 Description = "This paper plane is like no other paper

plane. Some folding required.",

 ImagePath="planepaper.png",

 UnitPrice = 2.95,

 CategoryID = 2

 },

 new Product

 {

 ProductID = 9,

 ProductName = "Propeller Plane",

 Description = "Rubber band powered plane features two

wheels.",

 ImagePath="planeprop.png",

 UnitPrice = 32.95,

 CategoryID = 2

 },

 new Product

 {

 ProductID = 10,

 ProductName = "Early Truck",

 Description = "This toy truck has a real gas powered

engine. Requires regular tune ups.",

 ImagePath="truckearly.png",

 UnitPrice = 15.00,

 CategoryID = 3

 },

 new Product

 {

 ProductID = 11,

 ProductName = "Fire Truck",

 Description = "You will have endless fun with this one

quarter sized fire truck.",

 ImagePath="truckfire.png",

 UnitPrice = 26.00,

 CategoryID = 3

 },

 new Product

 {

 ProductID = 12,

 ProductName = "Big Truck",

 Description = "This fun toy truck can be used to tow other

trucks that are not as big.",

 ImagePath="truckbig.png",

 UnitPrice = 29.00,

 CategoryID = 3

 },

 new Product

 {

 ProductID = 13,

 ProductName = "Big Ship",

 Description = "Is it a boat or a ship. Let this floating

vehicle decide by using its " +

 "artifically intelligent computer brain!",

 ImagePath="boatbig.png",

 UnitPrice = 95.00,

 CategoryID = 4

 },

 new Product

 {

 ProductID = 14,

 ProductName = "Paper Boat",

 Description = "Floating fun for all! This toy boat can be

assembled in seconds. Floats for minutes!" +

 "Some folding required.",

 ImagePath="boatpaper.png",

 UnitPrice = 4.95,

 CategoryID = 4

 },

 new Product

 {

 ProductID = 15,

 ProductName = "Sail Boat",

 Description = "Put this fun toy sail boat in the water and

let it go!",

 ImagePath="boatsail.png",

 UnitPrice = 42.95,

 CategoryID = 4

 },

 new Product

 {

 ProductID = 16,

 ProductName = "Rocket",

 Description = "This fun rocket will travel up to a height

of 200 feet.",

 ImagePath="rocket.png",

 UnitPrice = 122.95,

 CategoryID = 5

 }

 };

 return products;

 }

 }

}

As you can see from the above code, when the database is created and initialized, the Seed

property is overridden and set. When the Seed property is set, the values from the categories

and products are used to populate the database. If you attempt to update the seed data by

modifying the above code after the database has been created, you won't see any updates when

you run the Web application. The reason is the above code uses an implementation of the

DropCreateDatabaseIfModelChanges class to recognize if the model (schema) has

changed before resetting the seed data. If no changes are made to the Category and

Product entity classes, the database will not be reinitialized with the seed data.

Note

If you wanted the database to be recreated every time you ran the application, you could use

the DropCreateDatabaseAlways class instead of the

DropCreateDatabaseIfModelChanges class. However for this tutorial series, use the

DropCreateDatabaseIfModelChanges class.

At this point in this tutorial, you will have a Models folder with four new classes and one default

class:

Configuring the Application to Use the Data Model

Now that you've created the classes that represent the data, you must configure the application

to use the classes. In the Global.asax file, you add code that initializes the model. In the

Web.config file you add information that tells the application what database you'll use to store

the data that's represented by the new data classes. The Global.asax file can be used to handle

application events or methods. The Web.config file allows you to control the configuration of

your ASP.NET web application.

Updating the Global.asax file

To initialize the data models when the application starts, you will update the

Application_Start handler in the Global.asax.cs file.

Note

In Solution Explorer, you can select either the Global.asax file or the Global.asax.cs file to edit the

Global.asax.cs file.

1. Add the following code highlighted in yellow to the Application_Start method in

the Global.asax.cs file.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Optimization;

using System.Web.Routing;

using System.Web.Security;

using System.Web.SessionState;

using System.Data.Entity;

using WingtipToys.Models;

namespace WingtipToys

{

 public class Global : HttpApplication

 {

 void Application_Start(object sender, EventArgs e)

 {

 // Code that runs on application startup

 RouteConfig.RegisterRoutes(RouteTable.Routes);

 BundleConfig.RegisterBundles(BundleTable.Bundles);

 // Initialize the product database.

 Database.SetInitializer(new ProductDatabaseInitializer());

 }

 }

}

Note

Your browser must support HTML5 to view the code highlighted in yellow when viewing this

tutorial series in a browser.

As shown in the above code, when the application starts, the application specifies the initializer

that will run during the first time the data is accessed. The two additional namespaces are

required to access the Database object and the ProductDatabaseInitializer object.

Modifying the Web.Config File

Although Entity Framework Code First will generate a database for you in a default location

when the database is populated with seed data, adding your own connection information to

your application gives you control of the database location. You specify this database

connection using a connection string in the application’s Web.config file at the root of the

project. By adding a new connection string, you can direct the location of the database

(wingtiptoys.mdf) to be built in the application’s data directory (App_Data), rather than its default

location. Making this change will allow you to find and inspect the database file later in this

tutorial.

1. In Solution Explorer, find and open the Web.config file.

2. Add the following connection string highlighted in yellow to the

<connectionStrings> section of the Web.config file as follows:

 <connectionStrings>

 <add name="DefaultConnection" connectionString="Data

Source=(LocalDb)\v11.0;AttachDbFilename=|DataDirectory|\aspnet-WingtipToys-

20131119102907.mdf;Initial Catalog=aspnet-WingtipToys-20131119102907;Integrated

Security=True"

 providerName="System.Data.SqlClient" />

 <add name="WingtipToys"

 connectionString="Data

Source=(LocalDB)\v11.0;AttachDbFilename=|DataDirectory|\wingtiptoys.mdf;Integra

ted Security=True" providerName="System.Data.SqlClient" />

 </connectionStrings>

When the application is run for the first time, it will build the database at the location specified

by the connection string. But before running the application, let’s build it first.

Building the Application

To make sure that all the classes and changes to your Web application work, you should build

the application.

1. From the Debug menu, select Build WingtipToys.

The Output window is displayed, and if all went well, you see a succeeded message.

If you run into an error, re-check the above steps. The information in the Output window will

indicate which file has a problem and where in the file a change is required. This information will

enable you to determine what part of the above steps need to be reviewed and fixed in your

project.

Summary

In this tutorial of the series you have created the data model, as well as, added the code that will

be used to initialize and seed the database. You have also configured the application to use the

data models when the application is run.

In the next tutorial, you'll update the UI, add navigation, and retrieve data from the database.

This will result in the database being automatically created based on the entity classes that you

created in this tutorial.

Additional Resources

Entity Framework Overview

Beginner's Guide to the ADO.NET Entity Framework

Code First Development with Entity Framework (video)

Code First Relationships Fluent API

Code First Data Annotations

Productivity Improvements for the Entity Framework

http://msdn.microsoft.com/en-us/library/bb399567.aspx
http://msdn.microsoft.com/en-us/data/ee712907
http://www.msteched.com/2010/Europe/DEV212
http://msdn.microsoft.com/en-us/data/hh134698
http://msdn.microsoft.com/en-us/data/gg193958
http://blogs.msdn.com/b/efdesign/archive/2010/06/21/productivity-improvements-for-the-entity-framework.aspx?wa=wsignin1.0

UI and Navigation
This tutorial series will teach you the basics of building an ASP.NET Web Forms application using

ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project

with C# source code is available to accompany this tutorial series.

In this tutorial, you will modify the UI of the default Web application to support features of the

Wingtip Toys store front application. Also, you will add simple and data bound navigation. This

tutorial builds on the previous tutorial “Create the Data Access Layer” and is part of the Wingtip

Toys tutorial series.

What you'll learn:

 How to change the UI to support features of the Wingtip Toys store front application.

 How to configure an HTML5 element to include page navigation.

 How to create a data-driven control to navigate to specific product data.

 How to display data from a database created using Entity Framework Code First.

ASP.NET Web Forms allow you to create dynamic content for your Web application. Each

ASP.NET Web page is created in a manner similar to a static HTML Web page (a page that does

not include server-based processing), but ASP.NET Web page includes extra elements that

ASP.NET recognizes and processes to generate HTML when the page runs.

With a static HTML page (.htm or .html file), the server fulfills a Web request by reading the file

and sending it as-is to the browser. In contrast, when someone requests an ASP.NET Web page

(.aspx file), the page runs as a program on the Web server. While the page is running, it can

perform any task that your Web site requires, including calculating values, reading or writing

database information, or calling other programs. As its output, the page dynamically produces

markup (such as elements in HTML) and sends this dynamic output to the browser.

Modifying the UI

You’ll continue this tutorial series by modifying the Default.aspx page. You will modify the UI

that’s already established by the default template used to create the application. The type of

modifications you’ll do are typical when creating any Web Forms application. You’ll do this by

changing the title, replacing some content, and removing unneeded default content.

1. Open or switch to the Default.aspx page.

2. If the page appears in Design view, switch to Source view.

3. At the top of the page in the @Page directive, change the Title attribute to “Welcome”,

as shown highlighted in yellow below.

<%@ Page ="Welcome" ="C#" ="~/Site.Master" Title Language MasterPageFile

="true" ="Default.aspx.cs" AutoEventWireup CodeBehind

="WingtipToys._Default" %> Inherits

4. Also on the Default.aspx page, replace all of the default content contained in the

<asp:Content> tag so that the markup appears as below.

< : asp Content ="BodyContent" ="MainContent" ID ContentPlaceHolderID

="server"> runat

 < ><%: Title %>.</ > h1 h1

 < >Wingtip Toys can help you find the perfect gift.</ > h2 h2

 < p ="lead">We're all about transportation toys. You can order class

 any of our toys today. Each toy listing has detailed

 information to help you choose the right toy.</ > p

</asp:Content>

5. Save the Default.aspx page by selecting Save Default.aspx from the File menu.

The resulting Default.aspx page will appear as follows:

<%@ Page ="Home Page" ="C#" ="~/Site.Master" Title Language MasterPageFile

="true" ="Default.aspx.cs" AutoEventWireup CodeBehind

="WingtipToys._Default" %> Inherits

< : asp Content ="BodyContent" ="MainContent" ID ContentPlaceHolderID

="server"> runat

 <h1 <% Title %>.> : </h1 >

 <h2 Wingtip Toys can help you find the perfect gift.> </h2 >

 < p class We're all about transportation toys. You can order ="lead">

 any of our toys today. Each toy listing has detailed

 information to help you choose the right toy.</p >

asp Content </ : >

In the example, you have set the Title attribute of the @Page directive. When the HTML is

displayed in a browser, the server code <%: Page.Title %> resolves to the content

contained in the Title attribute.

The example page includes the basic elements that constitute an ASP.NET Web page. The page

contains static text as you might have in an HTML page, along with elements that are specific to

ASP.NET. The content contained in the Default.aspx page will be integrated with the master

page content, which will be explained later in this tutorial.

@Page Directive

ASP.NET Web Forms usually contain directives that allow you to specify page properties and

configuration information for the page. The directives are used by ASP.NET as instructions for

how to process the page, but they are not rendered as part of the markup that is sent to the

browser.

The most commonly used directive is the @Page directive, which allows you to specify many

configuration options for the page, including the following:

 The server programming language for code in the page, such as C#.

 Whether the page is a page with server code directly in the page, which is called a

single-file page, or whether it is a page with code in a separate class file, which is called a

code-behind page.

 Whether the page has an associated master page and should therefore be treated as a

content page.

 Debugging and tracing options.

If you do not include an @Page directive in the page, or if the directive does not include a

specific setting, a setting will be inherited from the Web.config configuration file or from the

Machine.config configuration file. The Machine.config file provides additional configuration

settings to all applications running on a machine.

Note

The Machine.config also provides details about all possible configuration settings.

Web Server Controls

In most ASP.NET Web Forms applications, you will add controls that allow the user to interact

with the page, such as buttons, text boxes, lists, and so on. These Web server controls are similar

to HTML buttons and input elements. However, they are processed on the server, allowing you

to use server code to set their properties. These controls also raise events that you can handle in

server code.

Server controls use a special syntax that ASP.NET recognizes when the page runs. The tag name

for ASP.NET server controls starts with an asp: prefix. This allows ASP.NET to recognize and

process these server controls. The prefix might be different if the control is not part of the .NET

Framework. In addition to the asp: prefix, ASP.NET server controls also include the

runat="server" attribute and an ID that you can use to reference the control in server code.

When the page runs, ASP.NET identifies the server controls and runs the code that is associated

with those controls. Many controls render some HTML or other markup into the page when it is

displayed in a browser.

Server Code

Most ASP.NET Web Forms applications include code that runs on the server when the page is

processed. As mentioned above, server code can be used to do a variety of things, such as

adding data to a ListView control. ASP.NET supports many languages to run on the server,

including C#, Visual Basic, J#, and others.

ASP.NET supports two models for writing server code for a Web page. In the single-file model,

the code for the page is in a script element where the opening tag includes the

runat="server" attribute. Alternatively, you can create the code for the page in a separate

class file, which is referred to as the code-behind model. In this case, the ASP.NET Web Forms

page generally contains no server code. Instead, the @Page directive includes information that

links the .aspx page with its associated code-behind file.

The CodeBehind attribute contained in the @Page directive specifies the name of the separate

class file, and the Inherits attribute specifies the name of the class within the code-behind file

that corresponds to the page.

Updating the Master Page

In ASP.NET Web Forms, master pages allow you to create a consistent layout for the pages in

your application. A single master page defines the look and feel and standard behavior that you

want for all of the pages (or a group of pages) in your application. You can then create

individual content pages that contain the content you want to display, as explained above.

When users request the content pages, ASP.NET merges them with the master page to produce

output that combines the layout of the master page with the content from the content page.

The new site needs a single logo to display on every page. To add this logo, you can modify the

HTML on the master page.

1. In Solution Explorer, find and open the Site.Master page.

2. If the page is in Design view, switch to Source view.

3. Update the master page by modifying or adding the markup highlighted in yellow:

<%@ Master ="C#" ="true" ="Site.master.cs" Language AutoEventWireup CodeBehind

="WingtipToys.SiteMaster" %> Inherits

DOCTYPE <! html >

< html ="en"> lang

< head ="server"> runat

 < meta ="utf-8" /> charset

 < meta ="viewport" ="width=device-width, initial-scale=1.0" /> name content

 <title <% Page.Title %> - Wingtip Toys> : </title >

 asp PlaceHolder < : runat ="server">

 <% : .Render(Scripts) %> "~/bundles/modernizr"

 asp PlaceHolder </ : >

 < : webopt bundlereference ="server" ="~/Content/css" /> runat path

 < link ="~/favicon.ico" ="shortcut icon" ="image/x-icon" /> href rel type

head </ >

body < >

 < form ="server"> runat

 asp ScriptManager < : runat ="server">

 <Scripts >

 <%--To learn more about bundling scripts in ScriptManager see

http://go.microsoft.com/fwlink/?LinkID=301884 --%>

 <% %> --Framework Scripts--

 <asp: ScriptReference Name ="MsAjaxBundle" />

 <asp: ScriptReference Name ="jquery" />

 <asp: ScriptReference Name ="bootstrap" />

 <asp: ScriptReference Name ="respond" />

 < : asp ScriptReference ="WebForms.js" ="System.Web" Name Assembly

="~/Scripts/WebForms/WebForms.js" /> Path

 < : asp ScriptReference ="WebUIValidation.js" Name

="System.Web" ="~/Scripts/WebForms/WebUIValidation.js" /> Assembly Path

 < : asp ScriptReference ="MenuStandards.js" Name

="System.Web" ="~/Scripts/WebForms/MenuStandards.js" /> Assembly Path

 < : asp ScriptReference ="GridView.js" ="System.Web" Name Assembly

="~/Scripts/WebForms/GridView.js" /> Path

 < : asp ScriptReference ="DetailsView.js" Name

="System.Web" ="~/Scripts/WebForms/DetailsView.js" /> Assembly Path

 < : asp ScriptReference ="TreeView.js" ="System.Web" Name Assembly

="~/Scripts/WebForms/TreeView.js" /> Path

 < : asp ScriptReference ="WebParts.js" ="System.Web" Name Assembly

="~/Scripts/WebForms/WebParts.js" /> Path

 < : asp ScriptReference ="Focus.js" ="System.Web" Name Assembly

="~/Scripts/WebForms/Focus.js" /> Path

 < : asp ScriptReference ="WebFormsBundle" /> Name

 <% %> --Site Scripts--

 </Scripts >

 asp ScriptManager </ : >

 < div ="navbar navbar-inverse navbar-fixed-top"> class

 < div class ="container">

 < div class ="navbar-header">

 < button ="button" ="navbar-toggle" type class data-

="collapse" =".navbar-collapse"> toggle data-target

 < span class="icon-bar">

 < span class="icon-bar">

 < span class="icon-bar">

 </button >

 < a class ="navbar-brand" runat ="server" href Wingtip ="~/">

Toys

 </div >

 < div ="navbar-collapse collapse"> class

 < ul class ="nav navbar-nav">

 < a runat ="server" href Home="~/">

 < a runat ="server" href About="~/About">

 < a runat ="server" href Contact="~/Contact">

 <asp: LoginView runat ="server" ViewStateMode ="Disabled">

 <AnonymousTemplate >

 < ul ="nav navbar-nav navbar-right"> class

 < a runat ="server"

href Register="~/Account/Register">

 < a runat ="server"

href Log in="~/Account/Login">

 </AnonymousTemplate >

 <LoggedInTemplate >

 < ul ="nav navbar-nav navbar-right"> class

 < a runat ="server" href ="~/Account/Manage"

title Hello, <% Context.User.Identity.GetUserName() %> ="Manage your account"> :

!

 < : asp LoginStatus ="server" runat

="Redirect" ="Log off" ="~/" LogoutAction LogoutText LogoutPageUrl

="Unnamed_LoggingOut" /> OnLoggingOut

 </LoggedInTemplate >

 </asp:LoginView >

 </div >

 </div >

 </div >

 < div ="TitleContent" =" : center"> id style text-align

 < a ="server" ="~/"> runat href

 < : asp Image ="Image1" ="server" ID runat

="~/Images/logo.jpg" ="None" /> ImageUrl BorderStyle

 < br />

 </div >

 < div ="container body-content"> class

 < : asp ContentPlaceHolder ="MainContent" ="server"> ID runat

 asp ContentPlaceHolder </ : >

 < hr />

 <footer >

 <p> <%© : .Now.Year %> - Wingtip ToysDateTime </p >

 </footer >

 </div >

 </form >

body </ >

html </ >

This HTML will display the image named logo.jpg from the Images folder of the Web application,

which you’ll add later. When a page that uses the master page is displayed in a browser, the

logo will be displayed. If a user clicks on the logo, the user will navigate back to the Default.aspx

page. The HTML anchor tag <a> wraps the image server control and allows the image to be

included as part of the link. The href attribute for the anchor tag specifies the root "~/" of the

Web site as the link location. By default, the Default.aspx page is displayed when the user

navigates to the root of the Web site. The Image <asp:Image> server control includes addition

properties, such as BorderStyle, that render as HTML when displayed in a browser.

Master Pages

A master page is an ASP.NET file with the extension .master (for example, Site.Master) with a

predefined layout that can include static text, HTML elements, and server controls. The master

page is identified by a special @Master directive that replaces the @Page directive that is used

for ordinary .aspx pages.

In addition to the @Master directive, the master page also contains all of the top-level HTML

elements for a page, such as html, head, and form. For example, on the master page you

added above, you use an HTML table for the layout, an img element for the company logo,

static text, and server controls to handle common membership for your site. You can use any

HTML and any ASP.NET elements as part of your master page.

In addition to static text and controls that will appear on all pages, the master page also includes

one or more ContentPlaceHolder controls. These placeholder controls define regions where

replaceable content will appear. In turn, the replaceable content is defined in content pages,

such as Default.aspx, using the Content server control.

Adding Image Files

The logo image that is referenced above, along with all the product images, must be added to

the Web application so that they can be seen when the project is displayed in a browser.

Download from MSDN Samples site:

Getting Started with ASP.NET 4.5 Web Forms and Visual Studio 2013 - Wingtip Toys (C#)

http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409

The download includes resources in the WingtipToys-Assets folder that are used to create the

sample application.

1. If you haven’t already done so, download the compressed sample files using the above

link from the MSDN Samples site.

2. Once downloaded, open the .zip file and copy the contents to a local folder on your

machine.

3. Find and open the WingtipToys-Assets folder.

4. By dragging and dropping, copy the Catalog folder from your local folder to the root of

the Web application project in the Solution Explorer of Visual Studio.

5. Next, create a new folder named Images by right-clicking the WingtipToys project and

selecting Add -> New Folder.

6. Copy the logo.jpg file from the WingtipToys-Assets folder in File Explorer to the Images

folder of the Web application project in Solution Explorer of Visual Studio.

7. Click the Show All Files option at the top of Solution Explorer to update the list of files

if you don’t see the new files.

Solution Explorer now shows the updated project files.

Adding Pages

Before adding navigation to the Web application, you’ll first add two new pages that you’ll

navigate to. Later in this tutorial series, you’ll display products and product details on these new

pages.

1. In Solution Explorer, right-click WingtipToys, click Add, and then click New Item.

The Add New Item dialog box is displayed.

2. Select the Visual C# -> Web templates group on the left. Then, select Web Form with

Master Page from the middle list and name it ProductList.aspx.

3. Select Site.Master to attach the master page to the newly created .aspx page.

4. Add an additional page named ProductDetails.aspx by following these same steps.

Updating Bootstrap

The Visual Studio 2013 project templates use Bootstrap, a layout and theming framework

created by Twitter. Bootstrap uses CSS3 to provide responsive design, which means layouts can

dynamically adapt to different browser window sizes. You can also use Bootstrap's theming

feature to easily effect a change in the application's look and feel. By default, the ASP.NET Web

Application template in Visual Studio 2013 includes Bootstrap as a NuGet package.

In this tutorial, you will change look and feel of the Wingtip Toys application by replacing the

Bootstrap CSS files.

1. In Solution Explorer, open the Content folder.

2. Right-click the bootstrap.css file and rename it to bootstrap-original.css.

3. Rename the bootstrap.min.css to bootstrap-original.min.css.

4. In Solution Explorer, right-click the Content folder and select Open Folder in File

Explorer.

The File Explorer will be displayed. You will save a downloaded bootstrap CSS files to this

location.

5. In your browser, go to http://Bootswatch.com.

6. Scroll the browser window until you see the Cerulean theme.

7. Download both the bootstrap.css file and the bootstrap.min.css file to the Content folder.

Use the path to the content folder that is displayed in the File Explorer window that you

previously opened.

http://getbootstrap.com/
http://bootswatch.com/

8. In Visual Studio at the top of Solution Explorer, select the Show All Files option to

display the new files in the Content folder.

You will see the two new CSS files in the Content folder, but notice that the icon next to

each file name is grayed out. This means that the file has not yet been added to the

project.

9. Right-click the bootstrap.css and the bootstrap.min.css files and select Include In Project.

When you run the Wingtip Toys application later in this tutorial, the new UI will be displayed.

Note

The ASP.NET Web Application template uses the Bundle.config file at the root of the project to

store the path of the Bootstrap CSS files.

Modifying the Default Navigation

The default navigation for every page in the application can be modified by changing the

unordered navigation list element that's in the Site.Master page.

1. In Solution Explorer, locate and open the Site.Master page.

2. Add the additional navigation link highlighted in yellow to the unordered list shown

below:

< ul ="nav navbar-nav"> class

 < >< li a ="server" ="~/">Home</runat href ></ > a li

 < >< li a ="server" ="~/About">About</runat href ></ > a li

 < >< li a ="server" ="~/Contact">Contact</runat href ></ > a li

 < >< li a ="server" ="~/ProductList">Products</runat href ></ > a li

</ > ul

As you can see in the above HTML, you modified each line item containing an anchor tag

<a> with a link href attribute. Each href points to a page in the Web application. In the

browser, when a user clicks on one of these links (such as Products), they will navigate to the

page contained in the href (such as ProductList.aspx). You will run the application at the end

of this tutorial.

Note

The tilde (~) character is used to specify that the href path begins at the root of the project.

Adding a Data Control to Display Navigation Data

Next, you’ll add a control to display all of the categories from the database. Each category will

act as a link to the ProductList.aspx page. When a user clicks on a category link in the browser,

they will navigate to the products page and see only the products associated with the selected

category.

You’ll use a ListView control to display all the categories contained in the database. To add a

ListView control to the master page:

1. In the Site.Master page, add the following highlighted <div> element after the <div>

element containing the id="TitleContent" that you added earlier:

 < div ="TitleContent" =" : center"> id style text-align

 < a ="server" ="~/"> runat href

 < : asp Image ="Image1" ="server" ID runat

="~/img/logo.jpg" ="None" /> ImageUrl BorderStyle

 </ > a

 < /> br

 </ > div

 < div ="CategoryMenu" =" : center"> id style text-align

 < : asp ListView ="categoryList" ID

 ="WingtipToys.Models.Category" ItemType

 ="server" runat

 ="GetCategories" > SelectMethod

 < > ItemTemplate

 < b =" : large; : normal"> style font-size font-style

 < a ="/ProductList.aspx?id=<%#: Item.CategoryID %>"> href

 <%#: Item.CategoryName %>

 </ > a

 </ > b

 </ > ItemTemplate

 < > | </ > ItemSeparatorTemplate ItemSeparatorTemplate

 </ : > asp ListView

 </ > div

This code will display all the categories from the database. The ListView control displays each

category name as link text and includes a link to the ProductList.aspx page with a query-string

value containing the ID of the category. By setting the ItemType property in the ListView

control, the data-binding expression Item is available within the ItemTemplate node and the

control becomes strongly typed. You can select details of the Item object using IntelliSense,

such as specifying the CategoryName. This code is contained inside the container <%#: %>

that marks a data-binding expression. By adding the (:) to the end of the <%# prefix, the result of

the data-binding expression is HTML-encoded. When the result is HTML-encoded, your

application is better protected against cross-site script injection (XSS) and HTML injection

attacks.

Tip

When you add code by typing during development, you can be certain that a valid member of

an object is found because strongly typed data controls show the available members based on

IntelliSense. IntelliSense offers context-appropriate code choices as you type code, such as

properties, methods, and objects.

In the next step, you will implement the GetCategories method to retrieve data.

Linking the Data Control to the Database

Before you can display data in the data control, you need to link the data control to the

database. To make the link, you can modify the code behind of the Site.Master.cs file.

1. In Solution Explorer, right-click the Site.Master page and then click View Code. The

Site.Master.cs file is opened in the editor.

2. Near the beginning of the Site.Master.cs file, add two additional namespaces so that all

the included namespaces appear as follows:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Linq;

using WingtipToys.Models;

3. Add the highlighted GetCategories method after the Page_Load event handler as

follows:

 Page_Load(sender, protected void object e) EventArgs

{

}

 public < > GetCategories() IQueryable Category

{

 _db = WingtipToys.Models.var new (); ProductContext

 < > query = _db.Categories; IQueryable Category

 query; return

}

The above code is executed when any page that uses the master page is loaded in the browser.

