Getting Started with ASPNET 4.5
Web Forms and Visual Studio 2013

Erik Reitan

Step By Step

= Microsoft

Getting Started with ASP.NET 4.5
Web Forms and Visual Studio 2013
By Erik Reitan | January 8, 2014

Summary: This series of tutorials guides you through the steps required to create an
ASP.NET Web Forms application using Visual Studio Express 2013 for Web and ASP.NET
4.5.

Category: Step-by-Step

Applies to: ASP.NET Web Forms

Source: Getting Started with ASP.NET 4.5 Web Forms and Visual Studio 2013

E-book publication date: January, 2014

For more titles, visit the E-Book Gallery for Microsoft
Technologies.

http://twitter.com/ReitanErik
http://www.asp.net/web-forms/tutorials/aspnet-45/getting-started-with-aspnet-45-web-forms/introduction-and-overview
http://social.technet.microsoft.com/wiki/contents/articles/11608.e-book-gallery-for-microsoft-technologies.aspx
http://social.technet.microsoft.com/wiki/contents/articles/11608.e-book-gallery-for-microsoft-technologies.aspx

Copyright © 2014 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors
will be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Getting Started with ASPNET 4.5 Web
Forms and Visual Studio 2013

By Erik Reitan | January 8, 2014

Table of Contents

Introduction and Overview 6
INEFOAUCTION .ot bbb bbb 6
OVEIVIBW ..ottt bbb bbb et 7
The Wingtip Toys Sample APPLICAtION ...t eseeen 8
PrOIEOUISITES ...ttt st nes s 14
Download the Sample APPHCALION ...t ss s s ssenes 15
Tutorial SUPPOrt aNA COMMENTS ...ttt ss st ss st sens 16

Create the Project............ccceecuereeuueennnes 17
WNAE YOU'IT TEAIN: oottt bbb 17
CrEatiNG the PrOJECE. ..ottt sttt st st 17
ASP.NET Web FOrms BaCkgroUNd ... ssse e ssse s sssssssesens 23
SUMIMIATY ottt st bbb sa e 28
AdItIONA] RESOUICES ..ottt bbb bbbt 28

Create the Data Access Layer 29
WAt YOU'I TEAIN: ...ttt sttt sttt 29
Creating the Data MOEIS ...t 29
BUIlAING the APPIICATION ...ttt sen 41
SUMIMAIY ottt a st s et s et s s sttt bbbt et an e 41
AJAITIONAI RESOUITES ...ttt bbbt 42

UI and Navigation........cccccceeeeveecnnennns 43
WAL YOU'Il TEAIN: ...ttt s bbbttt sens 43
MOIfYING The ULttt 43

http://twitter.com/ReitanErik

ACAITIONG]I RESOUITES ...ttt ee e seeee e sesessae s esessaesessessasasssesesassesseasassessessasssssaseasaesessensas 60

Display Data Items and Details 62
WAt YOU'Il TEAIN: ...ttt sttt sttt st 62
Adding a Data Control to DiSplay ProdUCES ... sssssssssssssssssssssssssssssssssens 62
DiISPIAYING PrOQUCES ...ttt sttt 63
SUMIMAIY ottt e st s et ee st e e s st s seneas 71
AdItIONA] RESOUICES ..ottt 71

Shopping Cart............ccceeeuvrceurenns 72
WAL YOU'I TEAIN: ..ottt sttt sttt sees 72
Code features i this TUTOTIAl. ... 72
Creating @ SNOPPING Cart. ...ttt 72
Testing the Completed ShOPPING Cart.......cneeseseieeeeise e 101
SUMIMIATY ottt e st 102
Adition INFOMMIATION. ...ttt bbbt 102

Checkout and Payment with PayPal 103
WAt YOU'IT TEAIN: ...ttt st 103
AdAING Order TraCKiNg ...t ss bbbt 103
AdAING ChECKOUL ACCESSereieeciieisieeie ettt sttt s s st ss st ssnssaes 106
Enabling Logins from Other Sites Using OAuth and OpenID.........cccomninmeenneeneeeneeeneeeneeeseeenne 110
Migrating the SHOPPING Cart........o e 114
INTEGrating PayPal ...ttt sttt 118
RUNNING the APPIICATION c.eutee ettt 139
REVIEWING the Database.......ceiuieiirrieiee ettt ss st st ss s nees 148
SUMIMIATY ottt sttt 149
AJAITIONAI RESOUITES ...ttt bbb 149
DUSCIAIMET ..ottt bbb 149

Membership and Administration 151
WRAE YOU'Il TEAIN: ...ttt bt 151
These features are included iN the tULOTIAl ... aeeees 151
AddING @N AQMINISTIATON ...ttt aeeen 152

RUNNING the APPIICATION oottt ss st nnes 164

AdAItIONA] RESOUICESouueereireiicrireiiecietiise st bbbt 171
URL Routing 172
WAt YOU'Il TEAIN: ..ottt sttt st s s s 172
ASP.NET ROULING OVEIVIEW.......ceerieiereerieeiseieeie st sssese st sssssssssss s s ssssssssssesssesssssssssssssssssssanes 172
Retrieving and USING ROULE Data........cc..coviriereinrierieesssisssesiesississsssssesssnses 175
RUNNING the APPIICATION c.euie ettt 177
SUMIMIATY ottt e s s st 178
AJItIONA] RESOUICTES ...ttt 178
ASP.NET Error Handling 179
WAL YOU'IT TEAIN: oot bbb 179
OVEIVIBW ..ottt s bbbt 179
AddiNg Error LOGQING SUPPOIT isese st ssanes 182
USING ELMAH ...ttt bbb bbb 195
SUMIMIAIY ottt e s sttt 198
CONCIUSION. ...ttt bbb 198
AJAITIONA] RESOUITES ...ttt bbb 198
ACKNOWIEAGEMENTS ...ttt sttt s st sasssnes 198

CoMMUNITY CONTIDULIONS. ..ottt 199

Introduction and Overview

DOWNLOAD ASSETS: Getting Started with ASP.NET 4.5 Web Forms and Visual Studio
2013 - Wingtip Toys (C#)

This tutorial series will teach you the basics of building an ASP.NET Web Forms application using
ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web.

Introduction

This series of tutorials guides you through the steps required to create an ASP.NET Web Forms
application using Visual Studio Express 2013 for Web and ASP.NET 4.5.

The application you'll create is named WingtipToys. It's a simplified example of a store front
web site that sells items online. This tutorial series highlights new features available in ASP.NET
4.5.

Comments are welcome, and we'll make every effort to update this tutorial series based on your
suggestions.
Download completed project

You can download a C# project that contains the completed tutorial.

e Getting Started with ASP.NET 4.5 Web Forms and Visual Studio 2013 - Wingtip Toys (C#)

Audience

The intended audience of this tutorial series is experienced developers who are new to ASP.NET
Web Forms. A developer interested in this tutorial series should have the following skills:

e Familiar with an object oriented programming (OOP) language

e Familiar with Web development concepts (HTML, CSS, JavaScript)
e Familiar with relational database concepts

e Familiar with n-tier architecture concepts

If you are interested in reviewing the areas listed above, consider reviewing the following
content:

e Getting Started with Visual C#

e Web Development, HTML, CSS, JavaScript, SQL, PHP, JQuery
e Relational database

e Multitier architecture

Application Features

http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409
http://msdn.microsoft.com/library/a72418yk.aspx
http://msdn.microsoft.com/beginner/bb308760.aspx
http://w3schools.com/
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Multitier_architecture

The ASP.NET Web Form features presented in this series include:

The Web Application Project (not Web Site Project)
Web Forms

Master Pages, Configuration

Bootstrap

Entity Framework Code First, LocalDB

Request Validation

Strongly Typed Data Controls, Model Binding, Data Annotations, and Value Providers
OAuth and OpenlID

ASP.NET Identity, Configuration, and Authorization
Unobtrusive Validation

Routing

ASP.NET Error Handling

Application Scenarios and Tasks

Tasks demonstrated in this series include:

Creating, reviewing and running the new project

Creating the database structure

Initializing and seeding the database

Customizing the Ul using styles, graphics and a master page
Adding pages and navigation

Displaying menu details and product data

Creating a shopping cart

Adding OpenlD support

Adding a payment method

Including an administrator role and a user to the application
Restricting access to specific pages and folder

Uploading a file to the web application

Implementing input validation

Registering routes for the web application

Implementing error handling and error logging

Overview

If you are new to ASP.NET Web Forms but have familiarity with programming concepts, you
have the right tutorial. If you are already familiar with ASP.NET Web Forms, you can benefit from
this tutorial series by the new features available in ASP.NET 4.5. If you are unfamiliar with
programming concepts and ASP.NET Web Forms, see the additional tutorials provided in the
Web Forms Getting Started section on the ASP.NET Web site.

http://www.asp.net/web-forms

ASP.NET 4.5 Web Forms and Visual Studio 2013 features presented in this Web Forms tutorial
series include the following:

e Asimple UI for creating projects that offer support for multiple ASP.NET frameworks
(Web Forms, MVC, and Web API).

e Bootstrap, a layout and theming framework that provides responsive design and
theming capabilities.

e ASP.NET Identity, a new ASP.NET membership system that works the same in all ASP.NET
frameworks and works with web hosting software other than IIS.

e Entity Framework 6, an update to the Entity Framework which allows you retrieve and
manipulate data as strongly typed objects, access data asynchronous, handle transient
connection faults, and log SQL statements.

For a complete list of ASP.NET 4.5 features, see ASP.NET and Web Tools for Visual Studio 2013
Release Notes.

The Wingtip Toys Sample Application

The following screen shots provide a quick view of the ASP.NET Web forms application that you
will create in this tutorial series. When you run the application from Visual Studio Express 2013
for Web, you will see the following web Home page.

2 -— = =)
@@ | http://localhosts © ~ B & X || Welcome - Wingtip Toys % H 9 v i
i e ——————— e e
Cart (0) Register Login

° e
WW 'oyy Home About Contact Products

Welcome. Wingtip Toys can help you find the perfect gift

© 2012 - My ASP.NET Application

http://www.asp.net/visual-studio/overview/2013/creating-web-projects-in-visual-studio#add
http://www.asp.net/visual-studio/overview/2013/creating-web-projects-in-visual-studio#bootstrap
http://www.asp.net/identity
http://msdn.microsoft.com/data/ef.aspx
http://www.asp.net/visual-studio/overview/2013/release-notes
http://www.asp.net/visual-studio/overview/2013/release-notes

You can register as a new user, or log in as an existing user. Navigation is provided at the top for
each product category by retrieving the available products from the database.

By selecting the Products link, you will be able to see a list of all available products.

- E=rey)
\ : vy 8

GE&)“ . http://localhost:53417/Productlist O~ B¢ X \|| Products - Wingtip Toys X H
—

Cart (0) Register Login

. .
WW lwy Home About Contact Products

Products

Convertible Car Old-time Car Fast Car
Price: 522.50 Price: $15.95 Price: $32.99
Add To Cart Add To Cart Add To Cart

Super Fast Car Qld Style Racer Ace Plane
Price: 53.95 Price: $34.95 Price: $95.00
Add To Cart Add To Cart Add To Cart

Glider Paper Plane Propeller Plane
Price: 54.95 Price: 52.95 Price: $32.95
Add To Cart Add To Cart Aded To Cart

Fire Truck Big Truck
Price: 526.00 Price: $29.00
Add To Cart Add To Cart

Paper Boat Sail Boat
Price: $4.95 Price: $42.95
Add To Cart Add To Cart

Rocket
Price: $122.95
Add To Cart

© 2012 - My ASP.NET Application

You can also see individual product details by selecting any of the listed products.

=

¥ oo
el‘;_{{)“ http://localhost53 2 ~ B & X Hl Product Details - Wingtip T... * {0 S 4o
|
Cart (0) Register Login

))
WW l%y Home About Contact Products

Paper Boat

Description:

Floating fun for all! This toy boat can be assembled in seconds. Floats for
minutes!Some folding required.

Price: $4.95

Product Number: 14

Add To Cart

& 2012 - My ASP.NET Application

As a user, you can register and log in using the default functionality of the Web Forms template.
This tutorial also explains how to login using an existing gmail account. Additionally, you can
login as the administrator to add and remove products from the database.

a@| | - hitp://localhost:s 0 ~ B ¢ X ” | Login - Wingtip Toys ‘ ‘ T 7 ok

Cart (3) Register Log in
W L] IF a2 r y
Cars - Planes - Trucks - Boats - Rockets
Log in.
Use a local account to log in. Use another service to log in.
User name coilE
Password

" Remember me?

Log in

Register if you don’t have an account.

© 2012 - My ASP.MET Application

Once you have logged in as a user, you can add products to the shopping cart and checkout
with PayPal. Note that this sample application is designed to function with PayPal's developer
sandbox. No actual money transaction will take place.

a[:'|| http://localhost: O ~ B & X ” | - Wingtip Toys ‘ | 0} Sop £6%

Wungtye Toyys

Cart (3) Register Login

Shopping Cart

1D Name Price (each) |Quantity [Item Total |[Remove Item
7 Glider 54.95 1 54.95 r
10 Early Truck $15.00 1 $15.00 -
1 Convertible Car 522.50 1 $22.50 ™

Order Total: $42.45

Check out mlrp :
Update with 2l

The =safer, easier way to pay

© 2012 - My ASP.NET Application

PayPal will confirm your account, order, and payment information.

Wingtip Toys Sample Application

ﬁ Review your information

x

Review your information
Your order summary
- -
Deseriptions Amount o PayPal &
Gonvertible Car o Shipping address 7 Chanos
Item price: $22.50 BuyerFirst BuyerLast
Quantity: 1 1 Main St
Glider 5495 San Jose, CA 95131
ltem price: 54.95 United States
I Quantity: 1 Note to seller: Agd
Eariy Truck $15.00
! Item price: $15.00
Quantity: 1 Payment methods ;7 Change
[=
PayPal Balance §42.45USD

$42.45

Total $4245 USD ! PayPal gift card, cerificate, reward, or other discount Redeem

‘iew PayPal policies and your payment method rights.

Contact information
WTB_1337291816_per@live.com

_Continue |

You're aimost done. You will confirm your payment on SellerFirst SellerLast's Test Store.

Cancel and return to SellerFirst Sellerl ast's Test Store.

Site Feedback [+]
PayPal. The safer, easier way to pay. For more information, read our User Agreement and Privacy Policy. -

After returning from PayPal, you can review and complete your order.

a- -|. http://localhostt © ~ B ¢ X ” | - - Wingtip Toys ‘ ‘

Wi o Tous G oo

Cars - Planes - Trucks - Boats - Rockets

Order Review

Products:

ProductID |Product Name |Price (each) [Quantity

10 Early Truck $15.00 1
1 Convertible Car £22.50 1
7 Glider $4.95 L

Shipping Address:
BuyerFirst Buyerlast

1 Main 5t

San Jose CA 95131
Order Total:

54245

Complete Order

S 2012 - My ASP.NET Application

Prerequisites
Before you start, make sure that you have the following software installed on your computer:

e Microsoft Visual Studio 2013 or Microsoft Visual Studio Express 2013 for Web. The .NET
Framework is installed automatically.

http://www.microsoft.com/visualstudio/11/en-us/downloads#vs
http://www.microsoft.com/visualstudio/11/en-us/downloads#express-web

This tutorial series uses Microsoft Visual Studio Express 2013 for Web. You can use either
Microsoft Visual Studio Express 2013 for Web or Microsoft Visual Studio 2013 to complete this
tutorial series.

Note

Microsoft Visual Studio 2013 and Microsoft Visual Studio Express 2013 for Web will often be
referred to as Visual Studio throughout this tutorial series.

If you already have a Visual Studio version installed, the installation process will install Visual
Studio 2013 or Microsoft Visual Studio Express 2013 for Web next to the existing version. Sites
that you created in earlier versions can be opened in Visual Studio 2013 and continue to open in
previous versions.

Note

This walkthrough assumes that you selected the Web Development collection of settings the first
time that you started Visual Studio. For more information, see How to: Select Web Development
Environment Settings.

Download the Sample Application

After installing the prerequisites, you are ready to begin creating the new Web project that is
presented in this tutorial series. If you would like to optionally run the sample application that
this tutorial series creates, you can download it from the MSDN Samples site. This download
contains the following:

e The sample application in the WingtipToys folder.
e The resources used to create the sample application in the WingtipToys-Assets folder in
the WingtipToys folder.

Download the file from MSDN Samples site:
Getting Started with ASP.NET 4.5 Web Forms and Visual Studio 2013 - Wingtip Toys (C#)

The download is a .zip file. To see the completed project that this tutorial series creates, find and
select the C# folder in the .zip file. Save the C# folder to the folder you use to work with Visual
Studio 2013 projects. By default, the Visual Studio 2013 projects folder is the following:

C:\Users\<username>\Documents\Visual Studio 2013\Projects

Rename the c# folder to WingtipToys.
Note

If you already have a folder named WingtipToys in your Projects folder, temporarily rename that
existing folder before renaming the C# folder to WingtipToys.

http://msdn.microsoft.com/en-us/library/ff521558.aspx
http://msdn.microsoft.com/en-us/library/ff521558.aspx
http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409

To run the completed project, open the WingtipToys folder and double-click the WingtipToys.sln
file. Visual Studio 2013 will open the project. Next, right-click the Default.aspx file in the
Solution Explorer window and click View In Browser from the right-click menu.

Tutorial Support and Comments

Use the Q AND A section included with the Getting Started with ASP.NET 4.5 Web Forms and
Visual Studio 2013 - Wingtip Toys (C#) sample for any questions or comments.

Comments on this tutorial series are welcome, and when this tutorial series is updated every
effort will be made to take into account corrections or suggestions for improvements that are
provided in the tutorial comments.

When an error happens during development, or if the Web site does not run correctly, the error
messages may give complex clues to the source of the problem or might not explain how to fix
it. To help you with some common problem scenarios, you can also use the ASP.NET forums or
the Q AND A section included with the Getting Started with ASP.NET 4.5 Web Forms and Visual
Studio 2013 - Wingtip Toys (C#) sample. If you get an error message or something doesn't work
as you go through the tutorials, be sure to check the above locations.

http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409
http://forums.asp.net/
http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409

Create the Project

This tutorial series will teach you the basics of building an ASP.NET Web Forms application using
ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project

with C# source code is available to accompany this tutorial series.

In this tutorial you will create, review, and run the default project in Visual Studio, which will
allow you to become familiar with features of ASP.NET. Also, you will review the Visual Studio

environment.

What you'll learn:

How to create a new Web Forms project.

The file structure of the Web Forms project.

How to run the project in Visual Studio.

The different features of the default Web forms application.
Some basics about how to use the Visual Studio environment.

Creating the Project

1
2.

Open Visual Studio.
Select New Project from the File menu in Visual Studio.

I)d WingtipToys - Microsoft Visual Studio Express 2013 for Web
FILE | EDIT VIEW PROJECT DEBUG TEAM TOOLS TEST WINI

i Mew Project... Ctrl+Shift+M iet Explorer = (VI
‘® MNew Web Site... Shift+ Alt+N _
TE Mew Team Praoject...

‘1 New File... Ctrl+N

3 Open Project... Ctrl+5Shift+0

% Open Web Site... Shift+Alt+0

Open from Source Control

Add to Source Control

—+

Connect to Teamn Project...

Add J

Close

3. Select the Templates -> Visual C# -> Web templates group on the left.
4. Choose the ASP.NET Web Application template in the center column.

5. Name your project WingtipToys and choose the OK button.

New Project ?
b Recent [.NET Framewaork 4.5 ~| Sort by: | Default +| £i° |I=|| Search Installed Te O ~
4 |nstalled C o
ASP.NET Web Application Visual C# Type: Visual C#
4 Templates A project template for creating ASP.MET
b Visual Basic applications. You can create ASP.MET Web
4 Vicual 2 Forms, MVC, or Web API applications and
sua add many other features in ASP.NET.
Windows
4 Web
Visual Studie 2012

Cloud

Silverlight

Test

WirE -
b Online Click here to go online and find templates.
Marne: WingtipToys
Location: | chusersiuseridocumentsivisual studio 201 3\Projects ~|
Solution name: WingtipToys Create directory for selution

[] Add to source control
.ok || Cancel
Note

The name of the project in this tutorial series is WingtipToys. It is recommended that
you use this exact project name so that the code provided throughout this tutorial series
functions as expected.

6. Next, select the Web Forms template and chooks the Create Project button.

New ASP.NET Project - WingtipToys ?

Select a template:

A project template for creating ASP.NET Web Forms applications.
c# c c proj [2 PP
F_‘l F:I F_‘l ASP.MET Web Forms lets you build dynamic websites using a familiar
=] =/ =] drag-and-drop, event-driven model. A design surface and hundreds of
Empty MWC Web AP| controls and cemponents let you rapidly build sophisticated, powerful
Fca Ul-driven sites with data access.
e-l
Single Page Learn more
Aonlicati Facebook
pplication
Add folders and core references for: Change Authenti
| Web Forms [MVC [] Web API
Authentication: Individual User Accounts
[] Add unit tests
Test project name: NingtipToys.Tests

Create Project | | Cancel

The project will take a little time to create. When it's ready, open the Default.aspx page.

ﬂ WingtipToys - Microsoft Visual Studio Express 2013 for Web 3 Y1 | QuickLaunch (Ctrl+Q) Pl - B x
FILE EDIT VIEW PROJECT DEBUG TEAM TOOLS TEST WINDOW HELP Erik Reitan -
[@-2 @] - <] b intemetBplorer = & ¢ - [Debug -/ | 57 _E .

-
g Defaultaspx & X Ml Solution Explorer v X
= < P Title="H P "L ="C#" Masterp, File="~/Site.Master” AutoEventhi ="t " CodeBehind="Default. Lcs” TInk il - i *
%@ Page Title-"Home Page’ Language asterPageFile="~/Site.Master" AutoEventWireup="true" CodeBehind="Default.aspx.cs memj @lo-2na8)
=I<asp:Content ID="BodyCentent” ContentPlaceHolderID="MainContent” runat="server”> Search Solution Explorer (Ctrl+;) P~]

<div class="jumbotron"s fal Solution ‘WingtipToys' (1 project)
<h1ASP 4] WingtipToys
<p class="lead">ASP.NET is a free web framework for building great Web sites and Web applications using HTML, €SS, and Jav b # Properties
<p><a href="http://www.asp.net" class="btn btn-primary btn-large":Learn more »</p> b =B References
</div> b Account
App_Data
<div class="row"> App_Start
<div class="col-md-4">
<h2»Getting started</h2>
<p>

Content
fonts

ASP.NET Web Forms lets you build dynamic websites using a familiar drag-and-drop, event-driven model. Models

A design surface and hundreds of controls and compenents let you rapidly build sophisticated, powerful UI-driven sites Scripts
<ip> 41 About.aspx
> ¢ Bundle.config
Learn more » b &) Contact.aspx
</ I T —

<;‘|?Iiv>1 eolmda [favicon.ico
<div class="col-md-4"> -3 D’—j Glebal.asax

<h2>Get more libraries</h2>
x> ¥ packages.config

NuGet is a free Visual Studio extension that makes it easy to add, remove, and update libraries and tools in Visua [] Project Readme html
</p» 3 Site.Master
<p> [Site.Mobile.Master
Learn more » b ot Startup.cs

</p> b g ViewSwitcher.ascx

</div>
b Web.confi
<div class="col-md-4"> ¥ Web.config

<h2>Web Hosting</h2>
<p>
You can easily find a web hosting company that offers the right mix of features and price for your applications.
</pr
<p>
Learn more »
</pr
<fdiv>
</div>

</asp:Content>
100% ~| 4
G Design | B Split SolutionE.. (OIS

Output

Ready

You can switch between Design view and Source view by selecting an option at the bottom of
the center window. Design view displays ASP.NET Web pages, master pages, content pages,
HTML pages, and user controls using a near-WYSIWYG view. Source view displays the HTML
markup for your Web page, which you can edit.

Understanding the ASP.NET Frameworks

ASP.NET Web Forms lets you build dynamic websites using a familiar drag-and-drop, event-
driven model. A design surface and hundreds of controls and components let you rapidly build
sophisticated, powerful UI-driven sites with data access. The Wingtip Toy Store is based on
ASP.NET Web Forms, but many of the concepts you learn in this tutorial series are applicable to
all of ASP.NET.

ASP.NET offers four primary development frameworks:

e ASP.NET Web Forms
The Web Forms framework targets developers who prefer declarative and control-based
programming, such as Microsoft Windows Forms (WinForms) and WPF/XAML/Silverlight.
It offers a WYSIWYG designer-driven development model, so it's popular with developers
looking for a rapid application development (RAD) environment for web development. If
you are new to web programming and are familiar with the traditional Microsoft RAD

http://www.asp.net/web-forms

client development tools (for example, for Visual Basic and Visual C#), you can quickly
build a web application without having experience in HTML and JavaScript.

e ASP.NET MVC
ASP.NET MVC targets developers who are interested in patterns and principles like test-
driven development, separation of concerns, inversion of control (IoC), and dependency
injection (DI). This framework encourages separating the business logic layer of a web
application from its presentation layer.

e ASP.NET Web Pages
ASP.NET Web Pages targets developers who want a simple web development story,
along the lines of PHP. In the Web Pages model, you create HTML pages and then add
server-based code to the page in order to dynamically control how that markup is
rendered. Web Pages is specifically designed to be a lightweight framework, and it's the
easiest entry point into ASP.NET for people who know HTML but might not have broad
programming experience — for example, students or hobbyists. It's also a good way for
web developers who know PHP or similar frameworks to start using ASP.NET.

e ASP.NET Single Page Application
ASP.NET Single Page Application (SPA) helps you build applications that include
significant client-side interactions using HTML 5, CSS 3 and JavaScript. The ASP.NET and
Web Tools 2012.2 Update ships a new template for building single page applications
using knockout.js and ASP.NET Web API. In addition to the new SPA template, new
community-created SPA templates are also available for download.

In addition to the four main development frameworks, ASP.NET also offers additional
technologies that are important to be aware of and familiar with, but are not covered in this
tutorial series:

e ASP.NET Web API — A framework for building HTTP services that reach a broad range of
clients, including browsers and mobile devices.
e ASP.NET SignalR - A library that makes developing real-time web functionality easy.

Reviewing the Project

In Visual Studio, the Solution Explorer window lets you manage files for the project. Let's take a
look at the folders that have been added to your application in Solution Explorer. The web

http://www.asp.net/mvc
http://www.asp.net/web-pages
http://www.asp.net/single-page-application
http://www.asp.net/web-api
http://www.asp.net/signalr

application template adds a basic folder structure:

Solution Explorer * O X
@ o-20dim #R
Search Solution Explorer (Ctri+;) P~

fal Solution 'WingtipToys' (1 project)
4 [71) WingtipToys
Properties
n-B References
i Account
B App_Data
B App_Start
i Content
B Images
B Scripts
gl About.aspx
v Bundle.config
g1 Contact.aspx
ga1 Default.aspx
favicon.ico
b A Global.asax
v packages.config
[Site.Master
¥ Web.config

=

R A 4 =

=

=

Selution Explorer | Team Explorer | Database Explorer

Visual Studio creates some initial folders and files for your project. The first files that you will be
working with later in this tutorial are the following:

File Purpose

Default.aspx Typically the first page displayed when the application is runin a
browser.

Site.Master A page that allows you to create a consistent layout and use

standard behavior for pages in your application.

Global.asax An optional file that contains code for responding to application-
level and session-level events raised by ASP.NET or by HTTP
modules.

Web.config The configuration data for an application.

Running the Default Web Application

The default Web application provides a rich experience based on built-in functionality and
support. Without any changes to the default Web forms project, the application is ready to run
on your local Web browser.

1. Press the F5 key while in Visual Studio.
The application will build and display in your Web browser.

- o lEN
($)E)]1 nttp//localnos2401/ O~ B[] Home Page - MyAPNET ... x | | AL

Application name

ASP.NET

ASP.NET is a free web framework for building great Web sites and Web applications
using HTML, CSS, and JavaScript.

Learn more »

Getting started Get more libraries Web Hosting

ASP_NET Web Forms lets you build dynamic NuGet is a free Visual Studio extension that You can easily find a web hosting company that
websites using a familiar drag-and-drop, event- makes it easy to add, remove, and update offers the right mix of features and price for your
driven model. A design surface and hundreds of libraries and tools in Visual Studio projects. applications.

controls and components let you rapidly build

sophisticated, powerful Ul-driven sites with data Learn more » Learn more »

access.

Learn more »

2. Once you have completed review the running application, close the browser window.

There are three main pages in this default Web application: Default.aspx (Home), About.aspx,
and Contact.aspx. Each of these pages can be reached from the top navigation bar. There are
also two additional pages contained in the Account folder, the Register.aspx page and
Login.aspx page. These two pages allow you to use the membership capabilities of ASP.NET to
create, store, and validate user credentials.

ASP.NET Web Forms Background

ASP.NET Web Forms are pages that are based on Microsoft ASP.NET technology, in which code
that runs on the server dynamically generates Web page output to the browser or client device.

An ASP.NET Web Forms page automatically renders the correct browser-compliant HTML for
features such as styles, layout, and so on. Web Forms are compatible with any language
supported by the .NET common language runtime, such as Microsoft Visual Basic and Microsoft
Visual C#. Also, Web Forms are built on the Microsoft NET Framework, which provides benefits
such as a managed environment, type safety, and inheritance.

When an ASP.NET Web Forms page runs, the page goes through a life cycle in which it performs
a series of processing steps. These steps include initialization, instantiating controls, restoring
and maintaining state, running event handler code, and rendering. As you become more familiar
with the power of ASP.NET Web Forms, it is important for you to understand the ASP.NET page
life cycle so that you can write code at the appropriate life-cycle stage for the effect you intend.

When a Web server receives a request for a page, it finds the page, processes it, sends it to the
browser, and then discards all page information. If the user requests the same page again, the
server repeats the entire sequence, reprocessing the page from scratch. Put another way, a
server has no memory of pages that it has processed—pages are stateless. The ASP.NET page
framework automatically handles the task of maintaining the state of your page and its controls,
and it provides you with explicit ways to maintain the state of application-specific information.

Web Application Features in the Web Forms Application Template

The ASP.NET Web Forms Application template provides a rich set of built-in functionality. It not
only provides you with a Home.aspx page, an About.aspx page, a Contact.aspx page, but also
includes membership functionality that registers users and saves their credentials so that they
can log in to your website. This overview provides more information about some of the features
contained in the ASP.NET Web Forms Application template and how they are used in the
Wingtip Toys application.

Membership

ASP.NET Identity stores your users’ credentials in a database created by the application. When
your users log in, the application validates their credentials by reading the database. Your
project's Account folder contains the files that implement the various parts of membership:
registering, logging in, changing a password, and authorizing access. Additionally, ASP.NET Web
Forms supports OAuth and OpenlID. These authentication enhancements allow users to log into
your site using existing credentials, from such accounts as Facebook, Twitter, Windows Live, and
Google.

http://msdn.microsoft.com/en-US/vstudio/aa496123
http://msdn.microsoft.com/library/ms178472(v=vs.100).aspx
http://msdn.microsoft.com/library/ms178472(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/yh26yfzy.aspx

Solution Explorer * O X

@ o-eudm &R
Search Solution Explorer (Ctri+;) P~

fa] Solution "WingtipToys' (1 project)
4 @WingtipTﬂ}rs

b S Properties

[=B References

b &) Login.aspx

gl Manage.aspx
gia OpenAuthProviders.ascx
gal Register.aspx
¢i1 RegisterExternallogin.aspx
¥ Web.config
B App_Data
B App_Start
i Content
B Images
B Scripts
gl About.aspx
w1 Bundle.config
g Contact.aspx
b g Default.aspx

favicon.ico
b &) Global.asax
¥ packages.config
Site.Master
by Web.config

O vV

= A~ =

=

Solution Explorer | Tearn Explorer Database Explorer

By default, the template creates a membership database using a default database name on an
instance of SQL Server Express LocalDB, the development database server that comes with
Visual Studio Express 2013 for Web.

SQL Server Express LocalDB

SQL Server Express LocalDB is a lightweight version of SQL Server that has many
programmability features of a SQL Server database. SQL Server Express LocalDB runs in user
mode and has a fast, zero-configuration installation that has a short list of installation
prerequisites. In Microsoft SQL Server, any database or Transact-SQL code can be moved from
SQL Server Express LocalDB to SQL Server and SQL Azure without any upgrade steps. So, SQL
Server Express LocalDB can be used as a developer environment for applications targeting all
editions of SQL Server. SQL Server Express LocalDB enables features such as stored procedures,

http://technet.microsoft.com/library/hh510202.aspx

user-defined functions and aggregates, .NET Framework integration, spatial types and others
that are not available in SQL Server Compact.

Master Pages
An ASP.NET master page defines a consistent appearance and behavior for all of the pages in

your application. The layout of the master page merges with the content from an individual
content page to produce the final page that the user sees. In the Wingtip Toys application, you
modify the Site.master master page so that all the pages in the Wingtip Toys website share the
same distinctive logo and navigation bar.

HTML5

The ASP.NET Web Forms Application template supports HTML5, which is the latest version of
the HTML markup language. HTML5 supports new elements and functionality that make it easier
to create Web sites.

Modernizr
For browsers that do not support HTMLS5, you can use Modernizr. Modernizr is an open-source

JavaScript library that can detect whether a browser supports HTML5 features, and enable them
if it does not. In the ASP.NET Web Forms Application template, Modernizr is installed as a NuGet
package.

Bootstrap

The Visual Studio 2013 project templates use Bootstrap, a layout and theming framework
created by Twitter. Bootstrap uses CSS3 to provide responsive design, which means layouts can
dynamically adapt to different browser window sizes. You can also use Bootstrap's theming
feature to easily effect a change in the application’s look and feel. By default, the ASP.NET Web
Application template in Visual Studio 2013 includes Bootstrap as a NuGet package.

NuGet Packages

The ASP.NET Web Forms Application template includes a set of NuGet packages. These
packages provide componentized functionality in the form of open source libraries and tools.
There is a wide variety of packages to help you create and test your applications. Visual Studio
makes it easy to add, remove, and update NuGet packages. Developers can create and add
packages to NuGet as well.

http://msdn.microsoft.com/en-us/library/wtxbf3hh.aspx
http://www.w3schools.com/html/html5_intro.asp
http://www.modernizr.com/
http://getbootstrap.com/
http://www.nuget.org/

WingtipToys.sln - Manage NuGet Packages

4 [nstalled packages
All

B Online

k Updates

P Recent packages

Each package is licensed to you by its
owner. Microsoft is not responsible
for, nor does it grant any licenses to,
third-party packages.

Settings |

-

Ll

.

o”

.

0"

-

Co)

Sort by: Name: Ascending -

Query -
JQuery is a fast and concise @|
JavaScript Library that si...

Microsoft ASP.NET Universal Providers...
ASP.MET Universal Providers extend SQL
support in ASP.MET 4 to all editions of 5Q...

Microsoft ASP.NET Universal Providers...
ASP.MET Universal Providers extend SQL
suppert in ASP.MET 4 to all editions of 5Q...

Microsoft ASP.NET Web Optimization F...
ASP.MET Optimization introduces a way to
bundle and optimize css/js files,

Microsoft DotNetOpenAuth helpers for...

A series of helpers to enable using
Methletinanfoth in an ASD MET snnlicat

4 1213 »

B |
Search Installed packages (Ctrl+E) P
- FS
Created by: John Resig
Id: jQuery
Version:1.7.1.1

View License Terms
Project Information
Description:

JQuery is a new kind of JavaScript
Library.

jQuery is a fast and concise JavaScript
Library that simplifies HTML document
traversing, event handling, animating,
and Ajax interactions for rapid web
development. jQuery is designed to
change the way that you write
JavaScript.

Tags: jQuery
Dependencies:

No Dependencies
-

Close |

When you install a package, NuGet copies files to your solution and automatically makes

whatever changes are needed, such as adding references and changing you're the configuration

associated with your Web application. If you decide to remove the library, NuGet removes files
and reverses whatever changes it made in your project so that no clutter is left. NuGet is
available from the Tools menu in Visual Studio.

JQuery

jQuery is a fast and concise JavaScript Library that simplifies HTML document traversing, event
handling, animating, and Ajax interactions for rapid web development. The jQuery JavaScript
library is included in the ASP.NET Web Forms Application template as a NuGet package.

Unobtrusive Validation

Built-in validator controls have been configured to use unobtrusive JavaScript for client-side
validation logic. This significantly reduces the amount of JavaScript rendered inline in the page
markup and reduces the overall page size. Unobtrusive validation is added globally to the

ASP.NET Web Forms Application template based on the setting in the <appSettings> element of

the Web.config file at the root of the application.