The ListView control (named "categoryList") that you added earlier in this tutorial uses model

binding to select data. In the markup of the ListView control you set the control's

SelectMethod property to the GetCategories method, shown above. The ListView

control calls the GetCategories method at the appropriate time in the page life cycle and

automatically binds the returned data. You will learn more about binding data in the next

tutorial.

Running the Application and Creating the Database

Earlier in this tutorial series you created an initializer class (named "ProductDatabaseInitializer")

and specified this class in the global.asax.cs file. The Entity Framework will generate the database

when the application is run the first time because the Application_Start method contained

in the global.asax.cs file will call the initializer class. The initializer class will use the model classes

(Category and Product) that you added earlier in this tutorial series to create the database.

1. In Solution Explorer, right-click the Default.aspx page and select Set As Start Page.

2. In Visual Studio press F5.

It will take a little time to set everything up during this first run.

When you run the application, the application will be compiled and the database named

wingtiptoys.mdf will be created in the App_Data folder. In the browser, you will see a

category navigation menu. This menu was generated by retrieving the categories from

the database. In the next tutorial, you will implement the navigation.

3. Close the browser to stop the running application.

Reviewing the Database

Open the Web.config file and look at the connection string section. You can see that the

AttachDbFilename value in the connection string points to the DataDirectory for the Web

application project. The value |DataDirectory| is a reserved value that represents the

App_Data folder in the project. This folder is where the database that was created from your

entity classes is located.

<connectionStrings>

 <add name="DefaultConnection"

 connectionString="Data Source=(LocalDb)\v11.0;Initial Catalog=aspnet-

WingtipToys-20120302100502;Integrated Security=True"

 providerName="System.Data.SqlClient" />

 <add name="WingtipToys"

 connectionString="Data

Source=(LocalDB)\v11.0;AttachDbFilename=|DataDirectory|\wingtiptoys.mdf;Integra

ted Security=True"

 providerName="System.Data.SqlClient " />

 </connectionStrings>

Note

If the App_Data folder is not visible or if the folder is empty, select the Refresh icon and then

the Show All Files icon at the top of the Solution Explorer window. Expanding the width of the

Solution Explorer windows may be required to show all available icons.

Now you can inspect the data contained in the wingtiptoys.mdf database file by using the Server

Explorer window.

1. Expand the App_Data folder. If the App_Data folder is not visible, see the note above.

2. If the wingtiptoys.mdf database file is not visible, select the Refresh icon and then the

Show All Files icon at the top of the Solution Explorer window.

3. Right-click the wingtiptoys.mdf database file and select Open.

Server Explorer is displayed.

4. Expand the Tables folder.

5. Right-click the Products table and select Show Table Data.

The Products table is displayed.

6. This view lets you see and modify the data in the Products table by hand.

7. Close the Products table window.

8. In the Server Explorer, right-click the Products table again and select Open Table

Definition.

The data design for the Products table is displayed.

9. In the T-SQL tab you will see the SQL DDL statement that was used to create the table.

You can also use the UI in the Design tab to modify the schema.

10. In the Server Explorer, right-click WingtipToys database and select Close Connection.

By detaching the database from Visual Studio, the database schema will be able to be

modified later in this tutorial series.

11. Return to Solution Explorer by selecting the Solution Explorer tab at the bottom of the

Server Explorer window.

Summary

In this tutorial of the series you have added some basic UI, graphics, pages, and navigation.

Additionally, you ran the Web application, which created the database from the data classes that

you added in the previous tutorial. You also viewed the contents of the Products table of the

database by viewing the database directly. In the next tutorial, you'll display data items and

details from the database.

Additional Resources

Introduction to Programming ASP.NET Web Pages

ASP.NET Web Server Controls Overview

CSS Tutorial

http://msdn.microsoft.com/en-us/library/ms178125.aspx
http://msdn.microsoft.com/en-us/library/zsyt68f1.aspx
http://www.w3schools.com/css/default.asp

Display Data Items and Details
This tutorial series will teach you the basics of building an ASP.NET Web Forms application using

ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project

with C# source code is available to accompany this tutorial series.

This tutorial describes how to display data items and data item details using ASP.NET Web

Forms and Entity Framework Code First. This tutorial builds on the previous tutorial “UI and

Navigation” and is part of the Wingtip Toy Store tutorial series. When you've completed this

tutorial, you’ll be able to see products on the ProductsList.aspx page and details about an

individual product on the ProductDetails.aspx page.

What you'll learn:

 How to add a data control to display products from the database.

 How to connect a data control to the selected data.

 How to add a data control to display product details from the database.

 How to retrieve a value from the query string and use that value to limit the data that's

retrieved from the database.

These are the features introduced in the tutorial:

 Model Binding

 Value providers

Adding a Data Control to Display Products

When binding data to a server control, there are a few different options you can use. The most

common options include adding a data source control, adding code by hand, or using model

binding.

Using a Data Source Control to Bind Data

Adding a data source control allows you to link the data source control to the control that

displays the data. This approach allows you to declaratively connect server-side controls directly

to data sources, rather than using a programmatic approach.

Coding By Hand to Bind Data

Adding code by hand involves reading the value, checking for a null value, attempting to

convert it to the appropriate type, checking whether the conversion was successful, and finally,

using the value in the query. You would use this approach when you need to retain full control

over your data-access logic.

Using Model Binding to Bind Data

Using model binding allows you to bind results using far less code and gives you the ability to

reuse the functionality throughout your application. Model binding aims to simplify working

with code-focused data-access logic while still retaining the benefits of a rich, data-binding

framework.

Displaying Products

In this tutorial, you’ll use model binding to bind data. To configure a data control to use model

binding to select data, you set the control's SelectMethod property to the name of a method

in the page's code. The data control calls the method at the appropriate time in the page life

cycle and automatically binds the returned data. There's no need to explicitly call the DataBind

method.

Using the steps below, you’ll modify the markup in the ProductList.aspx page so that the page

can display products.

1. In Solution Explorer, open the ProductList.aspx page.

2. Replace the existing markup with the following markup:

<%@ Page Title="Products" Language="C#" MasterPageFile="~/Site.Master"

AutoEventWireup="true"

 CodeBehind="ProductList.aspx.cs" Inherits="WingtipToys.ProductList" %>

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent" runat="server">

 <section>

 <div>

 <hgroup>

 <h2><%: Page.Title %></h2>

 </hgroup>

 <asp:ListView ID="productList" runat="server"

 DataKeyNames="ProductID" GroupItemCount="4"

 ItemType="WingtipToys.Models.Product" SelectMethod="GetProducts">

 <EmptyDataTemplate>

 <table >

 <tr>

 <td>No data was returned.</td>

 </tr>

 </table>

 </EmptyDataTemplate>

 <EmptyItemTemplate>

 <td/>

 </EmptyItemTemplate>

 <GroupTemplate>

 <tr id="itemPlaceholderContainer" runat="server">

 <td id="itemPlaceholder" runat="server"></td>

 </tr>

 </GroupTemplate>

 <ItemTemplate>

 <td runat="server">

 <table>

 <tr>

 <td>

 <a

href="ProductDetails.aspx?productID=<%#:Item.ProductID%>">

 <img

src="/Catalog/Images/Thumbs/<%#:Item.ImagePath%>"

 width="100" height="75" style="border:

solid" />

 </td>

 </tr>

 <tr>

 <td>

 <a

href="ProductDetails.aspx?productID=<%#:Item.ProductID%>">

 <%#:Item.ProductName%>

 Price: <%#:String.Format("{0:c}",

Item.UnitPrice)%>

 </td>

 </tr>

 <tr>

 <td> </td>

 </tr>

 </table>

 </p>

 </td>

 </ItemTemplate>

 <LayoutTemplate>

 <table style="width:100%;">

 <tbody>

 <tr>

 <td>

 <table id="groupPlaceholderContainer"

runat="server" style="width:100%">

 <tr id="groupPlaceholder"></tr>

 </table>

 </td>

 </tr>

 <tr>

 <td></td>

 </tr>

 <tr></tr>

 </tbody>

 </table>

 </LayoutTemplate>

 </asp:ListView>

 </div>

 </section>

</asp:Content>

This code uses a ListView control named "productList" to display the products.

 <asp:ListView ID="productList" runat="server"

The ListView control displays data in a format that you define by using templates and styles. It

is useful for data in any repeating structure. This ListView example simply shows data from the

database, however you can enable users to edit, insert, and delete data, and to sort and page

data, all without code.

By setting the ItemType property in the ListView control, the data-binding expression Item is

available and the control becomes strongly typed. As mentioned in the previous tutorial, you

can select details of the Item object using IntelliSense, such as specifying the ProductName:

In addition, you are using model binding to specify a SelectMethod value. This value

(GetProducts) will correspond to the method that you will add to the code behind to display

products in the next step.

Adding Code to Display Products

In this step, you’ll add code to populate the ListView control with product data from the

database. The code will support showing products by individual category, as well as showing all

products.

1. In Solution Explorer, right-click ProductList.aspx and then click View Code.

2. Replace the existing code in the ProductList.aspx.cs file with the following code:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using WingtipToys.Models;

using System.Web.ModelBinding;

namespace WingtipToys

{

 public partial class ProductList : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 public IQueryable<Product> GetProducts([QueryString("id")] int?

categoryId)

 {

 var _db = new WingtipToys.Models.ProductContext();

 IQueryable<Product> query = _db.Products;

 if (categoryId.HasValue && categoryId > 0)

 {

 query = query.Where(p => p.CategoryID == categoryId);

 }

 return query;

 }

 }

}

This code shows the GetProducts method that's referenced by the ItemType property of the

ListView control in the ProductList.aspx page. To limit the results to a specific category in the

database, the code sets the categoryId value from the query string value passed to the

ProductList.aspx page when the ProductList.aspx page is navigated to. The

QueryStringAttribute class in the System.Web.ModelBinding namespace is used to

retrieve the value of the query string variable id. This instructs model binding to try to bind a

value from the query string to the categoryId parameter at run time.

When a valid category is passed as a query string to the page, the results of the query are

limited to those products in the database that match the categoryId value. For instance, if the

URL to the ProductsList.aspx page is the following:

http://localhost/ProductList.aspx?id=1

The page displays only the products where the category equals 1.

If no query string is included when navigating to the ProductList.aspx page, all products will be

displayed.

The sources of values for these methods are referred to as value providers (such as QueryString),

and the parameter attributes that indicate which value provider to use are referred to as value

provider attributes (such as "id"). ASP.NET includes value providers and corresponding

attributes for all of the typical sources of user input in a Web Forms application, such as the

query string, cookies, form values, controls, view state, session state, and profile properties. You

can also write custom value providers.

Running the Application

Run the application now to see how you can view all of the products or just a set of products

limited by category.

1. In the Solution Explorer, right-click the Default.aspx page and select View in Browser.

The browser will open and show the Default.aspx page.

2. Select Cars from the product category navigation menu.

The ProductList.aspx page is displayed showing only products included in the “Cars”

category. Later in this tutorial, you will display product details.

3. Select Products from the navigation menu at the top.

Again, the ProductList.aspx page is displayed, however this time it shows the entire list of

products.

4. Close the browser and return to Visual Studio.

Adding a Data Control to Display Product Details

Next, you’ll modify the markup in the ProductDetails.aspx page that you added in the previous

tutorial so that the page can display information about an individual product.

1. In Solution Explorer, open the ProductDetails.aspx page.

2. Replace the existing markup with the following markup:

<%@ Page Title="Product Details" Language="C#" MasterPageFile="~/Site.Master"

AutoEventWireup="true"

 CodeBehind="ProductDetails.aspx.cs"

Inherits="WingtipToys.ProductDetails" %>

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent" runat="server">

 <asp:FormView ID="productDetail" runat="server"

ItemType="WingtipToys.Models.Product" SelectMethod ="GetProduct"

RenderOuterTable="false">

 <ItemTemplate>

 <div>

 <h1><%#:Item.ProductName %></h1>

 </div>

 <table>

 <tr>

 <td>

 <img src="/Catalog/Images/<%#:Item.ImagePath %>"

style="border:solid; height:300px" alt="<%#:Item.ProductName %>"/>

 </td>

 <td> </td>

 <td style="vertical-align: top; text-align:left;">

 Description:
<%#:Item.Description %>

 Price: <%#: String.Format("{0:c}",

Item.UnitPrice) %>

 Product Number: <%#:Item.ProductID

%>

 </td>

 </tr>

 </table>

 </ItemTemplate>

 </asp:FormView>

</asp:Content>

This code uses a FormView control to display details about an individual product. This markup

uses methods like those that are used to display data in the ProductList.aspx page. The

FormView control is used to display a single record at a time from a data source. When you use

the FormView control, you create templates to display and edit data-bound values. The

templates contain controls, binding expressions, and formatting that define the look and

functionality of the form.

To connect the above markup to the database, you must add additional code to the

ProductDetails.aspx code.

1. In Solution Explorer, right-click ProductDetails.aspx and then click View Code.

The ProductDetails.aspx.cs file will be displayed.

2. Replace the existing code with the following code:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using WingtipToys.Models;

using System.Web.ModelBinding;

namespace WingtipToys

{

 public partial class ProductDetails : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 public IQueryable<Product> GetProduct([QueryString("productID")] int?

productId)

 {

 var _db = new WingtipToys.Models.ProductContext();

 IQueryable<Product> query = _db.Products;

 if (productId.HasValue && productId > 0)

 {

 query = query.Where(p => p.ProductID == productId);

 }

 else

 {

 query = null;

 }

 return query;

 }

 }

}

This code checks for a "productID" query-string value. If a valid query-string value is found,

the matching product is displayed. If no query-string is found, or the query-string value is not

valid, no product is displayed on the ProductDetails.aspx page.

Running the Application

Now you can run the application to see an individual product displayed based on the id of the

product.

1. Press F5 while in Visual Studio to run the application.

The browser will open and show the Default.aspx page.

2. Select "Boats" from the category navigation menu.

The ProductList.aspx page is displayed.

3. Select the “Paper Boat” product from the product list.

The ProductDetails.aspx page is displayed.

4. Close the browser.

Summary

In this tutorial of the series you have add markup and code to display a product list and to

display product details. During this process you have learned about strongly typed data

controls, model binding, and value providers. In the next tutorial, you'll add a shopping cart to

the Wingtip Toys sample application.

Additional Resources

Retrieving and displaying data with model binding and web forms

http://www.asp.net/web-forms/tutorials/data-access/model-binding/retrieving-data

Shopping Cart
This tutorial series will teach you the basics of building an ASP.NET Web Forms application using

ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project

with C# source code is available to accompany this tutorial series.

This tutorial describes the business logic required to add a shopping cart to the Wingtip Toys

sample ASP.NET Web Forms application. This tutorial builds on the previous tutorial “Display

Data Items and Details” and is part of the Wingtip Toy Store tutorial series. When you've

completed this tutorial, the users of your sample app will be able to add, remove, and modify

the products in their shopping cart.

What you'll learn:

 How to create a shopping cart for the web application.

 How to enable users to add items to the shopping cart.

 How to add a GridView control to display shopping cart details.

 How to calculate and display the order total.

 How to remove and update items in the shopping cart.

 How to include a shopping cart counter.

Code features in this tutorial:

 Entity Framework Code First

 Data Annotations

 Strongly typed data controls

 Model binding

Creating a Shopping Cart

Earlier in this tutorial series, you added pages and code to view product data from a database. In

this tutorial, you’ll create a shopping cart to manage the products that users are interested in

buying. Users will be able to browse and add items to the shopping cart even if they are not

registered or logged in. To manage shopping cart access, you will assign users a unique ID

using a globally unique identifier (GUID) when the user accesses the shopping cart for the first

time. You’ll store this ID using the ASP.NET Session state.

Note

The ASP.NET Session state is a convenient place to store user-specific information which will

expire after the user leaves the site. While misuse of session state can have performance

implications on larger sites, light use of session state works well for demonstration purposes.

The Wingtip Toys sample project shows how to use session state without an external provider,

where session state is stored in-process on the web server hosting the site. For larger sites that

http://msdn.microsoft.com/library/system.web.ui.webcontrols.gridview(v=vs.110).aspx#introduction

provide multiple instances of an application or for sites that run multiple instances of an

application on different servers, consider using Windows Azure Cache Service. This Cache

Service provides a distributed caching service that is external to the web site and solves the

problem of using in-process session state. For more information see, How to Use ASP.NET

Session State with Windows Azure Web Sites.

Add CartItem as a Model Class

Earlier in this tutorial series, you defined the schema for the category and product data by

creating the Category and Product classes in the Models folder. Now, add a new class to

define the schema for the shopping cart. Later in this tutorial, you will add a class to handle data

access to the CartItem table. This class will provide the business logic to add, remove, and

update items in the shopping cart.

 Right-click the Models folder and select Add -> New Item.

http://www.windowsazure.com/en-us/manage/services/web-sites/session-state-caching/
http://www.windowsazure.com/en-us/manage/services/web-sites/session-state-caching/

 The Add New Item dialog box is displayed. Select Code, and then select Class.

 Name this new class CartItem.cs.

 Click Add.

The new class file is displayed in the editor.

 Replace the default code with the following code:

 System.ComponentModel.DataAnnotations; using

 WingtipToys.Models namespace

{

 public class CartItem

 {

 [] Key

 ItemId { ; ; } public string get set

 CartId { ; ; } public string get set

 Quantity { ; ; } public int get set

 System.public DateCreated { DateTime ; ; } get set

 ProductId { ; ; } public int get set

 public virtual Product { Product ; ; } get set

 }

}

The CartItem class contains the schema that will define each product a user adds to the

shopping cart. This class is similar to the other schema classes you created earlier in this tutorial

series. By convention, Entity Framework Code First expects that the primary key for the

CartItem table will be either CartItemId or ID. However, the code overrides the default

behavior by using the data annotation [Key] attribute. The Key attribute of the ItemId property

specifies that the ItemID property is the primary key.

The CartId property specifies the ID of the user that is associated with the item to purchase.

You’ll add code to create this user ID when the user accesses the shopping cart. This ID will also

be stored as an ASP.NET Session variable.

Update the Product Context

In addition to adding the CartItem class, you will need to update the database context class

that manages the entity classes and that provides data access to the database. To do this, you

will add the newly created CartItem model class to the ProductContext class.

1. In Solution Explorer, find and open the ProductContext.cs file in the Models folder.

2. Add the highlighted code to the ProductContext.cs file as follows:

using System.Data.Entity;

namespace WingtipToys.Models

{

 public class ProductContext : DbContext

 {

 public ProductContext()

 : base("WingtipToys")

 {

 }

 public DbSet<Category> Categories { get; set; }

 public DbSet<Product> Products { get; set; }

 public DbSet<CartItem> ShoppingCartItems { get; set; }

 }

}

As mentioned previously in this tutorial series, the code in the ProductContext.cs file adds the

System.Data.Entity namespace so that you have access to all the core functionality of the

Entity Framework. This functionality includes the capability to query, insert, update, and delete

data by working with strongly typed objects. The ProductContext class adds access to the

newly added CartItem model class.

Managing the Shopping Cart Business Logic

Next, you’ll create the ShoppingCart class in a new Logic folder. The ShoppingCart class

handles data access to the CartItem table. The class will also include the business logic to add,

remove, and update items in the shopping cart.

The shopping cart logic that you will add will contain the functionality to manage the following

actions:

1. Adding items to the shopping cart

2. Removing items from the shopping cart

3. Getting the shopping cart ID

4. Retrieving items from the shopping cart

5. Totaling the amount of all the shopping cart items

6. Updating the shopping cart data

A shopping cart page (ShoppingCart.aspx) and the shopping cart class will be used together to

access shopping cart data. The shopping cart page will display all the items the user adds to the

shopping cart. Besides the shopping cart page and class, you’ll create a page (AddToCart.aspx)

to add products to the shopping cart. You will also add code to the ProductList.aspx page and

the ProductDetails.aspx page that will provide a link to the AddToCart.aspx page, so that the user

can add products to the shopping cart.

The following diagram shows the basic process that occurs when the user adds a product to the

shopping cart.

When the user clicks the Add To Cart link on either the ProductList.aspx page or the

ProductDetails.aspx page, the application will navigate to the AddToCart.aspx page and then

automatically to the ShoppingCart.aspx page. The AddToCart.aspx page will add the select

product to the shopping cart by calling a method in the ShoppingCart class. The

ShoppingCart.aspx page will display the products that have been added to the shopping cart.

Creating the Shopping Cart Class

The ShoppingCart class will be added to a separate folder in the application so that there will

be a clear distinction between the model (Models folder), the pages (root folder) and the logic

(Logic folder).

1. In Solution Explorer, right-click the WingtipToys project and select Add -> New

Folder. Name the new folder Logic.

2. Right-click the Logic folder and then select Add -> New Item.

3. Add a new class file named ShoppingCartActions.cs.

4. Replace the default code with the following code:

 System; using

 System.Collections.Generic; using

 System.Linq; using

 System.Web; using

 WingtipToys.Models; using

 WingtipToys.Logic namespace

{

 public class : ShoppingCartActions IDisposable

 {

 ShoppingCartId { ; ; } public string get set

 private _db = ProductContext new (); ProductContext

 CartSessionKey = public const string ; "CartId"

 AddToCart(id) public void int

 {

 // Retrieve the product from the database.

 ShoppingCartId = GetCartId();

 cartItem = _db.ShoppingCartItems.SingleOrDefault(var

 c => c.CartId == ShoppingCartId

 && c.ProductId == id);

 (cartItem ==) if null

 {

 // Create a new cart item if no cart item exists.

 cartItem = new CartItem

 {

 ItemId = .NewGuid().ToString(), Guid

 ProductId = id,

 CartId = ShoppingCartId,

 Product = _db.Products.SingleOrDefault(

 p => p.ProductID == id),

 Quantity = 1,

 DateCreated = .Now DateTime

 };

 _db.ShoppingCartItems.Add(cartItem);

 }

 else

 {

 // If the item does exist in the cart,

 // then add one to the quantity.

 cartItem.Quantity++;

 }

 _db.SaveChanges();

 }

 Dispose() public void

 {

 (_db !=) if null

 {

 _db.Dispose();

 _db = ; null

 }

 }

 GetCartId() public string

 {

 (if .Current.Session[CartSessionKey] == HttpContext) null

 {

 (! .IsNullOrWhiteSpace(if string .Current.User.Identity.Name)) HttpContext

 {

 .Current.Session[CartSessionKey] = HttpContext

.Current.User.Identity.Name; HttpContext

 }

 else

 {

 // Generate a new random GUID using System.Guid class.

 tempCartId = .NewGuid(); Guid Guid

 .Current.Session[CartSessionKey] = tempCartId.ToString(); HttpContext

 }

 }

 return .Current.Session[CartSessionKey].ToString(); HttpContext

 }

 public < > GetCartItems() List CartItem

 {

 ShoppingCartId = GetCartId();

 _db.ShoppingCartItems.Where(return

 c => c.CartId == ShoppingCartId).ToList();

 }

 }

}

The AddToCart method enables individual products to be included in the shopping cart based

on the product ID. The product is added to the cart, or if the cart already contains an item for

that product, the quantity is incremented.

The GetCartId method returns the cart ID for the user. The cart ID is used to track the items

that a user has in their shopping cart. If the user does not have an existing cart ID, a new cart ID

is created for them. If the user is signed in as a registered user, the cart ID is set to their user

name. However, if the user is not signed in, the cart ID is set to a unique value (a GUID). A GUID

ensures that only one cart is created for each user, based on session.

The GetCartItems method returns a list of shopping cart items for the user. Later in this

tutorial, you will see that model binding is used to display the cart items in the shopping cart

using the GetCartItems method.

Creating the Add-To-Cart Functionality

As mentioned earlier, you will create a processing page named AddToCart.aspx that will be used

to add new products to the shopping cart of the user. This page will call the AddToCart

method in the ShoppingCart class that you just created. The AddToCart.aspx page will expect

that a product ID is passed to it. This product ID will be used when calling the AddToCart

method in the ShoppingCart class.

Note

You will be modifying the code-behind (AddToCart.aspx.cs) for this page, not the page UI

(AddToCart.aspx).

To create the Add-To-Cart functionality:

1. In Solution Explorer, right-click the WingtipToys project, click Add -> New Item.

The Add New Item dialog box is displayed.

2. Add a standard new page (Web Form) to the application named AddToCart.aspx.

3. In Solution Explorer, right-click the AddToCart.aspx page and then click View Code. The

AddToCart.aspx.cs code-behind file is opened in the editor.

4. Replace the existing code in the AddToCart.aspx.cs code-behind with the following:

 System; using

 System.Collections.Generic; using

 System.Linq; using

 System.Web; using

 System.Web.UI; using

 System.Web.UI.WebControls; using

 System.Diagnostics; using

 WingtipToys.Logic; using

 WingtipToys namespace

{

 public partial class : System.Web.UI. AddToCart Page

 {

 Page_Load(sender, protected void object e) EventArgs

 {

 rawId = Request.QueryString[string]; "ProductID"

 productId; int

 (!if .IsNullOrEmpty(rawId) && String .TryParse(rawId, productId)) int out

 {

 (using usersShoppingCart = ShoppingCartActions new

()) ShoppingCartActions

 {

 usersShoppingCart.AddToCart(.ToInt16(rawId)); Convert

 }

 }

 else

 {

 .Fail(Debug "ERROR : We should never get to AddToCart.aspx without a

); ProductId."

 throw new (Exception "ERROR : It is illegal to load AddToCart.aspx

); without setting a ProductId."

 }

 Response.Redirect(); "ShoppingCart.aspx"

 }

 }

}

When the AddToCart.aspx page is loaded, the product ID is retrieved from the query string.

Next, an instance of the shopping cart class is created and used to call the AddToCart method

that you added earlier in this tutorial. The AddToCart method, contained in the

ShoppingCartActions.cs file, includes the logic to add the selected product to the shopping cart

or increment the product quantity of the selected product. If the product hasn’t been added to

the shopping cart, the product is added to the CartItem table of the database. If the product

has already been added to the shopping cart and the user adds an additional item of the same

product, the product quantity is incremented in the CartItem table. Finally, the page redirects

back to the ShoppingCart.aspx page that you’ll add in the next step, where the user sees an

updated list of items in the cart.

As previously mentioned, a user ID is used to identify the products that are associated with a

specific user. This ID is added to a row in the CartItem table each time the user adds a

product to the shopping cart.

Creating the Shopping Cart UI

The ShoppingCart.aspx page will display the products that the user has added to their shopping

cart. It will also provide the ability to add, remove and update items in the shopping cart.

1. In Solution Explorer, right-click WingtipToys, click Add -> New Item.

The Add New Item dialog box is displayed.

2. Add a new page (Web Form) that includes a master page by selecting Web Form using

Master Page. Name the new page ShoppingCart.aspx.