Entity Framework Code First
Besides the features in the ASP.NET Web Forms Application template, the Wingtip Toys

application uses Entity Framework Code First, which is a NuGet library that enables code-centric
development when you work with data. Put simply, it creates the database portion of your
application for you based on the code that you write. Using the Entity Framework, you retrieve
and manipulate data as strongly typed objects. This lets you focus on the business logic in your
application rather than the details of how data is accessed.

http://jquery.com/
http://weblogs.asp.net/scottgu/archive/2010/12/08/announcing-entity-framework-code-first-ctp5-release.aspx

For additional information about the installed libraries and packages included with the ASP.NET
Web Forms template, see the list of installed NuGet packages. To do this, In Visual Studio create
a new Web Forms project, select Tools -> Library Package Manager -> Manage NuGet
Packages for Solution, and select Installed packages in the Manage NuGet Packages dialog
box.

Touring Visual Studio

The primary windows in Visual Studio include the Solution Explorer, the Server Explorer
(Database Explorer in Express), the Properties Window, the Toolbox, the Toolbar, and the
Document Window.

— Document windows

— Taolbars
I [E=1E3]
[1
L J
Solution Explorer
= Database Explorer
. | -
Froperties window
|
— Toolbox

— View tahs

For more information about Visual Studio, see Visual Guide to Visual Web Developer.

Summary

In this tutorial you have created, reviewed and run the default Web Forms application. You have
reviewed the different features of the default Web forms application and learned some basics
about how to use the Visual Studio environment. In the following tutorials you'll create the data
access layer.

Additional Resources

Choosing the Right Programming Model
Web Application Projects versus Web Site Projects
ASP.NET Web Forms Pages Overview

http://msdn.microsoft.com/library/ee410104.aspx
http://www.asp.net/web-forms/videos/how-do-i/choosing-the-right-programming-model
http://msdn.microsoft.com/en-us/library/dd547590.aspx
http://msdn.microsoft.com/en-us/library/428509ah.aspx

Create the Data Access Layer

This tutorial series will teach you the basics of building an ASP.NET Web Forms application using
ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project
with C# source code is available to accompany this tutorial series.

This tutorial describes how to create, access, and review data from a database using ASP.NET
Web Forms and Entity Framework Code First. This tutorial builds on the previous tutorial “Create
the Project” and is part of the Wingtip Toy Store tutorial series. When you've completed this
tutorial, you will have built a group of data-access classes that are in the Models folder of the
project.

What you'll learn:

e How to create the data models.
e How to initialize and seed the database.
e How to update and configure the application to support the database.

These are the features introduced in the tutorial:

e Entity Framework Code First
e LocalDB
e Data Annotations

Creating the Data Models

Entity Framework is an object-relational mapping (ORM) framework. It lets you work with
relational data as objects, eliminating most of the data-access code that you'd usually need to
write. Using Entity Framework, you can issue queries using LINQ, then retrieve and manipulate
data as strongly typed objects. LINQ provides patterns for querying and updating data. Using
Entity Framework allows you to focus on creating the rest of your application, rather than
focusing on the data access fundamentals. Later in this tutorial series, we'll show you how to use
the data to populate navigation and product queries.

Entity Framework supports a development paradigm called Code First. Code First lets you define
your data models using classes. A class is a construct that enables you to create your own
custom types by grouping together variables of other types, methods and events. You can map
classes to an existing database or use them to generate a database. In this tutorial, you'll create
the data models by writing data model classes. Then, you'll let Entity Framework create the
database on the fly from these new classes.

You will begin by creating the entity classes that define the data models for the Web Forms
application. Then you will create a context class that manages the entity classes and provides
data access to the database. You will also create an initializer class that you will use to populate
the database.

http://msdn.microsoft.com/en-us/data/aa937723
http://msdn.microsoft.com/en-us/library/bb397926.aspx

Entity Framework and References

By default, Entity Framework is included when you create a new ASP.NET Web Application
using the Web Forms template. Entity Framework can be installed, uninstalled, and updated as
a NuGet package.

This NuGet package includes the following runtime assemblies within your project:

e EntityFramework.dll — All the common runtime code used by Entity Framework
e EntityFramework.SqlServer.dil — The Microsoft SQL Server provider for Entity Framework

Entity Classes

The classes you create to define the schema of the data are called entity classes. If you're new to
database design, think of the entity classes as table definitions of a database. Each property in
the class specifies a column in the table of the database. These classes provide a lightweight,
object-relational interface between object-oriented code and the relational table structure of the
database.

In this tutorial, you'll start out by adding simple entity classes representing the schemas for
products and categories. The products class will contain definitions for each product. The name
of each of the members of the product class will be ProductID, ProductName,
Description, ImagePath, UnitPrice, CategoryID, and Category. The category class will
contain definitions for each category that a product can belong to, such as Car, Boat, or Plane.
The name of each of the members of the category class will be CategoryID, CategoryName,
Description, and Products. Each product will belong to one of the categories. These entity
classes will be added to the project’s existing Models folder.

Solution Explorer *Ox
@l eo--uam| &=
Search Selution Explorer (Ctrl+;) P~
&] Solution 'WingtipToys' (1 project)
i WingtipToys
P & Properties
=B References
P B Account
I App_Data
b B App_Start
P B Content
P img
P[] Medels
P B Scripts &1 View in Browser (Internet Explorer) Ctrl+Shift+W
b & Aboutaspx Browse With...
¥ Bundle.config Convert to Web Application
B g Contact.aspx
b g Default.aspx Add
favicon.ico Scope to This
b &1 Globalasax . Mew Solution Explorer View
¢1 packages.config
[Site.Master Exclude From Project
3 Site.Mobile.Master H o cut Ctrl+X
c* .
b . Si.:artup.cs i Copy Ctrl+C
P e ViewSwitcherascx)
by Web.config Paste Ctrl+V
Delete Del
Solution Explarer Rename
Open Folder in File Explorer
K Properties Alt+Enter

1. In Solution Explorer, right-click the Models folder and then select Add -> New Item.

‘O New ltem.. Ctrl+Shift+A
‘a3 Existing ltem... Shift+Alt+A
Scaffold...
T MNew Folder
Add ASP.NET Folder
Web Form
Web User Control
JavaScript File
Style Sheet
% Class...

The Add New Item dialog box is displayed.

2. Under Visual C# from the Installed pane on the left, select Code.

Add New Item - WingtipToys

Click here to go online and find templates.

Name: [Product.cs |

» I

4 |nstalled Sort by: | Default 1'| 0= Search Installed Templates (Ctrl+E) P~
isual C# cx . .
4 Visual € be] Class Visual & Type: Visual C*
Code ba)
An empty class declaration
Data 0O Interf Visual C#
General nterface isual C3
Web -t
i i "
Sitverlight B] Code File Visual C
B Online

| | Cancel

3. Select Class from the middle pane and name this new class Product.cs.
4. Click Add.

The new class file is displayed in the editor.
5. Replace the default code with the following code:

using System.ComponentModel.DataAnnotations;

namespace WingtipToys.Models

{

public class Product

{
[ScaffoldColumn (false)]

public int ProductID { get; set; }

[Required, StringLength(100), Display(Name = "Name")]
public string ProductName { get; set; }

[Required, StringLength(10000), Display(Name = "Product Description"),
DataType (DataType.MultilineText)]
public string Description { get; set; }

public string ImagePath { get; set; }

[Display (Name = "Price")]
public double? UnitPrice { get; set; }

public int? CategoryID { get; set; }

public virtual Category Category { get; set; }
}

6. Create another class by repeating steps 1 through 4, however, name the new class
Category.cs and replace the default code with the following code:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;

namespace WingtipToys.Models
{
public class Category
{
[ScaffoldColumn (false)]
public int CategoryID { get; set; }

[Required, StringLength(100), Display(Name = "Name")]
public string CategoryName { get; set; }

[Display (Name = "Product Description")]
public string Description { get; set; }

public virtual ICollection<Product> Products { get; set; }
}
}

As previously mentioned, the Category class represents the type of product that the
application is designed to sell (such as "Cars", "Boats", "Rockets", and so on), and the Product
class represents the individual products (toys) in the database. Each instance of a Product
object will correspond to a row within a relational database table, and each property of the
Product class will map to a column in the relational database table. Later in this tutorial, you'll
review the product data contained in the database.

Data Annotations

You may have noticed that certain members of the classes have attributes specifying details
about the member, such as [ScaffoldColumn (false)]. These are data annotations. The
data annotation attributes can describe how to validate user input for that member, to specify
formatting for it, and to specify how it is modeled when the database is created.

Context Class

To start using the classes for data access, you must define a context class. As mentioned
previously, the context class manages the entity classes (such as the Product class and the
Category class) and provides data access to the database.

This procedure adds a new C# context class to the Models folder.

1. Right-click the Models folder and then select Add -> New Item.

The Add New Item dialog box is displayed.
2. Select Class from the middle pane, name it ProductContext.cs and click Add.
3. Replace the default code contained in the class with the following code:

using System.Data.Entity;
namespace WingtipToys.Models

{

public class ProductContext : DbContext
{
public ProductContext () : base ("WingtipToys")
{
}
public DbSet<Category> Categories { get; set; }
public DbSet<Product> Products { get; set; }

}

This code adds the System.Data.Entity namespace so that you have access to all the core
functionality of Entity Framework, which includes the capability to query, insert, update, and
delete data by working with strongly typed objects.

The ProductContext class represents Entity Framework product database context, which
handles fetching, storing, and updating Product class instances in the database. The
ProductContext class derives from the DbContext base class provided by Entity Framework.

Initializer Class

You will need to run some custom logic to initialize the database the first time the context is
used. This will allow seed data to be added to the database so that you can immediately display
products and categories.

This procedure adds a new C# initializer class to the Models folder.

1. Create another Class in the Models folder and name it ProductDatabaselnitializer.cs.
2. Replace the default code contained in the class with the following code:

using System.Collections.Generic;
using System.Data.Entity;

namespace WingtipToys.Models
{
public class ProductDatabaselInitializer
DropCreateDatabaseAlways<ProductContext>
{
protected override void Seed(ProductContext context)
{
GetCategories () .ForEach (c => context.Categories.Add(c));
GetProducts () .ForEach (p => context.Products.Add (p));
}

private static List<Category> GetCategories ()
{
var categories = new List<Category> {
new Category
{
CategoryID = 1,

CategoryName "Cars"
by
new Category
{
CategoryID = 2,
CategoryName = "Planes"

b

new Category

CategoryID = 3,
CategoryName = "Trucks"

by

new Category

CategoryID = 4,
CategoryName = "Boats"
br

new Category

CategoryID = 5,
CategoryName = "Rockets"

by
b

return categories;

}

private static List<Product> GetProducts ()
{
var products = new List<Product> {
new Product

{
ProductID = 1,

ProductName "Convertible Car",
Description = "This convertible car is fast! The engine is
powered by a neutrino based battery (not included)." +

"Power it up and let it go!",
ImagePath="carconvert.png",
UnitPrice = 22.50,
CategoryID = 1
}y

new Product

ProductID = 2,
ProductName = "Old-time Car",
Description = "There's nothing old about this toy car,
except it's looks. Compatible with other old toy cars.",
ImagePath="carearly.png",
UnitPrice = 15.95,
CategoryID = 1
by
new Product
{
ProductID = 3,
ProductName = "Fast Car",
Description = "Yes this car is fast, but it also floats in
water.",
ImagePath="carfast.png",
UnitPrice = 32.99,
CategoryID = 1
by

new Product

ProductID = 4,

ProductName = "Super Fast Car",

Description = "Use this super fast car to entertain guests.
Lights and doors work!",

ImagePath="carfaster.png",

UnitPrice = 8.95,

CategoryID = 1

by

new Product

{
ProductID = 5,

ProductName "Old Style Racer",
Description = "This old style racer can fly (with user
assistance). Gravity controls flight duration." +

"No batteries required.",
ImagePath="carracer.png",
UnitPrice = 34.95,
CategoryID = 1
br

new Product

ProductID = 6,

ProductName = "Ace Plane",

Description = "Authentic airplane toy. Features realistic
color and details.",

ImagePath="planeace.png",

UnitPrice = 95.00,

CategoryID = 2

br

new Product

ProductID = 7,

ProductName = "Glider",

Description = "This fun glider is made from real balsa
wood. Some assembly required.",

ImagePath="planeglider.png",

UnitPrice = 4.95,

CategoryID = 2

b

new Product

ProductID = 8,

ProductName = "Paper Plane",

Description = "This paper plane is like no other paper
plane. Some folding required.",

ImagePath="planepaper.png",

UnitPrice = 2.95,

CategoryID = 2

by

new Product

ProductID = 9,

ProductName = "Propeller Plane",

Description = "Rubber band powered plane features two
wheels.",

ImagePath="planeprop.png",

UnitPrice = 32.95,

CategoryID = 2

by

new Product

ProductID = 10,

ProductName = "Early Truck",

Description = "This toy truck has a real gas powered
engine. Requires regular tune ups.",

ImagePath="truckearly.png",

UnitPrice = 15.00,

CategoryID = 3

by

new Product

{

ProductID = 11,
ProductName = "Fire Truck",
Description = "You will have endless fun with this one

quarter sized fire truck.",

by

new

trucks that are not

by

new

ImagePath="truckfire.png",
UnitPrice = 26.00,
CategoryID = 3

Product

ProductID = 12,

ProductName = "Big Truck",
Description = "This fun toy truck can be used to tow other
as big.",

ImagePath="truckbig.png",
UnitPrice = 29.00,
CategoryID = 3

Product

ProductID = 13,

ProductName = "Big Ship",
Description = "Is it a boat or a ship. Let this floating
vehicle decide by using its " +

by

new

"artifically intelligent computer brain!",
ImagePath="boatbig.png",
UnitPrice = 95.00,
CategoryID = 4

Product

ProductID = 14,

ProductName = "Paper Boat",
Description = "Floating fun for all! This toy boat can be
assembled in seconds. Floats for minutes!" +

let it go!",

of 200 feet.",

b

by

new

by

new

"Some folding required.",
ImagePath="boatpaper.png",
UnitPrice = 4.95,
CategoryID = 4

Product

ProductID = 15,
ProductName = "Sail Boat",
Description = "Put this fun toy sail boat in the water and

ImagePath="boatsail.png",
UnitPrice = 42.95,
CategoryID = 4

Product

ProductID = 16,
ProductName = "Rocket",
Description = "This fun rocket will travel up to a height

ImagePath="rocket.png",
UnitPrice = 122.95,
CategoryID = 5

return products;

}
}
}

As you can see from the above code, when the database is created and initialized, the seed
property is overridden and set. When the Seed property is set, the values from the categories
and products are used to populate the database. If you attempt to update the seed data by
modifying the above code after the database has been created, you won't see any updates when
you run the Web application. The reason is the above code uses an implementation of the
DropCreateDatabaseIfModelChanges class to recognize if the model (schema) has
changed before resetting the seed data. If no changes are made to the Category and
Product entity classes, the database will not be reinitialized with the seed data.

Note

If you wanted the database to be recreated every time you ran the application, you could use
the DropCreateDatabaseAlways class instead of the
DropCreateDatabaselfModelChanges class. However for this tutorial series, use the
DropCreateDatabaseIfModelChanges class.

At this point in this tutorial, you will have a Models folder with four new classes and one default
class:

Selution Explorer * 0 X
@ e-enap| &=
Search Solution Explorer (Ctrl+;) P
fa] Solution "WingtipToys' (1 project)
4[] WingtipToys
& Properties
[+ =B References
b 0 Account
I App_Data
b 0 App_Start
b 0 Content
b img
[o* Category.cs
B |dentityModels.cs
I+ * Product.es
oo ProductContext.cs
= * ProductDatabaselnitializer.cs
b B Scripts
b g About.aspx
¥_] Bundle.config
b & Contactaspx
B e Defaultaspx
favicon.co
b &0 Global.asax
¥_] packages.config
[Site.Master
[+ Site.Mobile. Master
[+ * Startup.cs
b ame ViewSwitcher.ascx
B 4 Web.config

SN LSO Teamn Explorer Server Explorer

Configuring the Application to Use the Data Model

Now that you've created the classes that represent the data, you must configure the application
to use the classes. In the Global .asax file, you add code that initializes the model. In the
Web.config file you add information that tells the application what database you'll use to store
the data that's represented by the new data classes. The Global.asax file can be used to handle
application events or methods. The Web.config file allows you to control the configuration of

your ASP.NET web application.

Updating the Global.asax file

To initialize the data models when the application starts, you will update the
Application Start handlerin the Globalasax.cs file.

Note

In Solution Explorer, you can select either the Global asax file or the Global.asax.cs file to edit the
Global.asax.cs file.

1. Add the following code highlighted in yellow to the Application Start method in
the Global.asax.cs file.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Optimization;
using System.Web.Routing;

using System.Web.Security;

using System.Web.SessionState;
using System.Data.Entity;

using WingtipToys.Models;

namespace WingtipToys
{
public class Global : HttpApplication
{
void Application Start (object sender, EventArgs e)
{
// Code that runs on application startup
RouteConfig.RegisterRoutes (RouteTable.Routes) ;
BundleConfig.RegisterBundles (BundleTable.Bundles) ;

// Initialize the product database.
Database.SetInitializer (new ProductDatabaselInitializer());

Note

Your browser must support HTMLS5 to view the code highlighted in yellow when viewing this
tutorial series in a browser.

As shown in the above code, when the application starts, the application specifies the initializer
that will run during the first time the data is accessed. The two additional namespaces are
required to access the Database object and the ProductDatabaseInitializer object.

Modifying the Web.Config File

Although Entity Framework Code First will generate a database for you in a default location
when the database is populated with seed data, adding your own connection information to
your application gives you control of the database location. You specify this database
connection using a connection string in the application’s Web.config file at the root of the

project. By adding a new connection string, you can direct the location of the database
(wingtiptoys.mdf) to be built in the application’s data directory (App_Data), rather than its default

location. Making this change will allow you to find and inspect the database file later in this
tutorial.

1. In Solution Explorer, find and open the Web.config file.
2. Add the following connection string highlighted in yellow to the
<connectionStrings> section of the Web.config file as follows:

<connectionStrings>
<add name="DefaultConnection" connectionString="Data
Source= (LocalDb)\v1l1l.0;AttachDbFilename=|DataDirectory|\aspnet-WingtipToys-—
20131119102907.mdf;Initial Catalog=aspnet-WingtipToys-20131119102907;Integrated
Security=True"
providerName="System.Data.SqlClient" />
<add name="WingtipToys"
connectionString="Data
Source= (LocalDB)\v1ll.0;AttachDbFilename=|DataDirectory|\wingtiptoys.mdf; Integra
ted Security=True" providerName="System.Data.SglClient" />
</connectionStrings>

When the application is run for the first time, it will build the database at the location specified
by the connection string. But before running the application, let's build it first.

Building the Application

To make sure that all the classes and changes to your Web application work, you should build
the application.

1. From the Debug menu, select Build WingtipToys.
The Output window is displayed, and if all went well, you see a succeeded message.
Qutput
Show output from: | Build - &= | a

NuGet package restore started.

All packages are already installed and there is nothing to restore.

MuGet package restore finished.

1x------ Build started: Project: WingtipToys, Configuration: Debug Any CPU ------

1> WingtipToys -»* c:\usershiuser\documents\visual studio 2013\Projects\WingtipToys\WingtipToys\bin\WingtipToys.dll
========== Build: 1 succeeded, @ failed, ® up-to-date, @ skipped ==========

If you run into an error, re-check the above steps. The information in the Output window will
indicate which file has a problem and where in the file a change is required. This information will

enable you to determine what part of the above steps need to be reviewed and fixed in your
project.

Summary

In this tutorial of the series you have created the data model, as well as, added the code that will
be used to initialize and seed the database. You have also configured the application to use the
data models when the application is run.

In the next tutorial, you'll update the UL, add navigation, and retrieve data from the database.
This will result in the database being automatically created based on the entity classes that you
created in this tutorial.

Additional Resources

Entity Framework Overview

Beginner's Guide to the ADO.NET Entity Framework
Code First Development with Entity Framework (video)
Code First Relationships Fluent API

Code First Data Annotations

Productivity Improvements for the Entity Framework

http://msdn.microsoft.com/en-us/library/bb399567.aspx
http://msdn.microsoft.com/en-us/data/ee712907
http://www.msteched.com/2010/Europe/DEV212
http://msdn.microsoft.com/en-us/data/hh134698
http://msdn.microsoft.com/en-us/data/gg193958
http://blogs.msdn.com/b/efdesign/archive/2010/06/21/productivity-improvements-for-the-entity-framework.aspx?wa=wsignin1.0

UI and Navigation

This tutorial series will teach you the basics of building an ASP.NET Web Forms application using
ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project
with C# source code is available to accompany this tutorial series.

In this tutorial, you will modify the UI of the default Web application to support features of the

Wingtip Toys store front application. Also, you will add simple and data bound navigation. This
tutorial builds on the previous tutorial “Create the Data Access Layer” and is part of the Wingtip
Toys tutorial series.

What you'll learn:

e How to change the UI to support features of the Wingtip Toys store front application.
e How to configure an HTMLS5 element to include page navigation.

e How to create a data-driven control to navigate to specific product data.

e How to display data from a database created using Entity Framework Code First.

ASP.NET Web Forms allow you to create dynamic content for your Web application. Each
ASP.NET Web page is created in a manner similar to a static HTML Web page (a page that does
not include server-based processing), but ASP.NET Web page includes extra elements that
ASP.NET recognizes and processes to generate HTML when the page runs.

With a static HTML page (.htm or .html file), the server fulfills a Wweb request by reading the file
and sending it as-is to the browser. In contrast, when someone requests an ASP.NET Web page
(.aspx file), the page runs as a program on the Web server. While the page is running, it can
perform any task that your Web site requires, including calculating values, reading or writing
database information, or calling other programs. As its output, the page dynamically produces
markup (such as elements in HTML) and sends this dynamic output to the browser.

Modifying the UI

You'll continue this tutorial series by modifying the Default.aspx page. You will modify the Ul
that's already established by the default template used to create the application. The type of
modifications you'll do are typical when creating any Web Forms application. You'll do this by
changing the title, replacing some content, and removing unneeded default content.

1. Open or switch to the Default.aspx page.

2. If the page appears in Design view, switch to Source view.

3. At the top of the page in the @Page directive, change the Title attribute to "Welcome”,
as shown highlighted in yellow below.

<%Q@ Page Title="Welcome" Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true" CodeBehind="Default.aspx.cs"
Inherits="WingtipToys. Default" %>

4. Also on the Default.aspx page, replace all of the default content contained in the
<asp:Content> tag so that the markup appears as below.

<asp:Content ID="BodyContent" ContentPlaceHolderID="MainContent"
runat="server">
<hl><%: Title %>.</hl>
<h2>Wingtip Toys can help you find the perfect gift.</h2>
<p class="lead">We're all about transportation toys. You can order
any of our toys today. Each toy listing has detailed
information to help you choose the right toy.</p>

</asp:Content>

5. Save the Default.aspx page by selecting Save Default.aspx from the File menu.

The resulting Default.aspx page will appear as follows:

<%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true" CodeBehind="Default.aspx.cs"
Inherits="WingtipToys. Default" %>

<asp:Content ID="BodyContent" ContentPlaceHolderID="MainContent"
runat="server">
<hl><%: Title %>.</hl>
<h2>Wingtip Toys can help you find the perfect gift.</h2>
<p class="lead">We're all about transportation toys. You can order
any of our toys today. Each toy listing has detailed
information to help you choose the right toy.</p>

</asp:Content>

In the example, you have set the Tit1le attribute of the @Page directive. When the HTML is
displayed in a browser, the server code <$: Page.Title %> resolves to the content
contained in the Title attribute.

The example page includes the basic elements that constitute an ASP.NET Web page. The page
contains static text as you might have in an HTML page, along with elements that are specific to
ASP.NET. The content contained in the Default.aspx page will be integrated with the master
page content, which will be explained later in this tutorial.

@Page Directive

ASP.NET Web Forms usually contain directives that allow you to specify page properties and
configuration information for the page. The directives are used by ASP.NET as instructions for
how to process the page, but they are not rendered as part of the markup that is sent to the
browser.

The most commonly used directive is the @Page directive, which allows you to specify many
configuration options for the page, including the following:

e The server programming language for code in the page, such as C#.

e Whether the page is a page with server code directly in the page, which is called a
single-file page, or whether it is a page with code in a separate class file, which is called a
code-behind page.

e Whether the page has an associated master page and should therefore be treated as a
content page.
e Debugging and tracing options.

If you do not include an @Page directive in the page, or if the directive does not include a
specific setting, a setting will be inherited from the Web.config configuration file or from the
Machine.config configuration file. The Machine.config file provides additional configuration
settings to all applications running on a machine.

Note

The Machine.config also provides details about all possible configuration settings.

Web Server Controls

In most ASP.NET Web Forms applications, you will add controls that allow the user to interact
with the page, such as buttons, text boxes, lists, and so on. These Web server controls are similar
to HTML buttons and input elements. However, they are processed on the server, allowing you
to use server code to set their properties. These controls also raise events that you can handle in
server code.

Server controls use a special syntax that ASP.NET recognizes when the page runs. The tag name
for ASP.NET server controls starts with an asp: prefix. This allows ASP.NET to recognize and
process these server controls. The prefix might be different if the control is not part of the .NET
Framework. In addition to the asp: prefix, ASP.NET server controls also include the
runat="server" attribute and an ID that you can use to reference the control in server code.

When the page runs, ASP.NET identifies the server controls and runs the code that is associated
with those controls. Many controls render some HTML or other markup into the page when it is
displayed in a browser.

Server Code

Most ASP.NET Web Forms applications include code that runs on the server when the page is
processed. As mentioned above, server code can be used to do a variety of things, such as
adding data to a ListView control. ASP.NET supports many languages to run on the server,
including C#, Visual Basic, J#, and others.

ASP.NET supports two models for writing server code for a Web page. In the single-file model,
the code for the page is in a script element where the opening tag includes the
runat="server" attribute. Alternatively, you can create the code for the page in a separate
class file, which is referred to as the code-behind model. In this case, the ASP.NET Web Forms
page generally contains no server code. Instead, the @Page directive includes information that
links the .aspx page with its associated code-behind file.

The CodeBehind attribute contained in the @Page directive specifies the name of the separate
class file, and the Inherits attribute specifies the name of the class within the code-behind file
that corresponds to the page.

Updating the Master Page

In ASP.NET Web Forms, master pages allow you to create a consistent layout for the pages in
your application. A single master page defines the look and feel and standard behavior that you
want for all of the pages (or a group of pages) in your application. You can then create
individual content pages that contain the content you want to display, as explained above.
When users request the content pages, ASP.NET merges them with the master page to produce
output that combines the layout of the master page with the content from the content page.

The new site needs a single logo to display on every page. To add this logo, you can modify the
HTML on the master page.

1. In Solution Explorer, find and open the Site.Master page.
2. If the page is in Design view, switch to Source view.
3. Update the master page by modifying or adding the markup highlighted in yellow:

<%Q@ Master Language="C#" AutoEventWireup="true" CodeBehind="Site.master.cs"
Inherits="WingtipToys.SiteMaster" %>

<!DOCTYPE html>

<html lang="en">

<head runat="server">
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title><%: Page.Title %> - Wingtip Toys</title>

<asp:PlaceHolder runat="server">

<%: Scripts.Render ("~/bundles/modernizr") %>
</asp:PlaceHolder>
<webopt:bundlereference runat="server" path="~/Content/css" />
<link href="~/favicon.ico" rel="shortcut icon" type="image/x-icon" />
</head>
<body>

<form runat="server">
<asp:ScriptManager runat="server">
<Scripts>

<%--To learn more about bundling scripts in ScriptManager see
http://go.microsoft.com/fwlink/?LinkID=301884 --%>

<%--Framework Scripts--%>

<asp:ScriptReference Name="MsAjaxBundle" />

<asp:ScriptReference Name="jquery" />

<asp:ScriptReference Name="bootstrap" />

<asp:ScriptReference Name="respond" />

<asp:ScriptReference Name="WebForms.]js" Assembly="System.Web"
Path="~/Scripts/WebForms/WebForms.js" />

<asp:ScriptReference Name="WebUIValidation.js"
Assembly="System.Web" Path="~/Scripts/WebForms/WebUIValidation.js" />

<asp:ScriptReference Name="MenuStandards.js"
Assembly="System.Web" Path="~/Scripts/WebForms/MenuStandards.js" />

<asp:ScriptReference Name="GridView.js" Assembly="System.Web"
Path="~/Scripts/WebForms/GridView.js" />

<asp:ScriptReference Name="DetailsView.]js"
Assembly="System.Web" Path="~/Scripts/WebForms/DetailsView.js" />

<asp:ScriptReference Name="TreeView.]js" Assembly="System.Web"
Path="~/Scripts/WebForms/TreeView.js" />

<asp:ScriptReference Name="WebParts.]js" Assembly="System.Web"
Path="~/Scripts/WebForms/WebParts.js" />

<asp:ScriptReference Name="Focus.js" Assembly="System.Web"
Path="~/Scripts/WebForms/Focus.js" />

<asp:ScriptReference Name="WebFormsBundle" />

<%--Site Scripts--%>

</Scripts>
</asp:ScriptManager>

<div class="navbar navbar-inverse navbar-fixed-top">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-
toggle="collapse" data-target=".navbar-collapse">

</button>
Wingtip
Toys
</div>
<div class="navbar-collapse collapse">
<ul class="nav navbar-nav'">
Home</1li>
About</1i>
Contact</1li>

<asp:LoginView runat="server" ViewStateMode="Disabled">
<AnonymousTemplate>
<ul class="nav navbar-nav navbar-right">
<a runat="server"
href="~/Account/Register">Register</1li>
<a runat="server"
href="~/Account/Login">Log in

</AnonymousTemplate>
<LoggedInTemplate>
<ul class="nav navbar-nav navbar-right">
<a runat="server" href="~/Account/Manage"
title="Manage your account">Hello, <%: Context.User.Identity.GetUserName () %>
1</11i>

<asp:LoginStatus runat="server"
LogoutAction="Redirect" LogoutText="Log off" LogoutPageUrl="~/"
OnLoggingOut="Unnamed LoggingOut" />

</1li>

</LoggedInTemplate>
</asp:LoginView>
</div>
</div>

</div>
<div id="TitleContent" style="text-align: center">

<asp:Image ID="Imagel" runat="server"
ImageUrl="~/Images/logo.jpg" BorderStyle="None" />

</div>
<div class="container body-content">
<asp:ContentPlaceHolder ID="MainContent" runat="server">
</asp:ContentPlaceHolder>
<hr />
<footer>
<p>© <%: DateTime.Now.Year %> - Wingtip Toys</p>
</footer>
</div>
</form>
</body>
</html>

This HTML will display the image named logo.jpg from the Images folder of the Web application,
which you'll add later. When a page that uses the master page is displayed in a browser, the
logo will be displayed. If a user clicks on the logo, the user will navigate back to the Default.aspx
page. The HTML anchor tag <a> wraps the image server control and allows the image to be
included as part of the link. The href attribute for the anchor tag specifies the root "~/" of the
Web site as the link location. By default, the Default.aspx page is displayed when the user
navigates to the root of the Web site. The Image <asp: Image> server control includes addition
properties, such as BorderStyle, that render as HTML when displayed in a browser.

Master Pages

A master page is an ASP.NET file with the extension .master (for example, Site.Master) with a
predefined layout that can include static text, HTML elements, and server controls. The master
page is identified by a special @Master directive that replaces the @Page directive that is used
for ordinary .aspx pages.

In addition to the @Master directive, the master page also contains all of the top-level HTML
elements for a page, such as html, head, and form. For example, on the master page you
added above, you use an HTML table for the layout, an img element for the company logo,
static text, and server controls to handle common membership for your site. You can use any
HTML and any ASP.NET elements as part of your master page.

In addition to static text and controls that will appear on all pages, the master page also includes
one or more ContentPlaceHolder controls. These placeholder controls define regions where
replaceable content will appear. In turn, the replaceable content is defined in content pages,
such as Default.aspx, using the Content server control.

Adding Image Files
The logo image that is referenced above, along with all the product images, must be added to
the Web application so that they can be seen when the project is displayed in a browser.

Download from MSDN Samples site:
Getting Started with ASP.NET 4.5 Web Forms and Visual Studio 2013 - Wingtip Toys (C#)

http://go.microsoft.com/fwlink/?LinkID=389434&clcid=0x409

The download includes resources in the WingtipToys-Assets folder that are used to create the
sample application.

1. If you haven't already done so, download the compressed sample files using the above
link from the MSDN Samples site.

2. Once downloaded, open the .zip file and copy the contents to a local folder on your
machine.

3. Find and open the WingtipToys-Assets folder.

4. By dragging and dropping, copy the Catalog folder from your local folder to the root of
the Web appllcatlon project in the Solution Explorer of V|suaI Studlo

CAUsers\erik\Downloads\WingtipToys-Assets s - Microsaft Visual Studio Express 2013 for Web o n + 2 - B x
ROJECT DEBUG TEAM TOOLS TEST WINDOW HELP

b Intemet Explores = & @ = Debug -

Bl sciusion Explorer
© Favorites

o o “ ¢ #" AutoEventiireups"true" Codebehinds"Site.master.cs” Inhd
2 N o-eudB &
I Desktop Catalog 4 51PN o fold N @ @@
s Dewnioads i logoipg
% Recent places < "F‘

L oTw v vv weveswwew quﬂv

" >applicatior

Solution Expiore |[ERTST——Tr—

E=] i it 5 not s i n [a [

2l S ORI ET T BEL
5. Next, create a new folder named Images by right-clicking the WingtipToys project and
selecting Add -> New Folder.
6. Copy the logo.jpg file from the WingtipToys-Assets folder in File Explorer to the Images
folder of the Web application project in Solution Explorer of Visual Studio.
7. Click the Show All Files option at the top of Solution Explorer to update the list of files
if you don't see the new files.

Solution Explorer now shows the updated project files.

Solution Explorer * 0O X
@ o-enaipm| &=
Search Selution Explorer (Ctri+;) P~

fa] Solution "WingtipToys' (1 project)
4 7] WingtipToys

b & Properties

[=B References

I Account

App_Data

B App_Start
bl bin
4
P

Catalog

I fonts
F| Images
B Models
b obj
[Scripts
b &l About.aspx
¥_1 Bundle.config
b &) Contact.aspx
b @] Default.aspx
favicon.ico
b &1 Global.asax
¥ packages.config
L1 Project_Readme.htrml
Site.Master
Site.Mohbile.Master
c# Startup.cs
gie ViewSwitcher.ascx

v Web.config

A

Sl NNl Teamn Explorer Server Explorer

Adding Pages
Before adding navigation to the Web application, you'll first add two new pages that you'll
navigate to. Later in this tutorial series, you'll display products and product details on these new
pages.
1. In Solution Explorer, right-click WingtipToys, click Add, and then click New Item.
The Add New Item dialog box is displayed.

2. Select the Visual C# -> Web templates group on the left. Then, select Web Form with
Master Page from the middle list and name it ProductList.aspx.

Add New Item - WingtipToys

2 |

4 |nstalled

4 Visual C#
Code
Data

General

Silverlight

B Online

Name:

Sort by: | Default -

. .
Web Form with Master Page Visual C# Type: Visual C#

A form for Web Applications that is built

ij Web User Control Visual C2 from a Master Page
Master Page Visual C#

9
Mested Master Page Visual C#

9

I_j HTML Page Visual C#

<.

Style Sheet Visual C#

rJS i i)

| JavaScript File Visual C#

Click here to go online and find templates.

Search Installed Templates (Ctri+E) P~

3. Select Site.Master to attach the master page to the newly created .aspx page.

Select a Master Page

Project folders:

Contents of folder:

4 WingtipToys
I Account
I App_Data
I App_Start

i B Cataleg
I Content
I img
¥ Models
& Properties
=B References

i B Scripts

Site.Master

Site.Mobile.Master

oK ||

Cancel

4. Add an additional page named ProductDetails.aspx by following these same steps.

Updating Bootstrap

The Visual Studio 2013 project templates use Bootstrap, a layout and theming framework
created by Twitter. Bootstrap uses CSS3 to provide responsive design, which means layouts can
dynamically adapt to different browser window sizes. You can also use Bootstrap's theming
feature to easily effect a change in the application's look and feel. By default, the ASP.NET Web
Application template in Visual Studio 2013 includes Bootstrap as a NuGet package.