3. Select Site.Master to attach the master page to the newly created .aspx page.

4. In the ShoppingCart.aspx page, replace the existing markup with the following markup:

<%@ Page ="" ="C#" ="~/Site.Master" Title Language MasterPageFile

="true" ="ShoppingCart.aspx.cs" AutoEventWireup CodeBehind

="WingtipToys.ShoppingCart" %> Inherits

< : asp Content ="Content1" ="MainContent" ="server"> ID ContentPlaceHolderID runat

 < div ="ShoppingCartTitle" ="server" ="ContentHead"><id runat class >Shopping h1

Cart</ ></ > h1 div

 < : asp GridView ="CartList" ="server" ="False" ID runat AutoGenerateColumns

="True" ="Vertical" ="4" ShowFooter GridLines CellPadding

 ="WingtipToys.Models.CartItem" ItemType

="GetShoppingCartItems" SelectMethod

 ="table table-striped table-bordered" > CssClass

 < > Columns

 < : asp BoundField ="ProductID" ="ID" DataField HeaderText

="ProductID" /> SortExpression

 < : asp BoundField ="Product.ProductName" ="Name" /> DataField HeaderText

 < : asp BoundField ="Product.UnitPrice" ="Price (each)" DataField HeaderText

="{0:c}"/> DataFormatString

 < : asp TemplateField ="Quantity"> HeaderText

 < > ItemTemplate

 < : asp TextBox ="PurchaseQuantity" ="40" ID Width

="server" ="<%#: Item.Quantity %>"></runat Text : > asp TextBox

 </ > ItemTemplate

 </ : > asp TemplateField

 < : asp TemplateField ="Item Total"> HeaderText

 < > ItemTemplate

 <%#: .Format(String , "{0:c}"

((.ToDouble(Item.Quantity)) * Convert

.ToDouble(Item.Product.UnitPrice)))%> Convert

 </ > ItemTemplate

 </ : > asp TemplateField

 < : asp TemplateField ="Remove Item"> HeaderText

 < > ItemTemplate

 < : asp CheckBox ="Remove" ="server"></id runat : > asp CheckBox

 </ > ItemTemplate

 </ : > asp TemplateField

 </ > Columns

 </ : > asp GridView

 < > div

 < ></ > p p

 < > strong

 < : asp Label ="LabelTotalText" ="server" ="Order Total: ID runat Text

"></ : > asp Label

 < : asp Label ="lblTotal" ="server" ID runat

="false"></EnableViewState : > asp Label

 </ > strong

 </ > div

 < /> br

</ : > asp Content

The ShoppingCart.aspx page includes a GridView control named CartList. This control uses

model binding to bind the shopping cart data from the database to the GridView control. When

you set the ItemType property of the GridView control, the data-binding expression Item is

available in the markup of the control and the control becomes strongly typed. As mentioned

earlier in this tutorial series, you can select details of the Item object using IntelliSense. To

configure a data control to use model binding to select data, you set the SelectMethod

property of the control. In the markup above, you set the SelectMethod to use the

GetShoppingCartItems method which returns a list of CartItem objects. The GridView data

control calls the method at the appropriate time in the page life cycle and automatically binds

the returned data. The GetShoppingCartItems method must still be added.

Retrieving the Shopping Cart Items

Next, you add code to the ShoppingCart.aspx.cs code-behind to retrieve and populate the

Shopping Cart UI.

1. In Solution Explorer, right-click the ShoppingCart.aspx page and then click View Code.

The ShoppingCart.aspx.cs code-behind file is opened in the editor.

 Replace the existing code with the following:

 System; using

 System.Collections.Generic; using

 System.Linq; using

 System.Web; using

 System.Web.UI; using

 System.Web.UI.WebControls; using

 WingtipToys.Models; using

 WingtipToys.Logic; using

 WingtipToys namespace

{

 public partial class : System.Web.UI. ShoppingCart Page

 {

 Page_Load(sender, protected void object e) EventArgs

 {

 }

 public < > GetShoppingCartItems() List CartItem

 {

 ShoppingCartActions actions = ShoppingCartActions(); new

 actions.GetCartItems(); return

 }

 }

}

As mentioned above, the GridView data control calls the GetShoppingCartItems method

at the appropriate time in the page life cycle and automatically binds the returned data. The

GetShoppingCartItems method creates an instance of the ShoppingCartActions object.

Then, the code uses that instance to return the items in the cart by calling the GetCartItems

method.

Adding Products to the Shopping Cart

When either the ProductList.aspx or the ProductDetails.aspx page is displayed, the user will be

able to add the product to the shopping cart using a link. When they click the link, the

application navigates to the processing page named AddToCart.aspx. The AddToCart.aspx page

will call the AddToCart method in the ShoppingCart class that you added earlier in this

tutorial.

Now, you’ll add an Add to Cart link to both the ProductList.aspx page and the

ProductDetails.aspx page. This link will include the product ID that is retrieved from the

database.

1. In Solution Explorer, find and open the page named ProductList.aspx.

2. Add the markup highlighted in yellow to the ProductList.aspx page so that the entire

page appears as follows:

<% @ TitlePage Language MasterPageFile ="Products" ="C#" ="~/Site.Master"

AutoEventWireup ="true"

 CodeBehind Inherits %> ="ProductList.aspx.cs" ="WingtipToys.ProductList"

<asp: IDContent ContentPlaceHolderID runat ="Content1" ="MainContent" ="server">

 <section >

 <div >

 <hgroup >

 <h2 <% Page.Title %>> : </h2 >

 </hgroup >

 <asp: IDListView runat ="productList" ="server"

 DataKeyNames GroupItemCount ="ProductID" ="4"

 ItemType ="WingtipToys.Models.Product"

SelectMethod ="GetProducts">

 <EmptyDataTemplate >

 < runattable ="server">

 <tr >

 <td No data was returned.> </td >

 </tr >

 </table >

 </EmptyDataTemplate >

 <EmptyItemTemplate >

 < runattd ="server" />

 </EmptyItemTemplate >

 <GroupTemplate >

 < idtr runat ="itemPlaceholderContainer" ="server">

 < idtd runat="itemPlaceholder" ="server"></td >

 </tr >

 </GroupTemplate >

 <ItemTemplate >

 < runattd ="server">

 <table >

 <tr >

 <td >

 < a

href <% Item.ProductID%> ="ProductDetails.aspx?productID= #: ">

 < img

src <% Item.ImagePath%> ="/Catalog/Images/Thumbs/ #: "

 width height ="100" ="75"

style border =" : solid" />

 </td >

 </tr >

 <tr >

 <td >

 < a

href <% Item.ProductID%> ="ProductDetails.aspx?productID= #: ">

 <% Item.ProductName%> #:

 < br />

 <b Price: >

</b <%> #: .Format(String , Item.UnitPrice)%> "{0:c}"

 < br />

 < a

href <% Item.ProductID %> ="/AddToCart.aspx?productID= #: ">

 < classspan ="ProductListItem">

 <b Add To Cart>

 </td >

 </tr >

 <tr >

 <td > </td >

 </tr >

 </table >

 </p >

 </td >

 </ItemTemplate >

 <LayoutTemplate >

 < runattable style width ="server" =" :100%;">

 <tbody >

 < runattr ="server">

 < runattd ="server">

 < idtable ="groupPlaceholderContainer"

runat style width ="server" =" :100%">

 < idtr ="groupPlaceholder"

runat="server"></tr >

 </table >

 </td >

 </tr >

 < runattr ="server">

 < runattd ="server"></td >

 </tr >

 <tr></tr >

 </tbody >

 </table >

 </LayoutTemplate >

 </asp:ListView >

 </div >

 </section >

</asp:Content >

Testing the Shopping Cart

Run the application to see how you add products to the shopping cart.

1. Press F5 to run the application.

After the project recreates the database, the browser will open and show the Default.aspx

page.

2. Select Cars from the category navigation menu.

The ProductList.aspx page is displayed showing only products included in the “Cars”

category.

3. Click the Add to Cart link next to the first product listed (the convertible car).

The ShoppingCart.aspx page is displayed, showing the selection in your shopping cart.

4. View additional products by selecting Planes from the category navigation menu.

5. Click the Add to Cart link next to the first product listed.

The ShoppingCart.aspx page is displayed with the additional item.

6. Close the browser.

Calculating and Displaying the Order Total

In addition to adding products to the shopping cart, you will add a GetTotal method to the

ShoppingCart class and display the total order amount in the shopping cart page.

1. In Solution Explorer, open the ShoppingCartActions.cs file in the Logic folder.

2. Add the following GetTotal method highlighted in yellow to the ShoppingCart class,

so that the class appears as follows:

 System; using

 System.Collections.Generic; using

 System.Linq; using

 System.Web; using

 WingtipToys.Models; using

 WingtipToys.Logic namespace

{

 public class : ShoppingCartActions IDisposable

 {

 ShoppingCartId { ; ; } public string get set

 private _db = ProductContext new (); ProductContext

 CartSessionKey = public const string ; "CartId"

 AddToCart(id) public void int

 {

 // Retrieve the product from the database.

 ShoppingCartId = GetCartId();

 cartItem = _db.ShoppingCartItems.SingleOrDefault(var

 c => c.CartId == ShoppingCartId

 && c.ProductId == id);

 (cartItem ==) if null

 {

 // Create a new cart item if no cart item exists.

 cartItem = new CartItem

 {

 ItemId = .NewGuid().ToString(), Guid

 ProductId = id,

 CartId = ShoppingCartId,

 Product = _db.Products.SingleOrDefault(

 p => p.ProductID == id),

 Quantity = 1,

 DateCreated = .Now DateTime

 };

 _db.ShoppingCartItems.Add(cartItem);

 }

 else

 {

 // If the item does exist in the cart,

 // then add one to the quantity.

 cartItem.Quantity++;

 }

 _db.SaveChanges();

 }

 Dispose() public void

 {

 (_db !=) if null

 {

 _db.Dispose();

 _db = ; null

 }

 }

 GetCartId() public string

 {

 (if .Current.Session[CartSessionKey] == HttpContext) null

 {

 (! .IsNullOrWhiteSpace(if string .Current.User.Identity.Name)) HttpContext

 {

 .Current.Session[CartSessionKey] = HttpContext

.Current.User.Identity.Name; HttpContext

 }

 else

 {

 // Generate a new random GUID using System.Guid class.

 tempCartId = .NewGuid(); Guid Guid

 .Current.Session[CartSessionKey] = tempCartId.ToString(); HttpContext

 }

 }

 return .Current.Session[CartSessionKey].ToString(); HttpContext

 }

 public < > GetCartItems() List CartItem

 {

 ShoppingCartId = GetCartId();

 _db.ShoppingCartItems.Where(return

 c => c.CartId == ShoppingCartId).ToList();

 }

 GetTotal() public decimal

 {

 ShoppingCartId = GetCartId();

 // Multiply product price by quantity of that product to get

 // the current price for each of those products in the cart.

 // Sum all product price totals to get the cart total.

 ? total = .Zero; decimal decimal

 total = (?)(cartItems _db.ShoppingCartItems decimal from in

 cartItems.CartId == ShoppingCartId where

 (?)cartItems.Quantity * select int

 cartItems.Product.UnitPrice).Sum();

 total ?? .Zero; return decimal

 }

 }

}

First, the GetTotal method gets the ID of the shopping cart for the user. Then the method gets

the cart total by multiplying the product price by the product quantity for each product listed in

the cart.

Note

The above code uses the nullable type “int?”. Nullable types can represent all the values of an

underlying type, and also as a null value. For more information see, Using Nullable Types.

Modify the Shopping Cart Display

Next you’ll modify the code for the ShoppingCart.aspx page to call the GetTotal method and

display that total on the ShoppingCart.aspx page when the page loads.

1. In Solution Explorer, right-click the ShoppingCart.aspx page and select View Code.

2. In the ShoppingCart.aspx.cs file, update the Page_Load handler by adding the following

code highlighted in yellow:

 System; using

 System.Collections.Generic; using

 System.Linq; using

 System.Web; using

 System.Web.UI; using

 System.Web.UI.WebControls; using

 WingtipToys.Models; using

 WingtipToys.Logic; using

 WingtipToys namespace

{

 public partial class : System.Web.UI. ShoppingCart Page

http://msdn.microsoft.com/library/2cf62fcy(v=vs.110).aspx

 {

 Page_Load(sender, protected void object e) EventArgs

 {

 (using usersShoppingCart = ShoppingCartActions new ()) ShoppingCartActions

 {

 cartTotal = 0; decimal

 cartTotal = usersShoppingCart.GetTotal();

 (cartTotal > 0) if

 {

 // Display Total.

 lblTotal.Text = .Format(String , cartTotal); "{0:c}"

 }

 else

 {

 LabelTotalText.Text = ; ""

 lblTotal.Text = ; ""

 ShoppingCartTitle.InnerText = ; "Shopping Cart is Empty"

 }

 }

 }

 public < > GetShoppingCartItems() List CartItem

 {

 actions = ShoppingCartActions new (); ShoppingCartActions

 actions.GetCartItems(); return

 }

 }

}

When the ShoppingCart.aspx page loads, it loads the shopping cart object and then retrieves the

shopping cart total by calling the GetTotal method of the ShoppingCart class. If the

shopping cart is empty, a message to that effect is displayed.

Testing the Shopping Cart Total

Run the application now to see how you can not only add a product to the shopping cart, but

you can see the shopping cart total.

1. Press F5 to run the application.

The browser will open and show the Default.aspx page.

2. Select Cars from the category navigation menu.

3. Click the Add To Cart link next to the first product.

The ShoppingCart.aspx page is displayed with the order total.

4. Add some other products (for example, a plane) to the cart.

5. The ShoppingCart.aspx page is displayed with an updated total for all the products

you've added.

6. Stop the running app by closing the browser window.

Adding Update and Checkout Buttons to the Shopping Cart

To allow the users to modify the shopping cart, you’ll add an Update button and a Checkout

button to the shopping cart page. The Checkout button is not used until later in this tutorial

series.

 In Solution Explorer, open the ShoppingCart.aspx page in the root of the web

application project.

 To add the Update button and the Checkout button to the ShoppingCart.aspx page, add

the markup highlighted in yellow to the existing markup, as shown in the following code:

<%@ Page ="" ="C#" ="~/Site.Master" Title Language MasterPageFile

="true" ="ShoppingCart.aspx.cs" AutoEventWireup CodeBehind

="WingtipToys.ShoppingCart" %> Inherits

< : asp Content ="Content1" ="MainContent" ="server"> ID ContentPlaceHolderID runat

 < div ="ShoppingCartTitle" ="server" ="ContentHead"><id runat class >Shopping h1

Cart</ ></ > h1 div

 < : asp GridView ="CartList" ="server" ="False" ID runat AutoGenerateColumns

="True" ="Vertical" ="4" ShowFooter GridLines CellPadding

 ="WingtipToys.Models.CartItem" ItemType

="GetShoppingCartItems" SelectMethod

 ="table table-striped table-bordered" > CssClass

 < > Columns

 < : asp BoundField ="ProductID" ="ID" DataField HeaderText

="ProductID" /> SortExpression

 < : asp BoundField ="Product.ProductName" ="Name" /> DataField HeaderText

 < : asp BoundField ="Product.UnitPrice" ="Price (each)" DataField HeaderText

="{0:c}"/> DataFormatString

 < : asp TemplateField ="Quantity"> HeaderText

 < > ItemTemplate

 < : asp TextBox ="PurchaseQuantity" ="40" ID Width

="server" ="<%#: Item.Quantity %>"></runat Text : > asp TextBox

 </ > ItemTemplate

 </ : > asp TemplateField

 < : asp TemplateField ="Item Total"> HeaderText

 < > ItemTemplate

 <%#: .Format(String , "{0:c}"

((.ToDouble(Item.Quantity)) * Convert

.ToDouble(Item.Product.UnitPrice)))%> Convert

 </ > ItemTemplate

 </ : > asp TemplateField

 < : asp TemplateField ="Remove Item"> HeaderText

 < > ItemTemplate

 < : asp CheckBox ="Remove" ="server"></id runat : > asp CheckBox

 </ > ItemTemplate

 </ : > asp TemplateField

 </ > Columns

 </ : > asp GridView

 < > div

 < ></ > p p

 < > strong

 < : asp Label ="LabelTotalText" ="server" ="Order Total: ID runat Text

"></ : > asp Label

 < : asp Label ="lblTotal" ="server" ID runat

="false"></EnableViewState : > asp Label

 </ > strong

 </ > div

 < /> br

 < > table

 < > tr

 < > td

 < : asp Button ="UpdateBtn" ="server" ="Update" ID runat Text

="UpdateBtn_Click" /> OnClick

 </ > td

 < > td

 <!--Checkout Placeholder -->

 </ > td

 </ > tr

 </ > table

</ : > asp Content

When the user clicks the Update button, the UpdateBtn_Click event handler will be called.

This event handler will call the code that you’ll add in the next step.

Next, you can update the code contained in the ShoppingCart.aspx.cs file to loop through the

cart items and call the RemoveItem and UpdateItem methods.

1. In Solution Explorer, open the ShoppingCart.aspx.cs file in the root of the web

application project.

2. Add the following code sections highlighted in yellow to the ShoppingCart.aspx.cs file:

 System; using

 System.Collections.Generic; using

 System.Linq; using

 System.Web; using

 System.Web.UI; using

 System.Web.UI.WebControls; using

 WingtipToys.Models; using

 WingtipToys.Logic; using

 System.Collections.Specialized; using

 System.Collections; using

 System.Web.ModelBinding; using

 WingtipToys namespace

{

 public partial class : System.Web.UI. ShoppingCart Page

 {

 Page_Load(sender, protected void object e) EventArgs

 {

 (using usersShoppingCart = ShoppingCartActions new ()) ShoppingCartActions

 {

 cartTotal = 0; decimal

 cartTotal = usersShoppingCart.GetTotal();

 (cartTotal > 0) if

 {

 // Display Total.

 lblTotal.Text = .Format(String , cartTotal); "{0:c}"

 }

 else

 {

 LabelTotalText.Text = ; ""

 lblTotal.Text = ; ""

 ShoppingCartTitle.InnerText = ; "Shopping Cart is Empty"

 UpdateBtn.Visible = ; false

 }

 }

 }

 public < > GetShoppingCartItems() List CartItem

 {

 actions = ShoppingCartActions new (); ShoppingCartActions

 actions.GetCartItems(); return

 }

 public < > UpdateCartItems() List CartItem

 {

 (using usersShoppingCart = ShoppingCartActions new ()) ShoppingCartActions

 {

 cartId = usersShoppingCart.GetCartId(); String

 .ShoppingCartUpdates[] cartUpdates = ShoppingCartActions new

.ShoppingCartUpdates[CartList.Rows.Count]; ShoppingCartActions

 (i = 0; i < CartList.Rows.Count; i++) for int

 {

 rowValues = IOrderedDictionary new (); OrderedDictionary

 rowValues = GetValues(CartList.Rows[i]);

 cartUpdates[i].ProductId = .ToInt32(rowValues[Convert]); "ProductID"

 cbRemove = CheckBox new (); CheckBox

 cbRemove = ()CartList.Rows[i].FindControl(CheckBox); "Remove"

 cartUpdates[i].RemoveItem = cbRemove.Checked;

 quantityTextBox = TextBox new (); TextBox

 quantityTextBox =

()CartList.Rows[i].FindControl(TextBox); "PurchaseQuantity"

 cartUpdates[i].PurchaseQuantity =

.ToInt16(quantityTextBox.Text.ToString()); Convert

 }

 usersShoppingCart.UpdateShoppingCartDatabase(cartId, cartUpdates);

 CartList.DataBind();

 lblTotal.Text = .Format(String , usersShoppingCart.GetTotal()); "{0:c}"

 usersShoppingCart.GetCartItems(); return

 }

 }

 public static GetValues(row) IOrderedDictionary GridViewRow

 {

 values = IOrderedDictionary new (); OrderedDictionary

 (foreach cell DataControlFieldCell row.Cells) in

 {

 (cell.Visible) if

 {

 // Extract values from the cell.

 cell.ContainingField.ExtractValuesFromCell(values, cell,

row.RowState,); true

 }

 }

 values; return

 }

 UpdateBtn_Click(sender, protected void object e) EventArgs

 {

 UpdateCartItems();

 }

 }

}

When the user clicks the Update button on the ShoppingCart.aspx page, the UpdateCartItems

method is called. The UpdateCartItems method gets the updated values for each item in the

shopping cart. Then, the UpdateCartItems method calls the UpdateShoppingCartDatabase

method (added and explained in the next step) to either add or remove items from the

shopping cart. Once the database has been updated to reflect the updates to the shopping cart,

the GridView control is updated on the shopping cart page by calling the DataBind method

for the GridView. Also, the total order amount on the shopping cart page is updated to reflect

the updated list of items.

Updating and Removing Shopping Cart Items

On the ShoppingCart.aspx page, you can see controls have been added for updating the

quantity of an item and removing an item. Now, add the code that will make these controls

work.

1. In Solution Explorer, open the ShoppingCartActions.cs file in the Logic folder.

 Add the following code highlighted in yellow to the ShoppingCartActions.cs class file:

 System; using

 System.Collections.Generic; using

 System.Linq; using

 System.Web; using

 WingtipToys.Models; using

 WingtipToys.Logic namespace

{

 public class : ShoppingCartActions IDisposable

 {

 ShoppingCartId { ; ; } public string get set

 private _db = ProductContext new (); ProductContext

 CartSessionKey = public const string ; "CartId"

 AddToCart(id) public void int

 {

 // Retrieve the product from the database.

 ShoppingCartId = GetCartId();

 cartItem = _db.ShoppingCartItems.SingleOrDefault(var

 c => c.CartId == ShoppingCartId

 && c.ProductId == id);

 (cartItem ==) if null

 {

 // Create a new cart item if no cart item exists.

 cartItem = new CartItem

 {

 ItemId = .NewGuid().ToString(), Guid

 ProductId = id,

 CartId = ShoppingCartId,

 Product = _db.Products.SingleOrDefault(

 p => p.ProductID == id),

 Quantity = 1,

 DateCreated = .Now DateTime

 };

 _db.ShoppingCartItems.Add(cartItem);

 }

 else

 {

 // If the item does exist in the cart,

 // then add one to the quantity.

 cartItem.Quantity++;

 }

 _db.SaveChanges();

 }

 Dispose() public void

 {

 (_db !=) if null

 {

 _db.Dispose();

 _db = ; null

 }

 }

 GetCartId() public string

 {

 (if .Current.Session[CartSessionKey] == HttpContext) null

 {

 (! .IsNullOrWhiteSpace(if string .Current.User.Identity.Name)) HttpContext

 {

 .Current.Session[CartSessionKey] = HttpContext

.Current.User.Identity.Name; HttpContext

 }

 else

 {

 // Generate a new random GUID using System.Guid class.

 tempCartId = .NewGuid(); Guid Guid

 .Current.Session[CartSessionKey] = tempCartId.ToString(); HttpContext

 }

 }

 return .Current.Session[CartSessionKey].ToString(); HttpContext

 }

 public < > GetCartItems() List CartItem

 {

 ShoppingCartId = GetCartId();

 _db.ShoppingCartItems.Where(return

 c => c.CartId == ShoppingCartId).ToList();

 }

 GetTotal() public decimal

 {

 ShoppingCartId = GetCartId();

 // Multiply product price by quantity of that product to get

 // the current price for each of those products in the cart.

 // Sum all product price totals to get the cart total.

 ? total = .Zero; decimal decimal

 total = (?)(cartItems _db.ShoppingCartItems decimal from in

 cartItems.CartId == ShoppingCartId where

 (?)cartItems.Quantity * select int

 cartItems.Product.UnitPrice).Sum();

 total ?? .Zero; return decimal

 }

 public GetCart(context) ShoppingCartActions HttpContext

 {

 (cart = using var new ()) ShoppingCartActions

 {

 cart.ShoppingCartId = cart.GetCartId();

 cart; return

 }

 }

 UpdateShoppingCartDatabase(public void cartId, [] String ShoppingCartUpdates

CartItemUpdates)

 {

 (db = WingtipToys.Models.using var new ()) ProductContext

 {

 try

 {

 CartItemCount = CartItemUpdates.Count(); int

 < > myCart = GetCartItems(); List CartItem

 (cartItem myCart) foreach var in

 {

 // Iterate through all rows within shopping cart list

 (i = 0; i < CartItemCount; i++) for int

 {

 (cartItem.Product.ProductID == CartItemUpdates[i].ProductId) if

 {

 (CartItemUpdates[i].PurchaseQuantity < 1 || if

CartItemUpdates[i].RemoveItem ==) true

 {

 RemoveItem(cartId, cartItem.ProductId);

 }

 else

 {

 UpdateItem(cartId, cartItem.ProductId,

CartItemUpdates[i].PurchaseQuantity);

 }

 }

 }

 }

 }

 (catch exp) Exception

 {

 throw new (Exception + "ERROR: Unable to Update Cart Database - "

exp.Message.ToString(), exp);

 }

 }

 }

 RemoveItem(removeCartID, removeProductID) public void string int

 {

 (_db = WingtipToys.Models.using var new ()) ProductContext

 {

 try

 {

 myItem = (c _db.ShoppingCartItems c.CartId == var from in where

removeCartID && c.Product.ProductID == removeProductID select

c).FirstOrDefault();

 (myItem !=) if null

 {

 // Remove Item.

 _db.ShoppingCartItems.Remove(myItem);

 _db.SaveChanges();

 }

 }

 (catch exp) Exception

 {

 throw new (Exception + "ERROR: Unable to Remove Cart Item - "

exp.Message.ToString(), exp);

 }

 }

 }

 UpdateItem(updateCartID, updateProductID, public void string int int

quantity)

 {

 (_db = WingtipToys.Models.using var new ()) ProductContext

 {

 try

 {

 myItem = (c _db.ShoppingCartItems c.CartId == var from in where

updateCartID && c.Product.ProductID == updateProductID select

c).FirstOrDefault();

 (myItem !=) if null

 {

 myItem.Quantity = quantity;

 _db.SaveChanges();

 }

 }

 (catch exp) Exception

 {

 throw new (Exception + "ERROR: Unable to Update Cart Item - "

exp.Message.ToString(), exp);

 }

 }

 }

 EmptyCart() public void

 {

 ShoppingCartId = GetCartId();

 cartItems = _db.ShoppingCartItems.Where(var

 c => c.CartId == ShoppingCartId);

 (cartItem cartItems) foreach var in

 {

 _db.ShoppingCartItems.Remove(cartItem);

 }

 // Save changes.

 _db.SaveChanges();

 }

 GetCount() public int

 {

 ShoppingCartId = GetCartId();

 // Get the count of each item in the cart and sum them up

 ? count = (cartItems _db.ShoppingCartItems int from in

 cartItems.CartId == ShoppingCartId where

 (?)cartItems.Quantity).Sum(); select int

 // Return 0 if all entries are null

 count ?? 0; return

 }

 public struct ShoppingCartUpdates

 {

 ProductId; public int

 PurchaseQuantity; public int

 RemoveItem; public bool

 }

 }

}

The UpdateShoppingCartDatabase method, called from the UpdateCartItems method

on the ShoppingCart.aspx.cs page, contains the logic to either update or remove items from the

shopping cart. The UpdateShoppingCartDatabase method iterates through all the rows

within the shopping cart list. If a shopping cart item has been marked to be removed, or the

quantity is less than one, the RemoveItem method is called. Otherwise, the shopping cart item

is checked for updates when the UpdateItem method is called. After the shopping cart item

has been removed or updated, the database changes are saved.

The ShoppingCartUpdates structure is used to hold all the shopping cart items. The

UpdateShoppingCartDatabase method uses the ShoppingCartUpdates structure to

determine if any of the items need to be updated or removed.

In the next tutorial, you will use the EmptyCart method to clear the shopping cart after

purchasing products. But for now, you will use the GetCount method that you just added to

the ShoppingCartActions.cs file to determine how many items are in the shopping cart.

Adding a Shopping Cart Counter

To allow the user to view the total number of items in the shopping cart, you will add a counter

to the Site.Master page. This counter will also act as a link to the shopping cart.

1. In Solution Explorer, open the Site.Master page.

 Modify the markup by adding the shopping cart counter link as shown in yellow to the

navigation section so it appears as follows:

 < ul ="nav navbar-nav"> class

 < >< li a ="server" ="~/">Home</runat href ></ > a li

 < >< li a ="server" ="~/About">About</runat href ></ > a li

 < >< li a ="server" ="~/Contact">Contact</runat href ></ > a li

 < >< li a ="server" ="~/ProductList">Products</runat href ></ > a li

 < >< li a ="server" ="~/ShoppingCart" runat href

="cartCount"> </ID ></ > a li

 </ > ul

 Next, update the code-behind of the Site.Master.cs file by adding the code highlighted in

yellow as follows:

 System; using

 System.Collections.Generic; using

 System.Security.Claims; using

 System.Security.Principal; using

 System.Web; using

 System.Web.Security; using

 System.Web.UI; using

 System.Web.UI.WebControls; using

 System.Linq; using

 WingtipToys.Models; using

 WingtipToys.Logic; using

 WingtipToys namespace

{

 public partial class : SiteMaster MasterPage

 {

 AntiXsrfTokenKey = private const string ; "__AntiXsrfToken"

 AntiXsrfUserNameKey = private const string ; "__AntiXsrfUserName"

 _antiXsrfTokenValue; private string

 Page_Init(sender, protected void object e) EventArgs

 {

 // The code below helps to protect against XSRF attacks

 requestCookie = Request.Cookies[AntiXsrfTokenKey]; var

 requestCookieGuidValue; Guid

 (requestCookie != && if null .TryParse(requestCookie.Value, Guid out

requestCookieGuidValue))

 {

 // Use the Anti-XSRF token from the cookie

 _antiXsrfTokenValue = requestCookie.Value;

 Page.ViewStateUserKey = _antiXsrfTokenValue;

 }

 else

 {

 // Generate a new Anti-XSRF token and save to the cookie

 _antiXsrfTokenValue = .NewGuid().ToString(Guid); "N"

 Page.ViewStateUserKey = _antiXsrfTokenValue;

 responseCookie = var new (AntiXsrfTokenKey) HttpCookie

 {

 HttpOnly = , true

 Value = _antiXsrfTokenValue

 };

 (if .RequireSSL && FormsAuthentication

Request.IsSecureConnection)

 {

 responseCookie.Secure = ; true

 }

 Response.Cookies.Set(responseCookie);

 }

 Page.PreLoad += master_Page_PreLoad;

 }

 master_Page_PreLoad(sender, protected void object e) EventArgs

 {

 (!IsPostBack) if

 {

 // Set Anti-XSRF token

 ViewState[AntiXsrfTokenKey] = Page.ViewStateUserKey;

 ViewState[AntiXsrfUserNameKey] = Context.User.Identity.Name ??

.Empty; String

 }

 else

 {

 // Validate the Anti-XSRF token

 (()ViewState[AntiXsrfTokenKey] != _antiXsrfTokenValue if string

 || ()ViewState[AntiXsrfUserNameKey] != string

(Context.User.Identity.Name ?? .Empty)) String

 {

 throw new (InvalidOperationException "Validation of Anti-

); XSRF token failed."

 }

 }

 }

 Page_Load(sender, protected void object e) EventArgs

 {

 }

 Page_PreRender(sender, protected void object e) EventArgs

 {

 (using usersShoppingCart = ShoppingCartActions new

()) ShoppingCartActions

 {

 cartStr = .Format(string string , "Cart ({0})"

usersShoppingCart.GetCount());

 cartCount.InnerText = cartStr;

 }

 }

 public < > GetCategories() IQueryable Category

 {

 _db = WingtipToys.Models.var new (); ProductContext

 < > query = _db.Categories; IQueryable Category

 query; return

 }

 Unnamed_LoggingOut(sender, protected void object LoginCancelEventArgs

e)

 {

 Context.GetOwinContext().Authentication.SignOut();

 }

 }

}

Before the page is rendered as HTML, the Page_PreRender event is raised. In the

Page_PreRender handler, the total count of the shopping cart is determined by calling the

GetCount method. The returned value is added to the cartCount span included in the

markup of the Site.Master page. The tags enables the inner elements to be properly

rendered. When any page of the site is displayed, the shopping cart total will be displayed. The

user can also click the shopping cart total to display the shopping cart.

Testing the Completed Shopping Cart

You can run the application now to see how you can add, delete, and update items in the

shopping cart. The shopping cart total will reflect the total cost of all items in the shopping cart.

1. Press F5 to run the application.

The browser opens and shows the Default.aspx page.

2. Select Cars from the category navigation menu.

3. Click the Add To Cart link next to the first product.

The ShoppingCart.aspx page is displayed with the order total.

4. Select Planes from the category navigation menu.

5. Click the Add To Cart link next to the first product.

6. Set the quantity of the first item in the shopping cart to 3 and select the Remove Item

check box of the second item.

7. Click the Update button to update the shopping cart page and display the new order

total.

Summary

In this tutorial, you have created a shopping cart for the Wingtip Toys Web Forms sample

application. During this tutorial you have used Entity Framework Code First, data annotations,

strongly typed data controls, and model binding.

The shopping cart supports adding, deleting, and updating items that the user has selected for

purchase. In addition to implementing the shopping cart functionality, you have learned how to

display shopping cart items in a GridView control and calculate the order total.

Addition Information

 ASP.NET Session State Overview

http://msdn.microsoft.com/en-us/library/ms178581.aspx

Checkout and Payment with PayPal
This tutorial series will teach you the basics of building an ASP.NET Web Forms application using

ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project

with C# source code is available to accompany this tutorial series.

This tutorial describes how to modify the Wingtip Toys sample application to include user

authorization, registration, and payment using PayPal. Only users who are logged in will have

authorization to purchase products. The ASP.NET 4.5 Web Forms project template's built-in user

registration functionality already includes much of what you need. You will add to this PayPal

Express Checkout functionality. In this tutorial you be using the PayPal developer testing

environment, so no actual funds will be transferred. At the end of the tutorial, you will test the

application by selecting products to add to the shopping cart, clicking the checkout button, and

transferring data to the PayPal testing web site. On the PayPal testing web site, you will confirm

your shipping and payment information and then return to the local Wingtip Toys sample

application to confirm and complete the purchase.

There are several experienced third-party payment processors that specialize in online shopping

that address scalability and security. ASP.NET developers should consider the advantages of

utilizing a third party payment solution before implementing a shopping and purchasing

solution.

Note

The Wingtip Toys sample application was designed to shown specific ASP.NET concepts and

features available to ASP.NET web developers. This sample application was not optimized for all

possible circumstances in regard to scalability and security.

What you'll learn:

 How to restrict access to specific pages in a folder.

 How to create a known shopping cart from an anonymous shopping cart.

 How to use PayPal to purchase products using the PayPal testing environment.

 How to display details from PayPal in a DetailsView control.

 How to update the database of the Wingtip Toys application with details obtained from

PayPal.

Adding Order Tracking

In this tutorial, you’ll create two new classes to track data from the order a user has created. The

classes will track data regarding shipping information, purchase total, and payment

confirmation.

Add the Order and OrderDetail Model Classes

Earlier in this tutorial series, you defined the schema for categories, products, and shopping cart

items by creating the Category, Product, and CartItem classes in the Models folder. Now

you will add two new classes to define the schema for the product order and the details of the

order.

1. In the Models folder, add a new class named Order.cs.

The new class file is displayed in the editor.

2. Replace the default code with the following:

 System.ComponentModel.DataAnnotations; using

 System.Collections.Generic; using

 System.ComponentModel; using

 WingtipToys.Models namespace

{

 public class Order

 {

 OrderId { ; ; } public int get set

 System.public OrderDate { DateTime ; ; } get set

 Username { ; ; } public string get set

 [(ErrorMessage = Required)] "First Name is required"

 [("First Name")] DisplayName

 [(160)] StringLength

 FirstName { ; ; } public string get set

 [(ErrorMessage = Required)] "Last Name is required"

 [DisplayName()] "Last Name"

 [(160)] StringLength

 LastName { ; ; } public string get set

 [(ErrorMessage = Required)] "Address is required"

 [StringLength(70)]

 Address { ; ; } public string get set

 [(ErrorMessage = Required)] "City is required"

 [StringLength(40)]

 City { ; ; } public string get set

 [(ErrorMessage = Required)] "State is required"

 [StringLength(40)]

 State { ; ; } public string get set

 [(ErrorMessage = "Postal Code is required")] Required

 [("Postal Code")] DisplayName

 [StringLength(10)]

 PostalCode { ; ; } public string get set

 [(ErrorMessage = Required)] "Country is required"

 [StringLength(40)]

 Country { ; ; } public string get set

 [StringLength(24)]

 Phone { ; ; } public string get set

 [(ErrorMessage = "Email Address is required")] Required

 [("Email Address")] DisplayName

 [(@"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}", RegularExpression

 ErrorMessage =)] "Email is is not valid."

 [(.EmailAddress)] DataType DataType

 Email { ; ; } public string get set

 [ScaffoldColumn()] false

 Total { ; ; } public decimal get set

 [ScaffoldColumn()] false

 PaymentTransactionId { ; ; } public string get set

 [ScaffoldColumn()] false

 HasBeenShipped { ; ; } public bool get set

 public <OrderDetail> OrderDetails { List ; ; } get set

 }

}

3. Add an OrderDetail.cs class to the Models folder.

4. Replace the default code with the following code:

 System.ComponentModel.DataAnnotations; using

 WingtipToys.Models namespace

{

 public class OrderDetail

 {

 OrderDetailId { ; ; } public int get set

 OrderId { ; ; } public int get set

 Username { ; ; } public string get set

 ProductId { ; ; } public int get set

 Quantity { ; ; } public int get set

 ? UnitPrice { ; ; } public double get set

 }

}

The Order and OrderDetail classes contain the schema to define the order information used

for purchasing and shipping.

In addition, you will need to update the database context class that manages the entity classes

and that provides data access to the database. To do this, you will add the newly created Order

and OrderDetail model classes to ProductContext class.

1. In Solution Explorer, find and open the ProductContext.cs file.

2. Add the highlighted code to the ProductContext.cs file as shown below:

 System.Data.Entity; using

 WingtipToys.Models namespace

{

 public class : ProductContext DbContext

 {

 ProductContext() public

 : (base) "WingtipToys"

 {

 }

 public < > Categories { DbSet Category ; ; } get set

 public < > Products { DbSet Product ; ; } get set

 public < > ShoppingCartItems { DbSet CartItem ; ; } get set

 public < > Orders { DbSet Order ; ; } get set

 public < > OrderDetails { DbSet OrderDetail ; ; } get set

 }

}

As mentioned previously in this tutorial series, the code in the ProductContext.cs file adds the

System.Data.Entity namespace so that you have access to all the core functionality of the

Entity Framework. This functionality includes the capability to query, insert, update, and delete

data by working with strongly typed objects. The above code in the ProductContext class

adds Entity Framework access to the newly added Order and OrderDetail classes.

Adding Checkout Access

The Wingtip Toys sample application allows anonymous users to review and add products to a

shopping cart. However, when anonymous users choose to purchase the products they added to

the shopping cart, they must log on to the site. Once they have logged on, they can access the

restricted pages of the Web application that handle the checkout and purchase process. These

restricted pages are contained in the Checkout folder of the application.

Add a Checkout Folder and Pages

You will now create the Checkout folder and the pages in it that the customer will see during the

checkout process. You will update these pages later in this tutorial.

1. Right-click the project name (Wingtip Toys) in Solution Explorer and select Add a New

Folder.

2. Name the new folder Checkout.

3. Right-click the Checkout folder and then select Add -> New Item.

4. The Add New Item dialog box is displayed.

5. Select the Visual C# -> Web templates group on the left. Then, from the middle pane,

select Web Form using Master Page and name it CheckoutStart.aspx.

6. As before, select the Site.Master file as the master page.

7. Add the following additional pages to the Checkout folder using the same steps above:

 CheckoutReview.aspx

 CheckoutComplete.aspx

 CheckoutCancel.aspx

 CheckoutError.aspx

Add a Web.config File

By adding a new Web.config file to the Checkout folder, you will be able to restrict access to all

the pages contained in the folder.

1. Right-click the Checkout folder and select Add -> New Item.

The Add New Item dialog box is displayed.

2. Select the Visual C# -> Web templates group on the left. Then, from the middle pane,

select Web Configuration File, accept the default name of Web.config, and then select

Add.

3. Replace the existing XML content in the Web.config file with the following:

<? xml ="1.0"?> version

< > configuration

 < > system.web

 < > authorization

 < deny ="?"/> users

 </ > authorization

 </ > system.web

</ > configuration

4. Save the Web.config file.

The Web.config file specifies that all unknown users of the Web application must be denied

access to the pages contained in the Checkout folder. However, if the user has registered an

account and is logged on, they will be a known user and will have access to the pages in the

Checkout folder.

It’s important to note that ASP.NET configuration follows a hierarchy, where each Web.config file

applies configuration settings to the folder that it is in and to all of the child directories below it.

Enabling Logins from Other Sites Using OAuth and

OpenID

ASP.NET Web Forms provides enhanced options for membership and authentication. These

enhancements include the new OAuth and OpenID providers. Using these providers, you can

let users log into your site using their existing credentials from Facebook, Twitter, Windows Live,

and Google. For example, to log in using a Facebook account, users can just choose a Facebook

option, which redirects them to the Facebook login page where they enter their user credentials.

They can then associate the Facebook login with their account on your site. A related

enhancement to the ASP.NET Web Forms membership (ASP.NET Identity) features is that users

can associate multiple logins (including logins from social networking sites) with a single

account on your website.

When you add an OAuth provider (Facebook, Twitter, or Windows Live) to your ASP.NET Web

Forms application, you must set the application ID (key) value and an application secret value.

You add these values to the Startup.Auth.cs file in your Web Forms application. Additionally, you

must create an application on the external site (Facebook, Twitter, or Windows Live). When you

create the application on the external site you can get the application keys that you'll need in

order to invoke the login feature for those sites.

Note

Windows Live applications only accept a live URL for a working website, so you cannot use a

local website URL for testing logins.

For sites that use an OpenID provider (Google), you do not have to create an application on the

external site.

1. In Solution Explorer, find and open the App_Start folder.

2. Open the file named Startup.Auth.cs.

3. Uncomment the single line of code highlighted in yellow to allow Google OpenID

accounts as follows:

 Microsoft.AspNet.Identity; using

 Microsoft.Owin; using

 Microsoft.Owin.Security.Cookies; using

 Owin; using

 WingtipToys namespace

{

 public partial class { Startup

 // For more information on configuring authentication, please visit

 http://go.microsoft.com/fwlink/?LinkId=301883

 ConfigureAuth(public void app) IAppBuilder

 {

 // Enable the application to use a cookie to store information for

 the signed in user

 // and also store information about a user logging in with a third

 party login provider.

 // This is required if your application allows users to login

 app.UseCookieAuthentication(new CookieAuthenticationOptions

 {

 AuthenticationType =

.ApplicationCookie, DefaultAuthenticationTypes

 LoginPath = new (PathString) "/Account/Login"

 });

app.UseExternalSignInCookie(.ExternalCookie); DefaultAuthenticationTypes

 // Uncomment the following lines to enable logging in with third

 party login providers

 //app.UseMicrosoftAccountAuthentication(

 // clientId: "",

 // clientSecret: "");

 //app.UseTwitterAuthentication(

 // consumerKey: "",

 // consumerSecret: "");

 //app.UseFacebookAuthentication(

 // appId: "",

 // appSecret: "");

 app.UseGoogleAuthentication();

 }

 }

}

4. Save the Startup.Auth.cs file.

When you run the Wingtip Toys sample application, you will have the option to login to your

Google account and associate your Wingtip Toys account with the Google account.

Modifying Login Functionality

As previously mentioned in this tutorial series, much of the user registration functionality has

been included in the ASP.NET Web Forms template by default. Now you will modify the default

Login.aspx and Register.aspx pages to call the MigrateCart method. The MigrateCart

method associates a newly logged in user with an anonymous shopping cart. By associating the

user and shopping cart, the Wingtip Toys sample application will be able to maintain the

shopping cart of the user between visits.

1. In Solution Explorer, find and open the Account folder.

2. Modify the code-behind page named Login.aspx.cs to include the code highlighted in

yellow, so that it appears as follows:

 Microsoft.AspNet.Identity; using

 Microsoft.AspNet.Identity.EntityFramework; using

 Microsoft.AspNet.Identity.Owin; using

 Microsoft.Owin.Security; using

 System; using

 System.Linq; using

 System.Web; using

 System.Web.UI; using

 WingtipToys.Models; using

 WingtipToys.Account namespace

{

 public partial class : Login Page

 {

 Page_Load(sender, protected void object e) EventArgs

 {

 RegisterHyperLink.NavigateUrl = ; "Register"

 OpenAuthLogin.ReturnUrl = Request.QueryString[]; "ReturnUrl"

 returnUrl = var

.UrlEncode(Request.QueryString[HttpUtility]); "ReturnUrl"

 (!if .IsNullOrEmpty(returnUrl)) String

 {

 RegisterHyperLink.NavigateUrl += + returnUrl; "?ReturnUrl="

 }

 }

 LogIn(sender, protected void object e) EventArgs

 {

 (IsValid) if

 {

 // Validate the user password

 manager = var new (); UserManager

 user = manager.Find(UserName.Text, ApplicationUser

Password.Text);

 (user !=) if null

 {

 .SignIn(manager, user, RememberMe.Checked); IdentityHelper

 WingtipToys.Logic. usersShoppingCart = ShoppingCartActions

 WingtipToys.Logic.new (); ShoppingCartActions

 cartId = usersShoppingCart.GetCartId(); String

 usersShoppingCart.MigrateCart(cartId, UserName.Text);

.RedirectToReturnUrl(Request.QueryString[IdentityHelper], Response); "ReturnUrl"

 }

 else

 {

 FailureText.Text = ; "Invalid username or password."

 ErrorMessage.Visible = ; true

 }

 }

 }

 }

}

3. Save the Login.aspx.cs file.

For now, you can ignore the warning that there is no definition for the MigrateCart method.

You will be adding it a bit later in this tutorial.

The Login.aspx.cs code-behind file supports a LogIn method. By inspecting the Login.aspx page,

you’ll see that this page includes a “Log in” button that when click triggers the LogIn handler

on the code-behind.

When the Login method on the Login.aspx.cs is called, a new instance of the shopping cart

named usersShoppingCart is created. The ID of the shopping cart (a GUID) is retrieved and

set to the cartId variable. Then, the MigrateCart method is called, passing both the cartId

and the name of the logged-in user to this method. When the shopping cart is migrated, the

GUID used to identify the anonymous shopping cart is replaced with the user name.

In addition to modifying the Login.aspx.cs code-behind file to migrate the shopping cart when

the user logs in, you must also modify the Register.aspx.cs code-behind file to migrate the

shopping cart when the user creates a new account and logs in.

1. In the Account folder, open the code-behind file named Register.aspx.cs.

2. Modify the code-behind file by including the code in yellow, so that it appears as follows:

 Microsoft.AspNet.Identity; using

 Microsoft.AspNet.Identity.EntityFramework; using

 Microsoft.AspNet.Identity.Owin; using

 System; using

 System.Linq; using

 System.Web; using

 System.Web.UI; using

 WingtipToys.Models; using

 WingtipToys.Account namespace

{

 public partial class : Register Page

 {

 CreateUser_Click(sender, protected void object e) EventArgs

 {

 manager = var new (); UserManager

 user = var new () { UserName = UserName.Text }; ApplicationUser

 result = manager.Create(user, Password.Text); IdentityResult

 (result.Succeeded) if

 {

 .SignIn(manager, user, isPersistent: IdentityHelper); false

 (WingtipToys.Logic.using usersShoppingCart ShoppingCartActions

= WingtipToys.Logic.new ()) ShoppingCartActions

 {

 cartId = usersShoppingCart.GetCartId(); String

 usersShoppingCart.MigrateCart(cartId, user.Id);

 }

.RedirectToReturnUrl(Request.QueryString[IdentityHelper], Response); "ReturnUrl"

 }

 else

 {

 ErrorMessage.Text = result.Errors.FirstOrDefault();

 }

 }

 }

}

3. Save the Register.aspx.cs file. Once again, ignore the warning about the MigrateCart

method.

Notice that the code you used in the CreateUser_Click event handler is very similar to the

code you used in the LogIn method. When the user registers or logs in to the site, a call to the

MigrateCart method will be made.

Migrating the Shopping Cart

Now that you have the log-in and registration process updated, you can add the code to

migrate the shopping cart—the MigrateCart method.

1. In Solution Explorer, find the Logic folder and open the ShoppingCartActions.cs class file.

2. Add the code highlighted in yellow to the existing code in the ShoppingCartActions.cs

file, so that the code in the ShoppingCartActions.cs file appears as follows:

 System; using

 System.Collections.Generic; using

 System.Linq; using

 System.Web; using

 WingtipToys.Models; using

 WingtipToys.Logic namespace

{

 public class : ShoppingCartActions IDisposable

 {

 ShoppingCartId { ; ; } public string get set

 private _db = ProductContext new (); ProductContext

 CartSessionKey = public const string ; "CartId"

 AddToCart(id) public void int

 {

 // Retrieve the product from the database.

 ShoppingCartId = GetCartId();

 cartItem = _db.ShoppingCartItems.SingleOrDefault(var

 c => c.CartId == ShoppingCartId

 && c.ProductId == id);

 (cartItem ==) if null

 {

 // Create a new cart item if no cart item exists.

 cartItem = new CartItem

 {

 ItemId = .NewGuid().ToString(), Guid

 ProductId = id,

 CartId = ShoppingCartId,

 Product = _db.Products.SingleOrDefault(

 p => p.ProductID == id),

 Quantity = 1,

 DateCreated = .Now DateTime

 };

 _db.ShoppingCartItems.Add(cartItem);

 }

 else

 {

 // If the item does exist in the cart,

 // then add one to the quantity.

 cartItem.Quantity++;

 }

 _db.SaveChanges();

 }

 Dispose() public void

 {

 (_db !=) if null

 {

 _db.Dispose();

 _db = ; null

 }

 }

 GetCartId() public string

 {

 (if .Current.Session[CartSessionKey] == HttpContext) null

 {

 (! .IsNullOrWhiteSpace(if string .Current.User.Identity.Name)) HttpContext

 {

 .Current.Session[CartSessionKey] = HttpContext

.Current.User.Identity.Name; HttpContext

 }

 else

 {

 // Generate a new random GUID using System.Guid class.

 tempCartId = .NewGuid(); Guid Guid

 .Current.Session[CartSessionKey] = tempCartId.ToString(); HttpContext

 }

 }

 return .Current.Session[CartSessionKey].ToString(); HttpContext

 }

 public < > GetCartItems() List CartItem

 {

 ShoppingCartId = GetCartId();

 _db.ShoppingCartItems.Where(return

 c => c.CartId == ShoppingCartId).ToList();

 }

 GetTotal() public decimal

 {

 ShoppingCartId = GetCartId();

 // Multiply product price by quantity of that product to get

 // the current price for each of those products in the cart.

 // Sum all product price totals to get the cart total.

 ? total = .Zero; decimal decimal

 total = (?)(cartItems _db.ShoppingCartItems decimal from in

 cartItems.CartId == ShoppingCartId where

 (?)cartItems.Quantity * select int

 cartItems.Product.UnitPrice).Sum();

 total ?? .Zero; return decimal

 }

 public GetCart(context) ShoppingCartActions HttpContext

 {

 (cart = using var new ()) ShoppingCartActions

 {

 cart.ShoppingCartId = cart.GetCartId();

 cart; return

 }

 }

 UpdateShoppingCartDatabase(public void cartId, [] String ShoppingCartUpdates

CartItemUpdates)

 {

 (db = WingtipToys.Models.using var new ()) ProductContext

 {

 try

 {

 CartItemCount = CartItemUpdates.Count(); int

 < > myCart = GetCartItems(); List CartItem

 (cartItem myCart) foreach var in

 {

 // Iterate through all rows within shopping cart list

 (i = 0; i < CartItemCount; i++) for int

 {

 (cartItem.Product.ProductID == CartItemUpdates[i].ProductId) if

 {

 (CartItemUpdates[i].PurchaseQuantity < 1 || if

CartItemUpdates[i].RemoveItem ==) true

 {

 RemoveItem(cartId, cartItem.ProductId);

 }

 else

 {

 UpdateItem(cartId, cartItem.ProductId,

CartItemUpdates[i].PurchaseQuantity);

 }

 }

 }

 }

 }

 (catch exp) Exception

 {

 throw new (Exception + "ERROR: Unable to Update Cart Database - "

exp.Message.ToString(), exp);

 }

 }

 }

 RemoveItem(removeCartID, removeProductID) public void string int

 {

 (_db = WingtipToys.Models.using var new ()) ProductContext

 {

 try

 {

 myItem = (c _db.ShoppingCartItems c.CartId == var from in where

removeCartID && c.Product.ProductID == removeProductID select

c).FirstOrDefault();

 (myItem !=) if null

 {

 // Remove Item.

 _db.ShoppingCartItems.Remove(myItem);

 _db.SaveChanges();

 }

 }

 (catch exp) Exception

 {

 throw new (Exception + "ERROR: Unable to Remove Cart Item - "

exp.Message.ToString(), exp);

 }

 }

 }

 UpdateItem(updateCartID, updateProductID, public void string int int

quantity)

 {

 (_db = WingtipToys.Models.using var new ()) ProductContext

 {

 try

 {

 myItem = (c _db.ShoppingCartItems c.CartId == var from in where

updateCartID && c.Product.ProductID == updateProductID select

c).FirstOrDefault();

 (myItem !=) if null

 {

 myItem.Quantity = quantity;

 _db.SaveChanges();

 }

 }

 (catch exp) Exception

 {

 throw new (Exception + "ERROR: Unable to Update Cart Item - "

exp.Message.ToString(), exp);

 }

 }

 }

 EmptyCart() public void

 {

 ShoppingCartId = GetCartId();

 cartItems = _db.ShoppingCartItems.Where(var

 c => c.CartId == ShoppingCartId);

 (cartItem cartItems) foreach var in

 {

 _db.ShoppingCartItems.Remove(cartItem);

 }

 // Save changes.

 _db.SaveChanges();

 }

 GetCount() public int

 {

 ShoppingCartId = GetCartId();

 // Get the count of each item in the cart and sum them up

 ? count = (cartItems _db.ShoppingCartItems int from in

 cartItems.CartId == ShoppingCartId where

 (?)cartItems.Quantity).Sum(); select int

 // Return 0 if all entries are null

 count ?? 0; return

 }

 public struct ShoppingCartUpdates

 {

 ProductId; public int

 PurchaseQuantity; public int

 RemoveItem; public bool

 }

 MigrateCart(cartId, userName) public void string string

 {

 shoppingCart = _db.ShoppingCartItems.Where(c => c.CartId == cartId); var

 (foreach item CartItem shoppingCart) in

 {

 item.CartId = userName;

 }

 .Current.Session[CartSessionKey] = userName; HttpContext

 _db.SaveChanges();

 }

 }

}

The MigrateCart method uses the existing cartId to find the shopping cart of the user. Next,

the code loops through all the shopping cart items and replaces the CartId property (as

specified by the CartItem schema) with the logged-in user name.