In this tutorial, you will change look and feel of the Wingtip Toys application by replacing the
Bootstrap CSS files.

In Solution Explorer, open the Content folder.

Right-click the bootstrap.css file and rename it to bootstrap-original.css.

Rename the bootstrap.min.css to bootstrap-original. min.css.

In Solution Explorer, right-click the Content folder and select Open Folder in File
Explorer.

The File Explorer will be displayed. You will save a downloaded bootstrap CSS files to this
location.

5. Inyour browser, go to http://Bootswatch.com.

6. Scroll the browser window until you see the Cerulean theme.

W

Bootswatch Themes - Download ~ Help Biog

Cerulean

A calm, blue sky

e [D ED T

Cerulean
A calm, blue sky

Preview Download ~

7. Download both the bootstrap.css file and the bootstrap.min.css file to the Content folder.
Use the path to the content folder that is displayed in the File Explorer window that you
previously opened.

http://getbootstrap.com/
http://bootswatch.com/

8. In Visual Studio at the top of Solution Explorer, select the Show All Files option to
display the new files in the Content folder.

Solution Explorer 0 X
@ o-20ala| ~ -
Search Selution Explorer (Ctri+;) P~

fa] Solution 'WingtipToys' (1 project)
4 &) WingtipToys

b & Properties

[=B References

[Account
App_Data

4 App_Start

B ol%bin

[Catalog

bootstrap-original.css
bootstrap-original.min.css
bootstrap.css
bootstrap.min.css

[Site.css

& [l [ED

B fonts
B Images
I Models
booiliobj
[Scripts
b &l About.aspx

¥_1 Bundle.config
b &) Contact.aspx
b @] Default.aspx

favicon.ico
b &1 Global.asax
¥_] packages.config
g1 ProductDetails.aspx
g1 Productlist.aspx
L1 Project_Readme.htrml
Site.Master
Site.Mobile.Master
c# Startup.cs
gie ViewSwitcher.ascx
¥ Web.config

- =

E A = A

ML ESGILIEE Team Edplorer Server Explorer

You will see the two new CSS files in the Content folder, but notice that the icon next to

each file name is grayed out. This means that the file has not yet been added to the
project.
9. Right-click the bootstrap.css and the bootstrap.min.css files and select Include In Project.

When you run the Wingtip Toys application later in this tutorial, the new UI will be displayed.
Note

The ASP.NET Web Application template uses the Bundle.config file at the root of the project to
store the path of the Bootstrap CSS files.

Modifying the Default Navigation

The default navigation for every page in the application can be modified by changing the
unordered navigation list element that's in the Site.Master page.

1. In Solution Explorer, locate and open the Site.Master page.
2. Add the additional navigation link highlighted in yellow to the unordered list shown

below:
<ul class="nav navbar-nav">
Home
About</1li>
Contact</1i>
Products</1li>

As you can see in the above HTML, you modified each line item <1i> containing an anchor tag
<a> with a link href attribute. Each href points to a page in the Web application. In the
browser, when a user clicks on one of these links (such as Products), they will navigate to the
page contained in the href (such as ProductList.aspx). You will run the application at the end
of this tutorial.

Note

The tilde (~) character is used to specify that the href path begins at the root of the project.

Adding a Data Control to Display Navigation Data

Next, you'll add a control to display all of the categories from the database. Each category will
act as a link to the ProductList.aspx page. When a user clicks on a category link in the browser,
they will navigate to the products page and see only the products associated with the selected
category.

You'll use a ListView control to display all the categories contained in the database. To add a
ListView control to the master page:

1. Inthe Site.Master page, add the following highlighted <div> element after the <div>
element containing the id="TitleContent" that you added earlier:

<div id="TitleContent" style="text-align: center">

<asp:Image ID="Imagel" runat="server"
ImageUrl="~/img/logo.jpg" BorderStyle="None" />

</div>
<div id="CategoryMenu" style="text-align: center">
<asp:ListView ID="categoryList"
ItemType="WingtipToys.Models.Category"
runat="server"
SelectMethod="GetCategories" >
<ItemTemplate>
<b style="font-size: large; font-style: normal">
<a href="/ProductList.aspx?id=<%#: Item.CategoryID %>">
<%#: Item.CategoryName %>

</ItemTemplate>
<ItemSeparatorTemplate> | </ItemSeparatorTemplate>
</asp:ListView>
</div>

This code will display all the categories from the database. The ListView control displays each
category name as link text and includes a link to the ProductList.aspx page with a query-string
value containing the ID of the category. By setting the TtemType property in the ListView
control, the data-binding expression Item is available within the ITtemTemplate node and the
control becomes strongly typed. You can select details of the Ttem object using IntelliSense,
such as specifying the CategoryName. This code is contained inside the container <%#: %>
that marks a data-binding expression. By adding the (;) to the end of the <%# prefix, the result of
the data-binding expression is HTML-encoded. When the result is HTML-encoded, your
application is better protected against cross-site script injection (XSS) and HTML injection
attacks.

Tip

When you add code by typing during development, you can be certain that a valid member of
an object is found because strongly typed data controls show the available members based on
IntelliSense. IntelliSense offers context-appropriate code choices as you type code, such as
properties, methods, and objects.

In the next step, you will implement the GetCategories method to retrieve data.

Linking the Data Control to the Database

Before you can display data in the data control, you need to link the data control to the
database. To make the link, you can modify the code behind of the Site.Master.cs file.

1. In Solution Explorer, right-click the Site.Master page and then click View Code. The
Site.Master.cs file is opened in the editor.

2. Near the beginning of the Site.Master.cs file, add two additional namespaces so that all
the included namespaces appear as follows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Ling;

using WingtipToys.Models;

3. Add the highlighted GetCategories method after the Page Load event handler as
follows:

protected void Page Load(object sender, EventArgs e)

{
}

public IQueryable<Category> GetCategories ()

{
var db = new WingtipToys.Models.ProductContext () ;
IQueryable<Category> query = db.Categories;
return query;

}

The above code is executed when any page that uses the master page is loaded in the browser.
The ListVview control (named "categoryList") that you added earlier in this tutorial uses model
binding to select data. In the markup of the ListVview control you set the control's
SelectMethod property to the GetCategories method, shown above. The ListView
control calls the GetCategories method at the appropriate time in the page life cycle and
automatically binds the returned data. You will learn more about binding data in the next
tutorial.

Running the Application and Creating the Database

Earlier in this tutorial series you created an initializer class (named "ProductDatabaselnitializer")
and specified this class in the global.asax.cs file. The Entity Framework will generate the database
when the application is run the first time because the Application Start method contained
in the global.asax.cs file will call the initializer class. The initializer class will use the model classes
(Category and Product) that you added earlier in this tutorial series to create the database.

1. In Solution Explorer, right-click the Default.aspx page and select Set As Start Page.
2. In Visual Studio press F5.
It will take a little time to set everything up during this first run.

Wingtip Toys Home About Contact Products Register Login

Cars |Planes | Trucks | Boats |Rockets

Welcome.
Wingtip Toys can help you find the perfect gift.

We're all about transportation toys. You can order any of our toys today. Each
toy listing has detailed information to help you choose the right toy.

© 2013 - Wingtip Toys

When you run the application, the application will be compiled and the database named
wingtiptoys.mdf will be created in the App_Data folder. In the browser, you will see a
category navigation menu. This menu was generated by retrieving the categories from
the database. In the next tutorial, you will implement the navigation.

3. Close the browser to stop the running application.

Reviewing the Database

Open the Web.config file and look at the connection string section. You can see that the
AttachDbFilename value in the connection string points to the DataDirectory for the Web
application project. The value |DataDirectory]| is a reserved value that represents the
App_Data folder in the project. This folder is where the database that was created from your
entity classes is located.

<connectionStrings>
<add name="DefaultConnection"
connectionString="Data Source=(LocalDb)\v11l.0;Initial Catalog=aspnet-
WingtipToys-20120302100502; Integrated Security=True"
providerName="System.Data.SglClient" />
<add name="WingtipToys"
connectionString="Data
Source=(LocalDB) \v1l.0;AttachDbFilename=|DataDirectory|\wingtiptoys.mdf; Integra
ted Security=True"
providerName="System.Data.SglClient " />
</connectionStrings>

Note

If the App_Data folder is not visible or if the folder is empty, select the Refresh icon and then
the Show All Files icon at the top of the Solution Explorer window. Expanding the width of the
Solution Explorer windows may be required to show all available icons.

Now you can inspect the data contained in the wingtiptoys.mdf database file by using the Server
Explorer window.

1. Expand the App_Data folder. If the App_Data folder is not visible, see the note above.
2. If the wingtiptoys.mdf database file is not visible, select the Refresh icon and then the
Show All Files icon at the top of the Solution Explorer window.
3. Right-click the wingtiptoys.mdf database file and select Open.
Server Explorer is displayed.
Server Explorer * A X
Qe
4 gW¥ Data Connections

| @ wingtiptoys.mdf
[Tables
Views

Stored Procedures

[

=

[Functions
[Synonyms
B Types

[+ Aszzemblies
SEnvers

Windows Azure

=
2= 1

Solution Explorer Team Explorer EEAES3 LI,

4. Expand the Tables folder.

The Products table is displayed.
Dd WingtipToys - dbo.Products [Data]

dbo.Products [Data] +

Q| % | Mahows o0]| T &

ProductlD

NN FE R S — |

L

-~ o

=]

a
1
1
1
1

L () —_

ProductMame

Convertible Car
Old-time Car
Fast Car

Super Fast Car
Old Style Racer
Ace Plane
Glider

Paper Plane
Propeller Plane
Early Truck
Fire Truck

Big Truck

Big Ship

Paper Boat

5ail Boat
Rocket

MWULL

Description

This convertibl...

There's nothing...

Yes this car is fa...

Use this super f...

This old style ra...

Authentic airpl...
This fun glider i...
This paper plan...
Rubber band p...
This toy truck h...
You will have e..
This fun toy tru...
Isitaboatora..
Fleating fun for...
Put this fun toy...
This fun rocket ...
MWULL

5. Right-click the Products table and select Show Table Data.

ImagePath

carconvert.png
carearly.png
carfast.png
carfaster.png
Carracer.png
planeace.png
planeglider.png
planepaper.png
planeprop.png
truckearly.png
truckfire.png
truckbig.png
boatbig.png
boatpaper.png
boatsail.png
rocket.png
MULL

UnitPrice

22.5
15.95
32.99
8.95
34.95
95
4,95
2.95
32.95
15

26

This view lets you see and modify the data in the Products table by hand.
Close the Products table window.
In the Server Explorer, right-click the Products table again and select Open Table

Definition.

CategorylD

L o o T T s et e

=
=
=
=

The data design for the Products table is displayed.

Dd WingtipToys - dbo.Products [Design]

dbo.Products [Design] + >

4+ Update | Script File: |db0.Pr0ducts.sqI '|

MName Data Type Allow Mulls | Default

=0 ProductlD int [

ProductMame nvarchar(100) O

Description nvarchar(MAaX) O

ImagePath nvarchar{MAX)

UnitPrice float

CategorylD int

O

G Design t T ET-saL
CREATE TABLE [dbo].[Products] (
[ProductID] INT IDENTITY (1, 1) NOT NULL,
[ProductName] NVARCHAR (1@@) NOT NULL,
[Description] NVARCHAR (MAX) NOT NULL,

[ImagePath] NVARCHAR (MAX) NULL,
[UnitPrice] FLOAT (53) NULL,
[CategoryID] INT NULL,

100% <] 4
e

CONSTRAINT [PK_dbo.Products] PRIMARY KEY CLUSTERED ([ProductID] ASC),
CONSTRAINT [FK_dbo.Products_dbo.Categories_CategoryID] FOREIGN KEY ([CategoryID]) REFERENCES [dbo].[Categories] ([CategoryID])

[S

1Y

Keys (1)
PE_dbo.Products (Primary Key, Clustered: ProductiD)
Check Constraints (0]
Indexes (1)
I¥_CategorylD (CategorylD)
Foreign Keys (1)
FK_dbo.Products_dbo.Categories_CategorylD (CategorylD)
Triggers (0)

-

»

9. Inthe T-SQL tab you will see the SQL DDL statement that was used to create the table.
You can also use the Ul in the Design tab to modify the schema.

10. In the Server Explorer, right-click WingtipToys database and select Close Connection.
By detaching the database from Visual Studio, the database schema will be able to be

modified later in this tutorial series.

11. Return to Solution Explorer by selecting the Solution Explorer tab at the bottom of the

Server Explorer window.

Summary

In this tutorial of the series you have added some basic U], graphics, pages, and navigation.
Additionally, you ran the Web application, which created the database from the data classes that
you added in the previous tutorial. You also viewed the contents of the Products table of the
database by viewing the database directly. In the next tutorial, you'll display data items and

details from the database.

Additional Resources

Introduction to Programming ASP.NET Web Pages
ASP.NET Web Server Controls Overview
CSS Tutorial

http://msdn.microsoft.com/en-us/library/ms178125.aspx
http://msdn.microsoft.com/en-us/library/zsyt68f1.aspx
http://www.w3schools.com/css/default.asp

Display Data Items and Detalls

This tutorial series will teach you the basics of building an ASP.NET Web Forms application using
ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project
with C# source code is available to accompany this tutorial series.

This tutorial describes how to display data items and data item details using ASP.NET Web
Forms and Entity Framework Code First. This tutorial builds on the previous tutorial “UIl and
Navigation” and is part of the Wingtip Toy Store tutorial series. When you've completed this
tutorial, you'll be able to see products on the ProductsList.aspx page and details about an
individual product on the ProductDetails.aspx page.

What you'll learn:

e How to add a data control to display products from the database.

e How to connect a data control to the selected data.

e How to add a data control to display product details from the database.

e How to retrieve a value from the query string and use that value to limit the data that's
retrieved from the database.

These are the features introduced in the tutorial:

¢ Model Binding
e Value providers

Adding a Data Control to Display Products

When binding data to a server control, there are a few different options you can use. The most
common options include adding a data source control, adding code by hand, or using model
binding.

Using a Data Source Control to Bind Data

Adding a data source control allows you to link the data source control to the control that
displays the data. This approach allows you to declaratively connect server-side controls directly
to data sources, rather than using a programmatic approach.

Coding By Hand to Bind Data

Adding code by hand involves reading the value, checking for a null value, attempting to
convert it to the appropriate type, checking whether the conversion was successful, and finally,
using the value in the query. You would use this approach when you need to retain full control
over your data-access logic.

Using Model Binding to Bind Data

Using model binding allows you to bind results using far less code and gives you the ability to
reuse the functionality throughout your application. Model binding aims to simplify working
with code-focused data-access logic while still retaining the benefits of a rich, data-binding
framework.

Displaying Products

In this tutorial, you'll use model binding to bind data. To configure a data control to use model
binding to select data, you set the control's SelectMethod property to the name of a method
in the page's code. The data control calls the method at the appropriate time in the page life
cycle and automatically binds the returned data. There's no need to explicitly call the bataBind
method.

Using the steps below, you'll modify the markup in the ProductList.aspx page so that the page

can display products.

1. In Solution Explorer, open the ProductList.aspx page.

2. Replace the existing markup with the following markup:

<%@ Page Title="Products" Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true"
CodeBehind="ProductList.aspx.cs" Inherits="WingtipToys.ProductList" %>
<asp:Content ID="Contentl" ContentPlaceHolderID="MainContent" runat="server">
<section>
<div>
<hgroup>
<h2><%: Page.Title %></h2>
</hgroup>

<asp:ListView ID="productList" runat="server"
DataKeyNames="ProductID" GroupIltemCount="4"
ItemType="WingtipToys.Models.Product" SelectMethod="GetProducts">
<EmptyDataTemplate>
<table >
<tr>
<td>No data was returned.</td>
</tr>
</table>
</EmptyDataTemplate>
<EmptyItemTemplate>
<td/>
</EmptyIltemTemplate>
<GroupTemplate>
<tr id="itemPlaceholderContainer" runat="server">
<td id="itemPlaceholder" runat="server"></td>
</tr>
</GroupTemplate>
<ItemTemplate>
<td runat="server">
<table>
<tr>
<td>
<a
href="ProductDetails.aspx?productID=<%#:Item.ProductID%>">

<img
src="/Catalog/Images/Thumbs/<%#:Item.ImagePath%>"
width="100" height="75" style="border:
solid" />
</td>
</tr>
<tr>
<td>
<a
href="ProductDetails.aspx?productID=<%#:Item.ProductID%>">

<%#:Item.ProductName%>

Price: <%#:String.Format ("{0:c}",
Item.UnitPrice) %>

</td>
</tr>
<tr>
<td> </td>
</tr>
</table>
</p>
</td>
</ItemTemplate>
<LayoutTemplate>
<table style="width:100%;">
<tbody>
<tr>
<td>
<table id="groupPlaceholderContainer"
runat="server" style="width:100%">
<tr id="groupPlaceholder"></tr>

</table>
</td>
</tr>
<tr>
<td></td>
</tr>
<tr></tr>
</tbody>
</table>
</LayoutTemplate>
</asp:ListView>
</div>
</section>

</asp:Content>

This code uses a ListView control named "productList” to display the products.

| <asp:ListView ID="productList" runat="server"

The ListView control displays data in a format that you define by using templates and styles. It
is useful for data in any repeating structure. This ListView example simply shows data from the
database, however you can enable users to edit, insert, and delete data, and to sort and page
data, all without code.

By setting the TtemType property in the ListView control, the data-binding expression Item is
available and the control becomes strongly typed. As mentioned in the previous tutorial, you
can select details of the Item object using IntelliSense, such as specifying the ProductName:

<td>
<@ href="ProductDetails.aspx?productID=<¥#:Item.ProductID®>">

<%#:Ttem o>
 K Category &
:£i>f> & CategorylD
<span class="Pred # Description
Price: </b@ Equals "{@:c}”, Item.UnitPrice)®:
</spanz @ GetHashCode

 @ GetType
</td> & ImagePath
& ProductD

y * | string Product.ProductMame

In addition, you are using model binding to specify a SelectMethod value. This value
(GetProducts) will correspond to the method that you will add to the code behind to display
products in the next step.

Adding Code to Display Products

In this step, you'll add code to populate the ListView control with product data from the
database. The code will support showing products by individual category, as well as showing all
products.

1. In Solution Explorer, right-click ProductList.aspx and then click View Code.

2. Replace the existing code in the ProductList.aspx.cs file with the following code:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using WingtipToys.Models;

using System.Web.ModelBinding;

namespace WingtipToys
{
public partial class ProductlList : System.Web.UI.Page
{
protected void Page Load (object sender, EventArgs e)

{
}

public IQueryable<Product> GetProducts ([QueryString("id")] int?
categoryId)
{
var db = new WingtipToys.Models.ProductContext () ;
IQueryable<Product> query = db.Products;
if (categoryId.HasValue && categoryId > 0)
{
query = query.Where(p => p.CategoryID == categoryld);

}

return query;

}
}

This code shows the Get Products method that's referenced by the ItemType property of the
ListView control in the ProductList.aspx page. To limit the results to a specific category in the
database, the code sets the categoryId value from the query string value passed to the
ProductList.aspx page when the ProductList.aspx page is navigated to. The
QueryStringAttribute class in the System.Web.ModelBinding namespace is used to
retrieve the value of the query string variable id. This instructs model binding to try to bind a
value from the query string to the categoryId parameter at run time.

When a valid category is passed as a query string to the page, the results of the query are
limited to those products in the database that match the categoryId value. For instance, if the
URL to the ProductsList.aspx page is the following:

Ihttp://localhost/ProductList.aspx?id=l

The page displays only the products where the category equals 1.

If no query string is included when navigating to the ProductList.aspx page, all products will be
displayed.

The sources of values for these methods are referred to as value providers (such as QueryString),
and the parameter attributes that indicate which value provider to use are referred to as value
provider attributes (such as "id"). ASP.NET includes value providers and corresponding
attributes for all of the typical sources of user input in a Web Forms application, such as the
query string, cookies, form values, controls, view state, session state, and profile properties. You
can also write custom value providers.

Running the Application

Run the application now to see how you can view all of the products or just a set of products
limited by category.

1. In the Solution Explorer, right-click the Default.aspx page and select View in Browser.
The browser will open and show the Default.aspx page.

2. Select Cars from the product category navigation menu.
The ProductList.aspx page is displayed showing only products included in the “Cars”

category. Later in this tutorial, you will display product details.

6 @|l hitp://localhost:24019/P1 Q0 = & | | Products - Wingtip Toys X

Wingtip Toys Home About Contact Products

Products

=

Convertible Car
Price: $22.50

=

Old-time Car Fast Car
Price: $15.95 Price: $32.99

Old Style Racer
Price: $34.95

@ 2013 - Wingtip Toys

Cars |Planes | Trucks |Boats |Rockets

Register Login

Super Fast Car
Price: $8.95

3. Select Products from the navigation menu at the top.

Again, the ProductList.aspx page is displayed, however this time it shows the entire list of

products.

& @|l http://localhost:24019/1 © = & || | * Products - Wingtip Toys %

Wingtip Toys

Products

=

Convertible Car
Price: $22 50

Old Style Racer
Price: $34 95

Propeller Plane
Price: $32.95

e .

Big Ship
Price: $95.00

© 2013 - Wingtip Toys

Home About

Products

Wingtip Toys

Cars |Planes | Trucks |Boats |Rockets

Reqister

Old-time Car
Price: $15.95

~a—

Ace Plane
Price: $95.00

Early Truck
Price: $15.00

Paper Boat
Price: $4.95

Fast Car
Price: $32 99

Glider
Price: $4.95

Fire Truck
Price: $26.00

Sail Boat
Price: $42 95

Super Fast Car
Price: $5.95

Paper Plane
Price: $2 95

i

Big Truck
Price: $29.00

Rocket
Price: $122 95

oW
1 ok 3E

Log in

4. Close the browser and return to Visual Studio.

Adding a Data Control to Display Product Details

Next, you'll modify the markup in the ProductDetails.aspx page that you added in the previous
tutorial so that the page can display information about an individual product.

1. In Solution Explorer, open the ProductDetails.aspx page.

2. Replace the existing markup with the following markup:

<%@ Page Title="Product Details" Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true"
CodeBehind="ProductDetails.aspx.cs"
Inherits="WingtipToys.ProductDetails" %>
<asp:Content ID="Contentl" ContentPlaceHolderID="MainContent" runat="server">
<asp:FormView ID="productDetail" runat="server"
ITtemType="WingtipToys.Models.Product" SelectMethod ="GetProduct"
RenderOuterTable="false">
<ItemTemplate>
<div>
<hl><%#:Item.ProductName %></hl>
</div>

<table>
<tr>
<td>
<img src="/Catalog/Images/<%#:Item.ImagePath %>"
style="border:solid; height:300px" alt="<%#:Item.ProductName %>"/>
</td>
<td> </td>
<td style="vertical-align: top; text-align:left;">
Description:
<%#:Item.Description %>

Price: <%#: String.Format ("{0:c}",
Item.UnitPrice) %>

Product Number: <%#:Item.ProductID

$>

</td>
</tr>
</table>
</ItemTemplate>

</asp:FormView>
</asp:Content>

This code uses a FormView control to display details about an individual product. This markup
uses methods like those that are used to display data in the ProductList.aspx page. The
FormView control is used to display a single record at a time from a data source. When you use
the FormView control, you create templates to display and edit data-bound values. The
templates contain controls, binding expressions, and formatting that define the look and
functionality of the form.

To connect the above markup to the database, you must add additional code to the
ProductDetatils.aspx code.

1. In Solution Explorer, right-click ProductDetails.aspx and then click View Code.
The ProductDetails.aspx.cs file will be displayed.

2. Replace the existing code with the following code:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using WingtipToys.Models;

using System.Web.ModelBinding;

namespace WingtipToys
{
public partial class ProductDetails : System.Web.UI.Page
{
protected void Page Load(object sender, EventArgs e)

{
}

public IQueryable<Product> GetProduct ([QueryString ("productID")] int?
productId)
{
var db = new WingtipToys.Models.ProductContext () ;
IQueryable<Product> query = db.Products;
if (productId.HasValue && productId > 0)
{
query = query.Where(p => p.ProductID == productId);

}
else

{

query = null;
}

return query;

}

This code checks for a "productID" query-string value. If a valid query-string value is found,
the matching product is displayed. If no query-string is found, or the query-string value is not
valid, no product is displayed on the ProductDetails.aspx page.

Running the Application

Now you can run the application to see an individual product displayed based on the id of the
product.

1. Press F5 while in Visual Studio to run the application.
The browser will open and show the Default.aspx page.

2. Select "Boats" from the category navigation menu.
The ProductList.aspx page is displayed.

3. Select the "Paper Boat” product from the product list.
The ProductDetails.aspx page is displayed.

- oI

< @|I hitp://localhost 24019/P1 © = & || | Product Details - Wingtip T... (o} 2. €25

Wingtip Toys Home About Contact Products Register Login

Cars |Planes | Trucks | Boats |Rockets

Paper Boat

Description:

Floating fun for alll This toy boat can be assembled in
seconds. Floats for minutes! Some folding required.
Price: $4.95

Product Number: 14

© 2013 - Wingtip Toys

4. Close the browser.

Summary

In this tutorial of the series you have add markup and code to display a product list and to
display product details. During this process you have learned about strongly typed data
controls, model binding, and value providers. In the next tutorial, you'll add a shopping cart to
the Wingtip Toys sample application.

Additional Resources

Retrieving and displaying data with model binding and web forms

http://www.asp.net/web-forms/tutorials/data-access/model-binding/retrieving-data

Shopping Cart

This tutorial series will teach you the basics of building an ASP.NET Web Forms application using
ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project
with C# source code is available to accompany this tutorial series.

This tutorial describes the business logic required to add a shopping cart to the Wingtip Toys
sample ASP.NET Web Forms application. This tutorial builds on the previous tutorial “Display
Data Items and Details” and is part of the Wingtip Toy Store tutorial series. When you've
completed this tutorial, the users of your sample app will be able to add, remove, and modify
the products in their shopping cart.

What you'll learn:

e How to create a shopping cart for the web application.

e How to enable users to add items to the shopping cart.

e How to add a GridView control to display shopping cart details.
e How to calculate and display the order total.

e How to remove and update items in the shopping cart.

e How to include a shopping cart counter.

Code features in this tutorial:

e Entity Framework Code First
e Data Annotations

e Strongly typed data controls
e Model binding

Creating a Shopping Cart

Earlier in this tutorial series, you added pages and code to view product data from a database. In
this tutorial, you'll create a shopping cart to manage the products that users are interested in
buying. Users will be able to browse and add items to the shopping cart even if they are not
registered or logged in. To manage shopping cart access, you will assign users a unique ID
using a globally unique identifier (GUID) when the user accesses the shopping cart for the first
time. You'll store this ID using the ASP.NET Session state.

Note

The ASP.NET Session state is a convenient place to store user-specific information which will
expire after the user leaves the site. While misuse of session state can have performance
implications on larger sites, light use of session state works well for demonstration purposes.
The Wingtip Toys sample project shows how to use session state without an external provider,
where session state is stored in-process on the web server hosting the site. For larger sites that

http://msdn.microsoft.com/library/system.web.ui.webcontrols.gridview(v=vs.110).aspx#introduction

provide multiple instances of an application or for sites that run multiple instances of an

application on different servers, consider using Windows Azure Cache Service. This Cache
Service provides a distributed caching service that is external to the web site and solves the

problem of using in-process session state. For more information see, How to Use ASP.NET
Session State with Windows Azure Web Sites.

Add Cartltem as a Model Class

Earlier in this tutorial series, you defined the schema for the category and product data by

creating the Category and Product classes in the Models folder. Now, add a new class to

define the schema for the shopping cart. Later in this tutorial, you will add a class to handle data

access to the CartItem table. This class will provide the business logic to add, remove, and

update items in the shopping cart.

Solution Explorer *AX
@B e--nap &=
Search Solution Explorer (Ctrl+;) R -
fal Solution 'WingtipToys' (1 project)
4 WingtipToys
b & Properties
P =B References
4 Account
App_Data
App_Start
Catalog
Content
img
3 Scripts
b & About.aspx
$ Bundle.config
b g8 Contactaspx
b &) Default.aspx
favicon.ico
b 41 Global.asax
¢ packages.config
b @] ProductDetails.aspx

v v v v

&

b &1 Productlist.aspx X
4 Site.Master [l
b Y Site.Master.cs
b P Site.Master.designer.cs
I» Site.Mobile.Master X
P c# Startup.cs L
b g ViewSwitcher.ascx c
b $2 Web.config rs

Selution Explorer

View in Browser (Internet Explorer)

Browse With...

Convert to Web Application
Add

Scope to This

Mew Solution Explorer View
Exclude From Project

Cut

Copy

Paste

Delete

Rename

Open Folder in File Explorer

Properties

Right-click the Models folder and select Add -> New Item.

Ctrl+Shift+W

Ctrl+X
Ctrl+C
Ctrl+V

Del

Alt+Enter

b I ‘o

New Iltem...

Ctrl+Shift+A |

+.

a

s

e

Existing Item...

Scaffold...

MNew Folder

Add ASP.NET Folder

Web Form

Web User Control

JavaScript File

Style Sheet

Web Form using Master Page

Class...

Shift+Alt+ A

http://www.windowsazure.com/en-us/manage/services/web-sites/session-state-caching/
http://www.windowsazure.com/en-us/manage/services/web-sites/session-state-caching/

e The Add New Item dialog box is displayed. Select Code, and then select Class.

4 |nstalled

4 Visual C#
Code
Data
General
Web
Silverlight

I Online

Names:

Add New Item - WingtipToys

» I

Sort by: | Default 1'| 0= Search Installed Templates (Ctrl+E) P~
@a Class Visual C# Type: Visual C#
An empty class declaration
o) Interface Visual C2
-.Cr
) ! "
B] Code File Visual C3
Click here to go online and find templates.
Cartlterm.cs
Add || Cancel

e« Name this new class Cartltem.cs.

o Click Add.

The new class file is displayed in the editor.
e Replace the default code with the following code:

namespace W

{
{

[Key]
public
public
public
public

public

public

}

using System.ComponentModel.DataAnnotations;

ingtipToys.Models

public class CartItem

string ItemId { get; set; }

string CartId { get; set; }

int Quantity { get; set; }
System.DateTime DateCreated { get; set; }
int ProductId { get; set; }

virtual Product Product { get; set; }

The CartItem clas

s contains the schema that will define each product a user adds to the

shopping cart. This class is similar to the other schema classes you created earlier in this tutorial
series. By convention, Entity Framework Code First expects that the primary key for the

CartItem table wi

[l be either CartItemId or ID. However, the code overrides the default

behavior by using the data annotation [Key] attribute. The Key attribute of the Itemld property
specifies that the TtemID property is the primary key.

The CartId property specifies the 1D of the user that is associated with the item to purchase.
You'll add code to create this user ID when the user accesses the shopping cart. This ID will also
be stored as an ASP.NET Session variable.

Update the Product Context

In addition to adding the CartItemn class, you will need to update the database context class
that manages the entity classes and that provides data access to the database. To do this, you
will add the newly created CartItem model class to the ProductContext class.

1. In Solution Explorer, find and open the ProductContext.cs file in the Models folder.
2. Add the highlighted code to the ProductContext.cs file as follows:

using System.Data.Entity;

namespace WingtipToys.Models
{
public class ProductContext : DbContext
{
public ProductContext ()
: base ("WingtipToys")
{
}

public DbSet<Category> Categories { get; set; }
public DbSet<Product> Products { get; set; }
public DbSet<CartItem> ShoppingCartItems { get; set; }
}
}

As mentioned previously in this tutorial series, the code in the ProductContext.cs file adds the
System.Data.Entity namespace so that you have access to all the core functionality of the
Entity Framework. This functionality includes the capability to query, insert, update, and delete
data by working with strongly typed objects. The ProductContext class adds access to the
newly added CartItem model class.

Managing the Shopping Cart Business Logic

Next, you'll create the ShoppingCart class in a new Logic folder. The ShoppingCart class
handles data access to the CartItem table. The class will also include the business logic to add,
remove, and update items in the shopping cart.

The shopping cart logic that you will add will contain the functionality to manage the following
actions:

1. Adding items to the shopping cart
2. Removing items from the shopping cart
3. Getting the shopping cart ID

4. Retrieving items from the shopping cart
5. Totaling the amount of all the shopping cart items
6. Updating the shopping cart data

A shopping cart page (ShoppingCart.aspx) and the shopping cart class will be used together to
access shopping cart data. The shopping cart page will display all the items the user adds to the
shopping cart. Besides the shopping cart page and class, you'll create a page (AddToCart.aspx)
to add products to the shopping cart. You will also add code to the ProductList.aspx page and
the ProductDetails.aspx page that will provide a link to the AddToCart.aspx page, so that the user
can add products to the shopping cart.

The following diagram shows the basic process that occurs when the user adds a product to the
shopping cart.

ProductList.aspx

> AddToCart.aspx 1 ShoppingCart.aspx

ProductDetails.aspx - Yy

e |

-
~ L 4
-

ShoppingCartActions.cs

When the user clicks the Add To Cart link on either the ProductList.aspx page or the
ProductDetails.aspx page, the application will navigate to the AddToCart.aspx page and then
automatically to the ShoppingCart.aspx page. The AddToCart.aspx page will add the select
product to the shopping cart by calling a method in the ShoppingCart class. The
ShoppingCart.aspx page will display the products that have been added to the shopping cart.

Creating the Shopping Cart Class

The shoppingCart class will be added to a separate folder in the application so that there will
be a clear distinction between the model (Models folder), the pages (root folder) and the logic
(Logic folder).

1. In Solution Explorer, right-click the WingtipToys project and select Add -> New
Folder. Name the new folder Logic.

2. Right-click the Logic folder and then select Add -> New Item.

Add a new class file named ShoppingCartActions.cs.

4. Replace the default code with the following code:

w

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using WingtipToys.Models;

namespace WingtipToys.Logic
{
public class ShoppingCartActions : IDisposable

{
public string ShoppingCartId { get; set; }

private ProductContext _db = new ProductContext () ;
public const string CartSessionKey = "CartId";
public void AddToCart (int id)

{
// Retrieve the product from the database.

ShoppingCartId = GetCartId();

var cartItem = db.ShoppingCartItems.SingleOrDefault (
c => c.CartId == ShoppingCartId
&& c.ProductId == id);

if (cartItem == null)

{

// Create a new cart item if no cart item exists.
cartItem = new CartlItem
{

ItemId = Guid.NewGuid() .ToString(),

ProductId = id,

CartId = ShoppingCartId,

Product = db.Products.SingleOrDefault (

p => p.ProductID == id),

Quantity = 1,

DateCreated = DateTime.Now

}i

_db.ShoppingCartItems.Add (cartItem) ;

}

else

{
// If the item does exist in the cart,
// then add one to the quantity.
cartItem.Quantity++;

}

_db.SaveChanges () ;

}

public void Dispose ()
{
if (_db != null)
{
_db.Dispose();
~db = null;
}
}

public string GetCartId()
{

if (HttpContext.Current.Session|[CartSessionKey] == null)

{
if (!string.IsNullOrWhiteSpace (HttpContext.Current.User.Identity.Name))

{
HttpContext.Current.Session[CartSessionKey] =
HttpContext.Current.User.Identity.Name;
}
else
{
// Generate a new random GUID using System.Guid class.
Guid tempCartId = Guid.NewGuid() ;
HttpContext.Current.Session[CartSessionKey] = tempCartId.ToString() ;
}
}
return HttpContext.Current.Session[CartSessionKey].ToString() ;

}

public List<CartItem> GetCartItems ()

{
ShoppingCartId = GetCartId();

return db.ShoppingCartItems.Where (
c => c.CartId == ShoppingCartId) .ToList () ;
}
}
}

The AddToCart method enables individual products to be included in the shopping cart based
on the product ID. The product is added to the cart, or if the cart already contains an item for
that product, the quantity is incremented.

The GetCartId method returns the cart 1D for the user. The cart 1D is used to track the items
that a user has in their shopping cart. If the user does not have an existing cart ID, a new cart ID
is created for them. If the user is signed in as a registered user, the cart ID is set to their user
name. However, if the user is not signed in, the cart ID is set to a unique value (a GUID). A GUID
ensures that only one cart is created for each user, based on session.

The GetCartItems method returns a list of shopping cart items for the user. Later in this
tutorial, you will see that model binding is used to display the cart items in the shopping cart
using the GetCartItems method.