Updating the Database Connection

If you are following this tutorial using the prebuilt Wingtip Toys sample application, you must

recreate the default membership database. By modifying the default connection string, the

membership database will be created the next time the application runs.

1. Open the Web.config file at the root of the project.

2. Update the default connection string so that it appears as follows:

 <add name="DefaultConnection" connectionString="Data

Source=(LocalDb)\v11.0;Initial Catalog=aspnet-WingtipToys;Integrated

Security=True" providerName="System.Data.SqlClient" />

Integrating PayPal

PayPal is a web-based billing platform that accepts payments by online merchants. This tutorial

next explains how to integrate PayPal’s Express Checkout functionality into your application.

Express Checkout allows your customers to use PayPal to pay for the items they have added to

their shopping cart.

Create PaylPal Test Accounts

To use the PayPal testing environment, you must create and verify a developer test account. You

will use the developer test account to create a buyer test account and a seller test account. The

developer test account credentials also will allow the Wingtip Toys sample application to access

the PayPal testing environment.

1. In a browser, navigate to the PayPal developer testing site:

https://developer.paypal.com

2. If you don’t have a PayPal developer account, create a new account by clicking Sign Up

and following the sign up steps. If you have an existing PayPal developer account, sign in

by clicking Log In. You will need your PayPal developer account to test the Wingtip Toys

sample application later in this tutorial.

https://developer.paypal.com/

3. If you have just signed up for your PayPal developer account, you may need to verify

your PayPal developer account with PayPal. You can verify your account by following the

steps that PayPal sent to your email account. Once you have verified your PayPal

developer account, log back into the PayPal developer testing site.

4. After you are logged in to the PayPal developer site with your PayPal developer account

you need to create a PayPal buyer test account if you don’t already have one. To create a

buyer test account, on the PayPal site click the Applications tab and then click Sandbox

accounts.

The Sandbox test accounts page is shown.

Note

The PayPal Developer site already provides a merchant test account.

5. On the Sandbox test accounts page, click Create Account.

6. On the Create test account page choose a buyer test account email and password of

your choice.

Note

You will need the buyer email addresses and password to test the Wingtip Toys sample

application at the end of this tutorial.

7. Create the buyer test account by clicking the Create Account button.

The Sandbox Test accounts page is displayed.

8. On the Sandbox test accounts page, click the facilitator email account.

Profile and Notification options appear.

9. Select the Profile option, then click API credentials to view your API credentials for the

merchant test account.

10. Copy the TEST API credentials to notepad.

You will need your displayed Classic TEST API credentials (Username, Password, and Signature)

to make API calls from the Wingtip Toys sample application to the PayPal testing environment.

You will add the credentials in the next step.

Add PayPal Class and API Credentials

You will place the majority of the PayPal code into a single class. This class contains the methods

used to communicate with PayPal. Also, you will add your PayPal credentials to this class.

1. In the Wingtip Toys sample application within Visual Studio, right-click the Logic folder

and then select Add -> New Item.

The Add New Item dialog box is displayed.

2. Under Visual C# from the Installed pane on the left, select Code.

3. From the middle pane, select Class. Name this new class PayPalFunctions.cs.

4. Click Add.

The new class file is displayed in the editor.

5. Replace the default code with the following code:

 System; using

 System.Collections; using

 System.Collections.Specialized; using

 System.IO; using

 System.Net; using

 System.Text; using

 System.Data; using

 System.Configuration; using

 System.Web; using

 WingtipToys; using

 WingtipToys.Models; using

 System.Collections.Generic; using

 System.Linq; using

 public class NVPAPICaller

{

 //Flag that determines the PayPal environment (live or sandbox)

 bSandbox = ; private const bool true

 CVV2 = private const string ; "CVV2"

 // Live strings.

 pEndPointURL = private string ; "https://api-3t.paypal.com/nvp"

 host = private string ; "www.paypal.com"

 // Sandbox strings.

 pEndPointURL_SB = private string ; "https://api-3t.sandbox.paypal.com/nvp"

 host_SB = private string ; "www.sandbox.paypal.com"

 SIGNATURE = private const string ; "SIGNATURE"

 PWD = private const string ; "PWD"

 ACCT = private const string ; "ACCT"

 //Replace <Your API Username> with your API Username

 //Replace <Your API Password> with your API Password

 //Replace <Your Signature> with your Signature

 APIUsername = public string ; "<Your API Username>"

 APIPassword = private string ; "<Your API Password>"

 APISignature = private string ; "<Your Signature>"

 Subject = private string ; ""

 BNCode = private string ; "PP-ECWizard"

 //HttpWebRequest Timeout specified in milliseconds

 Timeout = 15000; private const int

 [] SECURED_NVPS = [] { ACCT, CVV2, private static readonly string new string

SIGNATURE, PWD };

 SetCredentials(Userid, Pwd, Signature) public void string string string

 {

 APIUsername = Userid;

 APIPassword = Pwd;

 APISignature = Signature;

 }

 ShortcutExpressCheckout(amt, token, public bool string ref string ref string

retMsg)

 {

 (bSandbox) if

 {

 pEndPointURL = pEndPointURL_SB;

 host = host_SB;

 }

 returnURL = string ; "http://localhost:1234/Checkout/CheckoutReview.aspx"

 cancelURL = string ; "http://localhost:1234/Checkout/CheckoutCancel.aspx"

 encoder = NVPCodec new (); NVPCodec

 encoder[] = ; "METHOD" "SetExpressCheckout"

 encoder[] = returnURL; "RETURNURL"

 encoder[] = cancelURL; "CANCELURL"

 encoder[] = ; "BRANDNAME" "Wingtip Toys Sample Application"

 encoder[] = amt; "PAYMENTREQUEST_0_AMT"

 encoder[] = amt; "PAYMENTREQUEST_0_ITEMAMT"

 encoder[] = ; "PAYMENTREQUEST_0_PAYMENTACTION" "Sale"

 encoder[] = ; "PAYMENTREQUEST_0_CURRENCYCODE" "USD"

 // Get the Shopping Cart Products

 (WingtipToys.Logic.using myCartOrders = ShoppingCartActions new

WingtipToys.Logic. ()) ShoppingCartActions

 {

 < > myOrderList = myCartOrders.GetCartItems(); List CartItem

 (i = 0; i < myOrderList.Count; i++) for int

 {

 encoder[+ i] = "L_PAYMENTREQUEST_0_NAME"

myOrderList[i].Product.ProductName.ToString();

 encoder[+ i] = "L_PAYMENTREQUEST_0_AMT"

myOrderList[i].Product.UnitPrice.ToString();

 encoder[+ i] = "L_PAYMENTREQUEST_0_QTY"

myOrderList[i].Quantity.ToString();

 }

 }

 pStrrequestforNvp = encoder.Encode(); string

 pStresponsenvp = HttpCall(pStrrequestforNvp); string

 decoder = NVPCodec new (); NVPCodec

 decoder.Decode(pStresponsenvp);

 strAck = decoder[string].ToLower(); "ACK"

 (strAck != && (strAck == if null || strAck == "success"

)) "successwithwarning"

 {

 token = decoder[]; "TOKEN"

 ECURL = string + host + "https://" "/cgi-bin/webscr?cmd=_express-

 + + token; checkout" "&token="

 retMsg = ECURL;

 ; return true

 }

 else

 {

 retMsg = + decoder[] + + "ErrorCode=" "L_ERRORCODE0" "&"

 + decoder[] + + "Desc=" "L_SHORTMESSAGE0" "&"

 + decoder[]; "Desc2=" "L_LONGMESSAGE0"

 ; return false

 }

 }

 GetCheckoutDetails(token, PayerID, public bool string ref string ref NVPCodec

decoder, retMsg) ref string

 {

 (bSandbox) if

 {

 pEndPointURL = pEndPointURL_SB;

 }

 encoder = NVPCodec new (); NVPCodec

 encoder[] = ; "METHOD" "GetExpressCheckoutDetails"

 encoder[] = token; "TOKEN"

 pStrrequestforNvp = encoder.Encode(); string

 pStresponsenvp = HttpCall(pStrrequestforNvp); string

 decoder = new (); NVPCodec

 decoder.Decode(pStresponsenvp);

 strAck = decoder[string].ToLower(); "ACK"

 (strAck != && (strAck == if null || strAck == "success"

)) "successwithwarning"

 {

 PayerID = decoder[]; "PAYERID"

 ; return true

 }

 else

 {

 retMsg = + decoder[] + + "ErrorCode=" "L_ERRORCODE0" "&"

 + decoder[] + + "Desc=" "L_SHORTMESSAGE0" "&"

 + decoder[]; "Desc2=" "L_LONGMESSAGE0"

 ; return false

 }

 }

 DoCheckoutPayment(finalPaymentAmount, token, public bool string string string

PayerID, ref decoder, NVPCodec retMsg) ref string

 {

 (bSandbox) if

 {

 pEndPointURL = pEndPointURL_SB;

 }

 encoder = NVPCodec new (); NVPCodec

 encoder[] = ; "METHOD" "DoExpressCheckoutPayment"

 encoder[] = token; "TOKEN"

 encoder[] = PayerID; "PAYERID"

 encoder[] = finalPaymentAmount; "PAYMENTREQUEST_0_AMT"

 encoder[] = ; "PAYMENTREQUEST_0_CURRENCYCODE" "USD"

 encoder[] = ; "PAYMENTREQUEST_0_PAYMENTACTION" "Sale"

 pStrrequestforNvp = encoder.Encode(); string

 pStresponsenvp = HttpCall(pStrrequestforNvp); string

 decoder = new (); NVPCodec

 decoder.Decode(pStresponsenvp);

 strAck = decoder[string].ToLower(); "ACK"

 (strAck != && (strAck == if null || strAck == "success"

)) "successwithwarning"

 {

 ; return true

 }

 else

 {

 retMsg = + decoder[] + + "ErrorCode=" "L_ERRORCODE0" "&"

 + decoder[] + + "Desc=" "L_SHORTMESSAGE0" "&"

 + decoder[]; "Desc2=" "L_LONGMESSAGE0"

 ; return false

 }

 }

 HttpCall(NvpRequest) public string string

 {

 url = pEndPointURL; string

 strPost = NvpRequest + string + buildCredentialsNVPString(); "&"

 strPost = strPost + + "&BUTTONSOURCE=" .UrlEncode(BNCode); HttpUtility

 objRequest = () .Create(url); HttpWebRequest HttpWebRequest WebRequest

 objRequest.Timeout = Timeout;

 objRequest.Method = ; "POST"

 objRequest.ContentLength = strPost.Length;

 try

 {

 (using myWriter = StreamWriter new

(objRequest.GetRequestStream())) StreamWriter

 {

 myWriter.Write(strPost);

 }

 }

 (catch) Exception

 {

 // No logging for this tutorial.

 }

 //Retrieve the Response returned from the NVP API call to PayPal.

 objResponse = ()objRequest.GetResponse(); HttpWebResponse HttpWebResponse

 result; string

 (using sr = StreamReader new (objResponse.GetResponseStream())) StreamReader

 {

 result = sr.ReadToEnd();

 }

 result; return

 }

 buildCredentialsNVPString() private string

 {

 codec = NVPCodec new (); NVPCodec

 (!IsEmpty(APIUsername)) if

 codec[] = APIUsername; "USER"

 (!IsEmpty(APIPassword)) if

 codec[PWD] = APIPassword;

 (!IsEmpty(APISignature)) if

 codec[SIGNATURE] = APISignature;

 (!IsEmpty(Subject)) if

 codec[] = Subject; "SUBJECT"

 codec[] = ; "VERSION" "88.0"

 codec.Encode(); return

 }

 IsEmpty(s) public static bool string

 {

 s == || s.Trim() == .Empty; return null string

 }

}

 public sealed class : NVPCodec NameValueCollection

{

 AMPERSAND = private const string ; "&"

 EQUALS = private const string ; "="

 [] AMPERSAND_CHAR_ARRAY = private static readonly char

AMPERSAND.ToCharArray();

 [] EQUALS_CHAR_ARRAY = EQUALS.ToCharArray(); private static readonly char

 Encode() public string

 {

 sb = StringBuilder new (); StringBuilder

 firstPair = ; bool true

 (kv AllKeys) foreach string in

 {

 name = string .UrlEncode(kv); HttpUtility

 value = string .UrlEncode(HttpUtility [kv]); this

 (!firstPair) if

 {

 sb.Append(AMPERSAND);

 }

 sb.Append(name).Append(EQUALS).Append(value);

 firstPair = ; false

 }

 sb.ToString(); return

 }

 Decode(nvpstring) public void string

 {

 Clear();

 (nvp nvpstring.Split(AMPERSAND_CHAR_ARRAY)) foreach string in

 {

 [] tokens = nvp.Split(EQUALS_CHAR_ARRAY); string

 (tokens.Length >= 2) if

 {

 name = string .UrlDecode(tokens[0]); HttpUtility

 value = string .UrlDecode(tokens[1]); HttpUtility

 Add(name, value);

 }

 }

 }

 Add(name, value, index) public void string string int

 {

 .Add(GetArrayName(index, name), value); this

 }

 Remove(arrayName, index) public void string int

 {

 .Remove(GetArrayName(index, arrayName)); this

 }

 [name, index] public string this string int

 {

 get

 {

 [GetArrayName(index, name)]; return this

 }

 set

 {

 [GetArrayName(index, name)] = ; this value

 }

 }

 GetArrayName(index, name) private static string int string

 {

 (index < 0) if

 {

 throw new (ArgumentOutOfRangeException , "index" "index cannot be negative

 + index); : "

 }

 name + index; return

 }

}

6. Add the Merchant API credentials (Username, Password, and Signature) that you

displayed earlier in this tutorial so that you can make function calls to the PayPal testing

environment.

 public string APIUsername = "<Your API Username>";

 private string APIPassword = "<Your API Password>";

 private string APISignature = "<Your Signature>";

Note

In this sample application you are simply adding credentials to a C# file (.cs). However, in a

implemented solution, you should consider encrypting your credentials in a configuration file.

The NVPAPICaller class contains the majority of the PayPal functionality. The code in the class

provides the methods needed to make a test purchase from the PayPal testing environment. The

following three PayPal functions are used to make purchases:

1. SetExpressCheckout function

2. GetExpressCheckoutDetails function

3. DoExpressCheckoutPayment function

The ShortcutExpressCheckout method collects the test purchase information and product

details from the shopping cart and calls the SetExpressCheckout PayPal function. The

GetCheckoutDetails method confirms purchase details and calls the

GetExpressCheckoutDetails PayPal function before making the test purchase. The

DoCheckoutPayment method completes the test purchase from the testing environment by

calling the DoExpressCheckoutPayment PayPal function. The remaining code supports the

PayPal methods and process, such as encoding strings, decoding strings, processing arrays, and

determining credentials.

Note

PayPal allows you to include optional purchase details based on PayPal’s API specification. By

extending the code in the Wingtip Toys sample application, you can include localization details,

product descriptions, tax, a customer service number, as well as many other optional fields.

Notice that the return and cancel URLs that are specified in the ShortcutExpressCheckout

method use a port number.

 string returnURL =

"http://localhost:1234/Checkout/CheckoutReview.aspx";

 string cancelURL =

"http://localhost:1234/Checkout/CheckoutCancel.aspx";

When Visual Web Developer runs a web project, a random port is used for the web server. As

shown above, the port number is 1234. When you run the application, you'll probably see a

different port number. Your port number needs to be set in the above code so that you can

successful run the Wingtip Toys sample application at the end of this tutorial. The next section

of this tutorial explains how to retrieve the local host port number and update the PayPal class.

Update the LocalHost Port Number in the PayPal Class

The Wingtip Toys sample application purchases products by navigating to the PayPal testing site

and returning to your local instance of the Wingtip Toys sample application. In order to have

PayPal return to the correct URL, you need to specify the port number of the locally running

sample application in the PayPal code mentioned above.

1. Right-click the project name (WingtipToys) in Solution Explorer and select Properties.

2. In the left column, select the Web tab.

3. Retrieve the port number from the Project Url box.

4. Update the returnURL and cancelURL in the PayPal class (NVPAPICaller) in the

PayPalFunctions.cs file to use the port number of your web application:

 string returnURL = "http://localhost:<Your Port

Number>/Checkout/CheckoutReview.aspx";

 string cancelURL = "http://localhost:<Your Port

Number>/Checkout/CheckoutCancel.aspx";

Now the code that you added will match the expected port for your local Web application.

PayPal will be able to return to the correct URL on your local machine.

Add the PayPal Checkout Button

Now that the primary PayPal functions have been added to the sample application, you can

begin adding the markup and code needed to call these functions. First, you must add the

checkout button that the user will see on the shopping cart page.

1. Open the ShoppingCart.aspx file.

2. Scroll to the bottom of the file and find the <!--Checkout Placeholder -->

comment.

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_nvp_r_SetExpressCheckout

3. Replace the comment with an ImageButton control so that the mark up is replaced as

follows:

 < : asp ImageButton ="CheckoutImageBtn" ="server" ID runat

="https://www.paypal.com/en_US/i/btn/btn_xpressCheckout.gif" ImageUrl

 ="145" ="Check out with PayPal" Width AlternateText

 ="CheckoutBtn_Click" OnClick

 ="Transparent" ="0" /> BackColor BorderWidth

4. In the ShoppingCart.aspx.cs file, after the UpdateBtn_Click event handler near the end

of the file, add the CheckOutBtn_Click event handler:

 CheckoutBtn_Click(sender, protected void object e) ImageClickEventArgs

{

 (using usersShoppingCart = ShoppingCartActions new ()) ShoppingCartActions

 {

 Session[] = usersShoppingCart.GetTotal(); "payment_amt"

 }

 Response.Redirect(); "Checkout/CheckoutStart.aspx"

}

5. Also in the ShoppingCart.aspx.cs file, add a reference to the CheckoutBtn, so that the

new image button is referenced as follows:

 Page_Load(sender, protected void object e) EventArgs

 {

 (using usersShoppingCart = ShoppingCartActions new ()) ShoppingCartActions

 {

 cartTotal = 0; decimal

 cartTotal = usersShoppingCart.GetTotal();

 (cartTotal > 0) if

 {

 // Display Total.

 lblTotal.Text = .Format(String , cartTotal); "{0:c}"

 }

 else

 {

 LabelTotalText.Text = ; ""

 lblTotal.Text = ; ""

 ShoppingCartTitle.InnerText = ; "Shopping Cart is Empty"

 UpdateBtn.Visible = ; false

 CheckoutImageBtn.Visible = ; false

 }

 }

 }

6. Save your changes to both the ShoppingCart.aspx file and the ShoppingCart.aspx.cs file.

7. From the menu, select Debug -> Build WingtipToys.

The project will be rebuilt with the newly added ImageButton control.

Send Purchase Details to PayPal

When the user clicks the Checkout button on the shopping cart page (ShoppingCart.aspx),

they’ll begin the purchase process. The following code calls the first PayPal function needed to

purchase products.

1. From the Checkout folder, open the code-behind file named CheckoutStart.aspx.cs.

Be sure to open the code-behind file.

2. Replace the existing code with the following:

 System; using

 System.Collections.Generic; using

 System.Linq; using

 System.Web; using

 System.Web.UI; using

 System.Web.UI.WebControls; using

 WingtipToys.Checkout namespace

{

 public partial class : System.Web.UI. CheckoutStart Page

 {

 Page_Load(sender, protected void object e) EventArgs

 {

 payPalCaller = NVPAPICaller new (); NVPAPICaller

 retMsg = string ; ""

 token = string ; ""

 (Session[if] != "payment_amt") null

 {

 amt = Session[string].ToString(); "payment_amt"

 ret = payPalCaller.ShortcutExpressCheckout(amt, token, bool ref ref

retMsg);

 (ret) if

 {

 Session[] = token; "token"

 Response.Redirect(retMsg);

 }

 else

 {

 Response.Redirect(+ retMsg); "CheckoutError.aspx?"

 }

 }

 else

 {

 Response.Redirect(); "CheckoutError.aspx?ErrorCode=AmtMissing"

 }

 }

 }

}

When the user of the application clicks the Checkout button on the shopping cart page, the

browser will navigate to the CheckoutStart.aspx page. When the CheckoutStart.aspx page loads,

the ShortcutExpressCheckout method is called. At this point, the user is transferred to the

PayPal testing web site. On the PayPal site, the user enters their PayPal credentials, reviews the

purchase details, accepts the PayPal agreement and returns to the Wingtip Toys sample

application where the ShortcutExpressCheckout method completes. When the

ShortcutExpressCheckout method is complete, it will redirect the user to the

CheckoutReview.aspx page specified in the ShortcutExpressCheckout method. This allows

the user to review the order details from within the Wingtip Toys sample application.

Review Order Details

After returning from PayPal, the CheckoutReview.aspx page of the Wingtip Toys sample

application displays the order details. This page allows the user to review the order details

before purchasing the products. The CheckoutReview.aspx page must be created as follows:

1. In the Checkout folder, open the page named CheckoutReview.aspx.

2. Replace the existing markup with the following:

<%@ Page ="" ="C#" ="~/Site.Master" Title Language MasterPageFile

="true" ="CheckoutReview.aspx.cs" AutoEventWireup CodeBehind

="WingtipToys.Checkout.CheckoutReview" %> Inherits

< : asp Content ="Content1" ="MainContent" ="server"> ID ContentPlaceHolderID runat

 < >Order Review</ > h1 h1

 < ></ > p p

 < h3 =" : 33px">Products:</style padding-left > h3

 < : asp GridView ="OrderItemList" ="server" ="False" ID runat AutoGenerateColumns

="Both" ="10" ="500" ="#efeeef" GridLines CellPadding Width BorderColor

="33"> BorderWidth

 < > Columns

 < : asp BoundField ="ProductId" =" Product ID" /> DataField HeaderText

 < : asp BoundField ="Product.ProductName" =" DataField HeaderText

Product Name" />

 < : asp BoundField ="Product.UnitPrice" ="Price DataField HeaderText

(each)" ="{0:c}"/> DataFormatString

 < : asp BoundField ="Quantity" ="Quantity" /> DataField HeaderText

 </ > Columns

 </ : > asp GridView

 < : asp DetailsView ="ShipInfo" ="server" ="false" ID runat AutoGenerateRows

="None" ="10" ="None" GridLines CellPadding BorderStyle CommandRowStyle-

="None"> BorderStyle

 < > Fields

 < : > asp TemplateField

 < > ItemTemplate

 < >Shipping Address:</ > h3 h3

 < /> br

 < : asp Label ="FirstName" ="server" ='<%#: ID runat Text

Eval() %>'></"FirstName" : > asp Label

 < : asp Label ="LastName" ="server" ='<%#: ID runat Text

Eval() %>'></"LastName" : > asp Label

 < /> br

 < : asp Label ="Address" ="server" ='<%#: ID runat Text

Eval() %>'></"Address" : > asp Label

 < /> br

 < : asp Label ="City" ="server" ='<%#: Eval(ID runat Text) "City"

%>'></ : > asp Label

 < : asp Label ="State" ="server" ='<%#: Eval(ID runat Text) "State"

%>'></ : > asp Label

 < : asp Label ="PostalCode" ="server" ='<%#: ID runat Text

Eval() %>'></"PostalCode" : > asp Label

 < ></ > p p

 < >Order Total:</ > h3 h3

 < /> br

 < : asp Label ="Total" ="server" ='<%#: Eval(ID runat Text , "Total"

) %>'></"{0:C}" : > asp Label

 </ > ItemTemplate

 < ItemStyle ="Left" /> HorizontalAlign

 </ : > asp TemplateField

 </ > Fields

 </ : > asp DetailsView

 < ></ > p p

 < /> hr

 < : asp Button ="CheckoutConfirm" ="server" ="Complete Order" ID runat Text

="CheckoutConfirm_Click" /> OnClick

</ : > asp Content

3. Open the code-behind page named CheckoutReview.aspx.cs and replace the existing

code with the following:

 System; using

 System.Collections.Generic; using

 System.Linq; using

 System.Web; using

 System.Web.UI; using

 System.Web.UI.WebControls; using

 WingtipToys.Models; using

 WingtipToys.Checkout namespace

{

 public partial class : System.Web.UI. CheckoutReview Page

 {

 Page_Load(sender, protected void object e) EventArgs

 {

 (!IsPostBack) if

 {

 payPalCaller = NVPAPICaller new (); NVPAPICaller

 retMsg = string ; ""

 token = string ; ""

 PayerID = string ; ""

 decoder = NVPCodec new (); NVPCodec

 token = Session[].ToString(); "token"

 ret = payPalCaller.GetCheckoutDetails(token, PayerID, bool ref ref

decoder, retMsg); ref

 (ret) if

 {

 Session[] = PayerID; "payerId"

 myOrder = var new (); Order

 myOrder.OrderDate =

.ToDateTime(decoder[Convert].ToString()); "TIMESTAMP"

 myOrder.Username = User.Identity.Name;

 myOrder.FirstName = decoder[].ToString(); "FIRSTNAME"

 myOrder.LastName = decoder[].ToString(); "LASTNAME"

 myOrder.Address = decoder[].ToString(); "SHIPTOSTREET"

 myOrder.City = decoder[].ToString(); "SHIPTOCITY"

 myOrder.State = decoder[].ToString(); "SHIPTOSTATE"

 myOrder.PostalCode = decoder[].ToString(); "SHIPTOZIP"

 myOrder.Country = decoder[].ToString(); "SHIPTOCOUNTRYCODE"

 myOrder.Email = decoder[].ToString(); "EMAIL"

 myOrder.Total = .ToDecimal(decoder[Convert].ToString()); "AMT"

 // Verify total payment amount as set on CheckoutStart.aspx.

 try

 {

 paymentAmountOnCheckout = decimal

.ToDecimal(Session[Convert].ToString()); "payment_amt"

 paymentAmoutFromPayPal = decimal

.ToDecimal(decoder[Convert].ToString()); "AMT"

 (paymentAmountOnCheckout != paymentAmoutFromPayPal) if

 {

 Response.Redirect(+ "CheckoutError.aspx?"

); "Desc=Amount%20total%20mismatch."

 }

 }

 (catch) Exception

 {

 Response.Redirect(+ "CheckoutError.aspx?"

); "Desc=Amount%20total%20mismatch."

 }

 // Get DB context.

 _db = ProductContext new (); ProductContext

 // Add order to DB.

 _db.Orders.Add(myOrder);

 _db.SaveChanges();

 // Get the shopping cart items and process them.

 (WingtipToys.Logic.using usersShoppingCart = ShoppingCartActions new

WingtipToys.Logic. ()) ShoppingCartActions

 {

 < > myOrderList = usersShoppingCart.GetCartItems(); List CartItem

 // Add OrderDetail information to the DB for each product

 purchased.

 (i = 0; i < myOrderList.Count; i++) for int

 {

 // Create a new OrderDetail object.

 myOrderDetail = var new (); OrderDetail

 myOrderDetail.OrderId = myOrder.OrderId;

 myOrderDetail.Username = User.Identity.Name;

 myOrderDetail.ProductId = myOrderList[i].ProductId;

 myOrderDetail.Quantity = myOrderList[i].Quantity;

 myOrderDetail.UnitPrice = myOrderList[i].Product.UnitPrice;

 // Add OrderDetail to DB.

 _db.OrderDetails.Add(myOrderDetail);

 _db.SaveChanges();

 }

 // Set OrderId.

 Session[] = myOrder.OrderId; "currentOrderId"

 // Display Order information.

 < > orderList = List Order new < >(); List Order

 orderList.Add(myOrder);

 ShipInfo.DataSource = orderList;

 ShipInfo.DataBind();

 // Display OrderDetails.

 OrderItemList.DataSource = myOrderList;

 OrderItemList.DataBind();

 }

 }

 else

 {

 Response.Redirect(+ retMsg); "CheckoutError.aspx?"

 }

 }

 }

 CheckoutConfirm_Click(sender, protected void object e) EventArgs

 {

 Session[] = ; "userCheckoutCompleted" "true"

 Response.Redirect(); "~/Checkout/CheckoutComplete.aspx"

 }

 }

}

The DetailsView control is used to display the order details that have been returned from

PayPal. Also, the above code saves the order details to the Wingtip Toys database as an

OrderDetail object. When the user clicks on the Complete Order button, they are redirected

to the CheckoutComplete.aspx page.

Tip

Notice that the <ItemStyle> tag is used to change the style of the items within the

DetailsView control. By viewing the page in Design View, selecting the DetailsView control,

and selecting the Smart Tag (the arrow icon at the top right of the control), you will be able to

see the DetailsView Tasks.

By selecting Edit Fields, the Fields dialog box will appear. In this dialog box you can easily

control the visual properties, such as ItemStyle, of the DetailsView control.

Complete Purchase

CheckoutComplete.aspx page makes the purchase from PayPal. As mentioned above, the user

must click on the Complete Order button before the application will navigate to the

CheckoutComplete.aspx page.

1. In the Checkout folder, open the page named CheckoutComplete.aspx.

2. Replace the existing markup with the following:

<%@ Page ="" ="C#" ="~/Site.Master" Title Language MasterPageFile

="true" ="CheckoutComplete.aspx.cs" AutoEventWireup CodeBehind

="WingtipToys.Checkout.CheckoutComplete" %> Inherits

< : asp Content ="Content1" ="MainContent" ="server"> ID ContentPlaceHolderID runat

 < >Checkout Complete</ > h1 h1

 < ></ > p p

 < >Payment Transaction ID:</ > < : h3 h3 asp Label ="TransactionId" ID

="server"></runat : > asp Label

 < ></ > p p

 < >Thank You!</ > h3 h3

 < ></ > p p

 < /> hr

 < : asp Button ="Continue" ="server" ="Continue Shopping" ID runat Text

="Continue_Click" /> OnClick

</ : > asp Content

3. Open the code-behind page named CheckoutComplete.aspx.cs and replace the existing

code with the following:

 System; using

 System.Collections.Generic; using

 System.Linq; using

 System.Web; using

 System.Web.UI; using

 System.Web.UI.WebControls; using

 WingtipToys.Models; using

 WingtipToys.Checkout namespace

{

 public partial class : System.Web.UI. CheckoutComplete Page

 {

 Page_Load(sender, protected void object e) EventArgs

 {

 (!IsPostBack) if

 {

 // Verify user has completed the checkout process.

 (()Session[if string] !=) "userCheckoutCompleted" "true"

 {

 Session[] = "userCheckoutCompleted" .Empty; string

 Response.Redirect(+ "CheckoutError.aspx?"

); "Desc=Unvalidated%20Checkout."

 }

 payPalCaller = NVPAPICaller new (); NVPAPICaller

 retMsg = string ; ""

 token = string ; ""

 finalPaymentAmount = string ; ""

 PayerID = string ; ""

 decoder = NVPCodec new (); NVPCodec

 token = Session[].ToString(); "token"

 PayerID = Session[].ToString(); "payerId"

 finalPaymentAmount = Session[].ToString(); "payment_amt"

 ret = payPalCaller.DoCheckoutPayment(finalPaymentAmount, token, bool

PayerID, decoder, retMsg); ref ref

 (ret) if

 {

 // Retrieve PayPal confirmation value.

 PaymentConfirmation = string

decoder[].ToString(); "PAYMENTINFO_0_TRANSACTIONID"

 TransactionId.Text = PaymentConfirmation;

 _db = ProductContext new (); ProductContext

 // Get the current order id.

 currentOrderId = -1; int

 (Session[if] != "currentOrderId" .Empty) string

 {

 currentOrderId = .ToInt32(Session[Convert]); "currentOrderID"

 }

 myCurrentOrder; Order

 (currentOrderId >= 0) if

 {

 // Get the order based on order id.

 myCurrentOrder = _db.Orders.Single(o => o.OrderId ==

currentOrderId);

 // Update the order to reflect payment has been completed.

 myCurrentOrder.PaymentTransactionId = PaymentConfirmation;

 // Save to DB.

 _db.SaveChanges();

 }

 // Clear shopping cart.

 (WingtipToys.Logic.using usersShoppingCart = ShoppingCartActions

 WingtipToys.Logic.new ()) ShoppingCartActions

 {

 usersShoppingCart.EmptyCart();

 }

 // Clear order id.

 Session[] = "currentOrderId" .Empty; string

 }

 else

 {

 Response.Redirect(+ retMsg); "CheckoutError.aspx?"

 }

 }

 }

 Continue_Click(sender, protected void object e) EventArgs

 {

 Response.Redirect(); "~/Default.aspx"

 }

 }

}

When the CheckoutComplete.aspx page is loaded, the DoCheckoutPayment method is called.

As mentioned earlier, the DoCheckoutPayment method completes the purchase from the

PayPal testing environment. Once PayPal has completed the purchase of the order, the

CheckoutComplete.aspx page displays a payment transaction ID to the purchaser.

Handle Cancel Purchase

If the user decides to cancel the purchase, they will be directed to the CheckoutCancel.aspx page

where they will see that their order has been cancelled.

1. Open the page named CheckoutCancel.aspx in the Checkout folder.

2. Replace the existing markup with the following:

<%@ Page ="" ="C#" ="~/Site.Master" Title Language MasterPageFile

="true" ="CheckoutCancel.aspx.cs" AutoEventWireup CodeBehind

="WingtipToys.Checkout.CheckoutCancel" %> Inherits

< : asp Content ="Content1" ="MainContent" ="server"> ID ContentPlaceHolderID runat

 < >Checkout Cancelled</ > h1 h1

 < ></ > p p

 < >Your purchase has been cancelled.</ > h3 h3

</ : > asp Content

Handle Purchase Errors

Errors during the purchase process will be handled by the CheckoutError.aspx page. The code-

behind of the CheckoutStart.aspx page, the CheckoutReview.aspx page, and the

CheckoutComplete.aspx page will each redirect to the CheckoutError.aspx page if an error occurs.

1. Open the page named CheckoutError.aspx in the Checkout folder.

2. Replace the existing markup with the following:

<%@ Page ="" ="C#" ="~/Site.Master" Title Language MasterPageFile

="true" ="CheckoutError.aspx.cs" AutoEventWireup CodeBehind

="WingtipToys.Checkout.CheckoutError" %> Inherits

< : asp Content ="Content1" ="MainContent" ="server"> ID ContentPlaceHolderID runat

 < >Checkout Error</ > h1 h1

 < ></ > p p

 < table ="ErrorTable"> id

 < > tr

 < td ="field"></class > td

 < ><%=Request.QueryString.Get(td)%></"ErrorCode" > td

 </ > tr

 < > tr

 < td ="field"></class > td

 < ><%=Request.QueryString.Get(td)%></"Desc" > td

 </ > tr

 < > tr

 < td ="field"></class > td

 < ><%=Request.QueryString.Get(td)%></"Desc2" > td

 </ > tr

 </ > table

 < ></ > p p

</ : > asp Content

The CheckoutError.aspx page is displayed with the error details when an error occurs during the

checkout process.

Running the Application

Run the application to see how to purchase products.

1. Open a Web browser and navigate to https://developer.paypal.com.

2. Login with your PayPal developer account that you created earlier in this tutorial.

For PayPal’s developer sandbox, you need to be logged in at

https://developer.paypal.com to test express checkout. This only applies to PayPal’s

sandbox testing, not to PayPal’s live environment.

3. In Visual Studio, press F5 to run the Wingtip Toys sample application.

After the database rebuilds, the browser will open and show the Default.aspx page.

4. Add three different products to the shopping cart by selecting the product category,

such as “Cars” and then clicking Add to Cart next to each product.

The shopping cart will display the product you have selected.

https://developer.paypal.com/
https://developer.paypal.com/

5. Click the PayPal button to checkout.

6. Checking out will require that you have a user account for the Wingtip Toys sample

application.

7. Click the Google link on the right of the page to log in with an existing gmail.com email

account.

If you do not have a gmail.com account, you can create one for testing purposes at

www.gmail.com. You can also use a standard local account by clicking “Register”.

http://www.gmail.com/

8. Sign in with your gmail account and password.

9. Click the Log in button to register your gmail account with your Wingtip Toys sample

application user name.

10. On the PayPal test site, add your buyer email address and password that you created

earlier in this tutorial, then click the Log In button.

11. Agree to the PayPal policy and click the Agree and Continue button.

Note that this page is only displayed the first time you use this PayPal account.

12. Review the order information on the PayPal testing environment review page and click

Continue.

13. On the CheckoutReview.aspx page, verify the order amount and view the generated

shipping address. Then, click the Complete Order button.

14. The CheckoutComplete.aspx page is displayed with a payment transaction ID.

Reviewing the Database

By reviewing the updated data in the Wingtip Toys sample application database after running

the application, you can see that the application successfully recorded the purchase of the

products.

You can inspect the data contained in the Wingtiptoys.mdf database file by using the Database

Explorer window (Server Explorer window in Visual Studio) as you did earlier in this tutorial

series.

1. Close the browser window if it is still open.

2. In Visual Studio, select the Show All Files icon at the top of Solution Explorer to allow

you to expand the App_Data folder.

3. Expand the App_Data folder.

You may need to select the Show All Files icon for the folder.

4. Right-click the Wingtiptoys.mdf database file and select Open.

Server Explorer is displayed.

5. Expand the Tables folder.

6. Right-click the Orders table and select Show Table Data.

The Orders table is displayed.

7. Review the PaymentTransactionID column to confirm successful transactions.

8. Close the Orders table window.

9. In the Server Explorer, right-click the OrderDetails table and select Show Table Data.

10. Review the OrderId and Username values in the OrderDetails table. Note that these

values match the OrderId and Username values included in the Orders table.

11. Close the OrderDetails table window.

12. Right-click the Wingtip Toys database file (Wingtiptoys.mdf) and select Close

Connection.

13. If you do not see the Solution Explorer window, click Solution Explorer at the bottom

of the Server Explorer window to show the Solution Explorer again.

Summary

In this tutorial you added order and order detail schemas to track the purchase of products. You

also integrated PayPal functionality into the Wingtip Toys sample application.

Additional Resources

ASP.NET Configuration Overview

Create an ASP.NET MVC 5 App with Facebook and Google OAuth2 and OpenID Sign-on (C#)

Disclaimer

This tutorial contains sample code. Such sample code is provided “as is” without warranty of any

kind. Accordingly, Microsoft does not guarantee the accuracy, integrity, or quality of the sample

code. You agree to use the sample code at your own risk. Under no circumstances will Microsoft

be liable to you in any way for any sample code, content, including but not limited to, any errors

or omissions in any sample code, content, or any loss or damage of any kind incurred as a result

of the use of any sample code. You are hereby notified and do hereby agree to indemnify, save

and hold Microsoft harmless from and against any and all loss, claims of loss, injury or damage

http://msdn.microsoft.com/library/ms178683(v=vs.100).aspx
http://www.asp.net/mvc/tutorials/mvc-5/create-an-aspnet-mvc-5-app-with-facebook-and-google-oauth2-and-openid-sign-on

of any kind including, without limitation, those occasioned by or arising from material that you

post, transmit, use or rely on including, but not limited to, the views expressed therein.

Membership and Administration
This tutorial series will teach you the basics of building an ASP.NET Web Forms application using

ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project

with C# source code is available to accompany this tutorial series.

This tutorial shows you how to update the Wingtip Toys sample application to add an

administrator role and use ASP.NET Identity. It also shows you how to implement an

administration page from which the administrator can add and remove products from the

website.

ASP.NET Identity is the membership system used to build ASP.NET web application and is

available in ASP.NET 4.5. ASP.NET Identity is used in the Visual Studio 2013 Web Forms project

template, as well as the templates for ASP.NET MVC, ASP.NET Web API, and ASP.NET Single

Page Application. You can also specifically install the ASP.NET Identity system using NuGet when

you start with an empty Web application. However, in this tutorial series you use the Web

Forms project template, which includes the ASP.NET Identity system. ASP.NET Identity makes it

easy to integrate user-specific profile data with application data. Also, ASP.NET Identity allows

you to choose the persistence model for user profiles in your application. You can store the data

in a SQL Server database or another data store, including NoSQL data stores such as Windows

Azure Storage Tables.

This tutorial builds on the previous tutorial titled “Checkout and Payment with PayPal” in the

Wingtip Toys tutorial series.

What you'll learn:

 How to use code to add an administrator role and a user to the application.

 How to restrict access to the administration folder and page.

 How to provide navigation for the administrator role.

 How to use model binding to populate a DropDownList control with product

categories.

 How to upload a file to the web application using the FileUpload control.

 How to use validation controls to implement input validation.

 How to add and remove products from the application.

These features are included in the tutorial:

 ASP.NET Identity

 Configuration and Authorization

 Model Binding

 Unobtrusive Validation

http://www.asp.net/identity/overview/getting-started/introduction-to-aspnet-identity
http://www.asp.net/mvc
http://www.asp.net/web-api
http://www.asp.net/single-page-application
http://www.asp.net/single-page-application
http://msdn.microsoft.com/library/system.web.ui.webcontrols.dropdownlist(v=vs.110).aspx
http://msdn.microsoft.com/library/system.web.ui.webcontrols.fileupload(v=vs.110).aspx

ASP.NET Web Forms provides membership capabilities. By using the default template, you have

built-in membership functionality that you can immediately use when the application runs. This

tutorial shows you how to use ASP.NET Identity to add an administrator role and assign a user

to that role. You will learn how to restrict access to the administration folder. You'll add a page

to the administration folder that allows an administrator to add and remove products, and to

preview a product after it has been added.

Adding an Administrator

Using ASP.NET Identity, you can add an administrator role and assign a user to that role using

code.

1. In Solution Explorer, right-click on the Logic folder and create a new class.

2. Name the new class RoleActions.cs.

3. Modify the code so that it appears as follows:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

namespace WingtipToys.Logic

{

 internal class RoleActions

 {

 }

}

4. In Solution Explorer, open the Global.asax.cs file.

5. Open and modify the Global.asax.cs file by added the code highlighted in yellow so that

it appears as follows:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Optimization;

using System.Web.Routing;

using System.Web.Security;

using System.Web.SessionState;

using System.Data.Entity;

using WingtipToys.Models;

using WingtipToys.Logic;

namespace WingtipToys

{

 public class Global : HttpApplication

 {

 void Application_Start(object sender, EventArgs e)

 {

 // Code that runs on application startup

 RouteConfig.RegisterRoutes(RouteTable.Routes);

 BundleConfig.RegisterBundles(BundleTable.Bundles);

 // Initialize the product database.

 Database.SetInitializer(new ProductDatabaseInitializer());

 // Create the administrator role and user.

 RoleActions roleActions = new RoleActions();

 roleActions.createAdmin();

 }

 }

}

6. Notice that createAdmin is underlined in red. Double-click the createAdmin code.

The letter “c” in the highlighted method will be underlined.

7. Next, hover over the letter “c” to display the UI that allows you to generate a method

stub for the createAdmin method.

8. Click the optioned titled:

Generate method stub for ‘createAdmin’ in

“WingtipToys.Logic.RoleActions’

9. Open the RoleActions.cs file from the Logic folder.

The createAdmin method has been added to the class file.

10. Modify the RoleActions.cs file by removing the NotImplementedeException and

adding the code highlighted in yellow, so that it appears as follows:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using WingtipToys.Models;

using Microsoft.AspNet.Identity;

using Microsoft.AspNet.Identity.EntityFramework;

namespace WingtipToys.Logic

{

 internal class RoleActions

 {

 internal void createAdmin()

 {

 // Access the application context and create result variables.

 Models.ApplicationDbContext context = new ApplicationDbContext();

 IdentityResult IdRoleResult;

 IdentityResult IdUserResult;

 // Create a RoleStore object by using the ApplicationDbContext object.

 // The RoleStore is only allowed to contain IdentityRole objects.

 var roleStore = new RoleStore<IdentityRole>(context);

 // Create a RoleManager object that is only allowed to contain

IdentityRole objects.

 // When creating the RoleManager object, you pass in (as a parameter) a

new RoleStore object.

 var roleMgr = new RoleManager<IdentityRole>(roleStore);

 // Then, you create the "Administrator" role if it doesn't already exist.

 if (!roleMgr.RoleExists("Administrator"))

 {

 IdRoleResult = roleMgr.Create(new IdentityRole("Administrator"));

 if (!IdRoleResult.Succeeded)

 {

 // Handle the error condition if there's a problem creating the

RoleManager object.

 }

 }

 // Create a UserManager object based on the UserStore object and the

ApplicationDbContext

 // object. Note that you can create new objects and use them as

parameters in

 // a single line of code, rather than using multiple lines of code, as

you did

 // for the RoleManager object.

 var userMgr = new UserManager<ApplicationUser>(new

UserStore<ApplicationUser>(context));

 var appUser = new ApplicationUser()

 {

 UserName = "Admin",

 };

 IdUserResult = userMgr.Create(appUser, "Pa$$word");

 // If the new "Admin" user was successfully created,

 // add the "Admin" user to the "Administrator" role.

 if (IdUserResult.Succeeded)

 {

 IdUserResult = userMgr.AddToRole(appUser.Id, "Administrator");

 if (!IdUserResult.Succeeded)

 {

 // Handle the error condition if there's a problem adding the user to

the role.

 }

 }

 else

 {

 // Handle the error condition if there's a problem creating the new

user.

 }

 }

 }

}

The above code works by first establishing a database context for the membership database.

The membership database is also stored as an .mdf file in the App_Data folder. You will be able

to view this database once the first user has signed in to this web application.

Note

If you wish to store the membership data along with the product data, you can consider using

the same DbContext that you used to store the product data in the above code.

The internal keyword is an access modifier for types (such as classes) and type members (such as

methods or properties). Internal types or members are accessible only within files contained in

the same assembly (.dll file). When you build your application, an assembly file (.dll) is created

that contains the code that is executed when you run your application.

A RoleStore object, which provides role management, is created based on the database

context.

Note

Notice that when the RoleStore object is created it uses a Generic IdentityRole type. This

means that the RoleStore is only allowed to contain IdentityRole objects. Also by using

Generics, resources in memory are handled better.

Next, the RoleManager object, is created based on the RoleStore object that you just

created. the RoleManager object exposes role related API which can be used to automatically

save changes to the RoleStore. The RoleManager is only allowed to contain IdentityRole

objects because the code uses the <IdentityRole> Generic type.

You call the RoleExists method to determine if the “Administrator” role is present in the

membership database. If it is not, you create the role.

Creating the UserManager object appears to be more complicated than the RoleManager

control, however it is nearly the same. It is just coded on one line rather than several. Here, the

parameter that you are passing is instantiating as a new object contained in the parenthesis.

Next you create the “Admin” user by creating a new ApplicationUser object. Then, if you

successfully create the user, you add the user to the new role.

Note

The error handling will be updated during the “ASP.NET Error Handling” tutorial later in this

tutorial series.

The next time the application starts, the user named “Admin” will be added as the role named

“Administrator” of the application. Later in this tutorial, you will login as the “Admin” user to

display additional capabilities that you will added during this tutorial. For API details about

ASP.NET Identity, see the Microsoft.AspNet.Identity Namespace. For additional details about

initializing the ASP.NET Identity system, see the AspnetIdentitySample.

Restricting Access to the Administration Page

The Wingtip Toys sample application allows both anonymous users and logged-in users to view

and purchase products. However, the logged-in administrator can access a restricted page in

order to add and remove products.

Add an Administration Folder and Page

Next, you will create a folder named Admin for the administrator of the Wingtip Toys sample

application.

1. Right-click the project name (Wingtip Toys) in Solution Explorer and select Add ->

New Folder.

http://msdn.microsoft.com/library/microsoft.aspnet.identity(v=vs.111).aspx
https://github.com/rustd/AspnetIdentitySample/blob/master/AspnetIdentitySample/App_Start/IdentityConfig.cs

2. Name the new folder Admin.

3. Right-click the Admin folder and then select Add -> New Item.

The Add New Item dialog box is displayed.

4. Select the Visual C# -> Web templates group on the left. From the middle list, select

Web Form with Master Page, name it AdminPage.aspx, and then select Add.

5. Select the Site.Master file as the master page, and then choose OK.

Add a Web.config File

By adding a Web.config file to the Admin folder, you can restrict access to the page contained in

the folder.

1. Right-click the Admin folder and select Add -> New Item.

The Add New Item dialog box is displayed.

2. From the list of Visual C# web templates, select Web Configuration File from the

middle list, accept the default name of Web.config, and then select Add.

3. Replace the existing XML content in the Web.config file with the following:

<?xml version="1.0"?>

<configuration>

 <system.web>

 <authorization>

 <allow roles="Administrator"/>

 <deny users="*"/>

 </authorization>

 </system.web>

</configuration>

Save the Web.config file. The Web.config file specifies that only administrators of the application

can access the page contained in the Admin folder.

Including Administrator Navigation

To enable the administrator to navigate to the administration section of the application, you

must add a link to the Site.Master page. Only users that belong to the administrator role will be

able to see the Admin link and access the administration section.

1. In Solution Explorer, find and open the Site.Master page.

2. To create a link for administrators, add the markup highlighted in yellow to the following

unordered list element so that the list appears as follows:

<ul class="nav navbar-nav">

 <a runat="server" id="adminLink" visible="false"

 href="~/Admin/AdminPage">Admin

 Home

 About

 Contact

 Products

 <a runat="server" href="~/ShoppingCart"

 ID="cartCount">

3. Open the Site.Master.cs file. Make the Admin link visible only to the “Admin” user by

adding the code highlighted in yellow to the Page_Load handler. The Page_Load

handler will appear as follows:

protected void Page_Load(object sender, EventArgs e)

{

 if (HttpContext.Current.User.IsInRole("Administrator"))

 {

 adminLink.Visible = true;

 }

}

When the page loads, the code checks whether the logged-in user has the role of

“Administrator”. If the user is an administrator, the span element containing the link to the

AdminPage.aspx page (and consequently the link inside the span) is made visible.

Enabling Product Administration

So far, you have created the administrator role and added an administrator user, an

administration folder, and an administration page. You have set access rights for the

administration folder and page, and have added a navigation link for the administrator to the

application. Next, you will add markup to the AdminPage.aspx page and code to the

AdminPage.aspx.cs code-behind file that will enable the administrator to add and remove

products.

1. In Solution Explorer, open the AdminPage.aspx file from the Admin folder.

2. Replace the existing markup with the following:

<%@ Page Title="" Language="C#" MasterPageFile="~/Site.Master"

AutoEventWireup="true" CodeBehind="AdminPage.aspx.cs"

Inherits="WingtipToys.Admin.AdminPage" %>

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent" runat="server">

 <h1>Administration</h1>

 <hr />

 <h3>Add Product:</h3>

 <table>

 <tr>

 <td><asp:Label ID="LabelAddCategory"

runat="server">Category:</asp:Label></td>

 <td>

 <asp:DropDownList ID="DropDownAddCategory" runat="server"

 ItemType="WingtipToys.Models.Category"

 SelectMethod="GetCategories" DataTextField="CategoryName"

 DataValueField="CategoryID" >

 </asp:DropDownList>

 </td>

 </tr>

 <tr>

 <td><asp:Label ID="LabelAddName"

runat="server">Name:</asp:Label></td>

 <td>

 <asp:TextBox ID="AddProductName" runat="server"></asp:TextBox>

 <asp:RequiredFieldValidator ID="RequiredFieldValidator1"

runat="server" Text="* Product name required."

ControlToValidate="AddProductName" SetFocusOnError="true"

Display="Dynamic"></asp:RequiredFieldValidator>

 </td>

 </tr>

 <tr>

 <td><asp:Label ID="LabelAddDescription"

runat="server">Description:</asp:Label></td>

 <td>

 <asp:TextBox ID="AddProductDescription"

runat="server"></asp:TextBox>

 <asp:RequiredFieldValidator ID="RequiredFieldValidator2"

runat="server" Text="* Description required."

ControlToValidate="AddProductDescription" SetFocusOnError="true"

Display="Dynamic"></asp:RequiredFieldValidator>

 </td>

 </tr>

 <tr>

 <td><asp:Label ID="LabelAddPrice"

runat="server">Price:</asp:Label></td>

 <td>

 <asp:TextBox ID="AddProductPrice" runat="server"></asp:TextBox>

 <asp:RequiredFieldValidator ID="RequiredFieldValidator3"

runat="server" Text="* Price required." ControlToValidate="AddProductPrice"

SetFocusOnError="true" Display="Dynamic"></asp:RequiredFieldValidator>

 <asp:RegularExpressionValidator

ID="RegularExpressionValidator1" runat="server" Text="* Must be a valid price

without $." ControlToValidate="AddProductPrice" SetFocusOnError="True"

Display="Dynamic" ValidationExpression="^[0-9]*(\.)?[0-9]?[0-

9]?$"></asp:RegularExpressionValidator>

 </td>

 </tr>

 <tr>

 <td><asp:Label ID="LabelAddImageFile" runat="server">Image

File:</asp:Label></td>

 <td>

 <asp:FileUpload ID="ProductImage" runat="server" />

 <asp:RequiredFieldValidator ID="RequiredFieldValidator4"

runat="server" Text="* Image path required." ControlToValidate="ProductImage"

SetFocusOnError="true" Display="Dynamic"></asp:RequiredFieldValidator>

 </td>

 </tr>

 </table>

 <p></p>

 <p></p>

 <asp:Button ID="AddProductButton" runat="server" Text="Add Product"

OnClick="AddProductButton_Click" CausesValidation="true"/>

 <asp:Label ID="LabelAddStatus" runat="server" Text=""></asp:Label>

 <p></p>

 <h3>Remove Product:</h3>

 <table>

 <tr>

 <td><asp:Label ID="LabelRemoveProduct"

runat="server">Product:</asp:Label></td>

 <td><asp:DropDownList ID="DropDownRemoveProduct" runat="server"

ItemType="WingtipToys.Models.Product"

 SelectMethod="GetProducts" AppendDataBoundItems="true"

 DataTextField="ProductName" DataValueField="ProductID" >

 </asp:DropDownList>

 </td>

 </tr>

 </table>

 <p></p>

 <asp:Button ID="RemoveProductButton" runat="server" Text="Remove Product"

OnClick="RemoveProductButton_Click" CausesValidation="false"/>

 <asp:Label ID="LabelRemoveStatus" runat="server" Text=""></asp:Label>

</asp:Content>

3. Next, open the AdminPage.aspx.cs code-behind file by right-clicking the AdminPage.aspx

and clicking View Code.