Creating the Add-To-Cart Functionality

As mentioned earlier, you will create a processing page named AddToCart.aspx that will be used
to add new products to the shopping cart of the user. This page will call the AddToCart
method in the ShoppingCart class that you just created. The AddToCart.aspx page will expect
that a product 1D is passed to it. This product 1D will be used when calling the AddToCart
method in the ShoppingCart class.

Note

You will be modifying the code-behind (AddToCart.aspx.cs) for this page, not the page UI
(AddToCart.aspx).

To create the Add-To-Cart functionality:

1. In Solution Explorer, right-click the WingtipToys project, click Add -> New Item.
The Add New Item dialog box is displayed.
2. Add a standard new page (Web Form) to the application named AddToCart.aspx.

Add New Item - WingtipToys ?
4 |nstalled Sort by: | Default -] i i= Search Installed Templates (Ctrl+E) P~
4 Visual C# - .
ISU; i Web Form Visual C# Type: Visual C#
mae A form for Web Applications
Oata Ef Content Page (Razor v3) Visual C#
General @ ontent Page (Razor v isua
b 1l Hel Ri 3 Visual C#
Silverlight (@ elper (Razor v3) isua
. L#
b Online @] Layout Page (Razor v3) Visual C#
c#
@] MVC 5 Layout Page (Razor) Visual C#
Cc#
] MVC 5 Partial Page (Razor) Visual C#
c#
(@ MVC 5 View Page (Razor) Visual C#
b
Click here to ge online and find templates.
Name: AddToCart.aspx
| add || cancal |

3. In Solution Explorer, right-click the AddToCart.aspx page and then click View Code. The
AddToCart.aspx.cs code-behind file is opened in the editor.
4. Replace the existing code in the AddToCart.aspx.cs code-behind with the following:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Diagnostics;

using WingtipToys.Logic;

namespace WingtipToys
{
public partial class AddToCart : System.Web.UI.Page
{
protected void Page Load(object sender, EventArgs e)
{
string rawId = Request.QueryString["ProductID"];
int productId;
if (!String.IsNullOrEmpty(rawId) && int.TryParse(rawId, out productId))
{
using (ShoppingCartActions usersShoppingCart = new
ShoppingCartActions())
{
usersShoppingCart.AddToCart (Convert.ToIntl6 (rawld)) ;
}

else

{
Debug.Fail ("ERROR : We should never get to AddToCart.aspx without a
ProductId.");
throw new Exception ("ERROR : It is illegal to load AddToCart.aspx
without setting a ProductId.");
}
Response.Redirect ("ShoppingCart.aspx") ;
}
}
}

When the AddToCart.aspx page is loaded, the product 1D is retrieved from the query string.
Next, an instance of the shopping cart class is created and used to call the AddToCart method
that you added earlier in this tutorial. The AddToCart method, contained in the
ShoppingCartActions.cs file, includes the logic to add the selected product to the shopping cart
or increment the product quantity of the selected product. If the product hasn't been added to
the shopping cart, the product is added to the CartItem table of the database. If the product
has already been added to the shopping cart and the user adds an additional item of the same
product, the product quantity is incremented in the CartItem table. Finally, the page redirects
back to the ShoppingCart.aspx page that you'll add in the next step, where the user sees an
updated list of items in the cart.

As previously mentioned, a user ID is used to identify the products that are associated with a
specific user. This ID is added to a row in the CartItem table each time the user adds a
product to the shopping cart.

Creating the Shopping Cart UI

The ShoppingCart.aspx page will display the products that the user has added to their shopping
cart. It will also provide the ability to add, remove and update items in the shopping cart.

1. In Solution Explorer, right-click WingtipToys, click Add -> New Item.
The Add New Item dialog box is displayed.

2. Add a new page (Web Form) that includes a master page by selecting Web Form using
Master Page. Name the new page ShoppingCart.aspx.

3. Select Site.Master to attach the master page to the newly created .aspx page.

4. In the ShoppingCart.aspx page, replace the existing markup with the following markup:

<%@ Page Title="" Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true" CodeBehind="ShoppingCart.aspx.cs"
Inherits="WingtipToys.ShoppingCart" %>
<asp:Content ID="Contentl" ContentPlaceHolderID="MainContent" runat="server">
<div id="ShoppingCartTitle" runat="server" class="ContentHead"><hl>Shopping
Cart</hl></div>
<asp:GridvView ID="CartList" runat="server" AutoGenerateColumns="False"
ShowFooter="True" GridLines="Vertical" CellPadding="4"
ItemType="WingtipToys.Models.CartItem"
SelectMethod="GetShoppingCartItems"
CssClass="table table-striped table-bordered" >
<Columns>

<asp:BoundField DataField="ProductID" HeaderText="ID"
SortExpression="ProductID" />
<asp:BoundField DataField="Product.ProductName" HeaderText="Name" />
<asp:BoundField DataField="Product.UnitPrice" HeaderText="Price (each)"
DataFormatString="{0:c}"/>
<asp:TemplateField HeaderText="Quantity">
<ItemTemplate>
<asp:TextBox ID="PurchaseQuantity" Width="40"
runat="server" Text="<%#: Item.Quantity $%$>"></asp:TextBox>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Item Total">
<ItemTemplate>
<%$#: String.Format ("{0O:c}",
((Convert.ToDouble (Item.Quantity)) *
Convert.ToDouble (Item.Product.UnitPrice))) %>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Remove Item">
<ItemTemplate>
<asp:CheckBox id="Remove" runat="server"></asp:CheckBox>
</ItemTemplate>
</asp:TemplateField>
</Columns>
</asp:Gridview>
<div>
<p></p>

<asp:Label ID="LabelTotalText" runat="server" Text="Order Total:
"></asp:Label>
<asp:Label ID="1blTotal" runat="server"
EnableViewState="false"></asp:Label>

</div>

</asp:Content>

The ShoppingCart.aspx page includes a GridView control named CartList. This control uses
model binding to bind the shopping cart data from the database to the GridView control. When
you set the TtemType property of the GridView control, the data-binding expression Item is
available in the markup of the control and the control becomes strongly typed. As mentioned
earlier in this tutorial series, you can select details of the Ttem object using IntelliSense. To
configure a data control to use model binding to select data, you set the SelectMethod
property of the control. In the markup above, you set the SelectMethod to use the
GetShoppingCartltems method which returns a list of CartItem objects. The GridView data
control calls the method at the appropriate time in the page life cycle and automatically binds
the returned data. The GetShoppingCartItems method must still be added.

Retrieving the Shopping Cart Items
Next, you add code to the ShoppingCart.aspx.cs code-behind to retrieve and populate the
Shopping Cart UL

1. In Solution Explorer, right-click the ShoppingCart.aspx page and then click View Code.
The ShoppingCart.aspx.cs code-behind file is opened in the editor.
e Replace the existing code with the following:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using WingtipToys.Models;

using WingtipToys.Logic;

namespace WingtipToys
{
public partial class ShoppingCart : System.Web.UI.Page
{
protected void Page Load(object sender, EventArgs e)

{
}

public List<CartItem> GetShoppingCartItems ()
{
ShoppingCartActions actions = new ShoppingCartActions() ;
return actions.GetCartItems () ;
}
}
}

As mentioned above, the Gridview data control calls the GetShoppingCartItems method
at the appropriate time in the page life cycle and automatically binds the returned data. The
GetShoppingCartItems method creates an instance of the ShoppingCartActions object.
Then, the code uses that instance to return the items in the cart by calling the GetCartItems
method.

Adding Products to the Shopping Cart

When either the ProductList.aspx or the ProductDetails.aspx page is displayed, the user will be
able to add the product to the shopping cart using a link. When they click the link, the
application navigates to the processing page named AddToCart.aspx. The AddToCart.aspx page
will call the AddToCart method in the ShoppingCart class that you added earlier in this
tutorial.

Now, you'll add an Add to Cart link to both the ProductList.aspx page and the
ProductDetails.aspx page. This link will include the product ID that is retrieved from the
database.

1. In Solution Explorer, find and open the page named ProductList.aspx.
2. Add the markup highlighted in yellow to the ProductList.aspx page so that the entire
page appears as follows:

<%@ Page Title="Products" Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true"
CodeBehind="ProductList.aspx.cs" Inherits="WingtipToys.ProductList" %>
<asp:Content ID="Contentl" ContentPlaceHolderID="MainContent" runat="server">
<section>
<div>
<hgroup>

<h2><%: Page.Title %$></h2>
</hgroup>

<asp:ListView ID="productList" runat="server"
DataKeyNames="ProductID" GroupItemCount="4"
ItemType="WingtipToys.Models.Product"
SelectMethod="GetProducts">
<EmptyDataTemplate>
<table runat="server">
<tr>
<td>No data was returned.</td>
</tr>
</table>
</EmptyDataTemplate>
<EmptyItemTemplate>
<td runat="server" />
</EmptyItemTemplate>
<GroupTemplate>
<tr id="itemPlaceholderContainer" runat="server">
<td id="itemPlaceholder" runat="server"></td>
</tr>
</GroupTemplate>
<ItemTemplate>
<td runat="server">
<table>
<tr>
<td>
<a
href="ProductDetails.aspx?productID=<%#:Item.ProductID$>">
<img
src="/Catalog/Images/Thumbs/<%#:Item.ImagePath%>"
width="100" height="75"
style="border: solid" />

</td>
</tr>
<tr>
<td>
<a
href="ProductDetails.aspx?productID=<%#:Item.ProductID%$>">

<%$#:Item.ProductName%>

Price:
<%#:String.Format ("{0:c}", Item.UnitPrice)%>

<a

href="/AddToCart.aspx?productID=<%#:Item.ProductID %$>">

Add To Cart

</td>
</tr>
<tr>
<td> </td>
</tr>
</table>
</p>
</td>

</ItemTemplate>

<LayoutTemplate>
<table runat="server" style="width:100%;">
<tbody>

<tr runat="server">
<td runat="server">
<table id="groupPlaceholderContainer"
runat="server" style="width:100%">
<tr id="groupPlaceholder"
runat="server"></tr>
</table>
</td>
</tr>
<tr runat="server">
<td runat="server"></td>
</tr>
<tr></tr>
</tbody>
</table>
</LayoutTemplate>
</asp:ListView>
</div>
</section>
</asp:Content>

Testing the Shopping Cart

Run the application to see how you add products to the shopping cart.

1. Press F5 to run the application.
After the project recreates the database, the browser will open and show the Default.aspx
page.

2. Select Cars from the category navigation menu.
The ProductList.aspx page is displayed showing only products included in the “Cars”

category.

e @|I http://localhost:24019/1 O ~ & | | Products - Wingtip Toys X

Wingtip Toys

Products

=

Convertible Car
Price: $22.50
Add To Cart

0Old Style Racer
Price: $34 95
Add To Cart

® 2013 - Wingtip Toys

Home About Contact Products Register

Cars |Planes | Trucks |Boats |Rockets

Old-time Car Fast Car Super Fast Car
Price: $15.95 Price: $32.99 Price: $8.95
Add To Cart Add To Cart Add To Cart

Mk

Log in

3. Click the Add to Cart link next to the first product listed (the convertible car).
The ShoppingCart.aspx page is displayed, showing the selection in your shopping cart.

-
I -
°'®'|‘ http://localhost:24019/¢ O v C || | - Wingtip Toys | ‘ N

Wingtip Toys Home About Contact Products Register Login

Wungtye Toys

Cars |Planes | Trucks | Boats |Rockets

Shopping Cart

ID Name Price (each) Quantity item Total Remove Item
1 Convertible Car $22 50 $22.50 0
Order Total:

© 2013 - Wingtip Toys

4. View additional products by selecting Planes from the category navigation menu.
5. Click the Add to Cart link next to the first product listed.

The ShoppingCart.aspx page is displayed with the additional item.
6. Close the browser.

Calculating and Displaying the Order Total

In addition to adding products to the shopping cart, you will add a GetTotal method to the
ShoppingCart class and display the total order amount in the shopping cart page.

1. In Solution Explorer, open the ShoppingCartActions.cs file in the Logic folder.
2. Add the following GetTotal method highlighted in yellow to the ShoppingCart class,
so that the class appears as follows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using WingtipToys.Models;

namespace WingtipToys.Logic

{
public class ShoppingCartActions : IDisposable
{

public string ShoppingCartId { get; set; }

private ProductContext _db = new ProductContext () ;
public const string CartSessionKey = "CartId";
public void AddToCart (int id)

{
// Retrieve the product from the database.

ShoppingCartId = GetCartId();

var cartItem = db.ShoppingCartItems.SingleOrDefault (
c => c.CartId == ShoppingCartId
&& c.ProductId == id);

if (cartItem == null)

{

// Create a new cart item if no cart item exists.
cartItem = new CartlItem
{

ITtemId = Guid.NewGuid() .ToString(),

ProductId = id,

CartId = ShoppingCartId,

Product = _db.Products.SingleOrDefault(

p => p.ProductID == id),

Quantity = 1,

DateCreated = DateTime.Now

}i

_db.ShoppingCartItems.Add (cartItem);

}

else

{
// If the item does exist in the cart,
// then add one to the quantity.
cartItem.Quantity++;

}

_db.SaveChanges () ;

}

public void Dispose ()
{
if (_db != null)
{
_db.Dispose();
~db = null;
}
}

public string GetCartId()
{
if (HttpContext.Current.Session[CartSessionKey] == null)
{
if (!string.IsNullOrWhiteSpace (HttpContext.Current.User.Identity.Name))
{
HttpContext.Current.Session[CartSessionKey] =
HttpContext.Current.User.Identity.Name;
}
else
{
// Generate a new random GUID using System.Guid class.
Guid tempCartId = Guid.NewGuid() ;
HttpContext.Current.Session[CartSessionKey] = tempCartId.ToString() ;

}

}

return HttpContext.Current.Session[CartSessionKey].ToString() ;

}

public List<CartItem> GetCartItems ()

{
ShoppingCartId = GetCartId();

return db.ShoppingCartItems.Where (
c => c.CartId == ShoppingCartId).ToList () ;
}

public decimal GetTotal ()

{
ShoppingCartId = GetCartId() ;
// Multiply product price by quantity of that product to get
// the current price for each of those products in the cart.
// Sum all product price totals to get the cart total.

decimal? total = decimal.Zero;
total = (decimal?) (from cartItems in db.ShoppingCartItems
where cartItems.CartId == ShoppingCartId

select (int?)cartlItems.Quantity *
cartItems.Product.UnitPrice) .Sum() ;
return total ?? decimal.Zero;

}

First, the GetTotal method gets the ID of the shopping cart for the user. Then the method gets
the cart total by multiplying the product price by the product quantity for each product listed in
the cart.

Note

The above code uses the nullable type “int2". Nullable types can represent all the values of an
underlying type, and also as a null value. For more information see, Using Nullable Types.

Modify the Shopping Cart Display

Next you'll modify the code for the ShoppingCart.aspx page to call the GetTotal method and
display that total on the ShoppingCart.aspx page when the page loads.

1. In Solution Explorer, right-click the ShoppingCart.aspx page and select View Code.
2. Inthe ShoppingCart.aspx.cs file, update the Page Load handler by adding the following
code highlighted in yellow:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using WingtipToys.Models;

using WingtipToys.Logic;

namespace WingtipToys

{

public partial class ShoppingCart : System.Web.UI.Page

http://msdn.microsoft.com/library/2cf62fcy(v=vs.110).aspx

protected void Page Load(object sender, EventArgs e)
{
using (ShoppingCartActions usersShoppingCart = new ShoppingCartActions())
{
decimal cartTotal = 0;
cartTotal = usersShoppingCart.GetTotal () ;
if (cartTotal > 0)
{
// Display Total.
1blTotal.Text = String.Format ("{0:c}", cartTotal):;
}
else
{
LabelTotalText.Text = "";
1blTotal.Text = "";
ShoppingCartTitle.InnerText = "Shopping Cart is Empty";
}
}
}

public List<CartItem> GetShoppingCartItems ()
{
ShoppingCartActions actions = new ShoppingCartActions () ;
return actions.GetCartItems () ;
}
}
}

When the ShoppingCart.aspx page loads, it loads the shopping cart object and then retrieves the
shopping cart total by calling the GetTotal method of the ShoppingCart class. If the
shopping cart is empty, a message to that effect is displayed.

Testing the Shopping Cart Total

Run the application now to see how you can not only add a product to the shopping cart, but
you can see the shopping cart total.

1. Press F5 to run the application.
The browser will open and show the Default.aspx page.
2. Select Cars from the category navigation menu.

3. Click the Add To Cart link next to the first product.
The ShoppingCart.aspx page is displayed with the order total.

(|
e@h http://localhost24019/¢ © + € ” | - Wingtip Toys ‘ | ALY

Wingtip Toys Home About Contact Products Register Log in

Cars |Planes | Trucks |Boats |Rockets

Shopping Cart
D Name Price (each) Quantity Item Total Remove Item

1 Convertible Car $22.50 $22.50 0

Order Total: $22.50

© 2013 - Wingtip Toys

4. Add some other products (for example, a plane) to the cart.

5. The ShoppingCart.aspx page is displayed with an updated total for all the products
you've added.

O
¢ |6 B [[1B

Wingtip Toys Home About Contact Products Register Log in

Cars |Planes | Trucks | Boats |Rockets

Shopping Cart

1D Name Price (each) Quantity Item Total Remove Item
6 Ace Plane $95.00 $95.00 0
1 Convertible Car $22.50 $22.50 0

Order Total: $117.50

© 2013 - Wingtip Toys

6. Stop the running app by closing the browser window.

Adding Update and Checkout Buttons to the Shopping Cart

To allow the users to modify the shopping cart, you'll add an Update button and a Checkout
button to the shopping cart page. The Checkout button is not used until later in this tutorial
series.

e In Solution Explorer, open the ShoppingCart.aspx page in the root of the web
application project.

e To add the Update button and the Checkout button to the ShoppingCart.aspx page, add
the markup highlighted in yellow to the existing markup, as shown in the following code:

<%@ Page Title="" Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true" CodeBehind="ShoppingCart.aspx.cs"
Inherits="WingtipToys.ShoppingCart" %>
<asp:Content ID="Contentl" ContentPlaceHolderID="MainContent" runat="server">
<div id="ShoppingCartTitle" runat="server" class="ContentHead"><hl>Shopping
Cart</hl></div>
<asp:GridvView ID="CartList" runat="server" AutoGenerateColumns="False"
ShowFooter="True" GridLines="Vertical" CellPadding="4"
ItemType="WingtipToys.Models.CartItem"
SelectMethod="GetShoppingCartItems"
CssClass="table table-striped table-bordered" >

<Columns>
<asp:BoundField DataField="ProductID" HeaderText="ID"
SortExpression="ProductID" />
<asp:BoundField DataField="Product.ProductName" HeaderText="Name" />
<asp:BoundField DataField="Product.UnitPrice" HeaderText="Price (each)"
DataFormatString="{0:c}"/>
<asp:TemplateField HeaderText="Quantity">
<ItemTemplate>
<asp:TextBox ID="PurchaseQuantity" Width="40"
runat="server" Text="<%$#: Item.Quantity $%>"></asp:TextBox>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Item Total">
<ItemTemplate>
<%$#: String.Format ("{0:c}",
((Convert.ToDouble (Item.Quantity)) *
Convert.ToDouble (Item.Product.UnitPrice))) %>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Remove Item">
<ItemTemplate>
<asp:CheckBox id="Remove" runat="server"></asp:CheckBox>
</ItemTemplate>
</asp:TemplateField>
</Columns>
</asp:GridvView>
<div>
<p></p>

<asp:Label ID="LabelTotalText" runat="server" Text="Order Total:
"></asp:Label>
<asp:Label ID="1blTotal" runat="server"
EnableViewState="false"></asp:Label>

</div>

<table>
<tr>
<td>
<asp:Button ID="UpdateBtn" runat="server" Text="Update"
OnClick="UpdateBtn Click" />
</td>
<td>
<!--Checkout Placeholder -->
</td>
</tr>
</table>
</asp:Content>

When the user clicks the Update button, the UpdateBtn Click event handler will be called.
This event handler will call the code that you'll add in the next step.

Next, you can update the code contained in the ShoppingCart.aspx.cs file to loop through the
cart items and call the RemoveTItem and UpdateItem methods.

1.

In Solution Explorer, open the ShoppingCart.aspx.cs file in the root of the web
application project.
Add the following code sections highlighted in yellow to the ShoppingCart.aspx.cs file:

Iusing System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using WingtipToys.Models;

using WingtipToys.Logic;

using System.Collections.Specialized;
using System.Collections;

using System.Web.ModelBinding;

namespace WingtipToys
{
public partial class ShoppingCart : System.Web.UI.Page
{
protected void Page Load(object sender, EventArgs e)
{
using (ShoppingCartActions usersShoppingCart = new ShoppingCartActions())
{

decimal cartTotal = 0;

cartTotal = usersShoppingCart.GetTotal () ;

if (cartTotal > 0)

{
// Display Total.
1blTotal.Text = String.Format ("{0:c}", cartTotal);

}

else

{
LabelTotalText.Text = "";
1lblTotal.Text = "";
ShoppingCartTitle.InnerText = "Shopping Cart is Empty";
UpdateBtn.Visible = false;

}

public List<CartItem> GetShoppingCartItems ()

{
ShoppingCartActions actions = new ShoppingCartActions() ;
return actions.GetCartItems();

}

public List<CartItem> UpdateCartItems ()
{
using (ShoppingCartActions usersShoppingCart = new ShoppingCartActions())

{
String cartId = usersShoppingCart.GetCartId() ;

ShoppingCartActions.ShoppingCartUpdates[] cartUpdates = new
ShoppingCartActions.ShoppingCartUpdates[CartList.Rows.Count];
for (int 1 = 0; 1 < CartlList.Rows.Count; i++)
{
IOrderedDictionary rowValues = new OrderedDictionary();
rowValues = GetValues (CartList.Rows[1]);
cartUpdates[i] .ProductId = Convert.ToInt32 (rowValues|["ProductID"]) ;

CheckBox cbRemove = new CheckBox () ;
cbRemove = (CheckBox)CartList.Rows[1].FindControl ("Remove") ;
cartUpdates[i] .Removeltem = cbRemove.Checked;

TextBox quantityTextBox = new TextBox () ;
quantityTextBox =
(TextBox)CartList.Rows[1] .FindControl ("PurchaseQuantity") ;

cartUpdates[i] .PurchaseQuantity =
Convert.ToIntl6 (quantityTextBox.Text.ToString()) ;
}
usersShoppingCart.UpdateShoppingCartDatabase (cartId, cartUpdates);
CartList.DataBind() ;
1blTotal.Text = String.Format ("{0:c}", usersShoppingCart.GetTotal())
return usersShoppingCart.GetCartItems () ;
}
}

public static IOrderedDictionary GetValues (GridViewRow row)
{
IOrderedDictionary values = new OrderedDictionary():;
foreach (DataControlFieldCell cell in row.Cells)
{
if (cell.Visible)
{
// Extract values from the cell.
cell.ContainingField.ExtractValuesFromCell (values, cell,
row.RowState, true);
}
}
return values;

}

protected void UpdateBtn Click(object sender, EventArgs e)
{
UpdateCartItems() ;
}
}
}

When the user clicks the Update button on the ShoppingCart.aspx page, the UpdateCartltems
method is called. The UpdateCartitems method gets the updated values for each item in the
shopping cart. Then, the UpdateCartltems method calls the UpdateShoppingCartDatabase
method (added and explained in the next step) to either add or remove items from the
shopping cart. Once the database has been updated to reflect the updates to the shopping cart,
the GridView control is updated on the shopping cart page by calling the DataBind method
for the GridView. Also, the total order amount on the shopping cart page is updated to reflect
the updated list of items.

Updating and Removing Shopping Cart Items

On the ShoppingCart.aspx page, you can see controls have been added for updating the
guantity of an item and removing an item. Now, add the code that will make these controls
work.

1. In Solution Explorer, open the ShoppingCartActions.cs file in the Logic folder.
e Add the following code highlighted in yellow to the ShoppingCartActions.cs class file:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using WingtipToys.Models;

namespace WingtipToys.Logic

{
public class ShoppingCartActions : IDisposable

{
public string ShoppingCartId { get; set; }

private ProductContext db = new ProductContext();
public const string CartSessionKey = "CartId";
public void AddToCart (int id)

{
// Retrieve the product from the database.

ShoppingCartId = GetCartId();

var cartItem = db.ShoppingCartItems.SingleOrDefault (
c => c.CartId == ShoppingCartId
&& c.ProductId == id);

if (cartItem == null)

{

// Create a new cart item if no cart item exists.
cartItem = new CartlItem
{
ItemId = Guid.NewGuid() .ToString(),
ProductId = id,
CartId = ShoppingCartId,
Product = db.Products.SingleOrDefault (
p => p.ProductID == id),
Quantity = 1,
DateCreated = DateTime.Now
}i

_db.ShoppingCartItems.Add(cartItem);

}

else

{
// If the item does exist in the cart,
// then add one to the quantity.
cartItem.Quantity++;

}

_db.SaveChanges () ;

}

public void Dispose ()
{
if (db != null)
{
_db.Dispose () ;
~db = null;
}
}

public string GetCartId()
{
if (HttpContext.Current.Session[CartSessionKey] == null)
{
if (!string.IsNullOrWhiteSpace (HttpContext.Current.User.Identity.Name))
{
HttpContext.Current.Session[CartSessionKey] =
HttpContext.Current.User.Identity.Name;
}
else

{

// Generate a new random GUID using System.Guid class.

Guid tempCartId = Guid.NewGuid() ;
HttpContext.Current.Session[CartSessionKey] = tempCartId.ToString() ;
}
}

return HttpContext.Current.Session[CartSessionKey].ToString() ;

}

public List<CartItem> GetCartItems ()

{
ShoppingCartId = GetCartId();

return db.ShoppingCartItems.Where (
c => c.CartId == ShoppingCartId).ToList () ;

}

public decimal GetTotal ()

{
ShoppingCartId = GetCartId():;
// Multiply product price by quantity of that product to get
// the current price for each of those products in the cart.
// Sum all product price totals to get the cart total.

decimal? total = decimal.Zero;
total = (decimal?) (from cartItems in db.ShoppingCartItems
where cartItems.CartId == ShoppingCartId

select (int?)cartlItems.Quantity *
cartItems.Product.UnitPrice) .Sum() ;
return total ?? decimal.Zero;

}

public ShoppingCartActions GetCart (HttpContext context)
{
using (var cart = new ShoppingCartActions())
{
cart.ShoppingCartId = cart.GetCartId();
return cart;

}

public void UpdateShoppingCartDatabase (String cartId, ShoppingCartUpdates]]
CartItemUpdates)
{
using (var db = new WingtipToys.Models.ProductContext ())
{
try
{
int CartItemCount = CartItemUpdates.Count () ;
List<CartItem> myCart = GetCartlItems();
foreach (var cartItem in myCart)
{
// Iterate through all rows within shopping cart list
for (int 1 = 0; 1 < CartItemCount; i++)
{
if (cartItem.Product.ProductID == CartItemUpdates[i].ProductId)
{
if (CartItemUpdates[i].PurchaseQuantity < 1 ||
CartItemUpdates[i] .Removeltem == true)
{
Removeltem (cartId, cartItem.ProductId);
}
else
{
UpdateItem(cartId, cartItem.Productld,
CartItemUpdates[i] .PurchaseQuantity) ;

(from ¢ in db.ShoppingCartItems where c.CartId ==
updateCartID && c.Product.ProductID == updateProductID select
c) .FirstOrDefault () ;
if (myItem

= quantity;
_db.SaveChanges () ;
}

}

catch (Exception exp)

{

throw new Exception ("ERROR: Unable to Update Cart Item - " +

exp.Message.ToString (), exp):;

}

}

}

}
catch (Exception exp)
{
throw new Exception ("ERROR: Unable to Remove Cart Item - " +
exp.Message.ToString (), exp);
}
}

public void UpdatelItem(string updateCartID,
quantity)

}
}

catch (Exception exp)
{

throw new Exception ("ERROR: Unable to Update Cart Database - " +
exp.Message.ToString (), exp):;
}

}
}

public void Removeltem(string removeCartID,
{

int removeProductID)
using (var db new WingtipToys.Models.ProductContext ())
{
try
{

var myltem =

(from ¢ in db.ShoppingCartItems where c.CartId ==
removeCartID && c.Product.ProductID
c) .FirstOrDefault () ;

removeProductID select

if (myItem != null)
{

// Remove Item.

_db.ShoppingCartItems.Remove (myItem) ;
_db.SaveChanges () ;
}

}

int updateProductID, int
{
using
{

try

{

(var db new WingtipToys.Models.ProductContext ())

var myltem

!'= null)
{

myItem.Quantity

{

public void EmptyCart ()

ShoppingCartId = GetCartId();
var cartItems = db.ShoppingCartItems.Where (
c => c.CartId == ShoppingCartId);
foreach (var cartItem in cartItems)
{
_db.ShoppingCartItems.Remove (cartItem) ;
}
// Save changes.
_db.SaveChanges () ;
}

public int GetCount ()

{
ShoppingCartId = GetCartId();

// Get the count of each item in the cart and sum them up

int? count = (from cartItems in db.ShoppingCartItems
where cartItems.CartId == ShoppingCartId
select (int?)cartlItems.Quantity) .Sum() ;

// Return 0 if all entries are null

return count ?? 0;

}

public struct ShoppingCartUpdates

{
public int ProductId;
public int PurchaseQuantity;
public bool Removeltem;

}

}
}

The UpdateShoppingCartDatabase method, called from the UpdateCartItems method
on the ShoppingCart.aspx.cs page, contains the logic to either update or remove items from the
shopping cart. The UpdateShoppingCartDatabase method iterates through all the rows
within the shopping cart list. If a shopping cart item has been marked to be removed, or the
quantity is less than one, the RemoveItem method is called. Otherwise, the shopping cart item
is checked for updates when the UpdateItem method is called. After the shopping cart item
has been removed or updated, the database changes are saved.

The shoppingCartUpdates structure is used to hold all the shopping cart items. The
UpdateShoppingCartDatabase method uses the ShoppingCartUpdates structure to
determine if any of the items need to be updated or removed.

In the next tutorial, you will use the EmptyCart method to clear the shopping cart after
purchasing products. But for now, you will use the GetCount method that you just added to
the ShoppingCartActions.cs file to determine how many items are in the shopping cart.

Adding a Shopping Cart Counter

To allow the user to view the total number of items in the shopping cart, you will add a counter
to the Site.Master page. This counter will also act as a link to the shopping cart.

In Solution Explorer, open the Site.Master page.
Modify the markup by adding the shopping cart counter link as shown in yellow to the
navigation section so it appears as follows:

<ul class="nav navbar-nav">
Home</1li>
About</1i>
Contact</1li>
Products</1i>
<a runat="server" href="~/ShoppingCart"

ID="cartCount"> </1i>

Next, update the code-behind of the Site.Master.cs file by adding the code highlighted in
yellow as follows:

using System;

using System.Collections.Generic;
using System.Security.Claims;
using System.Security.Principal;
using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;
using System.Ling;

using WingtipToys.Models;

using WingtipToys.Logic;

namespace WingtipToys
{
public partial class SiteMaster : MasterPage
{
private const string AntiXsrfTokenKey = " AntiXsrfToken";
private const string AntiXsrfUserNameKey = " AntiXsrfUserName";
private string antiXsrfTokenValue;

protected void Page Init (object sender, EventArgs e)
{
// The code below helps to protect against XSRF attacks
var requestCookie = Request.Cookies[AntiXsrfTokenKey];
Guid requestCookieGuidValue;
if (requestCookie != null && Guid.TryParse (requestCookie.Value, out
requestCookieGuidvalue))
{
// Use the Anti-XSRF token from the cookie
_antiXsrfTokenValue = requestCookie.Value;
Page.ViewStateUserKey = antiXsrfTokenValue;
}
else
{
// Generate a new Anti-XSRF token and save to the cookie
_antiXsrfTokenValue = Guid.NewGuid() .ToString ("N");
Page.ViewStateUserKey = antiXsrfTokenValue;

var responseCookie = new HttpCookie (AntiXsrfTokenKey)
{
HttpOnly = true,
Value = antiXsrfTokenValue
}i
if (FormsAuthentication.RequireSSL &&
Request.IsSecureConnection)

responseCookie.Secure = true;

}

Response.Cookies. Set (responseCookie) ;

Page.PrelLoad += master Page PrelLoad;

}

protected void master Page PrelLoad(object sender, EventArgs e)
{
if (!IsPostBack)

{
// Set Anti-XSRF token

ViewState[AntiXsrfTokenKey] = Page.ViewStateUserKey;
ViewState[AntiXsrfUserNameKey] = Context.User.Identity.Name ?7?
String.Empty;

}

else

{
// Validate the Anti-XSRF token

if ((string)ViewState[AntiXsrfTokenKey] != antiXsrfTokenValue
|| (string)ViewState[AntiXsrfUserNameKey] !=
(Context.User.Identity.Name ?? String.Empty))
{

throw new InvalidOperationException("Validation of Anti-

XSRF token failed.");
}

}

protected void Page Load (object sender, EventArgs e)

{
}

protected void Page PreRender (object sender, EventArgs e)

{

using (ShoppingCartActions usersShoppingCart = new

ShoppingCartActions())
{

string cartStr = string.Format ("Cart ({0})",

usersShoppingCart.GetCount ()) ;
cartCount.InnerText = cartStr;

}
}

public IQueryable<Category> GetCategories ()

{
var db = new WingtipToys.Models.ProductContext () ;

IQuegyable<Category> query = db.Categories;
return query;

}

protected void Unnamed LoggingOut (object sender, LoginCancelEventArgs

{
Context.GetOwinContext () .Authentication.SignOut () ;

Before the page is rendered as HTML, the Page PreRender event is raised. In the

Page PreRender handler, the total count of the shopping cart is determined by calling the
GetCount method. The returned value is added to the cartCount span included in the
markup of the Site.Master page. The tags enables the inner elements to be properly
rendered. When any page of the site is displayed, the shopping cart total will be displayed. The
user can also click the shopping cart total to display the shopping cart.

Testing the Completed Shopping Cart

You can run the application now to see how you can add, delete, and update items in the
shopping cart. The shopping cart total will reflect the total cost of all items in the shopping cart.

1.

Press F5 to run the application.

The browser opens and shows the Default.aspx page.

Select Cars from the category navigation menu.

Click the Add To Cart link next to the first product.

The ShoppingCart.aspx page is displayed with the order total.

Select Planes from the category navigation menu.

Click the Add To Cart link next to the first product.

Set the quantity of the first item in the shopping cart to 3 and select the Remove Item
check box of the second item.

7. Click the Update button to update the shopping cart page and display the new order
total.

O
¢ |6 B [[1B

Wingtip Toys Home About Contact Products Cart(3) Register Login

Wungtye Toyy

Cars |Planes | Trucks | Boats |Rockets

Shopping Cart
1D Name Price (each) Quantity Item Total Remove Item

1 Convertible Car $22 50 $67.50 0

Order Total: $67.50

© 2013 - Wingtip Toys

Summary

In this tutorial, you have created a shopping cart for the Wingtip Toys Web Forms sample
application. During this tutorial you have used Entity Framework Code First, data annotations,
strongly typed data controls, and model binding.

The shopping cart supports adding, deleting, and updating items that the user has selected for
purchase. In addition to implementing the shopping cart functionality, you have learned how to
display shopping cart items in a GridView control and calculate the order total.

Addition Information

e ASP.NET Session State Overview

http://msdn.microsoft.com/en-us/library/ms178581.aspx

Checkout and Payment with PayPal

This tutorial series will teach you the basics of building an ASP.NET Web Forms application using
ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project
with C# source code is available to accompany this tutorial series.

This tutorial describes how to modify the Wingtip Toys sample application to include user
authorization, registration, and payment using PayPal. Only users who are logged in will have
authorization to purchase products. The ASP.NET 4.5 Web Forms project template's built-in user
registration functionality already includes much of what you need. You will add to this PayPal
Express Checkout functionality. In this tutorial you be using the PayPal developer testing
environment, so no actual funds will be transferred. At the end of the tutorial, you will test the
application by selecting products to add to the shopping cart, clicking the checkout button, and
transferring data to the PayPal testing web site. On the PayPal testing web site, you will confirm
your shipping and payment information and then return to the local Wingtip Toys sample
application to confirm and complete the purchase.

There are several experienced third-party payment processors that specialize in online shopping
that address scalability and security. ASP.NET developers should consider the advantages of
utilizing a third party payment solution before implementing a shopping and purchasing
solution.