4. Replace the existing code in the AdminPage.aspx.cs code-behind file with the following

code:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using WingtipToys.Models;

using WingtipToys.Logic;

namespace WingtipToys.Admin

{

 public partial class AdminPage : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 string productAction = Request.QueryString["ProductAction"];

 if (productAction == "add")

 {

 LabelAddStatus.Text = "Product added!";

 }

 if (productAction == "remove")

 {

 LabelRemoveStatus.Text = "Product removed!";

 }

 }

 protected void AddProductButton_Click(object sender, EventArgs e)

 {

 Boolean fileOK = false;

 String path = Server.MapPath("~/Catalog/Images/");

 if (ProductImage.HasFile)

 {

 String fileExtension =

System.IO.Path.GetExtension(ProductImage.FileName).ToLower();

 String[] allowedExtensions = { ".gif", ".png", ".jpeg", ".jpg" };

 for (int i = 0; i < allowedExtensions.Length; i++)

 {

 if (fileExtension == allowedExtensions[i])

 {

 fileOK = true;

 }

 }

 }

 if (fileOK)

 {

 try

 {

 // Save to Images folder.

 ProductImage.PostedFile.SaveAs(path + ProductImage.FileName);

 // Save to Images/Thumbs folder.

 ProductImage.PostedFile.SaveAs(path + "Thumbs/" +

ProductImage.FileName);

 }

 catch (Exception ex)

 {

 LabelAddStatus.Text = ex.Message;

 }

 // Add product data to DB.

 AddProducts products = new AddProducts();

 bool addSuccess = products.AddProduct(AddProductName.Text,

AddProductDescription.Text,

 AddProductPrice.Text, DropDownAddCategory.SelectedValue,

ProductImage.FileName);

 if (addSuccess)

 {

 // Reload the page.

 string pageUrl = Request.Url.AbsoluteUri.Substring(0,

Request.Url.AbsoluteUri.Count() - Request.Url.Query.Count());

 Response.Redirect(pageUrl + "?ProductAction=add");

 }

 else

 {

 LabelAddStatus.Text = "Unable to add new product to database.";

 }

 }

 else

 {

 LabelAddStatus.Text = "Unable to accept file type.";

 }

 }

 public IQueryable GetCategories()

 {

 var _db = new WingtipToys.Models.ProductContext();

 IQueryable query = _db.Categories;

 return query;

 }

 public IQueryable GetProducts()

 {

 var _db = new WingtipToys.Models.ProductContext();

 IQueryable query = _db.Products;

 return query;

 }

 protected void RemoveProductButton_Click(object sender, EventArgs e)

 {

 using (var _db = new WingtipToys.Models.ProductContext())

 {

 int productId = Convert.ToInt16(DropDownRemoveProduct.SelectedValue);

 var myItem = (from c in _db.Products where c.ProductID == productId

select c).FirstOrDefault();

 if (myItem != null)

 {

 _db.Products.Remove(myItem);

 _db.SaveChanges();

 // Reload the page.

 string pageUrl = Request.Url.AbsoluteUri.Substring(0,

Request.Url.AbsoluteUri.Count() - Request.Url.Query.Count());

 Response.Redirect(pageUrl + "?ProductAction=remove");

 }

 else

 {

 LabelRemoveStatus.Text = "Unable to locate product.";

 }

 }

 }

 }

}

In the code that you entered for the AdminPage.aspx.cs code-behind file, a class called

AddProducts does the actual work of adding products to the database. This class doesn't exist

yet, so you will create it now.

1. In Solution Explorer, right-click the Logic folder and then select Add -> New Item.

The Add New Item dialog box is displayed.

2. Select the Visual C# -> Code templates group on the left. Then, select Class from the

middle list and name it AddProducts.cs.

The new class file is displayed.

3. Replace the existing code with the following:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using WingtipToys.Models;

namespace WingtipToys.Logic

{

 public class AddProducts

 {

 public bool AddProduct(string ProductName, string ProductDesc, string

ProductPrice, string ProductCategory, string ProductImagePath)

 {

 var myProduct = new Product();

 myProduct.ProductName = ProductName;

 myProduct.Description = ProductDesc;

 myProduct.UnitPrice = Convert.ToDouble(ProductPrice);

 myProduct.ImagePath = ProductImagePath;

 myProduct.CategoryID = Convert.ToInt32(ProductCategory);

 using (ProductContext _db = new ProductContext())

 {

 // Add product to DB.

 _db.Products.Add(myProduct);

 _db.SaveChanges();

 }
 // Success.

 return true;

 }

 }

}

The AdminPage.aspx page allows the administrator to add and remove products. When a new

product is added, the details about the product are validated and then entered into the

database. The new product is immediately available to all users of the web application.

Unobtrusive Validation

The product details that the user provides on the AdminPage.aspx page are validated using

validation controls (RequiredFieldValidator and RegularExpressionValidator).

These controls automatically use unobtrusive validation. Unobtrusive validation allows the

validation controls to use JavaScript for client-side validation logic, which means the page does

not require a trip to the server to be validated. By default, unobtrusive validation is included in

the Web.config file based on the following configuration setting:

<add key="ValidationSettings:UnobtrusiveValidationMode" value="WebForms" />

Regular Expressions

The product price on the AdminPage.aspx page is validated using a

RegularExpressionValidator control. This control validates whether the value of the associated

input control (the "AddProductPrice" TextBox) matches the pattern specified by the regular

expression. A regular expression is a pattern-matching notation that enables you to quickly find

and match specific character patterns. The RegularExpressionValidator control includes a

property named ValidationExpression that contains the regular expression used to

validate price input, as shown below:

<asp:RegularExpressionValidator

 ID="RegularExpressionValidator1" runat="server"

 Text="* Must be a valid price without $."

ControlToValidate="AddProductPrice"

 SetFocusOnError="True" Display="Dynamic"

 ValidationExpression="^[0-9]*(\.)?[0-9]?[0-9]?$">

</asp:RegularExpressionValidator>

FileUpload Control

In addition to the input and validation controls, you added the FileUpload control to the

AdminPage.aspx page. This control provides the capability to upload files. In this case, you are

only allowing image files to be uploaded. In the code-behind file (AdminPage.aspx.cs), when the

AddProductButton is clicked, the code checks the HasFile property of the FileUpload

control. If the control has a file and if the file type (based on file extension) is allowed, the image

is saved to the Images folder and the Images/Thumbs folder of the application.

Model Binding

Earlier in this tutorial series you used model binding to populate a ListView control, a

FormsView control, a GridView control, and a DetailView control. In this tutorial, you use

model binding to populate a DropDownList control with a list of product categories.

The markup that you added to the AdminPage.aspx file contains a DropDownList control called

DropDownAddCategory:

 <asp:DropDownList ID="DropDownAddCategory" runat="server"

 ItemType="WingtipToys.Models.Category"

 SelectMethod="GetCategories" DataTextField="CategoryName"

 DataValueField="CategoryID" >

 </asp:DropDownList>

You use model binding to populate this DropDownList by setting the ItemType attribute and

the SelectMethod attribute. The ItemType attribute specifies that you use the

WingtipToys.Models.Category type when populating the control. You defined this type at

the beginning of this tutorial series by creating the Category class (shown below). The

Category class is in the Models folder inside the Category.cs file.

 public class Category

 {

 [ScaffoldColumn(false)]

 public int CategoryID { get; set; }

 [Required, StringLength(100), Display(Name = "Name")]

 public string CategoryName { get; set; }

 [Display(Name = "Product Description")]

 public string Description { get; set; }

 public virtual ICollection<Product> Products { get; set; }

 }

The SelectMethod attribute of the DropDownList control specifies that you use the

GetCategories method (shown below) that is included in the code-behind file

(AdminPage.aspx.cs).

 public IQueryable GetCategories()

 {

 var _db = new WingtipToys.Models.ProductContext();

 IQueryable query = _db.Categories;

 return query;

 }

This method specifies that an IQueryable interface is used to evaluate a query against a

Category type. The returned value is used to populate the DropDownList in the markup of the

page (AdminPage.aspx).

The text displayed for each item in the list is specified by setting the DataTextField attribute.

The DataTextField attribute uses the CategoryName of the Category class (shown above)

to display each category in the DropDownList control. The actual value that is passed when an

item is selected in the DropDownList control is based on the DataValueField attribute. The

DataValueField attribute is set to the CategoryID as define in the Category class (shown

above).

How the Application Will Work

When the administrator navigates to the page for the first time, the DropDownAddCategory

DropDownList control is populated as described above. The DropDownRemoveProduct

DropDownList control is also populated with products using the same approach. The

administrator selects the category type and adds product details (Name, Description, Price,

and Image File). When the administrator clicks the Add Product button, the

AddProductButton_Click event handler is triggered. The AddProductButton_Click

event handler located in the code-behind file (AdminPage.aspx.cs) checks the image file to make

sure it matches the allowed file types (.gif, .png, .jpeg, or .jpg). Then, the image file is saved into a

folder of the Wingtip Toys sample application. Next, the new product is added to the database.

To accomplish adding a new product, a new instance of the AddProducts class is created and

named products. The AddProducts class has a method named AddProduct, and the products

object calls this method to add products to the database.

 // Add product data to DB.

 AddProducts products = new AddProducts();

 bool addSuccess = products.AddProduct(AddProductName.Text,

AddProductDescription.Text,

 AddProductPrice.Text, DropDownAddCategory.SelectedValue,

ProductImage.FileName);

If the code successfully adds the new product to the database, the page is reloaded with the

query string value ProductAction=add.

 Response.Redirect(pageUrl + "?ProductAction=add");

When the page reloads, the query string is included in the URL. By reloading the page, the

administrator can immediately see the updates in the DropDownList controls on the

AdminPage.aspx page. Also, by including the query string with the URL, the page can display a

success message to the administrator.

When the AdminPage.aspx page reloads, the Page_Load event is called.

 protected void Page_Load(object sender, EventArgs e)

 {

 string productAction = Request.QueryString["ProductAction"];

 if (productAction == "add")

 {

 LabelAddStatus.Text = "Product added!";

 }

 if (productAction == "remove")

 {

 LabelRemoveStatus.Text = "Product removed!";

 }

 }

The Page_Load event handler checks the query string value and determines whether to show a

success message.

Running the Application

You can run the application now to see how you can add, delete, and update items in the

shopping cart. The shopping cart total will reflect the total cost of all items in the shopping cart.

1. In Solution Explorer, press F5 to run the Wingtip Toys sample application.

The browser opens and shows the Default.aspx page.

2. Click the Log in link at the top of the page.

The Login.aspx page is displayed.

3. Use the following administrator user name and password:

User name: Admin

Password: Pa$$word

4. Click the Log in button near the bottom of the page.

5. At the top of the next page, select the Admin link to navigate to the AdminPage.aspx

page.

6. To test the input validation, click the Add Product button without adding any product

details.

Notice that the required field messages are displayed.

7. Add the details for a new product, and then click the Add Product button.

8. Select Products from the top navigation menu to view the new product you added.

9. Click the Admin link to return to the administration page.

10. In the Remove Product section of the page, select the new product you added in the

DropDownListBox.

11. Click the Remove Product button to remove the new product from the application.

12. Select Products from the top navigation menu to confirm that the product has been

removed.

13. Click Log off to exist administration mode.

Notice that the top navigation pane no longer shows the Admin menu item.

Summary

In this tutorial, you added an administrator role and an administrative user, restricted access to

the administration folder and page, and provided navigation for the administrator role. You

used model binding to populate a DropDownList control with data. You implemented the

FileUpload control and validation controls. Also, you have learned how to add and remove

products from a database. In the next tutorial, you'll learn how to implement ASP.NET routing.

Additional Resources

Web.config - authorization Element

ASP.NET Identity

http://msdn.microsoft.com/library/8d82143t(v=vs.100).aspx
http://www.asp.net/identity/overview/getting-started/introduction-to-aspnet-identity

URL Routing
This tutorial series will teach you the basics of building an ASP.NET Web Forms application using

ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project

with C# source code is available to accompany this tutorial series.

In this tutorial, you will modify the Wingtip Toys sample application to customize URL routing.

Routing enables your web application to use URLs that are friendly, easier to remember, and

better supported by search engines. This tutorial builds on the previous tutorial “Membership

and Administration” and is part of the Wingtip Toys tutorial series.

What you'll learn:

 How to register routes for an ASP.NET Web Forms application.

 How to add routes to a web page.

 How to select data from a database to support routes.

ASP.NET Routing Overview

URL routing allows you to configure an application to accept request URLs that do not map to

physical files. A request URL is simply the URL a user enters into their browser to find a page on

your web site. You use routing to define URLs that are semantically meaningful to users and that

can help with search-engine optimization (SEO).

By default, the Web Forms template includes ASP.NET Friendly URLs. Much of the basic routing

work will be implemented by using Friendly URLs. However, in this tutorial you will add

customized routing capabilities.

Before customizing URL routing, the Wingtip Toys sample application can link to a product

using the following URL:

http://localhost:1234/ProductDetails.aspx?productID=2

By customizing URL routing, the Wingtip Toys sample application will link to the same product

using an easier to read URL:

http://localhost:1234/Product/Convertible%20Car

Routes

A route is a URL pattern that is mapped to a handler. The handler can be a physical file, such as

an .aspx file in a Web Forms application. A handler can also be a class that processes the

request. To define a route, you create an instance of the Route class by specifying the URL

pattern, the handler, and optionally a name for the route.

http://www.nuget.org/packages/Microsoft.AspNet.FriendlyUrls/

You add the route to the application by adding the Route object to the static Routes property

of the RouteTable class. The Routes property is a RouteCollection object that stores all

the routes for the application.

URL Patterns

A URL pattern can contain literal values and variable placeholders (referred to as URL

parameters). The literals and placeholders are located in segments of the URL which are

delimited by the slash (/) character.

When a request to your web application is made, the URL is parsed into segments and

placeholders, and the variable values are provided to the request handler. This process is similar

to the way the data in a query string is parsed and passed to the request handler. In both cases,

variable information is included in the URL and passed to the handler in the form of key-value

pairs. For query strings, both the keys and the values are in the URL. For routes, the keys are the

placeholder names defined in the URL pattern, and only the values are in the URL.

In a URL pattern, you define placeholders by enclosing them in braces ({ and }). You can

define more than one placeholder in a segment, but the placeholders must be separated by a

literal value. For example, {language}-{country}/{action} is a valid route pattern.

However, {language}{country}/{action} is not a valid pattern, because there is no literal

value or delimiter between the placeholders. Therefore, routing cannot determine where to

separate the value for the language placeholder from the value for the country placeholder.

Mapping and Registering Routes

Before you can include routes to pages of the Wingtip Toys sample application, you must

register the routes when the application starts. To register the routes, you will modify the

Application_Start event handler.

1. In Solution Explorer of Visual Studio, find and open the Global.asax.cs file.

2. Add the code highlighted in yellow to the Global.asax.cs file as follows:

 System; using

 System.Collections.Generic; using

 System.Linq; using

 System.Web; using

 System.Web.Optimization; using

 System.Web.Routing; using

 System.Web.Security; using

 System.Web.SessionState; using

 System.Data.Entity; using

 WingtipToys.Models; using

 WingtipToys.Logic; using

 WingtipToys namespace

{

 public class : Global HttpApplication

 {

 Application_Start(sender, void object e) EventArgs

 {

 // Code that runs on application startup

 .RegisterRoutes(.Routes); RouteConfig RouteTable

 .RegisterBundles(.Bundles); BundleConfig BundleTable

 // Initialize the product database.

 .SetInitializer(Database new ()); ProductDatabaseInitializer

 // Create administrator role and user.

 roleActions = RoleActions new (); RoleActions

 roleActions.createAdmin();

 // Add Routes.

 RegisterCustomRoutes(.Routes); RouteTable

 }

 RegisterCustomRoutes(void routes) RouteCollection

 {

 routes.MapPageRoute(

 , "ProductsByCategoryRoute"

 , "Category/{categoryName}"

 "~/ProductList.aspx"

);

 routes.MapPageRoute(

 , "ProductByNameRoute"

 , "Product/{productName}"

 "~/ProductDetails.aspx"

);

 }

 }

}

When the Wingtip Toys sample application starts, it calls the Application_Start event

handler. At the end of this event handler, the RegisterCustomRoutes method is called. The

RegisterCustomRoutes method adds each route by calling the MapPageRoute method of

the RouteCollection object. Routes are defined using a route name, a route URL and a

physical URL.

The first parameter ("ProductsByCategoryRoute") is the route name. It is used to call the

route when it is needed. The second parameter ("Category/{categoryName}") defines the

friendly replacement URL that can be dynamic based on code. You use this route when you are

populating a data control with links that are generated based on data. A route is shown as

follows:

 routes.MapPageRoute(

 , "ProductsByCategoryRoute"

 , "Category/{categoryName}"

 "~/ProductList.aspx"

);

The second parameter of the route includes a dynamic value specified by braces ({ }). In this

case, the categoryName is a variable that will be used to determine the proper routing path.

Optional

You might find it easier to manage your code by moving the RegisterCustomRoutes

method to a separate class. In the Logic folder, create a separate RouteActions class. Move

the above RegisterCustomRoutes method from the Global.asax.cs file into the new

RoutesActions class. Use the RoleActions class and the createAdmin method as an

example of how to call the RegisterCustomRoutes method from the Global.asax.cs file.

You may also have noticed the RegisterRoutes method call using the RouteConfig object

at the beginning of the Application_Start event handler. This call is made to implement

default routing. It was included as default code when you created the application using Visual

Studio’s Web Forms template.

Retrieving and Using Route Data

As mentioned above, routes can be defined. The code that you added to the

Application_Start event handler in the Global.asax.cs file loads the definable routes.

Setting Routes

Routes require you to add additional code. In this tutorial, you will use model binding to retrieve

a RouteValueDictionary object that is used when generating the routes using data from a

data control. The RouteValueDictionary object will contain a list of product names that

belong to a specific category of products. A link is created for each product based on the data

and route.

Enable Routes for Categories and Products

Next, you'll update the application to use the ProductsByCategoryRoute to determine the

correct route to include for each product category link. You'll also update the ProductList.aspx

page to include a routed link for each product. The links will be displayed as they were before

the change, however the links will now use URL routing.

1. In Solution Explorer, open the Site.Master page if it is not already open.

2. Update the ListView control named “categoryList” with the changes highlighted in

yellow, so the markup appears as follows:

< : asp ListView ="categoryList" ID

 ="WingtipToys.Models.Category" ItemType

 ="server" runat

 ="GetCategories" > SelectMethod

 < > ItemTemplate

 < b =" : large; : normal"> style font-size font-style

 < a ="<%#: GetRouteUrl(href , new {categoryName "ProductsByCategoryRoute"

= Item.CategoryName}) %>">

 <%#: Item.CategoryName %>

 </ > a

 </ > b

 </ > ItemTemplate

 < > | </ > ItemSeparatorTemplate ItemSeparatorTemplate

</ : > asp ListView

3. In Solution Explorer, open the ProductList.aspx page.

4. Update the ItemTemplate element of the ProductList.aspx page with the updates

highlighted in yellow, so the markup appears as follows:

ItemTemplate < >

 td < runat ="server">

 table < >

 tr < >

 td < >

 a < href <% GetRouteUrl(=" #: , "ProductByNameRoute" {productName = new

Item.ProductName}) %> ">

 image < src <% Item.ImagePath%> ='/Catalog/Images/Thumbs/ #: '

 width ="100" height ="75" border ="1" />

 a </ >

 td </ >

 tr </ >

 tr < >

 td < >

 a < href <% GetRouteUrl(=" #: , "ProductByNameRoute" {productName = new

Item.ProductName}) %> ">

 <% Item.ProductName%> #:

 a </ >

 br < />

 span < >

 b Price: b <%< > </ > #: .Format(String , Item.UnitPrice)%> "{0:c}"

 span </ >

 br < />

 a < href <% Item.ProductID %> ="/AddToCart.aspx?productID= #: ">

 span < class ="ProductListItem">

 b Add To Cart b < > < >

 span </ >

 a </ >

 td </ >

 tr </ >

 tr < >

 td< > td </ >

 tr </ >

 table </ >

 p </ >

 td </ >

ItemTemplate </ >

5. Open the code-behind of ProductList.aspx.cs and add the following namespace as

highlighted in yellow:

 System; using

 System.Collections.Generic; using

 System.Linq; using

 System.Web; using

 System.Web.UI; using

 System.Web.UI.WebControls; using

 WingtipToys.Models; using

 System.Web.ModelBinding; using

 System.Web.Routing; using

6. Replace the GetProducts method of the code-behind (ProductList.aspx.cs) with the

following code:

 public < > GetProducts(IQueryable Product

 [(QueryString)] "id" ? categoryId, int

 [] RouteData categoryName) string

{

 _db = WingtipToys.Models.var new (); ProductContext

 < > query = _db.Products; IQueryable Product

 (categoryId.HasValue && categoryId > 0) if

 {

 query = query.Where(p => p.CategoryID == categoryId);

 }

 (!if .IsNullOrEmpty(categoryName)) String

 {

 query = query.Where(p =>

 .Compare(p.Category.CategoryName, String

 categoryName) == 0);

 }

 query; return

}

Add Code for Product Details

Now, update the code-behind (ProductDetails.aspx.cs) for the ProductDetails.aspx page to use

route data. Notice that the new GetProduct method also accepts a query string value for the

case where the user has a link bookmarked that uses the older non-friendly, non-routed URL.

1. Replace the GetProduct method of the code-behind (ProductDetails.aspx.cs) with the

following code:

 IQueryable<Product> GetProduct(public

 [QueryString()] "ProductID" ? productId, int

 [RouteData] productName) string

{

 _db = WingtipToys.Models.ProductContext(); var new

 IQueryable<Product> query = _db.Products;

 (productId.HasValue && productId > 0) if

 {

 query = query.Where(p => p.ProductID == productId);

 }

 (!String.IsNullOrEmpty(productName)) else if

 {

 query = query.Where(p =>

 String.Compare(p.ProductName, productName) == 0);

 }

 else

 {

 query = ; null

 }

 query; return

}

Running the Application

You can run the application now to see the updated routes.

1. Press F5 to run the Wingtip Toys sample application.

The browser opens and shows the Default.aspx page.

2. Click the Products link at the top of the page.

All products are displayed on the ProductList.aspx page. The following URL (using your

port number) is displayed for the browser:

http://localhost:1234/ProductList

http://localhost:1234/ProductList

3. Next, click the Cars category link near the top of the page.

Only cars are displayed on the ProductList.aspx page. The following URL (using your port

number) is displayed for the browser:

http://localhost:1234/Category/Cars

4. Click the link containing the name of the first car listed on the page (“Convertible Car”)

to display the product details.

The following URL (using your port number) is displayed for the browser:

http://localhost:1234/Product/Convertible%20Car

5. Next, enter the following non-routed URL (using your port number) into the browser:

http://localhost:1234/ProductDetails.aspx?productID=2

The code still recognizes a URL that includes a query string, for the case where a user has

a link bookmarked.

Summary

In this tutorial, you have added routes for categories and products. You have learned how routes

can be integrated with data controls that use model binding. In the next tutorial, you will

implement global error handling.

Additional Resources

ASP.NET Friendly URLs

http://localhost:1234/Category/Cars
http://localhost:1234/Product/Convertible%20Car
http://localhost:1234/ProductDetails.aspx?productID=2
http://www.nuget.org/packages/Microsoft.AspNet.FriendlyUrls/

ASP.NET Error Handling
This tutorial series will teach you the basics of building an ASP.NET Web Forms application using

ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project

with C# source code is available to accompany this tutorial series.

In this tutorial, you will modify the Wingtip Toys sample application to include error handling

and error logging. Error handling will allow the application to gracefully handle errors and

display error messages accordingly. Error logging will allow you to find and fix errors that have

occurred. This tutorial builds on the previous tutorial “URL Routing” and is part of the Wingtip

Toys tutorial series.

What you'll learn:

 How to add global error handling to the application’s configuration.

 How to add error handling at the application, page, and code levels.

 How to log errors for later review.

 How to display error messages that do not compromise security.

 How to implement Error Logging Modules and Handlers (ELMAH) error logging.

Overview

ASP.NET applications must be able to handle errors that occur during execution in a consistent

manner. ASP.NET uses the common language runtime (CLR), which provides a way of notifying

applications of errors in a uniform way. When an error occurs, an exception is thrown. An

exception is any error, condition, or unexpected behavior that an application encounters.

In the .NET Framework, an exception is an object that inherits from the System.Exception

class. An exception is thrown from an area of code where a problem has occurred. The exception

is passed up the call stack to a place where the application provides code to handle the

exception. If the application does not handle the exception, the browser is forced to display the

error details.

As a best practice, handle errors in at the code level in Try/Catch/Finally blocks within your

code. Try to place these blocks so that the user can correct problems in the context in which

they occur. If the error handling blocks are too far away from where the error occurred, it

becomes more difficult to provide users with the information they need to fix the problem.

Exception Class

The Exception class is the base class from which exceptions inherit. Most exception objects are

instances of some derived class of the Exception class, such as the SystemException class, the

IndexOutOfRangeException class, or the ArgumentNullException class. The Exception

class has properties, such as the StackTrace property, the InnerException property, and

the Message property, that provide specific information about the error that has occurred.

Exception Inheritance Hierarchy

The runtime has a base set of exceptions deriving from the SystemException class that the

runtime throws when an exception is encountered. Most of the classes that inherit from the

Exception class, such as the IndexOutOfRangeException class and the

ArgumentNullException class, do not implement additional members. Therefore, the most

important information for an exception can be found in the hierarchy of exceptions, the

exception name, and the information contained in the exception.

Exception Handling Hierarchy

In an ASP.NET Web Forms application, exceptions can be handled based on a specific handling

hierarchy. An exception can be handled at the following levels:

1. Application level

2. Page level

3. Code level

When an application handles exceptions, additional information about the exception that is

inherited from the Exception class can often be retrieved and displayed to the user. In addition

to application, page, and code level, you can also handle exceptions at the HTTP module level

and by using an IIS custom handler.

Application Level Error Handling

You can handle default errors at the application level either by modifying your application’s

configuration or by adding an Application_Error handler in the Global.asax file of your

application.

You can handle default errors and HTTP errors by adding a customErrors section to the

Web.config file. The customErrors section allows you to specify a default page that users will

be redirected to when an error occurs. It also allows you to specify individual pages for specific

status code errors.

<configuration>

 <system.web>

 <customErrors mode="On"

defaultRedirect="ErrorPage.aspx?handler=customErrors%20section%20-

%20Web.config">

 <error statusCode="404"

redirect="ErrorPage.aspx?msg=404&handler=customErrors%20section%20-

%20Web.config"/>

 </customErrors>

 </system.web>

</configuration>

Unfortunately, when you use the configuration to redirect the user to a different page, you do

not have the details of the error that occurred.

However, you can trap errors that occur anywhere in your application by adding code to the

Application_Error handler in the Global.asax file.

void Application_Error(object sender, EventArgs e)

{

 Exception exc = Server.GetLastError();

 if (exc is HttpUnhandledException)

 {

 // Pass the error on to the error page.

 Server.Transfer("ErrorPage.aspx?handler=Application_Error%20-

%20Global.asax", true);

 }

}

Page Level Error Event Handling

A page-level handler returns the user to the page where the error occurred, but because

instances of controls are not maintained, there will no longer be anything on the page. To

provide the error details to the user of the application, you must specifically write the error

details to the page.

You would typically use a page-level error handler to log unhandled errors or to take the user to

a page that can display helpful information.

This code example shows a handler for the Error event in an ASP.NET Web page. This handler

catches all exceptions that are not already handled within try/catch blocks in the page.

 private void Page_Error(object sender, EventArgs e)

 {

 Exception exc = Server.GetLastError();

 // Handle specific exception.

 if (exc is HttpUnhandledException)

 {

 ErrorMsgTextBox.Text = "An error occurred on this page. Please

verify your " +

 "information to resolve the issue."

 }

 // Clear the error from the server.

 Server.ClearError();

 }

After you handle an error, you must clear it by calling the ClearError method of the Server

object (HttpServerUtility class), otherwise you will see an error that has previously

occurred.

Code Level Error Handling

The try-catch statement consists of a try block followed by one or more catch clauses, which

specify handlers for different exceptions. When an exception is thrown, the common language

runtime (CLR) looks for the catch statement that handles this exception. If the currently

executing method does not contain a catch block, the CLR looks at the method that called the

current method, and so on, up the call stack. If no catch block is found, then the CLR displays an

unhandled exception message to the user and stops execution of the program.

The following code example shows a common way of using try/catch/finally to handle

errors.

 try

 {

 file.ReadBlock(buffer, index, buffer.Length);

 }

 catch (FileNotFoundException e)

 {

 Server.Transfer("NoFileErrorPage.aspx", true);

 }

 catch (System.IO.IOException e)

 {

 Server.Transfer("IOErrorPage.aspx", true);

 }

 finally

 {

 if (file != null)

 {

 file.Close();

 }

 }

In the above code, the try block contains the code that needs to be guarded against a possible

exception. The block is executed until either an exception is thrown or the block is completed

successfully. If either a FileNotFoundException exception or an IOException exception

occurs, the execution is transferred to a different page. Then, the code contained in the finally

block is executed, whether an error occurred or not.

Adding Error Logging Support

Before adding error handling to the Wingtip Toys sample application, you will add error logging

support by adding an ExceptionUtility class to the Logic folder. By doing this, each time

the application handles an error, the error details will be added to the error log file.

1. Right-click the Logic folder and then select Add -> New Item.

The Add New Item dialog box is displayed.

2. Select the Visual C# -> Code templates group on the left. Then, select Class from the

middle list and name it ExceptionUtility.cs.

3. Choose Add. The new class file is displayed.

4. Replace the existing code with the following:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.IO;

namespace WingtipToys.Logic

{

 // Create our own utility for exceptions

 public sealed class ExceptionUtility

 {

 // All methods are static, so this can be private

 private ExceptionUtility()

 { }

 // Log an Exception

 public static void LogException(Exception exc, string source)

 {

 // Include logic for logging exceptions

 // Get the absolute path to the log file

 string logFile = "App_Data/ErrorLog.txt";

 logFile = HttpContext.Current.Server.MapPath(logFile);

 // Open the log file for append and write the log

 StreamWriter sw = new StreamWriter(logFile, true);

 sw.WriteLine("********** {0} **********", DateTime.Now);

 if (exc.InnerException != null)

 {

 sw.Write("Inner Exception Type: ");

 sw.WriteLine(exc.InnerException.GetType().ToString());

 sw.Write("Inner Exception: ");

 sw.WriteLine(exc.InnerException.Message);

 sw.Write("Inner Source: ");

 sw.WriteLine(exc.InnerException.Source);

 if (exc.InnerException.StackTrace != null)

 {

 sw.WriteLine("Inner Stack Trace: ");

 sw.WriteLine(exc.InnerException.StackTrace);

 }

 }

 sw.Write("Exception Type: ");

 sw.WriteLine(exc.GetType().ToString());

 sw.WriteLine("Exception: " + exc.Message);

 sw.WriteLine("Source: " + source);

 sw.WriteLine("Stack Trace: ");

 if (exc.StackTrace != null)

 {

 sw.WriteLine(exc.StackTrace);

 sw.WriteLine();

 }

 sw.Close();

 }

 }

}

When an exception occurs, the exception can be written to an exception log file by calling the

LogException method. This method takes two parameters, the exception object and a string

containing details about the source of the exception. The exception log is written to the

ErrorLog.txt file in the App_Data folder.

Adding an Error Page

In the Wingtip Toys sample application, one page will be used to display errors. The error page

is designed to show a secure error message to users of the site. However, if the user is a

developer making an HTTP request that is being served locally on the machine where the code

lives, additional error details will be displayed on the error page.

1. Right-click the project name (Wingtip Toys) in Solution Explorer and select Add ->

New Item.

The Add New Item dialog box is displayed.

2. Select the Visual C# -> Web templates group on the left. From the middle list, select

Web Form with Master Page, and name it ErrorPage.aspx.

3. Click Add.

4. Select the Site.Master file as the master page, and then choose OK.

5. Replace the existing markup with the following:

<%@ Page Title="" Language="C#" AutoEventWireup="true"

MasterPageFile="~/Site.Master" CodeBehind="ErrorPage.aspx.cs"

Inherits="WingtipToys.ErrorPage" %>

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Error:</h2>

 <p></p>

 <asp:Label ID="FriendlyErrorMsg" runat="server" Text="Label" Font-

Size="Large" style="color: red"></asp:Label>

 <asp:Panel ID="DetailedErrorPanel" runat="server" Visible="false">

 <p> </p>

 <h4>Detailed Error:</h4>

 <p>

 <asp:Label ID="ErrorDetailedMsg" runat="server" Font-Size="Small"

/>

 </p>

 <h4>Error Handler:</h4>

 <p>

 <asp:Label ID="ErrorHandler" runat="server" Font-Size="Small" />

 </p>

 <h4>Detailed Error Message:</h4>

 <p>

 <asp:Label ID="InnerMessage" runat="server" Font-Size="Small" />

 </p>

 <p>

 <asp:Label ID="InnerTrace" runat="server" />

 </p>

 </asp:Panel>

</asp:Content>

6. Replace the existing code of the code-behind (ErrorPage.aspx.cs) so that it appears as

follows:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using WingtipToys.Logic;

namespace WingtipToys

{

 public partial class ErrorPage : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 // Create safe error messages.

 string generalErrorMsg = "A problem has occurred on this web site. Please

try again. " +

 "If this error continues, please contact support.";

 string httpErrorMsg = "An HTTP error occurred. Page Not found. Please try

again.";

 string unhandledErrorMsg = "The error was unhandled by application

code.";

 // Display safe error message.

 FriendlyErrorMsg.Text = generalErrorMsg;

 // Determine where error was handled.

 string errorHandler = Request.QueryString["handler"];

 if (errorHandler == null)

 {

 errorHandler = "Error Page";

 }

 // Get the last error from the server.

 Exception ex = Server.GetLastError();

 // Get the error number passed as a querystring value.

 string errorMsg = Request.QueryString["msg"];

 if (errorMsg == "404")

 {

 ex = new HttpException(404, httpErrorMsg, ex);

 FriendlyErrorMsg.Text = ex.Message;

 }

 // If the exception no longer exists, create a generic exception.

 if (ex == null)

 {

 ex = new Exception(unhandledErrorMsg);

 }

 // Show error details to only you (developer). LOCAL ACCESS ONLY.

 if (Request.IsLocal)

 {

 // Detailed Error Message.

 ErrorDetailedMsg.Text = ex.Message;

 // Show where the error was handled.

 ErrorHandler.Text = errorHandler;

 // Show local access details.

 DetailedErrorPanel.Visible = true;

 if (ex.InnerException != null)

 {

 InnerMessage.Text = ex.GetType().ToString() + "
" +

 ex.InnerException.Message;

 InnerTrace.Text = ex.InnerException.StackTrace;

 }

 else

 {

 InnerMessage.Text = ex.GetType().ToString();

 if (ex.StackTrace != null)

 {

 InnerTrace.Text = ex.StackTrace.ToString().TrimStart();

 }

 }

 }

 // Log the exception.

 ExceptionUtility.LogException(ex, errorHandler);

 // Clear the error from the server.

 Server.ClearError();

 }

 }

}

When the error page is displayed, the Page_Load event handler is executed. In the Page_Load

handler, the location of where the error was first handled is determined. Then, the last error that

occurred is determined by call the GetLastError method of the Server object. If the exception

no longer exists, a generic exception is created. Then, if the HTTP request was made locally, all

error details are shown. In this case, only the local machine running the web application will see

these error details. After the error information has been displayed, the error is added to the log

file and the error is cleared from the server.

Displaying Unhandled Error Messages for the Application

By adding a customErrors section to the Web.config file, you can quickly handle simple errors

that occur throughout the application. You can also specify how to handle errors based on their

status code value, such as 404 – File not found.

Update the Configuration

Update the configuration by adding a customErrors section to the Web.config file.

1. In Solution Explorer, find and open the Web.config file at the root of the Wingtip Toys

sample application.

2. Add the customErrors section to the Web.config file within the <system.web> node

as follows:

<configuration>

 <system.web>

 <customErrors mode="On"

defaultRedirect="ErrorPage.aspx?handler=customErrors%20section%20-

%20Web.config">

 <error statusCode="404"

redirect="ErrorPage.aspx?msg=404&handler=customErrors%20section%20-

%20Web.config"/>

 </customErrors>

 </system.web>

</configuration>

3. Save the Web.config file.

The customErrors section specifies the mode, which is set to "On". It also specifies the

defaultRedirect, which tells the application which page to navigate to when an error occurs.

In addition, you have added a specific error element that specifies how to handle a 404 error

when a page is not found. Later in this tutorial, you will add additional error handling that will

capture the details of an error at the application level.

Running the Application

You can run the application now to see the updated routes.

1. Press F5 to run the Wingtip Toys sample application.

The browser opens and shows the Default.aspx page.

2. Enter the following URL into the browser (be sure to use your port number):

http://localhost:1234/NoPage.aspx

3. Review the ErrorPage.aspx displayed in the browser.

When you request the NoPage.aspx page, which does not exist, the error page will show the

simple error message and the detailed error information if additional details are available.

However, if the user requested a non-existent page from a remote location, the error page

would only show the error message in red.

Including an Exception for Testing Purposes

To verify how your application will function when an error occurs, you can deliberately create

error conditions in ASP.NET. In the Wingtip Toys sample application, you will throw a test

exception when the default page loads to see what happens.

1. Open the code-behind of the Default.aspx page in Visual Studio.

The Default.aspx.cs code-behind page will be displayed.

2. In the Page_Load handler, add code so that the handler appears as follows:

 protected void Page_Load(object sender, EventArgs e)

 {

 throw new InvalidOperationException("An InvalidOperationException " +

 "occurred in the Page_Load handler on the Default.aspx page.");

 }

It is possible to create various different types of exceptions. In the above code, you are creating

an InvalidOperationException when the Default.aspx page is loaded.

Running the Application

You can run the application to see how the application handles the exception.

1. Press CTRL+F5 to run the Wingtip Toys sample application.

The application throws the InvalidOperationException.

Note

You must press CTRL+F5 to display the page without breaking into the code to view the

source of the error in Visual Studio.

2. Review the ErrorPage.aspx displayed in the browser.

As you can see in the error details, the exception was trapped by the customError section in

the Web.config file.

Adding Application-Level Error Handling

Rather than trap the exception using the customErrors section in the Web.config file, where

you gain little information about the exception, you can trap the error at the application level

and retrieve error details.

1. In Solution Explorer, find and open the Global.asax.cs file.

2. Add an Application_Error handler so that it appears as follows:

void Application_Error(object sender, EventArgs e)

{

 // Code that runs when an unhandled error occurs.

 // Get last error from the server

 Exception exc = Server.GetLastError();

 if (exc is HttpUnhandledException)

 {

 if (exc.InnerException != null)

 {

 exc = new Exception(exc.InnerException.Message);

 Server.Transfer("ErrorPage.aspx?handler=Application_Error%20-

%20Global.asax",

 true);

 }

 }

}

When an error occurs in the application, the Application_Error handler is called. In this

handler, the last exception is retrieved and reviewed. If the exception was unhandled and the

exception contains inner-exception details (that is, InnerException is not null), the

application transfers execution to the error page where the exception details are displayed.

Running the Application

You can run the application to see the additional error details provided by handling the

exception at the application level.

1. Press CTRL+F5 to run the Wingtip Toys sample application.

The application throws the InvalidOperationException.

2. Review the ErrorPage.aspx displayed in the browser.

Adding Page-Level Error Handling

You can add page-level error handling to a page either by using adding an ErrorPage

attribute to the @Page directive of the page, or by adding a Page_Error event handler to the

code-behind of a page. In this section, you will add a Page_Error event handler that will

transfer execution to the ErrorPage.aspx page.

1. In Solution Explorer, find and open the Default.aspx.cs file.

2. Add a Page_Error handler so that the code-behind appears as follows:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

namespace WingtipToys

{

 public partial class _Default : Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 throw new InvalidOperationException("An InvalidOperationException " +

 "occurred in the Page_Load handler on the Default.aspx page.");

 }

 private void Page_Error(object sender, EventArgs e)

 {

 // Get last error from the server.

 Exception exc = Server.GetLastError();

 // Handle specific exception.

 if (exc is InvalidOperationException)

 {

 // Pass the error on to the error page.

 Server.Transfer("ErrorPage.aspx?handler=Page_Error%20-%20Default.aspx",

 true);

 }

 }

 }

}

When an error occurs on the page, the Page_Error event handler is called. In this handler, the

last exception is retrieved and reviewed. If an InvalidOperationException occurs, the

Page_Error event handler transfers execution to the error page where the exception details

are displayed.

Running the Application

You can run the application now to see the updated routes.

1. Press CTRL+F5 to run the Wingtip Toys sample application.

The application throws the InvalidOperationException.

2. Review the ErrorPage.aspx displayed in the browser.

3. Close your browser window.

Removing the Exception Used for Testing

To allow the Wingtip Toys sample application to function without throwing the exception you

added earlier in this tutorial, remove the exception.

1. Open the code-behind of the Default.aspx page.

2. In the Page_Load handler, remove the code that throws the exception so that the

handler appears as follows:

 protected void Page_Load(object sender, EventArgs e)

 {

 }

Adding Code-Level Error Logging

As mentioned earlier in this tutorial, you can add try/catch statements to attempt to run a

section of code and handle the first error that occurs. In this example, you will only write the

error details to the error log file so that the error can be reviewed later.

1. In Solution Explorer, in the Logic folder, find and open the PayPalFunctions.cs file.

2. Update the HttpCall method so that the code appears as follows:

public string HttpCall(string NvpRequest)

{

 string url = pEndPointURL;

 string strPost = NvpRequest + "&" + buildCredentialsNVPString();

 strPost = strPost + "&BUTTONSOURCE=" + HttpUtility.UrlEncode(BNCode);

 HttpWebRequest objRequest = (HttpWebRequest)WebRequest.Create(url);

 objRequest.Timeout = Timeout;

 objRequest.Method = "POST";

 objRequest.ContentLength = strPost.Length;

 try

 {

 using (StreamWriter myWriter = new

StreamWriter(objRequest.GetRequestStream()))

 {

 myWriter.Write(strPost);

 }

 }

 catch (Exception e)

 {

 // Log the exception.

 WingtipToys.Logic.ExceptionUtility.LogException(e, "HttpCall in

PayPalFunction.cs");

 }

 //Retrieve the Response returned from the NVP API call to PayPal.

 HttpWebResponse objResponse = (HttpWebResponse)objRequest.GetResponse();

 string result;

 using (StreamReader sr = new StreamReader(objResponse.GetResponseStream()))

 {

 result = sr.ReadToEnd();

 }

 return result;

}

The above code calls the LogException method that is contained in the ExceptionUtility

class. You added the ExceptionUtility.cs class file to the Logic folder earlier in this tutorial. The

LogException method takes two parameters. The first parameter is the exception object. The

second parameter is a string used to recognize the source of the error.

Inspecting the Error Logging Information

As mentioned previously, you can use the error log to determine which errors in your

application should be fixed first. Of course, only errors that have been trapped and written to

the error log will be recorded.

1. In Solution Explorer, find and open the ErrorLog.txt file in the App_Data folder.

You may need to select the “Show All Files” option or the “Refresh” option from the top

of Solution Explorer to see the ErrorLog.txt file.

2. Review the error log displayed in Visual Studio:

Safe Error Messages

It is important to note that when your application displays error messages, it should not give

away information that a malicious user might find helpful in attacking your application. For

example, if your application unsuccessfully tries to write in to a database, it should not display

an error message that includes the user name it is using. For this reason, a generic error

message in red is displayed to the user. All additional error details are only displayed to the

developer on the local machine.

Using ELMAH

ELMAH (Error Logging Modules and Handlers) is an error logging facility that you plug into your

ASP.NET application as a NuGet package. ELMAH provides the following capabilities:

4. Logging of unhandled exceptions.

5. A web page to view the entire log of recoded unhandled exceptions.

6. A web page to view the full details of each logged exception.

7. An e-mail notification of each error at the time it occurs.

8. An RSS feed of the last 15 errors from the log.

Before you can work with the ELMAH, you must install it. This is easy using the NuGet package

installer. As mentioned earlier in this tutorial series, NuGet is a Visual Studio extension that

makes it easy to install and update open source libraries and tools in Visual Studio.

1. Within Visual Studio, from the Tools menu, select Library Package Manager ->

Manage NuGet Packages for Solution.

2. The Manage NuGet Packages dialog box is displayed within Visual Studio.

3. In the Manage NuGet Packages dialog box, expand Online on the left, and then select

nuget.org. Then, find and install the ELMAH package from the list of available packages

online.

4. You will need to have an internet connection to download the package.

5. In the Select Projects dialog box, make sure the WingtipToys selection is selected, and

then click OK.

6. Click Close in the Manage NuGet Packages dialog box if needed.

7. If Visual Studio requests that you reload any open files, select “Yes to All”.

8. The ELMAH package adds entries for itself in the Web.config file at the root of your

project. If Visual Studio asks you if you want to reload the modified Web.config file, click

Yes.

ELMAH is now ready to store any unhandled errors that occur.

Viewing the ELMAH Log

Viewing the ELMAH log is easy, but first you will create an unhandled exception that will be

recorded in the ELMAH log.

1. Press CTRL+F5 to run the Wingtip Toys sample application.

2. To write an unhandled exception to the ELMAH log, navigate in your browser to the

following URL (using your port number):

http://localhost:1234/NoPage.aspx

The error page will be displayed.

3. To display the ELMAH log, navigate in your browser to the following URL (using your

port number):

http://localhost:1234/NoPage.aspx

http://localhost:1234/elmah.axd

Summary

In this tutorial, you have learned about handling errors at the application level, the page level,

and the code level. You have also learned how to log handled and unhandled errors for later

review. You added the ELMAH utility to provide exception logging and notification to your

application using NuGet. Additionally, you have learned about the importance of safe error

messages.

Conclusion

This completes the ASP.NET 4.5 Wingtip Toys tutorial series. For more information about new

Web Forms features available in ASP.NET 4.5 and Visual Studio 2013, see ASP.NET and Web

Tools for Visual Studio 2013 Release Notes.

Additional Resources

Logging Error Details with ASP.NET Health Monitoring

ELMAH

Acknowledgements

I would like to thank the following people who made significant contributions to the content of

this tutorial series:

 Alberto Poblacion, MVP & MCT, Spain

 Alex Thissen, Netherlands (twitter: @alexthissen)

 Andre Tournier, USA

http://localhost:1234/elmah.axd
http://www.asp.net/visual-studio/overview/2013/release-notes
http://www.asp.net/visual-studio/overview/2013/release-notes
http://www.asp.net/web-forms/tutorials/deployment/deploying-web-site-projects/Logging-Error-Details-with-ASP-NET-Health-Monitoring-cs
https://code.google.com/p/elmah/
https://mvp.support.microsoft.com/profile/Alberto
http://blog.alexthissen.nl/
http://twitter.com/alexthissen
http://andret503.wordpress.com/

 Apurva Joshi, Microsoft

 Bojan Vrhovnik, Slovenia

 Bruno Sonnino, Brazil (twitter: @bsonnino)

 Carlos dos Santos, Brazil

 Dave Campbell, USA (twitter: @windowsdevnews)

 Jon Galloway, Microsoft (twitter: @jongalloway)

 Michael Sharps, USA (twitter: @mrsharps)

 Mike Pope

 Mitchel Sellers, USA (twitter: @MitchelSellers)

 Paul Cociuba, Microsoft

 Paulo Morgado, Portugal

 Pranav Rastogi, Microsoft

 Tim Ammann, Microsoft

 Tom Dykstra, Microsoft

Community Contributions

 Graham Mendick (graham.mendick@gmail.com)

Visual Studio 2012 related code sample on MSDN: Navigation Wingtip Toys

 James Chaney (jchaney@agvance.net)

Visual Studio 2012 related code sample on MSDN: ASP.NET 4.5 Web Forms Tutorial

Series in Visual Basic

 Andrielle Azevedo - Microsoft Technical Audience Contributor (twitter: @driazevedo)

Visual Studio 2012 translation: Iniciando com ASP.NET Web Forms 4.5 – Parte 1 –

Introdução e Visão Geral

http://twitter.com/bvrhovnik
http://msmvps.com/blogs/bsonnino
http://twitter.com/bsonnino
http://www.carloscds.net/
http://www.wynapse.com/
http://twitter.com/windowsdevnews
http://weblogs.asp.net/jgalloway
http://twitter.com/jongalloway
http://www.930solutions.com/
http://twitter.com/mrsharps
http://www.mitchelsellers.com/
http://twitter.com/MitchelSellers
http://linqto.me/Links/pcociuba
http://paulomorgado.net/
http://blogs.msdn.com/b/pranav_rastogi
http://blogs.iis.net/timamm/default.aspx
http://blogs.msdn.com/aspnetue
mailto:graham.mendick@gmail.com
http://code.msdn.microsoft.com/Navigation-Wingtip-Toys-5f0daba2
mailto:jchaney@agvance.net
http://code.msdn.microsoft.com/ASPNET-45-Web-Forms-f37f0f63
http://code.msdn.microsoft.com/ASPNET-45-Web-Forms-f37f0f63
https://andrielleazevedo.wordpress.com/2013/01/24/iniciando-com-asp-net-web-forms-4-5-introducao-e-visao-geral/
https://andrielleazevedo.wordpress.com/2013/01/24/iniciando-com-asp-net-web-forms-4-5-introducao-e-visao-geral/

	Table of Contents
	Introduction and Overview
	Introduction
	Download completed project
	Audience
	Application Features
	Application Scenarios and Tasks

	Overview
	The Wingtip Toys Sample Application
	Prerequisites
	Download the Sample Application
	Tutorial Support and Comments

	Create the Project
	What you'll learn:
	Creating the Project
	Understanding the ASP.NET Frameworks
	Reviewing the Project
	Running the Default Web Application

	ASP.NET Web Forms Background
	Web Application Features in the Web Forms Application Template
	Membership
	SQL Server Express LocalDB
	Master Pages
	HTML5
	Modernizr
	Bootstrap
	NuGet Packages
	jQuery
	Unobtrusive Validation
	Entity Framework Code First
	Touring Visual Studio

	Summary
	Additional Resources

	Create the Data Access Layer
	What you'll learn:
	These are the features introduced in the tutorial:

	Creating the Data Models
	Entity Framework and References
	Entity Classes
	Data Annotations
	Context Class
	Initializer Class
	Configuring the Application to Use the Data Model
	Updating the Global.asax file
	Modifying the Web.Config File

	Building the Application
	Summary
	Additional Resources

	UI and Navigation
	What you'll learn:
	Modifying the UI
	@Page Directive
	Web Server Controls
	Server Code
	Updating the Master Page
	Master Pages
	Adding Image Files
	Download from MSDN Samples site:

	Adding Pages
	Updating Bootstrap
	Modifying the Default Navigation
	Adding a Data Control to Display Navigation Data
	Linking the Data Control to the Database
	Running the Application and Creating the Database
	Reviewing the Database

	Summary
	Additional Resources

	Display Data Items and Details
	What you'll learn:
	These are the features introduced in the tutorial:

	Adding a Data Control to Display Products
	Using a Data Source Control to Bind Data
	Coding By Hand to Bind Data
	Using Model Binding to Bind Data

	Displaying Products
	Adding Code to Display Products
	Running the Application
	Adding a Data Control to Display Product Details
	Running the Application

	Summary
	Additional Resources

	Shopping Cart
	What you'll learn:
	Code features in this tutorial:
	Creating a Shopping Cart
	Add CartItem as a Model Class
	Update the Product Context
	Managing the Shopping Cart Business Logic
	Creating the Shopping Cart Class

	Creating the Add-To-Cart Functionality
	To create the Add-To-Cart functionality:

	Creating the Shopping Cart UI
	Retrieving the Shopping Cart Items

	Adding Products to the Shopping Cart
	Testing the Shopping Cart
	Calculating and Displaying the Order Total
	Modify the Shopping Cart Display
	Testing the Shopping Cart Total
	Adding Update and Checkout Buttons to the Shopping Cart
	Updating and Removing Shopping Cart Items
	Adding a Shopping Cart Counter

	Testing the Completed Shopping Cart
	Summary
	Addition Information

	Checkout and Payment with PayPal
	What you'll learn:
	Adding Order Tracking
	Add the Order and OrderDetail Model Classes

	Adding Checkout Access
	Add a Checkout Folder and Pages
	Add a Web.config File

	Enabling Logins from Other Sites Using OAuth and OpenID
	Modifying Login Functionality

	Migrating the Shopping Cart
	Updating the Database Connection

	Integrating PayPal
	Create PaylPal Test Accounts
	Add PayPal Class and API Credentials
	Update the LocalHost Port Number in the PayPal Class
	Add the PayPal Checkout Button
	Send Purchase Details to PayPal
	Review Order Details
	Complete Purchase
	Handle Cancel Purchase
	Handle Purchase Errors

	Running the Application
	Reviewing the Database
	Summary
	Additional Resources
	Disclaimer

	Membership and Administration
	What you'll learn:
	These features are included in the tutorial:
	Adding an Administrator
	Restricting Access to the Administration Page
	Add an Administration Folder and Page
	Add a Web.config File

	Including Administrator Navigation
	Enabling Product Administration
	Unobtrusive Validation
	Regular Expressions
	FileUpload Control
	Model Binding

	How the Application Will Work

	Running the Application
	Summary
	Additional Resources

	URL Routing
	What you'll learn:
	ASP.NET Routing Overview
	Routes
	URL Patterns
	Mapping and Registering Routes

	Retrieving and Using Route Data
	Setting Routes
	Enable Routes for Categories and Products
	Add Code for Product Details

	Running the Application
	Summary
	Additional Resources

	ASP.NET Error Handling
	What you'll learn:
	Overview
	Exception Class
	Exception Inheritance Hierarchy
	Exception Handling Hierarchy
	Application Level Error Handling
	Page Level Error Event Handling
	Code Level Error Handling

	Adding Error Logging Support
	Adding an Error Page
	Displaying Unhandled Error Messages for the Application
	Update the Configuration
	Running the Application

	Including an Exception for Testing Purposes
	Running the Application

	Adding Application-Level Error Handling
	Running the Application

	Adding Page-Level Error Handling
	Running the Application

	Removing the Exception Used for Testing
	Adding Code-Level Error Logging
	Inspecting the Error Logging Information
	Safe Error Messages

	Using ELMAH
	Viewing the ELMAH Log

	Summary
	Conclusion
	Additional Resources
	Acknowledgements
	Community Contributions