Note

The Wingtip Toys sample application was designed to shown specific ASP.NET concepts and
features available to ASP.NET web developers. This sample application was not optimized for all
possible circumstances in regard to scalability and security.

What you'll learn:

e How to restrict access to specific pages in a folder.

e How to create a known shopping cart from an anonymous shopping cart.

e How to use PayPal to purchase products using the PayPal testing environment.

e How to display details from PayPal in a DetailsView control.

e How to update the database of the Wingtip Toys application with details obtained from
PayPal.

Adding Order Tracking

In this tutorial, you'll create two new classes to track data from the order a user has created. The
classes will track data regarding shipping information, purchase total, and payment
confirmation.

Add the Order and OrderDetail Model Classes

Earlier in this tutorial series, you defined the schema for categories, products, and shopping cart
items by creating the Category, Product, and CartItem classes in the Models folder. Now
you will add two new classes to define the schema for the product order and the details of the
order.

1. In the Models folder, add a new class named Order.cs.
The new class file is displayed in the editor.
2. Replace the default code with the following:

using System.ComponentModel.DataAnnotations;
using System.Collections.Generic;
using System.ComponentModel;

namespace WingtipToys.Models
{

public class Order

{
public int OrderId { get; set; }

public System.DateTime OrderDate { get; set; }
public string Username { get; set; }

[Required (ErrorMessage = "First Name is required")]
[DisplayName ("First Name")]

[StringLength (160)]

public string FirstName { get; set; }

[Required (ErrorMessage = "Last Name is required")]
[DisplayName ("Last Name")]

[StringLength (160)]

public string LastName { get; set; }

[Required (ErrorMessage = "Address is required")]
[StringLength (70)]
public string Address { get; set; }

[Required (ErrorMessage = "City is required")]
[StringLength (40)]
public string City { get; set; }

[Required (ErrorMessage = "State is required")]
[StringLength (40)]
public string State { get; set; }

[Required (ErrorMessage = "Postal Code is required")]
[DisplayName ("Postal Code")]

[StringLength (10)]

public string PostalCode { get; set; }

[Required (ErrorMessage = "Country 1is required")]
[StringLength (40)]
public string Country { get; set; }

[StringLength (24)]
public string Phone { get; set; }

[Required (ErrorMessage = "Email Address is required")]
[DisplayName ("Email Address")]

[RegularExpression (Q@" [A-Za-z0-9. %+-]+Q@[A-Za-z0-9.-]1+\.[A-Za-2z]{2,4}",
ErrorMessage = "Email is is not valid.")]

[DataType (DataType.EmailAddress)]

public string Email { get; set; }

[ScaffoldColumn (false)]
public decimal Total { get; set; }

[ScaffoldColumn (false)]
public string PaymentTransactionId { get; set; }

[ScaffoldColumn (false)]
public bool HasBeenShipped { get; set; }

public List<OrderDetail> OrderDetails { get; set; }

}

3. Add an OrderDetail.cs class to the Models folder.
4. Replace the default code with the following code:

using System.ComponentModel.DataAnnotations;
namespace WingtipToys.Models

{

public class OrderDetail

{ public int OrderDetailId { get; set; }
public int OrderId { get; set; }
public string Username { get; set; }
public int ProductId { get; set; }

public int Quantity { get; set; }

public double? UnitPrice { get; set; }

}

The Order and OrderDetail classes contain the schema to define the order information used
for purchasing and shipping.

In addition, you will need to update the database context class that manages the entity classes
and that provides data access to the database. To do this, you will add the newly created Order
and OrderDetail model classes to ProductContext class.

1. In Solution Explorer, find and open the ProductContext.cs file.
2. Add the highlighted code to the ProductContext.cs file as shown below:

using System.Data.Entity;

namespace WingtipToys.Models
{
public class ProductContext : DbContext
{
public ProductContext ()
base ("WingtipToys")

{
}
public DbSet<Category> Categories { get; set; }
public DbSet<Product> Products { get; set; }
public DbSet<CartItem> ShoppingCartItems { get; set; }
public DbSet<Order> Orders { get; set; }
public DbSet<OrderDetail> OrderDetails { get; set; }
}
}

As mentioned previously in this tutorial series, the code in the ProductContext.cs file adds the
System.Data.Entity namespace so that you have access to all the core functionality of the
Entity Framework. This functionality includes the capability to query, insert, update, and delete
data by working with strongly typed objects. The above code in the ProductContext class
adds Entity Framework access to the newly added Order and OrderDetail classes.

Adding Checkout Access

The Wingtip Toys sample application allows anonymous users to review and add products to a
shopping cart. However, when anonymous users choose to purchase the products they added to
the shopping cart, they must log on to the site. Once they have logged on, they can access the
restricted pages of the Web application that handle the checkout and purchase process. These
restricted pages are contained in the Checkout folder of the application.

Add a Checkout Folder and Pages

You will now create the Checkout folder and the pages in it that the customer will see during the
checkout process. You will update these pages later in this tutorial.

1. Right-click the project name (Wingtip Toys) in Solution Explorer and select Add a New

Folder.

Solution Explorer
@ o-eaim| £ -
Search Solution Explorer (Ctrl+;) P~

M| X

& Solution "WingtipToys' (1 project)
4 [WingtipToys
b S Properties
b =B References
b B Account
W App_Data
I App_Start
¥ Catalog
¥ Content S
ar

fe

W img
W Logic
i Models
W Scripts
&) About.aspx
& AddToCart.aspx &
¥ Bundle.config
&) Contact.aspx o3
b &) Default.aspx

favicon.ico
b &) Global.asax
¥ packages.config X%
& ProductDetails.aspx
& Productlist.aspx
&1 ShoppingCart.aspx
Site.Master
Site.Mobile Master
* Startup.cs e
g ViewSwitcher.ascx
¥ Web.config &

v T v W v v W v v

-

v v v v v v v

Solution Explorer

2. Name the new folder Checkout.

Build

Rebuild

Clean

View »
Convert 3
Publish...

View in Page Inspector Ctrl+K, Ctrl+G
Scope to This

Mew Solution Explorer View

e YO New ktem.. Cirl+ Shift+A
Manage MuGet Packages... a Edsting ltem... Shift+Alt+A
Set as StartUp Project Scaffold...
Debug » | 5@ New Folder
Source Control » Add ASP.MET Folder
Cut Ctrl+X Reference...
Paste Ctrl+V Service Reference...
Remave Del Web Ferm
Rename Web User Control
Unload Project JavaScript File
Open Folder in File Explorer Style Sheet
Properties Alt+Enter Web Form using Master Page
' Class..

3. Right-click the Checkout folder and then select Add -> New Item.

4

v v v v v v v

-

Solution Explorer

Solution Explorer

* A x

@leo-2ndid| s -

Search Selution Explorer (Ctrl+;)

] Solution "WingtipToys' (1 project)

WingtipToys

& Properties

=B References

¥ Account

W App_Data

B8 App_Start

W Catalog

i o

¥ Content

i img

I Logic

i Models

W Scripts

g About.aspx

& AddToCart.aspx
¥ Bundle.config

@ Contact.aspx

g Default.aspx
favicon.ico

&1 Global.asax

¥ packages.config
g ProductDetails.aspx
& Productlist.aspx
& ShoppingCart.aspx
Site.Master
Site.Mobile.Master
c# Startup.cs

@ ViewSwitcher.ascx

¥ Web.config

P~

View in Browser (Internet Explorer) Ctrl+Shift+W
Browse With...

Convert to Web Application

Add

Scope to This

MNew Solution Explorer View

Exclude From Project

Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+V
Delete Del
Rename

Open Folder in File Explorer

Properties Alt+Enter

‘O New ltern... Ctrl+Shift+A
‘0 Eisting ltem... Shift+Alt+ A
Scaffold...
*i Mew Folder
Add ASP.NET Folder
Web Form
Web User Control
JavaScript File
Style Sheet
Web Form using Master Page
¥ Class..

4. The Add New Item dialog box is displayed.

5. Select the Visual C# -> Web templates group on the left. Then, from the middle pane,
select Web Form using Master Page and name it CheckoutStart.aspx.

Data i
General !j
Web
Silverlight
B Online
N]
Name: CheckoutStart.aspx

Add New Item - WingtipToys

4 |nstalled Sort by: |Defau|t

4 Visual CF N
'5'-:; d Web Form using Master Page Visual C#
ode

Web User Control

Master Page

Mested Master Page

HTML Page

Style Sheet

JavaScript File

Type: Visual C#

2 |

Search Installed Templates (Ctri+E) P~

A form for Web Applications that is built

Visual C# from a Master Page

Visual C#

Visual C#

Vizual C#

Vigual C#

Visual C#

Click here to go online and find templates.

Add || Cancel

6. As before, select the Site.Master file as the master page.
7. Add the following additional pages to the Checkout folder using the same steps above:

e CheckoutReview.aspx

e CheckoutComplete.aspx
e CheckoutCancel.aspx

e CheckoutError.aspx

Add a Web.config File

By adding a new Web.config file to the Checkout folder, you will be able to restrict access to all
the pages contained in the folder.

1.

Right-click the Checkout folder and select Add -> New Item.
The Add New Item dialog box is displayed.
Select the Visual C# -> Web templates group on the left. Then, from the middle pane,
select Web Configuration File, accept the default name of Web.config, and then select

Add.

Replace the existing XML content in the Web.config file with the following:

<?xml version="1.0"?2>
<configuration>
<system.web>
<authorization>
<deny users="?2"/>
</authorization>
</system.web>

|</configuration>

4. Save the Web.config file.

The Web.config file specifies that all unknown users of the Web application must be denied
access to the pages contained in the Checkout folder. However, if the user has registered an
account and is logged on, they will be a known user and will have access to the pages in the
Checkout folder.

It's important to note that ASP.NET configuration follows a hierarchy, where each Web.config file
applies configuration settings to the folder that it is in and to all of the child directories below it.

Enabling Logins from Other Sites Using OAuth and
OpenlID

ASP.NET Web Forms provides enhanced options for membership and authentication. These
enhancements include the new OAuth and OpenlD providers. Using these providers, you can
let users log into your site using their existing credentials from Facebook, Twitter, Windows Live,
and Google. For example, to log in using a Facebook account, users can just choose a Facebook
option, which redirects them to the Facebook login page where they enter their user credentials.
They can then associate the Facebook login with their account on your site. A related
enhancement to the ASP.NET Web Forms membership (ASP.NET Identity) features is that users
can associate multiple logins (including logins from social networking sites) with a single
account on your website.

When you add an OAuth provider (Facebook, Twitter, or Windows Live) to your ASP.NET Web
Forms application, you must set the application ID (key) value and an application secret value.
You add these values to the Startup.Auth.cs file in your Web Forms application. Additionally, you
must create an application on the external site (Facebook, Twitter, or Windows Live). When you
create the application on the external site you can get the application keys that you'll need in
order to invoke the login feature for those sites.

Note
Windows Live applications only accept a live URL for a working website, so you cannot use a
local website URL for testing logins.

For sites that use an OpenlD provider (Google), you do not have to create an application on the
external site.

1. In Solution Explorer, find and open the App_Start folder.

2. Open the file named Startup.Auth.cs.

3. Uncomment the single line of code highlighted in yellow to allow Google OpenID
accounts as follows:

using Microsoft.AspNet.Identity;
using Microsoft.Owin;

using Microsoft.Owin.Security.Cookies;
using Owin;

namespace WingtipToys
{
public partial class Startup ({

// For more information on configuring authentication, please visit
http://go.microsoft.com/fwlink/?LinkId=301883
public void ConfigureAuth (IAppBuilder app)
{
// Enable the application to use a cookie to store information for
the signed in user
// and also store information about a user logging in with a third
party login provider.
// This is required if your application allows users to login
app.UseCookieAuthentication (new CookieAuthenticationOptions
{
AuthenticationType =
DefaultAuthenticationTypes.ApplicationCookie,
LoginPath = new PathString("/Account/Login")
1)

app.UseExternalSignInCookie (DefaultAuthenticationTypes.ExternalCookie) ;

// Uncomment the following lines to enable logging in with third
party login providers

//app.UseMicrosoftAccountAuthentication (

// clientId: "",

// clientSecret: "");

//app.UseTwitterAuthentication (
// consumerKey: "",

// consumerSecret: "");
//app.UseFacebookAuthentication (
// appId: "",

// appSecret: "");

app.UseGoogleAuthentication () ;

}

4. Save the Startup.Auth.cs file.

When you run the Wingtip Toys sample application, you will have the option to login to your
Google account and associate your Wingtip Toys account with the Google account.

Modifying Login Functionality

As previously mentioned in this tutorial series, much of the user registration functionality has
been included in the ASP.NET Web Forms template by default. Now you will modify the default
Login.aspx and Register.aspx pages to call the MigrateCart method. The MigrateCart
method associates a newly logged in user with an anonymous shopping cart. By associating the
user and shopping cart, the Wingtip Toys sample application will be able to maintain the
shopping cart of the user between visits.

1. In Solution Explorer, find and open the Account folder.

2. Modify the code-behind page named Login.aspx.cs to include the code highlighted in
yellow, so that it appears as follows:

using Microsoft.AspNet.Identity;

using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity.Owin;

using Microsoft.Owin.Security;

using System;

using System.Ling;

using System.Web;

using System.Web.UI;

using WingtipToys.Models;

namespace WingtipToys.Account
{
public partial class Login : Page
{
protected void Page Load(object sender, EventArgs e)
{
RegisterHyperLink.NavigateUrl = "Register";
OpenAuthLogin.ReturnUrl = Request.QueryString["ReturnUrl"];
var returnUrl =
HttpUtility.UrlEncode (Request.QueryString["ReturnUrl"]) ;
if (!String.IsNullOrEmpty (returnUrl))
{
RegisterHyperLink.NavigateUrl += "?ReturnUrl=" + returnUrl;
}
}

protected void LogIn(object sender, EventArgs e)
{
if (Isvalid)
{
// Validate the user password
var manager = new UserManager () ;
ApplicationUser user = manager.Find(UserName.Text,
Password.Text) ;
if (user != null)
{

IdentityHelper.SignlIn (manager, user, RememberMe.Checked) ;

WingtipToys.Logic.ShoppingCartActions usersShoppingCart =
new WingtipToys.Logic.ShoppingCartActions() ;

String cartId = usersShoppingCart.GetCartId() ;

usersShoppingCart.MigrateCart (cartId, UserName.Text) ;

IdentityHelper.RedirectToReturnUrl (Request.QueryString["ReturnUrl"], Response);
}
else
{
FailureText.Text = "Invalid username or password.";
ErrorMessage.Visible = true;

}

3. Save the Login.aspx.cs file.

For now, you can ignore the warning that there is no definition for the MigrateCart method.
You will be adding it a bit later in this tutorial.

The Login.aspx.cs code-behind file supports a Logln method. By inspecting the Login.aspx page,

you'll see that this page includes a “Log in” button that when click triggers the LogIn handler
on the code-behind.

When the Login method on the Login.aspx.cs is called, a new instance of the shopping cart
named usersShoppingCart is created. The ID of the shopping cart (a GUID) is retrieved and
set to the cartId variable. Then, the MigrateCart method is called, passing both the cart1d
and the name of the logged-in user to this method. When the shopping cart is migrated, the
GUID used to identify the anonymous shopping cart is replaced with the user name.

In addition to modifying the Login.aspx.cs code-behind file to migrate the shopping cart when
the user logs in, you must also modify the Register.aspx.cs code-behind file to migrate the
shopping cart when the user creates a new account and logs in.

1. In the Account folder, open the code-behind file named Register.aspx.cs.
2. Modify the code-behind file by including the code in yellow, so that it appears as follows:

using Microsoft.AspNet.Identity;

using Microsoft.AspNet.Identity.EntityFramework;
using Microsoft.AspNet.Identity.Owin;

using System;

using System.Ling;

using System.Web;

using System.Web.UI;

using WingtipToys.Models;

namespace WingtipToys.Account
{
public partial class Register : Page
{
protected void CreateUser Click(object sender, EventArgs e)
{
var manager = new UserManager () ;
var user = new ApplicationUser () { UserName = UserName.Text };
IdentityResult result = manager.Create (user, Password.Text) ;
if (result.Succeeded)
{

IdentityHelper.SignlIn (manager, user, isPersistent: false);

using (WingtipToys.Logic.ShoppingCartActions usersShoppingCart
= new WingtipToys.Logic.ShoppingCartActions ())
{
String cartId = usersShoppingCart.GetCartId() ;
usersShoppingCart.MigrateCart (cartId, user.Id);
}

IdentityHelper.RedirectToReturnUrl (Request.QueryString["ReturnUrl"], Response);
}

else

{

ErrorMessage.Text = result.Errors.FirstOrDefault ()

}

3. Save the Register.aspx.cs file. Once again, ignore the warning about the MigrateCart
method.

Notice that the code you used in the CreateUser Click event handler is very similar to the
code you used in the LogIn method. When the user registers or logs in to the site, a call to the
MigrateCart method will be made.

Migrating the Shopping Cart

Now that you have the log-in and registration process updated, you can add the code to
migrate the shopping cart—the MigrateCart method.

1. In Solution Explorer, find the Logic folder and open the ShoppingCartActions.cs class file.
2. Add the code highlighted in yellow to the existing code in the ShoppingCartActions.cs
file, so that the code in the ShoppingCartActions.cs file appears as follows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using WingtipToys.Models;

namespace WingtipToys.Logic
{
public class ShoppingCartActions : IDisposable

{
public string ShoppingCartId { get; set; }

private ProductContext db = new ProductContext();
public const string CartSessionKey = "CartId";
public void AddToCart (int id)

{

// Retrieve the product from the database.
ShoppingCartId = GetCartId();

var cartItem = db.ShoppingCartItems.SingleOrDefault (
c => c.CartId == ShoppingCartId
&& c.ProductId == id);

if (cartItem == null)

{
// Create a new cart item if no cart item exists.
cartItem = new CartlItem
{
ItemId = Guid.NewGuid() .ToString(),
ProductId = id,
CartId = ShoppingCartId,
Product = db.Products.SingleOrDefault (
p => p.ProductID == id),
Quantity = 1,
DateCreated = DateTime.Now
I

_db.ShoppingCartItems.Add(cartItem);
}
else

{
// If the item does exist in the cart,

// then add one to the quantity.
cartItem.Quantity++;
}
_db.SaveChanges () ;
}

public void Dispose ()
{
if (_db != null)
{
_db.Dispose();
~db = null;
}
}

public string GetCartId()
{
if (HttpContext.Current.Session[CartSessionKey] == null)
{
if (!string.IsNullOrWhiteSpace (HttpContext.Current.User.Identity.Name))
{
HttpContext.Current.Session[CartSessionKey] =
HttpContext.Current.User.Identity.Name;
}
else

{

// Generate a new random GUID using System.Guid class.
Guid tempCartId = Guid.NewGuid() ;
HttpContext.Current.Session[CartSessionKey] = tempCartId.ToString() ;
}
}

return HttpContext.Current.Session[CartSessionKey].ToString() ;

}

public List<CartItem> GetCartItems ()

{
ShoppingCartId = GetCartId():;

return db.ShoppingCartItems.Where (
c => c.CartId == ShoppingCartId).ToList () ;

}

public decimal GetTotal ()
{
ShoppingCartId = GetCartId()
// Multiply product price by quantity of that product to get
// the current price for each of those products in the cart.
// Sum all product price totals to get the cart total.
decimal? total = decimal.Zero;
total = (decimal?) (from cartItems in _db.ShoppingCartItems
where cartItems.CartId == ShoppingCartId
select (int?)cartItems.Quantity *
cartItems.Product.UnitPrice) .Sum() ;
return total ?? decimal.Zero;

}

public ShoppingCartActions GetCart (HttpContext context)

using (var cart = new ShoppingCartActions())
{
cart.ShoppingCartId = cart.GetCartId();
return cart;

public void UpdateShoppingCartDatabase (String cartId, ShoppingCartUpdates](]
CartItemUpdates)
{
using (var db = new WingtipToys.Models.ProductContext ())
{
try
{
int CartItemCount = CartItemUpdates.Count () ;
List<CartItem> myCart = GetCartItems() ;
foreach (var cartItem in myCart)
{
// Iterate through all rows within shopping cart list
for (int 1 = 0; i < CartItemCount; i++)
{
if (cartItem.Product.ProductID == CartItemUpdates[i].ProductId)
{
if (CartItemUpdates[i].PurchaseQuantity < 1 ||
CartItemUpdates[i] .Removeltem == true)
{
RemovelItem (cartId, cartItem.ProductId);
}
else
{
UpdateItem(cartId, cartItem.Productld,
CartItemUpdates[i] .PurchaseQuantity);
}
}

}

catch (Exception exp)

{

throw new Exception ("ERROR: Unable to Update Cart Database - " +

exp.Message.ToString (), exp);

}

}
}

public void Removeltem(string removeCartID, int removeProductID)

{

using (var _db

{

new WingtipToys.Models.ProductContext ())

try
{
var myItem = (from c¢ in db.ShoppingCartItems where c.CartId ==
removeCartID && c.Product.ProductID == removeProductID select
c) .FirstOrDefault () ;
if (myItem != null)

{
// Remove Item.
_db.ShoppingCartItems.Remove (myItem) ;
_db.SaveChanges () ;
}
}

catch (Exception exp)

{
throw new Exception ("ERROR: Unable to Remove Cart Item - " +
exp.Message.ToString (), exp);
}
}
}

public void Updateltem(string updateCartID, int updateProductID, int
quantity)

{

using (var db = new WingtipToys.Models.ProductContext ())
{

try
{
var myItem = (from c in db.ShoppingCartItems where c.CartId ==
updateCartID && c.Product.ProductID == updateProductID select
c) .FirstOrDefault () ;
if (myItem != null)

{
myIltem.Quantity = quantity;
_db.SaveChanges () ;
}
}
catch (Exception exp)
{
throw new Exception ("ERROR: Unable to Update Cart Item - " +
exp.Message.ToString (), exp);
}
}
}

public void EmptyCart ()
{
ShoppingCartId = GetCartId();
var cartItems = db.ShoppingCartItems.Where (
c => c.CartId == ShoppingCartId);
foreach (var cartItem in cartItems)
{
_db.ShoppingCartItems.Remove (cartItem);
}
// Save changes.
_db.SaveChanges () ;
}

public int GetCount ()
{
ShoppingCartId = GetCartId():;

// Get the count of each item in the cart and sum them up

int? count = (from cartlItems in _db.ShoppingCartItems
where cartItems.CartId == ShoppingCartId
select (int?)cartlItems.Quantity) .Sum() ;

// Return 0 if all entries are null

return count ?2? 0;

}

public struct ShoppingCartUpdates
{
public int ProductId;
public int PurchaseQuantity;
public bool Removeltem;

}

public void MigrateCart (string cartId, string userName)

{
var shoppingCart = db.ShoppingCartItems.Where(c => c.CartId == cartId);
foreach (CartItem item in shoppingCart)
{

item.CartId = userName;

}
HttpContext.Current.Session[CartSessionKey] = userName;
_db.SaveChanges () ;

}

}
}

The MigrateCart method uses the existing cartld to find the shopping cart of the user. Next,
the code loops through all the shopping cart items and replaces the Cart1d property (as
specified by the CartItem schema) with the logged-in user name.

Updating the Database Connection

If you are following this tutorial using the prebuilt Wingtip Toys sample application, you must
recreate the default membership database. By modifying the default connection string, the
membership database will be created the next time the application runs.

1. Open the Web.config file at the root of the project.
2. Update the default connection string so that it appears as follows:

<add name="DefaultConnection" connectionString="Data
Source= (LocalDb)\v11.0;Initial Catalog=aspnet-WingtipToys;Integrated
Security=True" providerName="System.Data.SglClient" />

Integrating PayPal

PayPal is a web-based billing platform that accepts payments by online merchants. This tutorial
next explains how to integrate PayPal’s Express Checkout functionality into your application.
Express Checkout allows your customers to use PayPal to pay for the items they have added to
their shopping cart.

Create PaylPal Test Accounts

To use the PayPal testing environment, you must create and verify a developer test account. You
will use the developer test account to create a buyer test account and a seller test account. The
developer test account credentials also will allow the Wingtip Toys sample application to access
the PayPal testing environment.

1. In a browser, navigate to the PayPal developer testing site:
https://developer.paypal.com

2. If you don't have a PayPal developer account, create a new account by clicking Sign Up
and following the sign up steps. If you have an existing PayPal developer account, sign in
by clicking Log In. You will need your PayPal developer account to test the Wingtip Toys
sample application later in this tutorial.

https://developer.paypal.com/

3. If you have just signed up for your PayPal developer account, you may need to verify
your PayPal developer account with PayPal. You can verify your account by following the
steps that PayPal sent to your email account. Once you have verified your PayPal
developer account, log back into the PayPal developer testing site.

4. After you are logged in to the PayPal developer site with your PayPal developer account
you need to create a PayPal buyer test account if you don't already have one. To create a
buyer test account, on the PayPal site click the Applications tab and then click Sandbox
accounts.

The Sandbox test accounts page is shown.

Note
The PayPal Developer site already provides a merchant test account.

e‘:'jwup’ https://developer.paypal.c.. O = @ PayPal, In.. & ” P sandbox Test Accounts | Pa... ‘ ‘
Find: theme Previous Mext ‘ ./ | Options = ‘

PayPal | Developer BE™ WingtipToys Developer Log out

Documentation Applications Dashboard Support

Applications Sandbox test accounts
My apps
Account eligibility Import your existing Sandbox test accounts using the email address and password you used previously with the

Sandbox_ Make sure you import to the PayPal account that you want to use for development. You can import only
once. Import data

Sandbox accounts
Tools

Questions? Check out the Testing Guide. Non-US developers should read our FAQ.
IPN simulator

Enter Sandbox site
ic]

[0 Email address Type Country Date created
] wingtiptoysdeveloper-facilitator@live_com Business us 22 Oct 2013

Copyright @ 1999 - 2013 PayPal. All rights reserved. | Privacy policy Legal agreements Contact us

5. On the Sandbox test accounts page, click Create Account.
6. On the Create test account page choose a buyer test account email and password of
your choice.

Note
You will need the buyer email addresses and password to test the Wingtip Toys sample

application at the end of this tutorial.

P payPal Developer x

PayPal | Developer ™

Documentation

Applications

My apps

Sandbox
accounts

Tools

IPN simulator

Applications Dashboard Support

Create test account

WingtipToys Developer

Create a personal or business test account, you can also create accounts on

sandbox.paypal.com, and they'll appear here.

Account details
Country
United States

Account type
(@ Personal (buyer account)

() Business (merchant account)
Email address

wingtiptoys-buyer@live.com

Password (8-20 characters)

(LXTTTILY YT Y]

First name (optional)

WingtipToys

Last name (optional)

Buyer

Payment methods
PayPal balance

100 00 USD

Bank verified account
® Yes (O No

Select payment card
() Discover (® PayPal

Credit card type

Visa

Notes (optional)

Buyer Test Account

Create Account Cancel

Copyright ® 1999 - 2013 PayPal. All rights reserved. Privacy policy Legal agreements

Contact us

Ak 2H

Log out

7. Create the buyer test account by clicking the Create Account button.
The Sandbox Test accounts page is displayed.

a*:wﬂ https://developer.paypal.c.. 2 ~ @& PayPal, In.. & ” P sandbox Test Accounts | Pa... ‘ ‘

Find: | theme Previous Mext || 7 | Options = |

PayPaI | Developer BE™ WingtipToys Developer Log out

Documentation Applications Dashboard Support

Applications Sandbox test accounts
My apps
Account eligibility Import your existing Sandbox test accounts using the email address and password you used previously with the
Sandbox accounts Sandbox. Make sure you import to the PayPal account that you want to use for development. You can import only

once. Import data
Tools

s 5 Questions? Check out the Testing Guide. Non-US developers should read our FAQ.
IPN simulator

Enter Sandbox site

]
[1 Email address Type Country Date created
[l wingtiptoys-buyer@live.com Personal us 22 Oct 2013
O wingtiptoysdeveloper-facilitator@live.com Business us 22 Oct 2013

Copyright @ 1999 - 2013 PayPal. All rights reserved. | Privacy policy Legal agreements Contact us

8. On the Sandbox test accounts page, click the facilitator email account.
Profile and Notification options appear.

9. Select the Profile option, then click API credentials to view your API credentials for the
merchant test account.

10. Copy the TEST API credentials to notepad.

You will need your displayed Classic TEST API credentials (Username, Password, and Signature)
to make API calls from the Wingtip Toys sample application to the PayPal testing environment.
You will add the credentials in the next step.

Add PayPal Class and API Credentials

You will place the majority of the PayPal code into a single class. This class contains the methods
used to communicate with PayPal. Also, you will add your PayPal credentials to this class.

1. In the Wingtip Toys sample application within Visual Studio, right-click the Logic folder
and then select Add -> New Item.
The Add New Item dialog box is displayed.

2. Under Visual C# from the Installed pane on the left, select Code.

3. From the middle pane, select Class. Name this new class PayPalFunctions.cs.

Click Add.
The new class file is displayed in the editor.
Replace the default code with the following code:

using System;

using System.Collections;

using System.Collections.Specialized;
using System.IO;

using System.Net;

using System.Text;

using System.Data;

using System.Configuration;

using System.Web;

using WingtipToys;

using WingtipToys.Models;

using System.Collections.Generic;
using System.Ling;

public class NVPAPICaller

{
//Flag that determines the PayPal environment (live or sandbox)
private const bool bSandbox = true;
private const string CVV2 = "CVv2";

// Live strings.
private string pEndPointURL = "https://api-3t.paypal.com/nvp";

private string host = "www.paypal.com";

// Sandbox strings.

private string pEndPointURL SB = "https://api-3t.sandbox.paypal.com/nvp";
private string host SB = "www.sandbox.paypal.com";

private const string SIGNATURE = "SIGNATURE";

private const string PWD = "PWD";

private const string ACCT = "ACCT";

//Replace <Your API Username> with your API Username
//Replace <Your API Password> with your API Password
//Replace <Your Signature> with your Signature

public string APIUsername = "<Your API Username>";
private string APIPassword = "<Your API Password>";
private string APISignature = "<Your Signature>";
private string Subject = "";

private string BNCode = "PP-ECWizard";

//HttpWebRequest Timeout specified in milliseconds

private const int Timeout = 15000;

private static readonly string[] SECURED NVPS = new string[] { ACCT, CVV2,
SIGNATURE, PWD };

public void SetCredentials(string Userid, string Pwd, string Signature)
{

APIUsername = Userid;

APIPassword = Pwd;

APISignature = Signature;

}

public bool ShortcutExpressCheckout (string amt, ref string token, ref string
retMsgqg)
{

if (bSandbox)

{
pPEndPointURL = pEndPointURL SB;

host = host SB;

string returnURL = "http://localhost:1234/Checkout/CheckoutReview.aspx";
string cancelURL = "http://localhost:1234/Checkout/CheckoutCancel.aspx";

NVPCodec encoder = new NVPCodec () ;

encoder ["METHOD"] = "SetExpressCheckout";

encoder ["RETURNURL"] = returnURL;

encoder ["CANCELURL"] = cancelURL;

encoder ["BRANDNAME"] = "Wingtip Toys Sample Application";
encoder["PAYMENTREQUEST_O_AMT"J = amt;

encoder ["PAYMENTREQUEST 0 ITEMAMT"] = amt;

encoder ["PAYMENTREQUEST 0 PAYMENTACTION"] = "Sale";
encoder["PAYMENTREQUEST_O_CURRENCYCODE"] = "UsD";

// Get the Shopping Cart Products
using (WingtipToys.Logic.ShoppingCartActions myCartOrders = new
WingtipToys.Logic.ShoppingCartActions())

{
List<CartItem> myOrderList = myCartOrders.GetCartItems () ;

for (int i = 0; i < myOrderList.Count; i++)
{
encoder["L_PAYMENTREQUEST_O_NAME" + i] =
myOrderList[i] .Product.ProductName.ToString () ;
encoder["L_PAYMENTREQUEST_O_AMT" + 1]
myOrderList[i] .Product.UnitPrice.ToString() ;
encoder ["L PAYMENTREQUEST 0 QTY" + i]
myOrderList[i] .Quantity.ToString() ;
}

}

string pStrrequestforNvp = encoder.Encode () ;
string pStresponsenvp = HttpCall (pStrrequestforNvp) ;

NVPCodec decoder = new NVPCodec() ;
decoder.Decode (pStresponsenvp) ;

string strAck = decoder["ACK"].ToLower () ;
if (strAck !'= null && (strAck == "success" || strAck ==
"successwithwarning"))
{
token = decoder["TOKEN"];
string ECURL = "https://" + host + "/cgi-bin/webscr?cmd= express-
checkout" + "&token=" + token;
retMsg = ECURL;
return true;
}
else

{
retMsg = "ErrorCode=" + decoder["L ERRORCODEO"] + "&" +

"Desc=" + decoder["L SHORTMESSAGEQ"] + "&" +
"Desc2=" + decoder["L LONGMESSAGEQ"];
return false;

}

public bool GetCheckoutDetails (string token, ref string PayerID, ref NVPCodec
decoder, ref string retMsg)

if (bSandbox)

{
pEndPointURL = pEndPointURL SB;

NVPCodec encoder = new NVPCodec () ;
encoder ["METHOD"] = "GetExpressCheckoutDetails";
encoder ["TOKEN"] = token;

string pStrrequestforNvp = encoder.Encode () ;
string pStresponsenvp = HttpCall (pStrrequestforNvp) ;

decoder = new NVPCodec () ;
decoder.Decode (pStresponsenvp) ;

string strAck = decoder["ACK"].ToLower () ;
if (strAck != null && (strAck == "success" || strAck ==
"successwithwarning"))
{
PayerID = decoder["PAYERID"];
return true;
}
else
{
retMsg = "ErrorCode=" + decoder["L ERRORCODEO"] + "&" +
"Desc=" + decoder["L SHORTMESSAGEQ"] + "&" +
"Desc2=" + decoder["L LONGMESSAGEQO"];

return false;

}

public bool DoCheckoutPayment (string finalPaymentAmount, string token,
PayerID, ref NVPCodec decoder, ref string retMsgqg)
{
if (bSandbox)

{
pPEndPointURL = pEndPointURL SB;

NVPCodec encoder = new NVPCodec();

encoder ["METHOD"] = "DoExpressCheckoutPayment";
encoder ["TOKEN"] = token;

encoder ["PAYERID"] = PayerID;

encoder ["PAYMENTREQUEST 0 AMT"] = finalPaymentAmount;
encoder["PAYMENTREQUEST_O_CURRENCYCODE"] = "UsD";
encoder["PAYMENTREQUEST_O_PAYMENTACTION"} = "Sale";

string pStrrequestforNvp = encoder.Encode () ;
string pStresponsenvp = HttpCall (pStrrequestforNvp) ;

decoder = new NVPCodec() ;
decoder.Decode (pStresponsenvp) ;

string strAck = decoder["ACK"].ToLower () ;
if (strAck != null && (strAck == "success" || strAck ==
"successwithwarning"))
{
return true;
}
else

{

string

retMsg = "ErrorCode=" + decoder["L ERRORCODEO"] + "&" +
"Desc=" + decoder["L SHORTMESSAGEO"] + "&" +
"Desc2=" + decoder["L LONGMESSAGEQO"];

return false;

public string HttpCall (string NvpRequest)

{
string url = pEndPointURL;

string strPost = NvpRequest + "&" + buildCredentialsNVPString() ;
strPost = strPost + "&BUTTONSOURCE=" + HttpUtility.UrlEncode (BNCode) ;

HttpWebRequest objRequest = (HttpWebRequest)WebRequest.Create (url) ;
objRequest.Timeout = Timeout;
objRequest.Method = "POST";

objRequest.ContentLength = strPost.Length;

try
{

using (StreamWriter myWriter = new
StreamWriter (ocbjRequest.GetRequestStream()))

{
myWriter.Write (strPost) ;

}
}

catch (Exception)

{
// No logging for this tutorial.

}

//Retrieve the Response returned from the NVP API call to PayPal.
HttpWebResponse objResponse = (HttpWebResponse)objRequest.GetResponse () ;

string result;
using (StreamReader sr = new StreamReader (objResponse.GetResponseStream()))

{
result = sr.ReadToEnd() ;

return result;

}

private string buildCredentialsNVPString ()
{
NVPCodec codec = new NVPCodec () ;

if (!IsEmpty (APIUsername))
codec ["USER"] = APIUsername;

if (!IsEmpty (APIPassword))
codec [PWD] = APIPassword;

if (!IsEmpty(APISignature))
codec [SIGNATURE] = APISignature;

if (!IsEmpty(Subject))
codec ["SUBJECT"] = Subject;

codec ["VERSION"] = "88.0";

return codec.Encode() ;

}

public static bool IsEmpty(string s)
{

return s == null || s.Trim() == string.Empty;

public sealed class NVPCodec : NameValueCollection
{

private const string AMPERSAND = "g&";

private const string EQUALS = "=";

private static readonly char[] AMPERSAND CHAR ARRAY =
AMPERSAND.ToCharArray () ;

private static readonly char|[] EQUALS CHAR ARRAY = EQUALS.ToCharArray () ;

public string Encode ()
{
StringBuilder sb = new StringBuilder();
bool firstPair = true;
foreach (string kv in AllKeys)
{
string name = HttpUtility.UrlEncode (kv) ;
string value = HttpUtility.UrlEncode (this[kv]);
if (!firstPair)
{
sb.Append (AMPERSAND) ;
}
sb.Append (name) . Append (EQUALS) .Append (value) ;
firstPair = false;
}
return sb.ToString();

}

public void Decode (string nvpstring)
{
Clear();
foreach (string nvp in nvpstring.Split (AMPERSAND CHAR ARRAY))

{
string[] tokens = nvp.Split (EQUALS CHAR ARRAY);
if (tokens.Length >= 2)

{
string name = HttpUtility.UrlDecode (tokens[0]);
string value = HttpUtility.UrlDecode (tokens[1]);
Add (name, value);

public void Add(string name, string value, int index)

this.Add (GetArrayName (index, name), value);

}

public void Remove (string arrayName, int index)

{

this.Remove (GetArrayName (index, arrayName)) ;

public string this[string name, int index]
{

get

{

return this[GetArrayName (index, name)];

set

{

this[GetArrayName (index, name)] = value;
}
}

private static string GetArrayName (int index, string name)
{
if (index < 0)

{

throw new ArgumentOutOfRangeException ("index", "index cannot be negative
" + index);

}

return name + index;
}
}

6. Add the Merchant API credentials (Username, Password, and Signature) that you
displayed earlier in this tutorial so that you can make function calls to the PayPal testing
environment.

public string APIUsername = "<Your API Username>";
private string APIPassword = "<Your API Password>";
private string APISignature = "<Your Signature>";

Note

In this sample application you are simply adding credentials to a C# file (.cs). However, in a
implemented solution, you should consider encrypting your credentials in a configuration file.

The NVPAPICaller class contains the majority of the PayPal functionality. The code in the class
provides the methods needed to make a test purchase from the PayPal testing environment. The
following three PayPal functions are used to make purchases:

1. SetExpressCheckout function
2. GetExpressCheckoutDetails function
3. DoExpressCheckoutPayment function

The ShortcutExpressCheckout method collects the test purchase information and product
details from the shopping cart and calls the SetExpressCheckout PayPal function. The
GetCheckoutDetails method confirms purchase details and calls the
GetExpressCheckoutDetails PayPal function before making the test purchase. The
DoCheckoutPayment method completes the test purchase from the testing environment by
calling the DoExpressCheckoutPayment PayPal function. The remaining code supports the
PayPal methods and process, such as encoding strings, decoding strings, processing arrays, and
determining credentials.

Note

PayPal allows you to include optional purchase details based on PayPal’s API specification. By
extending the code in the Wingtip Toys sample application, you can include localization details,
product descriptions, tax, a customer service number, as well as many other optional fields.

Notice that the return and cancel URLs that are specified in the ShortcutExpressCheckout
method use a port number.

string returnURL =
"http://localhost:1234/Checkout/CheckoutReview.aspx";

string cancelURL =
"http://localhost:1234/Checkout/CheckoutCancel.aspx";

When Visual Web Developer runs a web project, a random port is used for the web server. As
shown above, the port number is 1234. When you run the application, you'll probably see a
different port number. Your port number needs to be set in the above code so that you can
successful run the Wingtip Toys sample application at the end of this tutorial. The next section
of this tutorial explains how to retrieve the local host port number and update the PayPal class.

Update the LocalHost Port Number in the PayPal Class

The Wingtip Toys sample application purchases products by navigating to the PayPal testing site
and returning to your local instance of the Wingtip Toys sample application. In order to have
PayPal return to the correct URL, you need to specify the port number of the locally running
sample application in the PayPal code mentioned above.

1. Right-click the project name (WingtipToys) in Solution Explorer and select Properties.

2. In the left column, select the Web tab.

3. Retrieve the port number from the Project Url box.

4. Update the returnURL and cancelURL in the PayPal class (N\WPAPICaller) in the
PayPalFunctions.cs file to use the port number of your web application:

string returnURL = "http://localhost:<Your Port
Number>/Checkout/CheckoutReview.aspx";

string cancelURL = "http://localhost:<Your Port
Number>/Checkout/CheckoutCancel.aspx";

Now the code that you added will match the expected port for your local Web application.
PayPal will be able to return to the correct URL on your local machine.

Add the PayPal Checkout Button

Now that the primary PayPal functions have been added to the sample application, you can
begin adding the markup and code needed to call these functions. First, you must add the
checkout button that the user will see on the shopping cart page.

1. Open the ShoppingCart.aspx file.
2. Scroll to the bottom of the file and find the <! --Checkout Placeholder -->
comment.

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_nvp_r_SetExpressCheckout

3. Replace the comment with an ImageButton control so that the mark up is replaced as
follows:

<asp:ImageButton ID="CheckoutImageBtn" runat="server"

ImageUrl="https://www.paypal.com/en US/i/btn/btn xpressCheckout.gif"
Width="145" AlternateText="Check out with PayPal"
OnClick="CheckoutBtn Click"
BackColor="Transparent" BorderWidth="0" />

4. In the ShoppingCart.aspx.cs file, after the UpdateBtn Click event handler near the end
of the file, add the CheckOutBtn Click event handler:

protected void CheckoutBtn Click(object sender, ImageClickEventArgs e)

{ using (ShoppingCartActions usersShoppingCart = new ShoppingCartActions())
{ Session|["payment amt"] = usersShoppingCart.GetTotal();
;esponse.Redirect("Checkout/CheckoutStart.aspx");

}

5. Also in the ShoppingCart.aspx.cs file, add a reference to the CheckoutBtn, so that the
new image button is referenced as follows:

protected void Page Load(object sender, EventArgs e)
{
using (ShoppingCartActions usersShoppingCart = new ShoppingCartActions())
{
decimal cartTotal = 0;
cartTotal = usersShoppingCart.GetTotal () ;
if (cartTotal > 0)
{
// Display Total.
1blTotal.Text = String.Format ("{0O:c}", cartTotal);
}
else
{
LabelTotalText.Text = "";
1blTotal.Text = "";
ShoppingCartTitle.InnerText = "Shopping Cart is Empty";
UpdateBtn.Visible = false;
CheckoutImageBtn.Visible = false;

}

6. Save your changes to both the ShoppingCart.aspx file and the ShoppingCart.aspx.cs file.
7. From the menu, select Debug -> Build WingtipToys.
The project will be rebuilt with the newly added ImageButton control.

Send Purchase Details to PayPal

When the user clicks the Checkout button on the shopping cart page (ShoppingCart.aspx),
they’ll begin the purchase process. The following code calls the first PayPal function needed to
purchase products.

1. From the Checkout folder, open the code-behind file named CheckoutStart.aspx.cs.
Be sure to open the code-behind file.
2. Replace the existing code with the following:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

namespace WingtipToys.Checkout
{ public partial class CheckoutStart : System.Web.UI.Page
{ protected void Page Load (object sender, EventArgs e)
{ NVPAPICaller payPalCaller = new NVPAPICaller();
string retMsg = "";

string token = "";
if (Session["payment amt"] != null)
{
string amt = Session["payment amt"].ToString();

bool ret = payPalCaller.ShortcutExpressCheckout (amt, ref token, ref

retMsgqg) ;
if (ret)
{
Session["token"] = token;
Response.Redirect (retMsgqg) ;
}
else
{
Response.Redirect ("CheckoutError.aspx?" + retMsg);
}
}
else

{
Response.Redirect ("CheckoutError.aspx?ErrorCode=AmtMissing") ;
}
}

}

When the user of the application clicks the Checkout button on the shopping cart page, the
browser will navigate to the CheckoutStart.aspx page. When the CheckoutStart.aspx page loads,
the SshortcutExpressCheckout method is called. At this point, the user is transferred to the
PayPal testing web site. On the PayPal site, the user enters their PayPal credentials, reviews the
purchase details, accepts the PayPal agreement and returns to the Wingtip Toys sample
application where the ShortcutExpressCheckout method completes. When the
ShortcutExpressCheckout method is complete, it will redirect the user to the
CheckoutReview.aspx page specified in the ShortcutExpressCheckout method. This allows
the user to review the order details from within the Wingtip Toys sample application.

Review Order Details

After returning from PayPal, the CheckoutReview.aspx page of the Wingtip Toys sample
application displays the order details. This page allows the user to review the order details
before purchasing the products. The CheckoutReview.aspx page must be created as follows:

1. Inthe Checkout folder, open the page named CheckoutReview.aspx.
2. Replace the existing markup with the following:

<%@ Page Title="" Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true" CodeBehind="CheckoutReview.aspx.cs"
Inherits="WingtipToys.Checkout.CheckoutReview" %>

<hl1>Order Review</hl>
<p></p>
<h3 style="padding-left: 33px">Products:</h3>

GridLines="Both" CellPadding="10" Width="500" BorderColor="#efeeef"
BorderWidth="33">
<Columns>
<asp:BoundField DataField="ProductId" HeaderText=" Product ID"
<asp:BoundField DataField="Product.ProductName" HeaderText="
Product Name" />
<asp:BoundField DataField="Product.UnitPrice" HeaderText="Price
(each)" DataFormatString="{0:c}"/>
<asp:BoundField DataField="Quantity" HeaderText="Quantity" />
</Columns>
</asp:GridvView>
<asp:DetailsView ID="ShipInfo" runat="server" AutoGenerateRows="false"
GridLines="None" CellPadding="10" BorderStyle="None" CommandRowStyle-
BorderStyle="None">
<Fields>
<asp:TemplateField>
<ItemTemplate>
<h3>Shipping Address:</h3>

<asp:Label ID="FirstName" runat="server" Text='<%#:
Eval ("FirstName") %>'></asp:Label>
<asp:Label ID="LastName" runat="server" Text='<%#:
Eval ("LastName") %>'></asp:Label>

<asp:Label ID="Address" runat="server" Text='<%#:
Eval ("Address") %>'></asp:Label>

<asp:Label ID="City" runat="server" Text='<%#: Eval ("City")
$>'></asp:Label>

$>'></asp:Label>

<asp:Label ID="PostalCode" runat="server" Text='<%#:
Eval ("PostalCode") $%>'></asp:Label>

<p></p>

<h3>0rder Total:</h3>

"{0:C}") %>'></asp:Label>
</ItemTemplate>
<ItemStyle HorizontalAlign="Left" />
</asp:TemplateField>
</Fields>
</asp:DetailsView>
<p></p>
<hr />

<asp:Content ID="Contentl" ContentPlaceHolderID="MainContent" runat="server">

<asp:GridView ID="OrderItemList" runat="server" AutoGenerateColumns="False"

<asp:Label ID="State" runat="server" Text='<%$#: Eval ("State")

<asp:Label ID="Total" runat="server" Text='<%$#: Eval ("Total",

<asp:Button ID="CheckoutConfirm" runat="server" Text="Complete Order"
OnClick="CheckoutConfirm Click" />
</asp:Content>

Open the code-behind page named CheckoutReview.aspx.cs and replace the existing
code with the following:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using WingtipToys.Models;

namespace WingtipToys.Checkout
{ public partial class CheckoutReview : System.Web.UI.Page
{ protected void Page Load(object sender, EventArgs e)
{ if (!IsPostBack)
{ NVPAPICaller payPalCaller = new NVPAPICaller();

string retMsg = "";

string token = "";

string PayerID = "";

NVPCodec decoder = new NVPCodec () ;
token = Session["token"].ToString();

bool ret = payPalCaller.GetCheckoutDetails (token, ref PayerID, ref
decoder, ref retMsq);

if (ret)

{
Session["payerId"] = PayerID;
var myOrder = new Order();

myOrder.OrderDate =
Convert.ToDateTime (decoder ["TIMESTAMP"] .ToString()) ;
myOrder.Username = User.Identity.Name;
myOrder.FirstName = decoder ["FIRSTNAME"].ToString() ;
myOrder.LastName = decoder ["LASTNAME"].ToString() ;
myOrder.Address = decoder["SHIPTOSTREET"].ToString() ;
myOrder.City = decoder["SHIPTOCITY"].ToString() ;
myOrder.State = decoder["SHIPTOSTATE"].ToString() ;
myOrder.PostalCode = decoder ["SHIPTOZIP"].ToString() ;
myOrder.Country = decoder ["SHIPTOCOUNTRYCODE"] .ToString () ;
myOrder.Email = decoder["EMAIL"].ToString() ;
myOrder.Total = Convert.ToDecimal (decoder ["AMT"].ToString()) ;

// Verify total payment amount as set on CheckoutStart.aspx.
try
{
decimal paymentAmountOnCheckout =
Convert.ToDecimal (Session["payment amt"].ToString()):;
decimal paymentAmoutFromPayPal =
Convert.ToDecimal (decoder ["AMT"].ToString()) ;
if (paymentAmountOnCheckout != paymentAmoutFromPayPal)
{
Response.Redirect ("CheckoutError.aspx?" +
"Desc=Amount%20total%20mismatch.") ;

}

}

catch (Exception)
{

Response.Redirect ("CheckoutError.aspx?" +
"Desc=Amount%20total%20mismatch.") ;

}

// Get DB context.
ProductContext db = new ProductContext();

// Add order to DB.
_db.Orders.Add (myOrder) ;

_db.SaveChanges () ;

// Get the shopping cart items and process them.
using (WingtipToys.Logic.ShoppingCartActions usersShoppingCart = new
WingtipToys.Logic.ShoppingCartActions())

{
List<CartItem> myOrderList = usersShoppingCart.GetCartItems () ;

// Add OrderDetail information to the DB for each product

purchased.

for (int i = 0; i < myOrderList.Count; i++)

{
// Create a new OrderDetail object.
var myOrderDetail = new OrderDetail () ;
myOrderDetail.OrderId = myOrder.OrderId;
myOrderDetail.Username = User.Identity.Name;
myOrderDetail.ProductId = myOrderList[i].ProductId;
myOrderDetail.Quantity = myOrderList[i].Quantity;
myOrderDetail.UnitPrice = myOrderList[i].Product.UnitPrice;
// Add OrderDetail to DB.
_db.OrderDetails.Add (myOrderDetail) ;
_db.SaveChanges () ;

}

// Set OrderId.

Session["currentOrderId"] = myOrder.OrderId;

// Display Order information.

List<Order> orderList = new List<Order>();

orderList.Add (myOrder) ;

ShipInfo.DataSource = orderlList;

ShipInfo.DataBind() ;

// Display OrderDetails.

OrderItemList.DataSource = myOrderList;

OrderItemList.DataBind () ;

}
}
else

{

Response.Redirect ("CheckoutError.aspx?" + retMsg);

}
}

protected void CheckoutConfirm Click(object sender, EventArgs e)
{

Session["userCheckoutCompleted"] = "true";

Response.Redirect ("~/Checkout/CheckoutComplete.aspx") ;

}

}
}

The DetailsView control is used to display the order details that have been returned from
PayPal. Also, the above code saves the order details to the Wingtip Toys database as an
OrderDetail object. When the user clicks on the Complete Order button, they are redirected
to the CheckoutComplete.aspx page.

Tip

Notice that the <ItemStyle> tag is used to change the style of the items within the
DetailsView control. By viewing the page in Design View, selecting the DetailsView control,
and selecting the Smart Tag (the arrow icon at the top right of the control), you will be able to
see the DetailsView Tasks.

| asp:DetailsViewsShipinfol

14| DetailsView Tasks

Auto Format...

Shipping Address:

Databound Databound
Databound 4
Databound Databound Databound

Order Total:

Databound

Cheoose Data Source: | (Mone) "

Edit Fields...

Add Mew Field...

Edit Templates

T 1

By selecting Edit Fields, the Fields dialog box will appear. In this dialog box you can easily
control the visual properties, such as ItemStyle, of the DetailsView control.

Available fields:

-] BoundField
@l CheckBoxField
- HyperLinkField
- @l ImageField
- ButtonField
- I CommandField

.. M MhenamicField

Selected fields:

& TemplateField I

[] Auto-generate fields

Fields
TemplateField properties:
2|
[» FooterStyle A
[» Headertyle
4 |ltem5tyle
BackColor
BorderColor
BorderStyle Motset
BorderWidth
CssClass
> Font
ForeColor
Height
Horizontal4lign
WerticalAlign Mot5et y
ltemStyle
The style applied to rows within this field,

OK

Cancel

Complete Purchase

CheckoutComplete.aspx page makes the purchase from PayPal. As mentioned above, the user
must click on the Complete Order button before the application will navigate to the

CheckoutComplete.aspx page.

1. In the Checkout folder, open the page named CheckoutComplete.aspx.
2. Replace the existing markup with the following:

<p></p>

<p></p>
<h3>Thank You!</h3>
<p></p>
<hr />

</asp:Content>

<%@ Page Title="" Language="C#" MasterPageFile="~/Site.Master"

AutoEventWireup="true" CodeBehind="CheckoutComplete.aspx.cs"

Inherits="WingtipToys.Checkout.CheckoutComplete" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="MainContent" runat="server">
<hl>Checkout Complete</hl>

<h3>Payment Transaction ID:</h3> <asp:Label ID="TransactionId"
runat="server"></asp:Label>

<asp:Button ID="Continue" runat="server" Text="Continue Shopping"
OnClick="Continue Click" />

Open the code-behind page named CheckoutComplete.aspx.cs and replace the existing
code with the following:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using WingtipToys.Models;

namespace WingtipToys.Checkout
{
public partial class CheckoutComplete : System.Web.UI.Page
{
protected void Page Load(object sender, EventArgs e)
{
if (!IsPostBack)
{
// Verify user has completed the checkout process.
if ((string)Session["userCheckoutCompleted"] != "true")
{
Session["userCheckoutCompleted"] = string.Empty;
Response.Redirect ("CheckoutError.aspx?" +
"Desc=Unvalidated%20Checkout.") ;
}

NVPAPICaller payPalCaller = new NVPAPICaller();

string retMsg = "";

string token = "";
string finalPaymentAmount = "";
string PayerID = "";

NVPCodec decoder = new NVPCodec () ;

token = Session["token"].ToString() ;
PayerID = Session["payerId"].ToString() ;
finalPaymentAmount = Session["payment amt"].ToString();

bool ret = payPalCaller.DoCheckoutPayment (finalPaymentAmount, token,
PayerID, ref decoder, ref retMsq);
if (ret)
{
// Retrieve PayPal confirmation value.
string PaymentConfirmation =
decoder ["PAYMENTINFO 0 TRANSACTIONID"].ToString();
TransactionId.Text = PaymentConfirmation;

ProductContext db = new ProductContext();
// Get the current order id.
int currentOrderId = -1;
if (Session["currentOrderId"] != string.Empty)
{
currentOrderId = Convert.ToInt32 (Session["currentOrderID"]);
}
Order myCurrentOrder;
if (currentOrderId >= 0)
{
// Get the order based on order id.

myCurrentOrder = db.Orders.Single(o => o.0OrderId ==
currentOrderId) ;
// Update the order to reflect payment has been completed.
myCurrentOrder.PaymentTransactionId = PaymentConfirmation;
// Save to DB.
_db.SaveChanges () ;
}

// Clear shopping cart.
using (WingtipToys.Logic.ShoppingCartActions usersShoppingCart =
new WingtipToys.Logic.ShoppingCartActions())

{
usersShoppingCart.EmptyCart () ;

}

// Clear order id.
Session["currentOrderId"] = string.Empty;

}

else

{

Response.Redirect ("CheckoutError.aspx?" + retMsqg);

}
}

protected void Continue Click (object sender, EventArgs e)

{

Response.Redirect ("~/Default.aspx") ;

}

}

When the CheckoutComplete.aspx page is loaded, the DoCheckoutPayment method is called.
As mentioned earlier, the DoCheckoutPayment method completes the purchase from the
PayPal testing environment. Once PayPal has completed the purchase of the order, the
CheckoutComplete.aspx page displays a payment transaction ID to the purchaser.

Handle Cancel Purchase

If the user decides to cancel the purchase, they will be directed to the CheckoutCancel.aspx page
where they will see that their order has been cancelled.

1. Open the page named CheckoutCancel.aspx in the Checkout folder.
2. Replace the existing markup with the following:

<%@ Page Title="" Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true" CodeBehind="CheckoutCancel.aspx.cs"
Inherits="WingtipToys.Checkout.CheckoutCancel" %>
<asp:Content ID="Contentl" ContentPlaceHolderID="MainContent" runat="server">
<h1>Checkout Cancelled</hl>
<p></p>
<h3>Your purchase has been cancelled.</h3>
</asp:Content>

Handle Purchase Errors

Errors during the purchase process will be handled by the CheckoutError.aspx page. The code-
behind of the CheckoutStart.aspx page, the CheckoutReview.aspx page, and the
CheckoutComplete.aspx page will each redirect to the CheckoutError.aspx page if an error occurs.

1.
2.

Open the page named CheckoutError.aspx in the Checkout folder.
Replace the existing markup with the following:

<%@ Page Title="" Language="C#" MasterPageFile="~/Site.Master"

AutoEventWireup="true" CodeBehind="CheckoutError.aspx.cs"

Inherits="WingtipToys.Checkout.CheckoutError" %>

<asp:Content ID="Contentl" ContentPlaceHolderID="MainContent" runat="server">
<hl>Checkout Error</hl>

<p></p>
<table id="ErrorTable">
<tr>
<td class="field"></td>
<td><%=Request.QueryString.Get ("ErrorCode") $></td>
</tr>
<tr>
<td class="field"></td>
<td><%=Request.QueryString.Get ("Desc") $></td>
</tr>
<tr>
<td class="field"></td>
<td><%=Request.QueryString.Get ("Desc2") $></td>
</tr>
</table>
<p></p>

</asp:Content>

The CheckoutError.aspx page is displayed with the error details when an error occurs during the
checkout process.

Running the Application

Run the application to see how to purchase products.

1. Open a Web browser and navigate to https://developer.paypal.com.
2. Login with your PayPal developer account that you created earlier in this tutorial.

For PayPal’s developer sandbox, you need to be logged in at
https://developer.paypal.com to test express checkout. This only applies to PayPal'’s
sandbox testing, not to PayPal’s live environment.

In Visual Studio, press F5 to run the Wingtip Toys sample application.

After the database rebuilds, the browser will open and show the Default.aspx page.
Add three different products to the shopping cart by selecting the product category,
such as “Cars” and then clicking Add to Cart next to each product.

The shopping cart will display the product you have selected.

https://developer.paypal.com/
https://developer.paypal.com/

5. Click the PayPal button to checkout.

[
e@|| http://localhost:24019/% D L] || | - Wingtip Toys | ‘ m

Wingtip Toys Home About Contact Products Cart(3) Register Log in

Wungtye Teoyy

Cars |Planes | Trucks | Boats |Rockets

Shopping Cart

ID Name Price (each) Quantity Item Total Remove Item
1 Convertible Car $22.50 D $22.50 0
10 Early Truck $15.00 D $15.00 0
7 Glider $4.95 |:| $4.95 0

Order Total: $42.45
Check out mypaf

with
The safer, easier way to pay

© 2013 - Wingtip Toys

6. Checking out will require that you have a user account for the Wingtip Toys sample
application.

7. Click the Google link on the right of the page to log in with an existing gmail.com email
account.
If you do not have a gmail.com account, you can create one for testing purposes at

www.gmail.com. You can also use a standard local account by clicking “Register”.

-])

e@‘ | - hitp://localhost24019/Account/] O ~ & || | Login - Wingtip Toys | ‘ ﬂﬁ ?;1? @}

Wingtip Toys Home About Contact Products Cart (3) Register Login

Wungtuye Toyy

Cars |Planes | Trucks | Boats |Rockets

Log in.

Use a local account to log in. Use another service to log in.
User name Google
Password

[Remember me?

Log in

Register if you don't have a local account.

© 2013 - Wingtip Toys

http://www.gmail.com/

Sign in with your gmail account and password.

e =>)| Y hitps://accounts.google.co... O ~ @ & Signin - Google Accounts ¥

Google

Sign in with your Google Account

wingtiptoysbuyer@agmail.com

[]Stay signed in

Create an account

One Google Account for everything Google

HMGGO 2> B

Google Privacy & Terms Help

a [English (United States)

v]

Click the Log in button to register your gmail account with your Wingtip Toys sample
application user name.

e@| | - http://localhost:24019/Acct O ~ G || | Register an external login - ... | |

Wingtip Toys Home About Contact Products Cart(3) Register Login

Wungtye Toys

Cars |Planes | Trucks |Boats |Rockets

Register with your Google account

Association Form

You've authenticated with Google. Please enter a user name below for the current site and click the Log in button.

User name

WingtipToysBuyer

Log in

© 2013 - Wingtip Toys

10. On the PayPal test site, add your buyer email address and password that you created
earlier in this tutorial, then click the Log In button.

B Pay with a PayPal account -... >

Wingtip Toys Sample Application

Your order summary Choose a way to pay

Descriptions Amount ~ Pay with my PayPal account

$15.00 Log in to your account to complete the purchase
Item price: $15.00

Quantity: 1
Email

Glider) P -
wingtiptoys-buyer@live.com
Item price: $4.95 | gliptoy |

Quantity: 1 PayPal password

Convertible Car |.-..-..-..-O| - |

Item price: $22.50
Quantity: 1

Item total $42.45 W

Total $42.45 USD Forgot email or password?

[This is a private computer. What's this?

» Create a PayPal account

Cancel and return to Wingtip Toys Sample Application.

Site Feedback
PayPal. The safer, easier way to pay. For more information, read our User Agreement and Privacy Policy.

Test Site

11. Agree to the PayPal policy and click the Agree and Continue button.
Note that this page is only displayed the first time you use this PayPal account.

e@LE’ hitps://www.sa.. 0O v @& PayP..C || P payPal Electronic Commun... | |

Wingtip Toys Sample Application

Your order summary

PayPal Electronic Communications Delivery Policy PayPal &

Descriptions Amount
Consent
Convertible Car $22.50
Item price: $22.50 This will just take a minute and then you can complete your
Quantity: 1 transaction.
Early Truck $15.00 We've updated our Electronic Communications Delivery Policy. Please
Item price: $15.00) . .
Quantiy: 1 read it and consent so we can send your account information
i electronically, including your payment confirmation.

Glider $4.95
Item price: $4.95 Please confirm that:
Quantity: 1) o

! Yes, I've read and agree to the Electronic Communications
Item total $42.45 Delivery Policy. | understand that PayPal will provide me with

Total $42.45 USD

information about my account electronically. | confirm that | can
access emails, web pages, and PDF files.

Agree and Continue

Cancel and return to Wingtip Toys Sample Application.

12. Review the order information on the PayPal testing environment review page and click

Continue.

9 Review your information x

Wingtip Toys Sample Application

Your order summary

Descriptions Amount

Convertible Car $22.50
Item price: $22.50
Cuantity: 1

Item price: $15.00
Cuantity: 1

Glider
Item price: $4.95
Cuantity: 1

Review your information

Item total $42.45

Total $42.45 USD

Continue |

Shipping address < Change

WingtipToys Buyer
1 Main St

San Jose, CA 95131
United States

[JUse as preferred shipping address

Note to seller: Add

Payment methods < Change (i) Now accepting prepaid gift cards
PayPal Balance $42 45 USD

PayPal gift card, certificate, reward, or other discount Redeem
View PayPal policies and your payment method rights.

Contact information
wingtiptoys-buyer@live.com

Continue |

You're almost done. You will confirm your payment on Wingtip Toys
Sample Application.

Cancel and return to Wingtip Toys Sample Application.

13. On the CheckoutReview.aspx page, verify the order amount and view the generated
shipping address. Then, click the Complete Order button.

-5
e@|l http://localhost:24019/Checkot O ~ & || | - Wingtip Toys ‘ | ﬂh Ei? {§}

Wingtip Toys Home About Contact Products Cart (3) Hello, WingtipToysBuyer! Log off

Wungtiye Toys

Cars |Planes | Trucks |Boats |Rockets

Order Review

Products:

Preduct ID Product Name Price (each) Quantity

10 Early Truck $15.00 1
1 Convertible Car $22.50 1
T Glider $4.95 1

Shipping Address:

wingtipToys Buyer
1 Main St
San Jose CA 95131

Order Total:

$42.45

Complete Order

® 2013 - Wingtip Toys

14. The CheckoutComplete.aspx page is displayed with a payment transaction ID.

GQ '>|| http://localhost24019/Checkol © + © || - Wingtip Toys ‘ | {0 9.7 595

Wingtip Toys Home About Contact Products Cari(0) Hello, test04! Log off

Wingtip Toys

Cars |Planes | Trucks |Boats |Rockets

Checkout Complete

Payment Transaction ID:
0XG47609YUSTT78234

Thank Youl

Continue Shopping

© 2013 - Wingtip Toys

Reviewing the Database

By reviewing the updated data in the Wingtip Toys sample application database after running
the application, you can see that the application successfully recorded the purchase of the
products.

You can inspect the data contained in the Wingtiptoys.mdf database file by using the Database
Explorer window (Server Explorer window in Visual Studio) as you did earlier in this tutorial
series.

1. Close the browser window if it is still open.
2. In Visual Studio, select the Show All Files icon at the top of Solution Explorer to allow
you to expand the App_Data folder.
3. Expand the App_Data folder.
You may need to select the Show All Files icon for the folder.
4. Right-click the Wingtiptoys.mdf database file and select Open.
Server Explorer is displayed.
5. Expand the Tables folder.
6. Right-click the Orders table and select Show Table Data.
The Orders table is displayed.

7. Review the PaymentTransactionID column to confirm successful transactions.

Server Explorer
Q- (%E R
4 g¥ Data Connections
- g2 DefaultConnection (WingtipToys)
4 P wingtiptoys.mdf
F Tables
B _ MigrationHistory
ER Cartltems
R Categories
ER OrderDetails
ER Orders
ER Products
Views

PaymentTransactionld | HasBeenShipped

AC2N0IHY9272220 False
MWULL MULL

R T

8. Close the Orders table window.

9. In the Server Explorer, right-click the OrderDetails table and select Show Table Data.

10. Review the OrderId and Username values in the OrderDetails table. Note that these
values match the OrderId and Username values included in the Orders table.

11. Close the OrderDetails table window.

12. Right-click the Wingtip Toys database file (Wingtiptoys.mdf) and select Close
Connection.

13. If you do not see the Solution Explorer window, click Solution Explorer at the bottom
of the Server Explorer window to show the Solution Explorer again.

Summary

In this tutorial you added order and order detail schemas to track the purchase of products. You
also integrated PayPal functionality into the Wingtip Toys sample application.

Additional Resources

ASP.NET Configuration Overview
Create an ASP.NET MVC 5 App with Facebook and Google OAuth2 and OpenID Sign-on (C#)

Disclaimer

This tutorial contains sample code. Such sample code is provided “as is” without warranty of any
kind. Accordingly, Microsoft does not guarantee the accuracy, integrity, or quality of the sample
code. You agree to use the sample code at your own risk. Under no circumstances will Microsoft
be liable to you in any way for any sample code, content, including but not limited to, any errors
or omissions in any sample code, content, or any loss or damage of any kind incurred as a result
of the use of any sample code. You are hereby notified and do hereby agree to indemnify, save

and hold Microsoft harmless from and against any and all loss, claims of loss, injury or damage

http://msdn.microsoft.com/library/ms178683(v=vs.100).aspx
http://www.asp.net/mvc/tutorials/mvc-5/create-an-aspnet-mvc-5-app-with-facebook-and-google-oauth2-and-openid-sign-on

of any kind including, without limitation, those occasioned by or arising from material that you
post, transmit, use or rely on including, but not limited to, the views expressed therein.

Membership and Administration

This tutorial series will teach you the basics of building an ASP.NET Web Forms application using
ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project
with C# source code is available to accompany this tutorial series.

This tutorial shows you how to update the Wingtip Toys sample application to add an
administrator role and use ASP.NET Identity. It also shows you how to implement an
administration page from which the administrator can add and remove products from the
website.

ASP.NET Identity is the membership system used to build ASP.NET web application and is
available in ASP.NET 4.5. ASP.NET Identity is used in the Visual Studio 2013 Web Forms project
template, as well as the templates for ASP.NET MVC, ASP.NET Web API, and ASP.NET Single
Page Application. You can also specifically install the ASP.NET Identity system using NuGet when
you start with an empty Web application. However, in this tutorial series you use the Web
Forms project template, which includes the ASP.NET Identity system. ASP.NET Identity makes it
easy to integrate user-specific profile data with application data. Also, ASP.NET Identity allows
you to choose the persistence model for user profiles in your application. You can store the data
in a SQL Server database or another data store, including NoSQL data stores such as Windows
Azure Storage Tables.

This tutorial builds on the previous tutorial titled “Checkout and Payment with PayPal” in the
Wingtip Toys tutorial series.

What you'll learn:

e How to use code to add an administrator role and a user to the application.

e How to restrict access to the administration folder and page.

e How to provide navigation for the administrator role.

e How to use model binding to populate a DropDownlList control with product
categories.

e How to upload a file to the web application using the FileUpload control.

e How to use validation controls to implement input validation.

e How to add and remove products from the application.

These features are included in the tutorial:

e ASP.NET Identity

e Configuration and Authorization
¢ Model Binding

e Unobtrusive Validation

http://www.asp.net/identity/overview/getting-started/introduction-to-aspnet-identity
http://www.asp.net/mvc
http://www.asp.net/web-api
http://www.asp.net/single-page-application
http://www.asp.net/single-page-application
http://msdn.microsoft.com/library/system.web.ui.webcontrols.dropdownlist(v=vs.110).aspx
http://msdn.microsoft.com/library/system.web.ui.webcontrols.fileupload(v=vs.110).aspx

ASP.NET Web Forms provides membership capabilities. By using the default template, you have
built-in membership functionality that you can immediately use when the application runs. This
tutorial shows you how to use ASP.NET Identity to add an administrator role and assign a user
to that role. You will learn how to restrict access to the administration folder. You'll add a page
to the administration folder that allows an administrator to add and remove products, and to
preview a product after it has been added.

Adding an Administrator

Using ASP.NET Identity, you can add an administrator role and assign a user to that role using
code.

1. In Solution Explorer, right-click on the Logic folder and create a new class.
2. Name the new class RoleActions.cs.
3. Modify the code so that it appears as follows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

namespace WingtipToys.Logic
{
internal class RoleActions
{
}

}

4. In Solution Explorer, open the Global.asax.cs file.
5. Open and modify the Global.asax.cs file by added the code highlighted in yellow so that
it appears as follows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Optimization;
using System.Web.Routing;
using System.Web.Security;
using System.Web.SessionState;
using System.Data.Entity;
using WingtipToys.Models;
using WingtipToys.Logic;

namespace WingtipToys
{
public class Global : HttpApplication
{
void Application Start (object sender, EventArgs e)
{
// Code that runs on application startup
RouteConfig.RegisterRoutes (RouteTable.Routes) ;
BundleConfig.RegisterBundles (BundleTable.Bundles) ;

// Initialize the product database.
Database.SetInitializer (new ProductDatabaseInitializer()):;

// Create the administrator role and user.
RoleActions roleActions = new RoleActions{();
roleActions.createAdmin () ;

}

10.

Notice that createAdmin is underlined in red. Double-click the createadmin code.
The letter “c” in the highlighted method will be underlined.

Next, hover over the letter “c” to display the UI that allows you to generate a method
stub for the createAdmin method.

// Create administrator role and user.
RolefActions roleActions = new Rolefctions();

h -
‘% Generate method stub for 'createfdmin’ in ‘WingtipToys.Logic.Rolefctions'

Click the optioned titled:
Generate method stub for ‘createAdmin’ in
“WingtipToys.Logic.RoleActions’

Open the RoleActions.cs file from the Logic folder.

The createAdmin method has been added to the class file.

Modify the RoleActions.cs file by removing the Not ImplementedeException and
adding the code highlighted in yellow, so that it appears as follows:

using System;

using System.Collections.Generic;

using System.Ling;

using System.Web;

using WingtipToys.Models;

using Microsoft.AspNet.Identity;

using Microsoft.AspNet.Identity.EntityFramework;

namespace WingtipToys.Logic
{
internal class RoleActions
{
internal void createAdmin ()
{
// Access the application context and create result variables.
Models.ApplicationDbContext context = new ApplicationDbContext () ;
IdentityResult IdRoleResult;
IdentityResult IdUserResult;

// Create a RoleStore object by using the ApplicationDbContext object.
// The RoleStore is only allowed to contain IdentityRole objects.
var roleStore = new RoleStore<IdentityRole> (context);

// Create a RoleManager object that is only allowed to contain
IdentityRole objects.

// When creating the RoleManager object, you pass in (as a parameter) a
new RoleStore object.

var roleMgr = new RoleManager<IdentityRole>(roleStore);

// Then, you create the "Administrator" role if it doesn't already exist.

if (!'roleMgr.RoleExists ("Administrator"))
{
IdRoleResult = roleMgr.Create (new IdentityRole ("Administrator")):;
if (!IdRoleResult.Succeeded)
{
// Handle the error condition if there's a problem creating the
RoleManager object.
}
}

// Create a UserManager object based on the UserStore object and the
ApplicationDbContext

// object. Note that you can create new objects and use them as
parameters in

// a single line of code, rather than using multiple lines of code, as
you did

// for the RoleManager object.

var userMgr = new UserManager<ApplicationUser> (new
UserStore<ApplicationUser> (context)) ;

var appUser = new ApplicationUser ()

{

UserName = "Admin",
bi
IdUserResult = userMgr.Create (appUser, "PaS$sSword");

// If the new "Admin" user was successfully created,

// add the "Admin" user to the "Administrator" role.

if (IdUserResult.Succeeded)

{
IdUserResult = userMgr.AddToRole (appUser.Id, "Administrator"):;
if (!IdUserResult.Succeeded)
{

the role.
}
}
else

{

// Handle the error condition if there's a problem creating the new

// Handle the error condition if there's a problem adding the user to

The above code works by first establishing a database context for the membership database.

The membership database is also stored as an .mdf file in the App_Data folder. You will be able

to view this database once the first user has signed in to this web application.
Note

If you wish to store the membership data along with the product data, you can consider using
the same DbContext that you used to store the product data in the above code.

The internal keyword is an access modifier for types (such as classes) and type members (such as

methods or properties). Internal types or members are accessible only within files contained in
the same assembly (.dll file). When you build your application, an assembly file (.dll) is created
that contains the code that is executed when you run your application.

A RoleStore object, which provides role management, is created based on the database
context.

Note

Notice that when the RoleStore object is created it uses a Generic IdentityRole type. This
means that the RoleStore is only allowed to contain IdentityRole objects. Also by using
Generics, resources in memory are handled better.

Next, the RoleManager object, is created based on the RoleStore object that you just
created. the RoleManager object exposes role related API which can be used to automatically
save changes to the RoleStore. The RoleManager is only allowed to contain TdentityRole
objects because the code uses the <IdentityRole> Generic type.

You call the RoleExists method to determine if the "Administrator” role is present in the
membership database. If it is not, you create the role.

Creating the UserManager object appears to be more complicated than the RoleManager
control, however it is nearly the same. It is just coded on one line rather than several. Here, the
parameter that you are passing is instantiating as a new object contained in the parenthesis.

Next you create the "Admin” user by creating a new ApplicationUser object. Then, if you
successfully create the user, you add the user to the new role.

Note

The error handling will be updated during the “ASP.NET Error Handling” tutorial later in this
tutorial series.

The next time the application starts, the user named “"Admin” will be added as the role named
"Administrator” of the application. Later in this tutorial, you will login as the “Admin” user to
display additional capabilities that you will added during this tutorial. For API details about
ASP.NET Identity, see the Microsoft. AspNet.Identity Namespace. For additional details about
initializing the ASP.NET Identity system, see the AspnetldentitySample.

Restricting Access to the Administration Page

The Wingtip Toys sample application allows both anonymous users and logged-in users to view
and purchase products. However, the logged-in administrator can access a restricted page in
order to add and remove products.

Add an Administration Folder and Page
Next, you will create a folder named Admin for the administrator of the Wingtip Toys sample
application.

1. Right-click the project name (Wingtip Toys) in Solution Explorer and select Add ->
New Folder.

http://msdn.microsoft.com/library/microsoft.aspnet.identity(v=vs.111).aspx
https://github.com/rustd/AspnetIdentitySample/blob/master/AspnetIdentitySample/App_Start/IdentityConfig.cs

2. Name the new folder Admin.

3. Right-click the Admin folder and then select Add -> New Item.
The Add New Item dialog box is displayed.

4. Select the Visual C# -> Web templates group on the left. From the middle list, select
Web Form with Master Page, name it AdminPage.aspx, and then select Add.

5. Select the Site.Master file as the master page, and then choose OK.

Add a Web.config File
By adding a Web.config file to the Admin folder, you can restrict access to the page contained in
the folder.

1. Right-click the Admin folder and select Add -> New Item.
The Add New Item dialog box is displayed.

2. From the list of Visual C# web templates, select Web Configuration File from the
middle list, accept the default name of Web.config, and then select Add.

3. Replace the existing XML content in the Web.config file with the following:

<?xml version="1.0"?>
<configuration>
<system.web>
<authorization>
<allow roles="Administrator"/>
<deny users="*"/>
</authorization>
</system.web>
</configuration>

Save the Web.config file. The Web.config file specifies that only administrators of the application
can access the page contained in the Admin folder.

Including Administrator Navigation

To enable the administrator to navigate to the administration section of the application, you
must add a link to the Site.Master page. Only users that belong to the administrator role will be
able to see the Admin link and access the administration section.

1. In Solution Explorer, find and open the Site.Master page.
2. To create a link for administrators, add the markup highlighted in yellow to the following
unordered list element so that the list appears as follows:

<ul class="nav navbar-nav">
<a runat="server" id="adminLink" visible="false"
href="~/Admin/AdminPage">Admin</1i>
Home</1li>
About</1li>
Contact</1i>
Products</1i>
<a runat="server" href="~/ShoppingCart"
ID="cartCount"> </1i>

3. Open the Site.Master.cs file. Make the Admin link visible only to the “Admin” user by

adding the code highlighted in yellow to the Page Load handler. The Page Load
handler will appear as follows:

protected void Page Load(object sender, EventArgs e)
{
if (HttpContext.Current.User.IsInRole ("Administrator"))
{
adminLink.Visible = true;
}
}

When the page loads, the code checks whether the logged-in user has the role of
"Administrator”. If the user is an administrator, the span element containing the link to the
AdminPage.aspx page (and consequently the link inside the span) is made visible.

Enabling Product Administration

So far, you have created the administrator role and added an administrator user, an
administration folder, and an administration page. You have set access rights for the
administration folder and page, and have added a navigation link for the administrator to the
application. Next, you will add markup to the AdminPage.aspx page and code to the

AdminPage.aspx.cs code-behind file that will enable the administrator to add and remove
products.

1.
2.

In Solution Explorer, open the AdminPage.aspx file from the Admin folder.
Replace the existing markup with the following:

<%@ Page Title="" Language="C#" MasterPageFile="~/Site.Master"
AutoEventWireup="true" CodeBehind="AdminPage.aspx.cs"
Inherits="WingtipToys.Admin.AdminPage" %>
<asp:Content ID="Contentl" ContentPlaceHolderID="MainContent" runat="server">
<hl>Administration</hl>
<hr />
<h3>Add Product:</h3>
<table>
<tr>
<td><asp:Label ID="LabelAddCategory"
runat="server">Category:</asp:Label></td>
<td>
<asp:DropDownList ID="DropDownAddCategory" runat="server"
ItemType="WingtipToys.Models.Category"
SelectMethod="GetCategories" DataTextField="CategoryName"
DataValueField="CategoryID" >
</asp:DropDownList>
</td>
</tr>
<tr>
<td><asp:Label ID="LabelAddName"
runat="server">Name:</asp:Label></td>
<td>
<asp:TextBox ID="AddProductName" runat="server"></asp:TextBox>
<asp:RequiredFieldValidator ID="RequiredFieldValidatorl"
runat="server" Text="* Product name required."
ControlToValidate="AddProductName" SetFocusOnError="true"
Display="Dynamic"></asp:RequiredFieldvValidator>

</td>
</tr>
<tr>
<td><asp:Label ID="LabelAddDescription"
runat="server">Description:</asp:Label></td>
<td>
<asp:TextBox ID="AddProductDescription"
runat="server"></asp:TextBox>
<asp:RequiredFieldValidator ID="RequiredFieldValidator2"
runat="server" Text="* Description required."
ControlToValidate="AddProductDescription" SetFocusOnError="true"
Display="Dynamic"></asp:RequiredFieldvalidator>
</td>
</tr>
<tr>
<td><asp:Label ID="LabelAddPrice"
runat="server">Price:</asp:Label></td>
<td>

<asp:TextBox ID="AddProductPrice" runat="server"></asp:TextBox>

<asp:RequiredFieldValidator ID="RequiredFieldValidator3"
runat="server" Text="* Price required." ControlToValidate="AddProductPrice"
SetFocusOnError="true" Display="Dynamic"></asp:RequiredFieldvValidator>
<asp:RegularExpressionValidator
ID="RegularExpressionValidatorl" runat="server" Text="* Must be a valid price
without $." ControlToValidate="AddProductPrice" SetFocusOnError="True"
Display="Dynamic" ValidationExpression=""[0-9]*(\.)?[0-9]2[0-
9]?$"></asp:RegularExpressionValidator>
</td>
</tr>
<tr>
<td><asp:Label ID="LabelAddImageFile" runat="server">Image
File:</asp:Label></td>
<td>
<asp:FileUpload ID="ProductImage" runat="server" />
<asp:RequiredFieldValidator ID="RequiredFieldValidator4"
runat="server" Text="* Image path required." ControlToValidate="ProductImage"
SetFocusOnError="true" Display="Dynamic"></asp:RequiredFieldvalidator>
</td>
</tr>
</table>
<p></p>
<p></p>
<asp:Button ID="AddProductButton" runat="server" Text="Add Product"
OnClick="AddProductButton Click" CausesValidation="true"/>
<asp:Label ID="LabelAddStatus" runat="server" Text=""></asp:Label>
<p></p>
<h3>Remove Product:</h3>
<table>
<tr>
<td><asp:Label ID="LabelRemoveProduct"
runat="server">Product:</asp:Label></td>
<td><asp:DropDownList ID="DropDownRemoveProduct" runat="server"
ItemType="WingtipToys.Models.Product"
SelectMethod="GetProducts" AppendDataBoundItems="true"
DataTextField="ProductName" DataValueField="ProductID" >
</asp:DropDownList>
</td>
</tr>
</table>
<p></p>
<asp:Button ID="RemoveProductButton" runat="server" Text="Remove Product"
OnClick="RemoveProductButton Click" CausesValidation="false"/>
<asp:Label ID="LabelRemoveStatus" runat="server" Text=""></asp:Label>

</asp:Content>

Next, open the AdminPage.aspx.cs code-behind file by right-clicking the AdminPage.aspx
and clicking View Code.

Replace the existing code in the AdminPage.aspx.cs code-behind file with the following
code:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using WingtipToys.Models;

using WingtipToys.Logic;

namespace WingtipToys.Admin
{ public partial class AdminPage : System.Web.UI.Page
{ protected void Page Load (object sender, EventArgs e)
{ string productAction = Request.QueryString["ProductAction"];
if (productAction == "add")
{ LabelAddStatus.Text = "Product added!";
}

if (productAction == "remove")

LabelRemoveStatus.Text = "Product removed!";

}

protected void AddProductButton Click (object sender, EventArgs e)
{
Boolean fileOK = false;
String path = Server.MapPath ("~/Catalog/Images/") ;
if (ProductImage.HasFile)
{
String fileExtension =
System.IO.Path.GetExtension (ProductImage.FileName) .ToLower () ;
String[] allowedExtensions = { ".gif", ".png", ".Jjpeg", ".jpg" }:;
for (int i = 0; i < allowedExtensions.Length; i++)
{
if (fileExtension == allowedExtensions[i])
{
fileOK = true;
}

}

if (fileOK)
{
try
{
// Save to Images folder.
ProductImage.PostedFile.SaveAs (path + ProductImage.FileName) ;
// Save to Images/Thumbs folder.

ProductImage.PostedFile.SaveAs (path + "Thumbs/" +
ProductImage.FileName) ;
}
catch (Exception ex)
{
LabelAddStatus.Text = ex.Message;
}

// Add product data to DB.
AddProducts products = new AddProducts();
bool addSuccess = products.AddProduct (AddProductName.Text,
AddProductDescription.Text,
AddProductPrice.Text, DropDownAddCategory.SelectedValue,
ProductImage.FileName) ;
if (addSuccess)
{
// Reload the page.
string pageUrl = Request.Url.AbsoluteUri.Substring(0,
Request.Url.AbsoluteUri.Count () - Request.Url.Query.Count()):;
Response.Redirect (pageUrl + "?ProductAction=add") ;
}

else
{
LabelAddStatus.Text = "Unable to add new product to database.";
}
}
else
{
LabelAddStatus.Text = "Unable to accept file type.";

}

public IQueryable GetCategories ()

{
var db = new WingtipToys.Models.ProductContext () ;
IQueryable query = db.Categories;
return query;

}

public IQueryable GetProducts ()

{
var db = new WingtipToys.Models.ProductContext () ;
IQueryable query = db.Products;
return query;

}

protected void RemoveProductButton Click(object sender, EventArgs e)

{
using (var db = new WingtipToys.Models.ProductContext ())

{
int productId = Convert.ToIntl6 (DropDownRemoveProduct.SelectedValue) ;

var myItem = (from c in _db.Products where c.ProductID == productId
select c).FirstOrDefault();
if (myItem != null)

{
_db.Products.Remove (myItem) ;
_db.SaveChanges () ;

// Reload the page.

string pageUrl = Request.Url.AbsoluteUri.Substring(0,
Request.Url.AbsoluteUri.Count () - Request.Url.Query.Count());

Response.Redirect (pageUrl + "?ProductAction=remove") ;

}

else

{

LabelRemoveStatus.Text = "Unable to locate product.";

In the code that you entered for the AdminPage.aspx.cs code-behind file, a class called
AddProducts does the actual work of adding products to the database. This class doesn't exist

yet, so you will create it now.

1. In Solution Explorer, right-click the Logic folder and then select Add -> New Item.

The Add New Item dialog box is displayed.

2. Select the Visual C# -> Code templates group on the left. Then, select Class from the

middle list and name it AddProducts.cs.
The new class file is displayed.
3. Replace the existing code with the following:

using
using
using
using
using

System;
System.Collections.Generic;
System.Ling;

System.Web;
WingtipToys.Models;

namespace WingtipToys.Logic
{
public class AddProducts
{
public bool AddProduct (string ProductName,
ProductPrice, string ProductCategory,
{

var myProduct = new Product();

{
// Add product to DB.
_db.Products.Add (myProduct) ;
_db.SaveChanges () ;

}

// Success.

return true;

}

string ProductDesc, string

string ProductImagePath)

myProduct.ProductName = ProductName;
myProduct.Description = ProductDesc;

myProduct.UnitPrice = Convert.ToDouble (ProductPrice);
myProduct.ImagePath = ProductImagePath;
myProduct.CategoryID = Convert.ToInt32 (ProductCategory) ;
using (ProductContext ~db = new ProductContext ())

The AdminPage.aspx page allows the administrator to add and remove products. When a new
product is added, the details about the product are validated and then entered into the
database. The new product is immediately available to all users of the web application.

Unobtrusive Validation

The product details that the user provides on the AdminPage.aspx page are validated using
validation controls (RequiredFieldvValidator and RegularExpressionValidator).
These controls automatically use unobtrusive validation. Unobtrusive validation allows the
validation controls to use JavaScript for client-side validation logic, which means the page does
not require a trip to the server to be validated. By default, unobtrusive validation is included in
the Web.config file based on the following configuration setting:

|<add key="ValidationSettings:UnobtrusiveValidationMode" value="WebForms" />

Regular Expressions

The product price on the AdminPage.aspx page is validated using a
RegularExpressionValidator control. This control validates whether the value of the associated
input control (the "AddProductPrice" TextBox) matches the pattern specified by the regular
expression. A regular expression is a pattern-matching notation that enables you to quickly find
and match specific character patterns. The RegularExpressionValidator control includes a
property named ValidationExpression that contains the regular expression used to
validate price input, as shown below:

<asp:RegularExpressionValidator
ID="RegularExpressionValidatorl" runat="server"
Text="* Must be a valid price without $."

ControlToValidate="AddProductPrice"
SetFocusOnError="True" Display="Dynamic"
ValidationExpression=""[0-9]* (\.)?2[0-9]1?2[0-9]2S$">

</asp:RegularExpressionValidator>

FileUpload Control

In addition to the input and validation controls, you added the FileUpload control to the
AdminPage.aspx page. This control provides the capability to upload files. In this case, you are
only allowing image files to be uploaded. In the code-behind file (AdminPage.aspx.cs), when the
AddProductButton is clicked, the code checks the HasFile property of the FileUpload
control. If the control has a file and if the file type (based on file extension) is allowed, the image
is saved to the Images folder and the Images/Thumbs folder of the application.

Model Binding

Earlier in this tutorial series you used model binding to populate a ListView control, a
FormsView control, a GridView control, and a DetailView control. In this tutorial, you use
model binding to populate a DropDownList control with a list of product categories.

The markup that you added to the AdminPage.aspx file contains a DropDownlList control called
DropDownAddCategory

<asp:DropDownList ID="DropDownAddCategory" runat="server"
ItemType="WingtipToys.Models.Category"
SelectMethod="GetCategories" DataTextField="CategoryName"
DataValueField="CategoryID" >

</asp:DropDownlList>

You use model binding to populate this DropDownlList by setting the ItemType attribute and
the SelectMethod attribute. The ItemType attribute specifies that you use the

WingtipToys.Models.Category type when populating the control. You defined this type at
the beginning of this tutorial series by creating the Category class (shown below). The
Category class is in the Models folder inside the Category.cs file.

public class Category

{
[ScaffoldColumn (false)]
public int CategoryID { get; set; }

[Required, StringLength(100), Display(Name = "Name")]
public string CategoryName { get; set; }

[Display (Name = "Product Description")]
public string Description { get; set; }

public virtual ICollection<Product> Products { get; set; }

}

The SelectMethod attribute of the DropDownlList control specifies that you use the
GetCategories method (shown below) that is included in the code-behind file
(AdminPage.aspx.cs).

public IQueryable GetCategories()

{
var db = new WingtipToys.Models.ProductContext () ;
IQueryable query = db.Categories;
return query;

}

This method specifies that an IQueryable interface is used to evaluate a query against a
Category type. The returned value is used to populate the DropDownlList in the markup of the
page (AdminPage.aspx).

The text displayed for each item in the list is specified by setting the DataTextField attribute.
The DataTextField attribute uses the CategoryName of the Category class (shown above)
to display each category in the DropDownList control. The actual value that is passed when an

item is selected in the DropDownlList control is based on the DatavalueField attribute. The

DataValueField attribute is set to the CategoryID as define in the Category class (shown
above).

How the Application Will Work

When the administrator navigates to the page for the first time, the DropDownAddCategory
DropDownlList control is populated as described above. The DropDownRemoveProduct
DropDownlList control is also populated with products using the same approach. The
administrator selects the category type and adds product details (Name, Description, Price,
and Image File). When the administrator clicks the Add Product button, the
AddProductButton Click event handler is triggered. The AddProductButton Click
event handler located in the code-behind file (AdminPage.aspx.cs) checks the image file to make
sure it matches the allowed file types (gif, .png, jpeg, or jpg). Then, the image file is saved into a
folder of the Wingtip Toys sample application. Next, the new product is added to the database.

To accomplish adding a new product, a new instance of the AddProducts class is created and
named products. The AddProducts class has a method named AddProduct, and the products
object calls this method to add products to the database.

// Add product data to DB.
AddProducts products = new AddProducts();
bool addSuccess = products.AddProduct (AddProductName.Text,
AddProductDescription.Text,
AddProductPrice.Text, DropDownAddCategory.SelectedValue,
ProductImage.FileName) ;

If the code successfully adds the new product to the database, the page is reloaded with the
query string value ProductAction=add.

| Response.Redirect (pageUrl + "?ProductAction=add") ;

When the page reloads, the query string is included in the URL. By reloading the page, the
administrator can immediately see the updates in the DropDownList controls on the
AdminPage.aspx page. Also, by including the query string with the URL, the page can display a
success message to the administrator.

When the AdminPage.aspx page reloads, the Page Load event is called.

protected void Page Load (object sender, EventArgs e)
{
string productAction = Request.QueryString["ProductAction"];

if (productAction == "add")

{ LabelAddStatus.Text = "Product added!";

}

if (productAction == "remove")

{ LabelRemoveStatus.Text = "Product removed!";

}

The Page Load event handler checks the query string value and determines whether to show a
success message.

Running the Application

You can run the application now to see how you can add, delete, and update items in the
shopping cart. The shopping cart total will reflect the total cost of all items in the shopping cart.

1. In Solution Explorer, press F5 to run the Wingtip Toys sample application.
The browser opens and shows the Default.aspx page.

2. Click the Log in link at the top of the page.

@@|l http://localhost:24019/Default 2 ~ || | Welcome - Wingtip Toys ‘ |

Wingtip Toys Home About Contact Products Cari(0)

Wungtye Toys

Cars |Planes | Trucks |Boats |Rockets
Welcome.
Wingtip Toys can help you find the perfect gift.

information to help you choose the right toy.

© 2013 - Wingtip Toys

Register

) |
Ok

Log in

We're all about transportation toys. You can order any of our toys today. Each toy listing has detailed

The Login.aspx page is displayed.

3. Use the following administrator user name and password:
User name: Admin
Password: Pa$$word

R
e@“ hitp://localhost:24019/Account/L 2 ~ & ” | Login - Wingtip Toys | | i 27 482

Wingtip Toys Home About Contact Products Cart(0) Register Login

Wungtye Toyy

Cars |Planes | Trucks |Boats |Rockets

Log in.

Use a local account to log in. Use another service to log in.
User name Admin Google
Password sssssens -

[Remember me?

Log in

Register if you don't have a local account.

© 2013 - Wingtip Toys

4. Click the Log in button near the bottom of the page.

5. At the top of the next page, select the Admin link to navigate to the AdminPage.aspx
page.

e@h itp:/ localhost 24019/ p~c || | Welcome - Wingtip Toys | | kAL

Wingtip Toys Admin Home About Contact Products Cart (0) Hello, Admin !

Cars Planes | Trucks | Boats | Rockets

Welcome.
Wingtip Toys can help you find the perfect gift.

We're all about transportation toys. You can order any of our toys today. Each toy listing has detailed
information to help you choose the right toy.

© 2013 - Wingtip Toys

6. To test the input validation, click the Add Product button without adding any product
details.

e@| | - http://localhost:24019/Admin/t O ~ C || | - Wingtip Toys | |

Wingtip Toys Admin Home About Contact Products Cart(0)

Wungtye Toys

Cars |Planes | Trucks |Boats |Rockets

Administration

Add Product:

Image File: | Browse...
Add Product

Remove Product:

Remove Product

© 2013 - Wingtip Toys

Hello, Admin !

Log off

Notice that the required field messages are displayed.

7. Add the details for a new product, and then click the Add Product button.

e@|l http://localhost:24019/Admin/t O ~ & || | - Wingtip Toys | |

Wingtip Toys Admin Home About Contact Products Cart (0)

Wungtye Toys

Cars |Planes | Trucks | Boats |Rockets

Administration

Add Product:
Category: |Cars A

Name: Erik's Custom Car
Description: [Hand built
Price |5.99

Image File: [C:\Users\erikre\Documen Browse...

Add Product

Remove Product:
Product:

Remove Product

© 2013 - Wingtip Toys

Hello, Admin !

. |
{27 £9

Log off

8. Select Products from the top navigation menu to view the new product you added.

-
& @“ hitpi//localhost24019/Product! © ~ & |[| Products - Wingtip Toys % A Y

Wingtip Toys Admin Home About Contact Products Carl (0) Hello, Admin! Log off

Wingtip Toys

Cars |Planes | Trucks |Boats |Rockets

Products

=

Convertible Car Old-time Car Fast Car Super Fast Car
Price: $22 50 Price: $15.95 Price: $32.99 Price: $8.95
Add To Cart Add To Cart Add To Cart Add To Cart

~aad—

Old Style Racer Ace Plane Glider Paper Plane
Price: $34.95 Price: $95.00 Price: $4.95 Price: $2.95
Add To Cart Add To Cart Add To Cart Add To Cart

Propeller Flane Early Truck Fire Truck Big Truck
Price: $32.95 Price: $15.00 Price: $26.00 Price: $29.00
Add To Cart Add To Cart Add To Cart Add To Cart
.L

Big Ship Paper Boat Sail Boat Rocket

Price: $95.00 Price: $4.95 Price: $42.95 Price: $122.95

Add To Cart Add To Cart Add To Cart Add To Cart

=

Erik's Custom Car
Price: $5.99
Add To Cart

9. Click the Admin link to return to the administration page.
10. In the Remove Product section of the page, select the new product you added in the
DropDownListBox.

11. Click the Remove Product button to remove the new product from the application.

(’_\\ o T . g - -
el\?’JL http://localhost:24019/Admin/{ nL-c || | - - Wingtip Toys ‘ |

Wingtip Toys Admin Home About Contact Products Cart (0) Hello, Admin !

Wungtye Toys
Cars |Planes | Trucks Boats |Rockets

Administration

Add Product:
Category:

Name: [
Description: |
Price: |
Image File: | Browse...

Add Product

Remove Product:

Product:|Convertible Car v

Remove Product | Product removed!

© 2013 - Wingtip Toys

“ o N
A AL

Log off

12. Select Products from the top navigation menu to confirm that the product has been
removed.

13. Click Log off to exist administration mode.
Notice that the top navigation pane no longer shows the Admin menu item.

Summary

In this tutorial, you added an administrator role and an administrative user, restricted access to
the administration folder and page, and provided navigation for the administrator role. You
used model binding to populate a DropDownlList control with data. You implemented the
FileUpload control and validation controls. Also, you have learned how to add and remove
products from a database. In the next tutorial, you'll learn how to implement ASP.NET routing.

Additional Resources

Web.config - authorization Element
ASP.NET Identity

http://msdn.microsoft.com/library/8d82143t(v=vs.100).aspx
http://www.asp.net/identity/overview/getting-started/introduction-to-aspnet-identity

URL Routing

This tutorial series will teach you the basics of building an ASP.NET Web Forms application using
ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project
with C# source code is available to accompany this tutorial series.

In this tutorial, you will modify the Wingtip Toys sample application to customize URL routing.
Routing enables your web application to use URLs that are friendly, easier to remember, and
better supported by search engines. This tutorial builds on the previous tutorial “"Membership
and Administration” and is part of the Wingtip Toys tutorial series.

What you'll learn:

e How to register routes for an ASP.NET Web Forms application.
e How to add routes to a web page.
e How to select data from a database to support routes.

ASP.NET Routing Overview

URL routing allows you to configure an application to accept request URLs that do not map to
physical files. A request URL is simply the URL a user enters into their browser to find a page on
your web site. You use routing to define URLs that are semantically meaningful to users and that
can help with search-engine optimization (SEO).

By default, the Web Forms template includes ASP.NET Friendly URLs. Much of the basic routing
work will be implemented by using Friendly URLs. However, in this tutorial you will add
customized routing capabilities.

Before customizing URL routing, the Wingtip Toys sample application can link to a product
using the following URL:

http://localhost:1234/ProductDetails.aspx?productID=2

By customizing URL routing, the Wingtip Toys sample application will link to the same product
using an easier to read URL:

http://localhost:1234/Product/Convertible%20Car

Routes

A route is a URL pattern that is mapped to a handler. The handler can be a physical file, such as
an .aspx file in a Web Forms application. A handler can also be a class that processes the
request. To define a route, you create an instance of the Route class by specifying the URL
pattern, the handler, and optionally a name for the route.

http://www.nuget.org/packages/Microsoft.AspNet.FriendlyUrls/

You add the route to the application by adding the Route object to the static Routes property
of the RouteTable class. The Routes property is a RouteCollection object that stores all
the routes for the application.

URL Patterns

A URL pattern can contain literal values and variable placeholders (referred to as URL
parameters). The literals and placeholders are located in segments of the URL which are
delimited by the slash (/) character.

When a request to your web application is made, the URL is parsed into segments and
placeholders, and the variable values are provided to the request handler. This process is similar
to the way the data in a query string is parsed and passed to the request handler. In both cases,
variable information is included in the URL and passed to the handler in the form of key-value
pairs. For query strings, both the keys and the values are in the URL. For routes, the keys are the
placeholder names defined in the URL pattern, and only the values are in the URL.

In a URL pattern, you define placeholders by enclosing them in braces ({ and }). You can
define more than one placeholder in a segment, but the placeholders must be separated by a
literal value. For example, { language}-{country}/{action} is a valid route pattern.
However, {language} {country}/{action} is not a valid pattern, because there is no literal
value or delimiter between the placeholders. Therefore, routing cannot determine where to
separate the value for the language placeholder from the value for the country placeholder.

Mapping and Registering Routes

Before you can include routes to pages of the Wingtip Toys sample application, you must
register the routes when the application starts. To register the routes, you will modify the
Application Start event handler.

1. In Solution Explorer of Visual Studio, find and open the Global.asax.cs file.
2. Add the code highlighted in yellow to the Global.asax.cs file as follows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Optimization;
using System.Web.Routing;
using System.Web.Security;
using System.Web.SessionState;
using System.Data.Entity;
using WingtipToys.Models;
using WingtipToys.Logic;

namespace WingtipToys

{
public class Global : HttpApplication
{

void Application Start (object sender, EventArgs e)

// Code that runs on application startup
RouteConfig.RegisterRoutes (RouteTable.Routes) ;
BundleConfig.RegisterBundles (BundleTable.Bundles) ;

// Initialize the product database.
Database.SetInitializer (new ProductDatabaseInitializer()):;

// Create administrator role and user.
RoleActions roleActions = new RoleActions();
roleActions.createAdmin () ;

// Add Routes.
RegisterCustomRoutes (RouteTable.Routes) ;

}

void RegisterCustomRoutes (RouteCollection routes)
{
routes.MapPageRoute (
"ProductsByCategoryRoute",
"Category/{categoryName}",
"~/ProductList.aspx"
)i
routes.MapPageRoute (
"ProductByNameRoute",
"Product/{productName}",
"~/ProductDetails.aspx"
) ;

}

When the Wingtip Toys sample application starts, it calls the Application Start event
handler. At the end of this event handler, the RegisterCustomRoutes method is called. The
RegisterCustomRoutes method adds each route by calling the MapPageRoute method of
the RouteCollection object. Routes are defined using a route name, a route URL and a
physical URL.

The first parameter ("ProductsByCategoryRoute") is the route name. It is used to call the
route when it is needed. The second parameter ("Category/ {categoryName}") defines the
friendly replacement URL that can be dynamic based on code. You use this route when you are
populating a data control with links that are generated based on data. A route is shown as
follows:

routes.MapPageRoute (
"ProductsByCategoryRoute",
"Category/{categoryName}",
"~/ProductList.aspx"

)

The second parameter of the route includes a dynamic value specified by braces ({ }).In this
case, the categoryName is a variable that will be used to determine the proper routing path.

Optional

You might find it easier to manage your code by moving the RegisterCustomRoutes
method to a separate class. In the Logic folder, create a separate RouteActions class. Move

the above RegisterCustomRoutes method from the Global asax.cs file into the new
RoutesActions class. Use the RoleActions class and the createAdmin method as an
example of how to call the RegisterCustomRoutes method from the Global.asax.cs file.

You may also have noticed the RegisterRoutes method call using the RouteConfig object
at the beginning of the Application Start event handler. This call is made to implement
default routing. It was included as default code when you created the application using Visual
Studio’s Web Forms template.

Retrieving and Using Route Data

As mentioned above, routes can be defined. The code that you added to the
Application Start event handler in the Global.asax.cs file loads the definable routes.

Setting Routes

Routes require you to add additional code. In this tutorial, you will use model binding to retrieve
a RouteValueDictionary object that is used when generating the routes using data from a
data control. The RouteValueDictionary object will contain a list of product names that
belong to a specific category of products. A link is created for each product based on the data
and route.

Enable Routes for Categories and Products

Next, you'll update the application to use the ProductsByCategoryRoute to determine the
correct route to include for each product category link. You'll also update the ProductList.aspx
page to include a routed link for each product. The links will be displayed as they were before
the change, however the links will now use URL routing.

1. In Solution Explorer, open the Site.Master page if it is not already open.
Update the ListView control named “categoryList” with the changes highlighted in
yellow, so the markup appears as follows:

<asp:ListView ID="categoryList"
ItemType="WingtipToys.Models.Category"
runat="server"
SelectMethod="GetCategories" >
<ItemTemplate>
<b style="font-size: large; font-style: normal">
<a href="<%#: GetRouteUrl ("ProductsByCategoryRoute", new {categoryName
= Item.CategoryName}) %>">
<%#: Item.CategoryName %>

</ItemTemplate>
<ItemSeparatorTemplate> | </ItemSeparatorTemplate>
</asp:ListView>

3. In Solution Explorer, open the ProductList.aspx page.

Update the TtemTemplate element of the ProductList.aspx page with the updates
highlighted in yellow, so the markup appears as follows:

<ItemTemplate>
<td runat="server">
<table>
<tr>
<td>
<a href="<%#: GetRouteUrl ("ProductByNameRoute", new {productName =
Item.ProductName}) %>">
<image src='/Catalog/Images/Thumbs/<%#:Item.ImagePath%>"'
width="100" height="75" border="1" />

</td>
</tr>
<tr>
<td>
<a href="<%$#: GetRouteUrl ("ProductByNameRoute", new {productName =
Item.ProductName}) %>">
<%#:Item.ProductName%>

Price: <%#:String.Format("{0:c}", Item.UnitPrice) %>

<a href="/AddToCart.aspx?productID=<%#:Item.ProductID %>">

Add To Cart

</td>
</tr>
<tr>
<td> </td>
</tr>
</table>
</p>
</td>
</ItemTemplate>

Open the code-behind of ProductList.aspx.cs and add the following namespace as
highlighted in yellow:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using WingtipToys.Models;

using System.Web.ModelBinding;
using System.Web.Routing;

Replace the GetProducts method of the code-behind (ProductList.aspx.cs) with the
following code:

public IQueryable<Product> GetProducts (
[QueryString ("id")] int? categoryIld,
[RouteData] string categoryName)

var db = new WingtipToys.Models.ProductContext () ;

IQueryable<Product> query = db.Products;

if (categoryId.HasValue && categoryId > 0)
{

query = query.Where(p => p.CategoryID == categorylId);
}

if (!String.IsNullOrEmpty (categoryName))
{
query = query.Where(p =>
String.Compare (p.Category.CategoryName,
categoryName) == 0);
}
return query;

}

Add Code for Product Details

Now, update the code-behind (ProductDetails.aspx.cs) for the ProductDetails.aspx page to use
route data. Notice that the new GetProduct method also accepts a query string value for the
case where the user has a link bookmarked that uses the older non-friendly, non-routed URL.

1. Replace the GetProduct method of the code-behind (ProductDetails.aspx.cs) with the
following code:

public IQueryable<Product> GetProduct (
[QueryString ("ProductID")] int? productld,
[RouteData] string productName)

var db = new WingtipToys.Models.ProductContext () ;
IQueryable<Product> query = db.Products;
if (productId.HasValue && productId > 0)
{

query = query.Where(p => p.ProductID == productId);
}
else if (!String.IsNullOrEmpty (productName))
{

query = query.Where(p =>

String.Compare (p.ProductName, productName) == 0);

}
else
{

query = null;
}
return query;

}

Running the Application
You can run the application now to see the updated routes.

1. Press F5 to run the Wingtip Toys sample application.
The browser opens and shows the Default.aspx page.
2. Click the Products link at the top of the page.
All products are displayed on the ProductList.aspx page. The following URL (using your
port number) is displayed for the browser:
http://localhost:1234/ProductList

http://localhost:1234/ProductList

3. Next, click the Cars category link near the top of the page.
Only cars are displayed on the ProductList.aspx page. The following URL (using your port
number) is displayed for the browser:
http://localhost:1234/Category/Cars

4. Click the link containing the name of the first car listed on the page (“Convertible Car”)
to display the product details.
The following URL (using your port number) is displayed for the browser:
http://localhost:1234/Product/Convertible%20Car

5. Next, enter the following non-routed URL (using your port number) into the browser:
http://localhost:1234/ProductDetails.aspx?productID=2
The code still recognizes a URL that includes a query string, for the case where a user has
a link bookmarked.

Summary

In this tutorial, you have added routes for categories and products. You have learned how routes
can be integrated with data controls that use model binding. In the next tutorial, you will
implement global error handling.

Additional Resources

ASP.NET Friendly URLs

http://localhost:1234/Category/Cars
http://localhost:1234/Product/Convertible%20Car
http://localhost:1234/ProductDetails.aspx?productID=2
http://www.nuget.org/packages/Microsoft.AspNet.FriendlyUrls/

ASP.NET Error Handling

This tutorial series will teach you the basics of building an ASP.NET Web Forms application using
ASP.NET 4.5 and Microsoft Visual Studio Express 2013 for Web. A Visual Studio 2013 project
with C# source code is available to accompany this tutorial series.

In this tutorial, you will modify the Wingtip Toys sample application to include error handling
and error logging. Error handling will allow the application to gracefully handle errors and
display error messages accordingly. Error logging will allow you to find and fix errors that have
occurred. This tutorial builds on the previous tutorial “"URL Routing” and is part of the Wingtip
Toys tutorial series.

What you'll learn:

e How to add global error handling to the application’s configuration.

e How to add error handling at the application, page, and code levels.

e How to log errors for later review.

e How to display error messages that do not compromise security.

e How to implement Error Logging Modules and Handlers (ELMAH) error logging.

Overview

ASP.NET applications must be able to handle errors that occur during execution in a consistent
manner. ASP.NET uses the common language runtime (CLR), which provides a way of notifying
applications of errors in a uniform way. When an error occurs, an exception is thrown. An
exception is any error, condition, or unexpected behavior that an application encounters.

In the .NET Framework, an exception is an object that inherits from the System.Exception
class. An exception is thrown from an area of code where a problem has occurred. The exception
is passed up the call stack to a place where the application provides code to handle the
exception. If the application does not handle the exception, the browser is forced to display the
error details.

As a best practice, handle errors in at the code level in Try/Catch/Finally blocks within your
code. Try to place these blocks so that the user can correct problems in the context in which
they occur. If the error handling blocks are too far away from where the error occurred, it
becomes more difficult to provide users with the information they need to fix the problem.

Exception Class

The Exception class is the base class from which exceptions inherit. Most exception objects are
instances of some derived class of the Exception class, such as the SystemException class, the
IndexOutOfRangeException class, or the ArgumentNullException class. The Exception

class has properties, such as the StackTrace property, the InnerException property, and
the Message property, that provide specific information about the error that has occurred.

Exception Inheritance Hierarchy

The runtime has a base set of exceptions deriving from the SystemException class that the
runtime throws when an exception is encountered. Most of the classes that inherit from the
Exception class, such as the ITndexOutOfRangeException class and the
ArgumentNullException class, do not implement additional members. Therefore, the most
important information for an exception can be found in the hierarchy of exceptions, the
exception name, and the information contained in the exception.

Exception Handling Hierarchy

In an ASP.NET Web Forms application, exceptions can be handled based on a specific handling
hierarchy. An exception can be handled at the following levels:

1. Application level
2. Page level
3. Code level

When an application handles exceptions, additional information about the exception that is
inherited from the Exception class can often be retrieved and displayed to the user. In addition
to application, page, and code level, you can also handle exceptions at the HTTP module level
and by using an IIS custom handler.

Application Level Error Handling

You can handle default errors at the application level either by modifying your application’s
configuration or by adding an Application Error handlerin the Globalasax file of your
application.

You can handle default errors and HTTP errors by adding a customErrors section to the
Web.config file. The customErrors section allows you to specify a default page that users will
be redirected to when an error occurs. It also allows you to specify individual pages for specific
status code errors.

<configuration>
<system.web>
<customErrors mode="On"
defaultRedirect="ErrorPage.aspx?handler=customErrors%20section%20-
$20Web.config">
<error statusCode="404"
redirect="ErrorPage.aspx?msg=404& handler=customErrors%$20section%20-
%$20Web.config"/>
</customErrors>
</system.web>
</configuration>

Unfortunately, when you use the configuration to redirect the user to a different page, you do
not have the details of the error that occurred.

However, you can trap errors that occur anywhere in your application by adding code to the
Application Error handlerin the Global.asax file.

void Application Error (object sender, EventArgs e)

{

Exception exc = Server.GetLastError();

if (exc is HttpUnhandledException)
{
// Pass the error on to the error page.
Server.Transfer ("ErrorPage.aspx?handler=Application Error%20-
%$20Global.asax", true);

}

}

Page Level Error Event Handling

A page-level handler returns the user to the page where the error occurred, but because
instances of controls are not maintained, there will no longer be anything on the page. To
provide the error details to the user of the application, you must specifically write the error
details to the page.

You would typically use a page-level error handler to log unhandled errors or to take the user to
a page that can display helpful information.

This code example shows a handler for the Error event in an ASP.NET Web page. This handler
catches all exceptions that are not already handled within try/catch blocks in the page.

private void Page Error (object sender, EventArgs e)

{

Exception exc = Server.GetLastError();

// Handle specific exception.
if (exc is HttpUnhandledException)
{
ErrorMsgTextBox.Text = "An error occurred on this page. Please
verify your " +
"information to resolve the issue."
}
// Clear the error from the server.
Server.ClearError () ;

}

After you handle an error, you must clear it by calling the ClearError method of the Server
object (HttpServerUtility class), otherwise you will see an error that has previously
occurred.

Code Level Error Handling

The try-catch statement consists of a try block followed by one or more catch clauses, which
specify handlers for different exceptions. When an exception is thrown, the common language
runtime (CLR) looks for the catch statement that handles this exception. If the currently

executing method does not contain a catch block, the CLR looks at the method that called the
current method, and so on, up the call stack. If no catch block is found, then the CLR displays an
unhandled exception message to the user and stops execution of the program.

The following code example shows a common way of using try/catch/finally to handle
errors.

try
{
file.ReadBlock (buffer, index, buffer.Length);
}
catch (FileNotFoundException e)
{
Server.Transfer ("NoFileErrorPage.aspx", true);
}
catch (System.IO.IOException e)
{
Server.Transfer ("IOErrorPage.aspx", true);

}

finally
{
if (file != null)
{
file.Close():;
}
}

In the above code, the try block contains the code that needs to be guarded against a possible
exception. The block is executed until either an exception is thrown or the block is completed
successfully. If either a FileNotFoundException exception or an IOException exception
occurs, the execution is transferred to a different page. Then, the code contained in the finally
block is executed, whether an error occurred or not.

Adding Error Logging Support

Before adding error handling to the Wingtip Toys sample application, you will add error logging
support by adding an ExceptionUtility class to the Logic folder. By doing this, each time
the application handles an error, the error details will be added to the error log file.

1. Right-click the Logic folder and then select Add -> New Item.
The Add New Item dialog box is displayed.

2. Select the Visual C# -> Code templates group on the left. Then, select Class from the
middle list and name it ExceptionUtility.cs.

3. Choose Add. The new class file is displayed.

4. Replace the existing code with the following:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.IO;

namespace WingtipToys.Logic
{
// Create our own utility for exceptions
public sealed class ExceptionUtility
{
// All methods are static, so this can be private
private ExceptionUtility ()
{ }

// Log an Exception
public static void LogException (Exception exc, string source)
{

// Include logic for logging exceptions

// Get the absolute path to the log file

string logFile = "App Data/ErrorLog.txt";

logFile = HttpContext.Current.Server.MapPath (logFile) ;

// Open the log file for append and write the log
StreamWriter sw = new StreamWriter (logFile, true);
sw.WriteLine ("****xxx**x%*x [()} *xxxxxxkk4" = DateTime.Now) ;
if (exc.InnerException != null)
{

sw.Write ("Inner Exception Type: ");

sw.WriteLine (exc.InnerException.GetType () .ToString()) ;

sw.Write ("Inner Exception: ");

sw.WriteLine (exc.InnerException.Message) ;

sw.Write ("Inner Source: ");

sw.WriteLine (exc.InnerException.Source) ;

if (exc.InnerException.StackTrace != null)

sw.WriteLine ("Inner Stack Trace: ");
sw.WriteLine (exc.InnerException.StackTrace) ;

}

sw.Write ("Exception Type: ");

sw.WriteLine (exc.GetType () .ToString()) ;
sw.WriteLine ("Exception: " + exc.Message);
sw.WriteLine ("Source: " + source);
sw.WriteLine ("Stack Trace: ");

if (exc.StackTrace != null)

sw.WriteLine (exc.StackTrace) ;
sw.WriteLine () ;

}

sw.Close () ;

}

When an exception occurs, the exception can be written to an exception log file by calling the
LogException method. This method takes two parameters, the exception object and a string
containing details about the source of the exception. The exception log is written to the
ErrorLog.txt file in the App_Data folder.

Adding an Error Page

In the Wingtip Toys sample application, one page will be used to display errors. The error page
is designed to show a secure error message to users of the site. However, if the user is a

developer making an HTTP request that is being served locally on the machine where the code
lives, additional error details will be displayed on the error page.

1. Right-click the project name (Wingtip Toys) in Solution Explorer and select Add ->
New Item.
The Add New Item dialog box is displayed.

2. Select the Visual C# -> Web templates group on the left. From the middle list, select
Web Form with Master Page, and name it ErrorPage.aspx.

3. Click Add.
Select the Site.Master file as the master page, and then choose OK.

5. Replace the existing markup with the following:

<%Q@ Page Title="" Language="C#" AutoEventWireup="true"
MasterPageFile="~/Site.Master" CodeBehind="ErrorPage.aspx.cs"
Inherits="WingtipToys.ErrorPage" %>
<asp:Content ID="Contentl" ContentPlaceHolderID="MainContent" runat="server">
<h2>Error:</h2>
<p></p>
<asp:Label ID="FriendlyErrorMsg" runat="server" Text="Label" Font-
Size="Large" style="color: red"></asp:Label>

<asp:Panel ID="DetailedErrorPanel" runat="server" Visible="false">
<p> </p>
<h4>Detailed Error:</h4>
<p>
<asp:Label ID="ErrorDetailedMsg" runat="server" Font-Size="Small"
/>

</p>

<h4>Error Handler:</h4>
<p>
<asp:Label ID="ErrorHandler" runat="server" Font-Size="Small" />

</p>
<h4>Detailed Error Message:</h4>
<p>
<asp:Label ID="InnerMessage" runat="server" Font-Size="Small" />

</p>
<p>
<asp:Label ID="InnerTrace" runat="server" />
</p>

</asp:Panel>
</asp:Content>

6. Replace the existing code of the code-behind (ErrorPage.aspx.cs) so that it appears as
follows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
using WingtipToys.Logic;

namespace WingtipToys
{
public partial class ErrorPage : System.Web.UI.Page
{
protected void Page Load (object sender, EventArgs e)
{
// Create safe error messages.
string generalErrorMsg = "A problem has occurred on this web site. Please
try again. " +
"If this error continues, please contact support.";
string httpErrorMsg = "An HTTP error occurred. Page Not found. Please try
again.";
string unhandledErrorMsg = "The error was unhandled by application
code.";

// Display safe error message.
FriendlyErrorMsg.Text = generalErrorMsg;

// Determine where error was handled.
string errorHandler = Request.QueryString["handler"];
if (errorHandler == null)
{
errorHandler = "Error Page";

}

// Get the last error from the server.
Exception ex = Server.GetLastError();

// Get the error number passed as a querystring value.
string errorMsg = Request.QueryString["msg"];
if (errorMsg == "404")
{
ex = new HttpException (404, httpErrorMsg, ex);
FriendlyErrorMsg.Text = ex.Message;

}

// If the exception no longer exists, create a generic exception.
if (ex == null)
{

ex = new Exception (unhandledErrorMsg) ;

}

// Show error details to only you (developer). LOCAL ACCESS ONLY.
if (Request.IsLocal)
{

// Detailed Error Message.

ErrorDetailedMsg.Text = ex.Message;

// Show where the error was handled.
ErrorHandler.Text = errorHandler;

// Show local access details.
DetailedErrorPanel.Visible = true;

if (ex.InnerException != null)
{
InnerMessage.Text = ex.GetType () .ToString() + "
" +
ex.InnerException.Message;
InnerTrace.Text = ex.InnerException.StackTrace;
}
else

{
InnerMessage.Text = ex.GetType () .ToString() ;

if (ex.StackTrace != null)
InnerTrace.Text = ex.StackTrace.ToString().TrimStart();

}
}

// Log the exception.
ExceptionUtility.LogException (ex, errorHandler) ;

// Clear the error from the server.
Server.ClearError () ;
}
}

}

When the error page is displayed, the Page Load event handler is executed. In the Page Load
handler, the location of where the error was first handled is determined. Then, the last error that
occurred is determined by call the GetLastError method of the Server object. If the exception
no longer exists, a generic exception is created. Then, if the HTTP request was made locally, all
error details are shown. In this case, only the local machine running the web application will see
these error details. After the error information has been displayed, the error is added to the log
file and the error is cleared from the server.

Displaying Unhandled Error Messages for the Application

By adding a customErrors section to the Web.config file, you can quickly handle simple errors
that occur throughout the application. You can also specify how to handle errors based on their
status code value, such as 404 — File not found.

Update the Configuration
Update the configuration by adding a customErrors section to the Web.config file.

1. In Solution Explorer, find and open the Web.config file at the root of the Wingtip Toys
sample application.

2. Add the customErrors section to the Web.config file within the <system.web> node
as follows:

<configuration>
<system.web>
<customErrors mode="On"
defaultRedirect="ErrorPage.aspx?handler=customErrors%$20section%$20-
$20Web.config">
<error statusCode="404"
redirect="ErrorPage.aspx?msg=404& handler=customErrors%s20section%20-
$20Web.config"/>
</customErrors>
</system.web>
</configuration>

3. Save the Web.config file.

The customErrors section specifies the mode, which is set to "On". It also specifies the
defaultRedirect, which tells the application which page to navigate to when an error occurs.

In addition, you have added a specific error element that specifies how to handle a 404 error
when a page is not found. Later in this tutorial, you will add additional error handling that will
capture the details of an error at the application level.

Running the Application
You can run the application now to see the updated routes.

1. Press F5 to run the Wingtip Toys sample application.
The browser opens and shows the Default.aspx page.

2. Enter the following URL into the browser (be sure to use your port number):
http://localhost:1234/NoPage.aspx

3. Review the ErrorPage.aspx displayed in the browser.

TN . s L
e'@'b http://localhost:24019/Err O = C || | - Wingtip Toys | |

Wingtip Toys Home About Contact Products Cart (0) Register Login

Cars |Planes | Trucks |Boats |Rockets

Error:
An HTTP error occurred. Page Not found. Please try again.

Detailed Error:

An HTTP error occurred. Page Not found. Please try again.
Error Handler:

customErrors section - Web.config

Detailed Error Message:

System.Web. HitpException

© 2013 - Wingtip Toys

When you request the NoPage.aspx page, which does not exist, the error page will show the
simple error message and the detailed error information if additional details are available.
However, if the user requested a non-existent page from a remote location, the error page
would only show the error message in red.

Including an Exception for Testing Purposes

To verify how your application will function when an error occurs, you can deliberately create
error conditions in ASP.NET. In the Wingtip Toys sample application, you will throw a test
exception when the default page loads to see what happens.

1. Open the code-behind of the Default.aspx page in Visual Studio.
The Default.aspx.cs code-behind page will be displayed.
2. Inthe Page Load handler, add code so that the handler appears as follows:

protected void Page Load (object sender, EventArgs e)

{
throw new InvalidOperationException ("An InvalidOperationException " +
"occurred in the Page Load handler on the Default.aspx page.");

}

It is possible to create various different types of exceptions. In the above code, you are creating
an InvalidOperationException when the Default.aspx page is loaded.

Running the Application
You can run the application to see how the application handles the exception.

1. Press CTRL+F5 to run the Wingtip Toys sample application.
The application throws the InvalidOperationException.
Note

You must press CTRL+F5 to display the page without breaking into the code to view the
source of the error in Visual Studio.

2. Review the ErrorPage.aspx displayed in the browser.

@@L hitp:/flocalhost24019/Er O ~ & ||| - Wingip Toys | | T g €07

Wingtip Toys Home About Contact Products Cart(0) Register Login

Wungtye Toys

Cars |Planes | Trucks |Boats | Rockets

Error:

A problem has occurred on this web site. Please try again. If this error
continues, please contact support.

Detailed Error:

The error was unhandled by application code.
Error Handler:

customErrors section - Web.config

Detailed Error Message:

System.Exception

@ 2013 - Wingtip Toys

As you can see in the error details, the exception was trapped by the customError section in
the Web.config file.

Adding Application-Level Error Handling

Rather than trap the exception using the customErrors section in the Web.config file, where
you gain little information about the exception, you can trap the error at the application level
and retrieve error details.

1. In Solution Explorer, find and open the Global.asax.cs file.
2. Add an Application_Error handler so that it appears as follows:

void Application Error (object sender, EventArgs e)
{

// Code that runs when an unhandled error occurs.

// Get last error from the server
Exception exc = Server.GetlLastError () ;

if (exc is HttpUnhandledException)
{
if (exc.InnerException != null)
{

exc = new Exception (exc.InnerException.Message) ;

Server.Transfer ("ErrorPage.aspx?handler=Application Error%20-
%$20Global.asax",
true) ;
}
}
}

When an error occurs in the application, the Application Error handler is called. In this
handler, the last exception is retrieved and reviewed. If the exception was unhandled and the
exception contains inner-exception details (that is, InnerException is not null), the
application transfers execution to the error page where the exception details are displayed.

Running the Application
You can run the application to see the additional error details provided by handling the
exception at the application level.

1. Press CTRL+F5 to run the Wingtip Toys sample application.
The application throws the InvalidOperationException.

2. Review the ErrorPage.aspx displayed in the browser.

O
@@|l hitp://localhost24019/De O ~ G ||| - Wingtip Toys || T} 2.9 €07

Wingtip Toys Home About Contact Products Cart (D) Register Login

Cars |Planes | Trucks |Boats |Rockets

Error:

A problem has occurred on this web site. Please try again. If this error
continues, please contact support.

Detailed Error:

Exception of type 'System.Web.HttpUnhandledException' was thrown.
Error Handler:

Application_Error - Global.asax

Detailed Error Message:

System.Web.HttpUnhandledException

An InvalidOperationException occurred in the Page_Load handler on the Default.aspx
page.

at WingtipToys._Default Page_Load(Object sender, EventArgs e) in c\Users'erikre\DocumentsiVisual Studio 2013
\Projects\WingtipToys\WingtipToys\Default aspx cs-line 14 at System Web Util CalliEveniHandlerDelegateProxy Callback
(Object sender, EventArgs e) at System.Web. Ul Control. OnLoad(EventArgs &) at System.Web_UI.Control. LoadRecursive

() at System.Web.Ul.Page ProcessRequestiMain{Boolean includeStagesBeforeAsyncPoint, Boolean
includeStagesAfterAsyncPoint)

© 2013 - Wingtip Toys

Adding Page-Level Error Handling

You can add page-level error handling to a page either by using adding an ErrorPage
attribute to the @Page directive of the page, or by adding a Page Error event handler to the
code-behind of a page. In this section, you will add a Page Error event handler that will
transfer execution to the ErrorPage.aspx page.

1. In Solution Explorer, find and open the Default.aspx.cs file.
Add a Page Error handler so that the code-behind appears as follows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

namespace WingtipToys
{ public partial class Default : Page
{ protected void Page Load (object sender, EventArgs e)
{ throw new InvalidOperationException ("An InvalidOperationException " +
"occurred in the Page Load handler on the Default.aspx page.");

}

private void Page Error (object sender, EventArgs e)
{

// Get last error from the server.

Exception exc = Server.GetlastError() ;

// Handle specific exception.
if (exc is InvalidOperationException)
{
// Pass the error on to the error page.

Server.Transfer ("ErrorPage.aspx?handler=Page Error%20-%20Default.aspx",
true) ;

}

When an error occurs on the page, the Page Error event handler is called. In this handler, the
last exception is retrieved and reviewed. If an InvalidOperationException occurs, the

Page Error event handler transfers execution to the error page where the exception details
are displayed.

Running the Application
You can run the application now to see the updated routes.

1. Press CTRL+F5 to run the Wingtip Toys sample application.

The application throws the InvalidOperationException.

2. Review the ErrorPage.aspx displayed in the browser.

O
@@|l hitp://localhost24019/De O ~ G ||| - Wingtip Toys || T} 2.9 €07

Wingtip Toys Home About Contact Products Cart (D) Register Login

Cars |Planes | Trucks |Boats |Rockets

Error:

A problem has occurred on this web site. Please try again. If this error
continues, please contact support.

Detailed Error:

An InvalidOperationException occurred in the Page_Load handler on the Default.aspx
page.

Error Handler:

Page_Error - Default.aspx

Detailed Error Message:

System.InvalidOperationException

at WingtipToys._Default Page_Load(Object sender, EventArgs e) in c:\Users\erikre\DocumentsiVisual Studio 2013
\Projects\WingtipToys\WingtipToys\Default.aspx.csiline 14 at System. Web.Util.CalliEventHandlerDelegateProxy .Callback
(Object sender, EventArgs €) at System.Web.Ul.Control. OnLoad(EventArgs €) at System.VWeb.Ul.Control.LoadRecursive
() at System.Web.Ul.Page ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean
includeStagesAfterAsyncPoint)

@ 2013 - Wingtip Toys

3. Close your browser window.

Removing the Exception Used for Testing

To allow the Wingtip Toys sample application to function without throwing the exception you
added earlier in this tutorial, remove the exception.

1. Open the code-behind of the Default.aspx page.
2. Inthe Page Load handler, remove the code that throws the exception so that the
handler appears as follows:

protected void Page Load(object sender, EventArgs e)
{

}

Adding Code-Level Error Logging

As mentioned earlier in this tutorial, you can add try/catch statements to attempt to run a
section of code and handle the first error that occurs. In this example, you will only write the
error details to the error log file so that the error can be reviewed later.

1. In Solution Explorer, in the Logic folder, find and open the PayPalFunctions.cs file.
2. Update the HttpCall method so that the code appears as follows:

public string HttpCall (string NvpRequest)
{
string url = pEndPointURL;

string strPost = NvpRequest + "&" + buildCredentialsNVPString() ;
strPost = strPost + "&BUTTONSOURCE=" + HttpUtility.UrlEncode (BNCode) ;

HttpWebRequest objRequest = (HttpWebRequest)WebRequest.Create (url);
objRequest.Timeout = Timeout;
objRequest.Method = "POST";

objRequest.ContentLength = strPost.Length;

try
{
using (StreamWriter myWriter = new
StreamWriter (ocbjRequest.GetRequestStream()))
{
myWriter.Write (strPost) ;
}
}
catch (Exception e)
{
// Log the exception.
WingtipToys.Logic.ExceptionUtility.LogException (e, "HttpCall in
PayPalFunction.cs") ;

}

//Retrieve the Response returned from the NVP API call to PayPal.
HttpWebResponse objResponse = (HttpWebResponse)objRequest.GetResponse() ;
string result;
using (StreamReader sr = new StreamReader (objResponse.GetResponseStream()))
{

result = sr.ReadToEnd();

}

return result;

}

The above code calls the LogException method that is contained in the ExceptionUtility
class. You added the ExceptionUtility.cs class file to the Logic folder earlier in this tutorial. The
LogException method takes two parameters. The first parameter is the exception object. The
second parameter is a string used to recognize the source of the error.

Inspecting the Error Logging Information

As mentioned previously, you can use the error log to determine which errors in your
application should be fixed first. Of course, only errors that have been trapped and written to
the error log will be recorded.

1. In Solution Explorer, find and open the ErrorLog.txt file in the App_Data folder.
You may need to select the “Show All Files” option or the “"Refresh” option from the top
of Solution Explorer to see the ErrorLog.txt file.

2. Review the error log displayed in Visual Studio:

Dd WingtipToys

ErrorLogtt + X
EREERERRE R 11!?!2813 12:38:89 pM EEEERE R
Exception Type: System.Exception
Exception: The error was unhandled by application code.
Source: customErrors section - Web.config
Stack Trace:
Fdkkkdkkkdkkk 11!}!!2913 12:44:51 PM Fkkkdkkkdkkxk
Inner Excepticn Type: System.InvalidOperationExcepticn
Inner Excepticn: An InvalidOperationException occurred in the Page_Load handler on the Default.aspx pa
Inner Scurce: WingtipToys
Inner Stack Trace:
at WingtipToys. Default.Page Load(Object sender, EventArgs e) in c:\Users\erikre\Documents\Visual S
at System.Web.Util.CalliEventHandlerDelegateProxy.Callback(Object sender, EventArgs e)
at System.Web.UI.Control.OnLoad(Eventfrgs e)
at System.Web.UI.Control.LeadRecursive()
at System.Web.UI.Page.ProcessRequestMain(Boclean includeStagesBeforefAsyncPeint, Booclean includeStag
Exception Type: System.Web.HttpUnhandledException
Exception: Exception of type 'System.Web.HttpUnhandledException' was thrown.
Source: Application_Error - Global.asax
Stack Trace:
at System.Web.UI.Page.HandleError(Exception &)
at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStag
at System.Web.UI.Page.ProcessRequest(Boolean includeStagesBeforefAsyncPoint, Boolean includeStagesAf
at System.Web.UI.Page.ProcessRequest()
at System.Web.UI.Page.ProcessRequestiithNoAssert(HttpContext context)
at System.Web.UI.Page.ProcessRequest(HttpContext context)
at ASP.default aspx.ProcessRequest(HttpContext context) in c:\Users\erikre\AppData‘Llocal\Temp\Tempo
at System.Web.HttpApplication.CallHandlerExecutionStep.System.Web. HttpApplication.IExecutionStep.Ex
at System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously)

FEREEEEREEE 11/7/2013 12:45:47 pM FEEFEEREEX
Inner Excepticn Type: System.InvalidOperationExcepticn

100% ~| 4
100 % -

Safe Error Messages

It is important to note that when your application displays error messages, it should not give
away information that a malicious user might find helpful in attacking your application. For
example, if your application unsuccessfully tries to write in to a database, it should not display
an error message that includes the user name it is using. For this reason, a generic error
message in red is displayed to the user. All additional error details are only displayed to the
developer on the local machine.

Using ELMAH

ELMAH (Error Logging Modules and Handlers) is an error logging facility that you plug into your
ASP.NET application as a NuGet package. ELMAH provides the following capabilities:

4. Logging of unhandled exceptions.
5. A web page to view the entire log of recoded unhandled exceptions.

6. A web page to view the full details of each logged exception.
7. An e-mail notification of each error at the time it occurs.
8. An RSS feed of the last 15 errors from the log.

Before you can work with the ELMAH, you must install it. This is easy using the NuGet package

installer. As mentioned earlier in this tutorial series, NuGet is a Visual Studio extension that

makes it easy to install and update open source libraries and tools in Visual Studio.

1. Within Visual Studio, from the Tools menu, select Library Package Manager ->
Manage NuGet Packages for Solution.

TOOLS | TEST WINDOW HELP

! ¥ Connect to Database...) ;§§§|DGCTYPE;HTM|_5 v|;
SOL Server L
Library Package Manager - Package Manager Console

[Si Extensions and Updates... #i Manage NuGet Packages for Solution...
Settings v | 43 Package Manager Settings
Customize...

£} Options...

2. The Manage NuGet Packages dialog box is displayed within Visual Studio.

3. In the Manage NuGet Packages dialog box, expand Online on the left, and then select
nuget.org. Then, find and install the ELMAH package from the list of available packages

online.

WingtipToys.sin - Manage NuGet Packages

b Installed packages

| Stable Only

-] [EcMaH]

'l Sort by: | Relevance

4 (Online

ELMAH -
Created by: Atif Az
ELMAH with initial Id’_ | h"" Az
All configuration for getting...) e.ma
nuget.org Version: 1.2.2
Microsoft and .MET . ELMAH Core Library {no config) Last Published: 4/13/2012

Downloads: 1015568

Search Results Core library for ELMAH (Error Logging

Modules and Handlers) without any confi... License
b Updates View License
. ELMAH on MS SQL Server (requires ma...)
B ELMAH with configuration for getting Prc'eﬁflar:fierrr?:iicn
started quickly on a Microsoft SOL Server... Repjc:rt Abuse
Description:

Elmah.Contrib.Mwc

x

3 - |

Each package is licensed to you by its
owner. Microsoft is not responsible
for, nor does it grant any licenses to,
third-party packages.

Elmah.Contrib.Mvc was designed to add
ease-of-use to Elmah inside ASP.NET MV..,

Elmah.MVC

Painless integration of ELMAH functionality

tedbm ACO BICT KA. A valicatinn Dot decon
12 3 4 5 »

ELMAH with initial configuration for
getting started quickly, ELMAH (Error
Logging Modules and Handlers) is an
application-wide error logging facility
that is completely pluggable. It can be
dynamically added to a running
ASP.MET web application, or even all

ACD MFET wieh annlicatinne nn a marchine

Clase

ry

4. You will need to have an internet connection to download the package.

5. In the Select Projects dialog box, make sure the WingtipToys selection is selected, and
then click OK.
Select Projects

Install the package in the following projects:

4 fa] Solution "'WingtipToys'
&1 WingtipToys

QK | | Cancel

6. Click Close in the Manage NuGet Packages dialog box if needed.

7. If Visual Studio requests that you reload any open files, select “Yes to All".

8. The ELMAH package adds entries for itself in the Web.config file at the root of your
project. If Visual Studio asks you if you want to reload the modified Web.config file, click

Yes.

ELMAH is now ready to store any unhandled errors that occur.

Viewing the ELMAH Log

Viewing the ELMAH log is easy, but first you will create an unhandled exception that will be
recorded in the ELMAH log.

1. Press CTRL+F5 to run the Wingtip Toys sample application.

2. To write an unhandled exception to the ELMAH log, navigate in your browser to the
following URL (using your port number):
http://localhost:1234/NoPage.aspx
The error page will be displayed.

3. To display the ELMAH log, navigate in your browser to the following URL (using your
port number):

http://localhost:1234/NoPage.aspx

http://localhost:1234/elmah.axd

e@h http://localhost:24019/s O = OH. Error log for /LM/W3SVC/2.., ‘ | YA LE

Error Log for ROOT on ERIK-TEST

Host | Code|Type Emor _________________lUser| Date, Time

ERIK-TEST 404 Http The file '/NoPage.aspx' does not exist. Details... 11/7/2013 1:07 PM

Powered by ELMAH, version 1.2.14706.955. Copyright (c) 2004, Atif Aziz. All rights reserved. Licensed under
Apache license, Version 2.0. Server date is Thursday, 07 November 2013. Server time is 13:08:31. All dates
and times displayed are in the Pacific Standard Time zone. This log is provided by the In-Memaory Error Log.

Summary

In this tutorial, you have learned about handling errors at the application level, the page level,
and the code level. You have also learned how to log handled and unhandled errors for later
review. You added the ELMAH utility to provide exception logging and notification to your
application using NuGet. Additionally, you have learned about the importance of safe error
messages.

Conclusion

This completes the ASP.NET 4.5 Wingtip Toys tutorial series. For more information about new
Web Forms features available in ASP.NET 4.5 and Visual Studio 2013, see ASP.NET and Web
Tools for Visual Studio 2013 Release Notes.

Additional Resources
Logging Error Details with ASP.NET Health Monitoring
ELMAH

Acknowledgements

I would like to thank the following people who made significant contributions to the content of
this tutorial series:

e Alberto Poblacion, MVP & MCT, Spain
e Alex Thissen, Netherlands (twitter: @alexthissen)
e Andre Tournier, USA

http://localhost:1234/elmah.axd
http://www.asp.net/visual-studio/overview/2013/release-notes
http://www.asp.net/visual-studio/overview/2013/release-notes
http://www.asp.net/web-forms/tutorials/deployment/deploying-web-site-projects/Logging-Error-Details-with-ASP-NET-Health-Monitoring-cs
https://code.google.com/p/elmah/
https://mvp.support.microsoft.com/profile/Alberto
http://blog.alexthissen.nl/
http://twitter.com/alexthissen
http://andret503.wordpress.com/

e Apurva Joshi, Microsoft

e Bojan Vrhovnik, Slovenia

e Bruno Sonnino, Brazil (twitter: @bsonnino)

e Carlos dos Santos, Brazil

e Dave Campbell, USA (twitter: @windowsdevnews)
e Jon Galloway, Microsoft (twitter: @jongalloway)
e Michael Sharps, USA (twitter: @mrsharps)

e Mike Pope

e Mitchel Sellers, USA (twitter: @MitchelSellers)

e Paul Cociuba, Microsoft

e Paulo Morgado, Portugal

e Pranav Rastogi, Microsoft

e Tim Ammann, Microsoft

e Tom Dykstra, Microsoft

Community Contributions

e Graham Mendick (graham.mendick@gmail.com)
Visual Studio 2012 related code sample on MSDN: Navigation Wingtip Toys

e James Chaney (jchaney@agvance.net)
Visual Studio 2012 related code sample on MSDN: ASP.NET 4.5 Web Forms Tutorial
Series in Visual Basic

e Andrielle Azevedo - Microsoft Technical Audience Contributor (twitter: @driazevedo)
Visual Studio 2012 translation: Iniciando com ASP.NET Web Forms 4.5 — Parte 1 -
Introducao e Visao Geral

http://twitter.com/bvrhovnik
http://msmvps.com/blogs/bsonnino
http://twitter.com/bsonnino
http://www.carloscds.net/
http://www.wynapse.com/
http://twitter.com/windowsdevnews
http://weblogs.asp.net/jgalloway
http://twitter.com/jongalloway
http://www.930solutions.com/
http://twitter.com/mrsharps
http://www.mitchelsellers.com/
http://twitter.com/MitchelSellers
http://linqto.me/Links/pcociuba
http://paulomorgado.net/
http://blogs.msdn.com/b/pranav_rastogi
http://blogs.iis.net/timamm/default.aspx
http://blogs.msdn.com/aspnetue
mailto:graham.mendick@gmail.com
http://code.msdn.microsoft.com/Navigation-Wingtip-Toys-5f0daba2
mailto:jchaney@agvance.net
http://code.msdn.microsoft.com/ASPNET-45-Web-Forms-f37f0f63
http://code.msdn.microsoft.com/ASPNET-45-Web-Forms-f37f0f63
https://andrielleazevedo.wordpress.com/2013/01/24/iniciando-com-asp-net-web-forms-4-5-introducao-e-visao-geral/
https://andrielleazevedo.wordpress.com/2013/01/24/iniciando-com-asp-net-web-forms-4-5-introducao-e-visao-geral/

	Table of Contents
	Introduction and Overview
	Introduction
	Download completed project
	Audience
	Application Features
	Application Scenarios and Tasks

	Overview
	The Wingtip Toys Sample Application
	Prerequisites
	Download the Sample Application
	Tutorial Support and Comments

	Create the Project
	What you'll learn:
	Creating the Project
	Understanding the ASP.NET Frameworks
	Reviewing the Project
	Running the Default Web Application

	ASP.NET Web Forms Background
	Web Application Features in the Web Forms Application Template
	Membership
	SQL Server Express LocalDB
	Master Pages
	HTML5
	Modernizr
	Bootstrap
	NuGet Packages
	jQuery
	Unobtrusive Validation
	Entity Framework Code First
	Touring Visual Studio

	Summary
	Additional Resources

	Create the Data Access Layer
	What you'll learn:
	These are the features introduced in the tutorial:

	Creating the Data Models
	Entity Framework and References
	Entity Classes
	Data Annotations
	Context Class
	Initializer Class
	Configuring the Application to Use the Data Model
	Updating the Global.asax file
	Modifying the Web.Config File

	Building the Application
	Summary
	Additional Resources

	UI and Navigation
	What you'll learn:
	Modifying the UI
	@Page Directive
	Web Server Controls
	Server Code
	Updating the Master Page
	Master Pages
	Adding Image Files
	Download from MSDN Samples site:

	Adding Pages
	Updating Bootstrap
	Modifying the Default Navigation
	Adding a Data Control to Display Navigation Data
	Linking the Data Control to the Database
	Running the Application and Creating the Database
	Reviewing the Database

	Summary
	Additional Resources

	Display Data Items and Details
	What you'll learn:
	These are the features introduced in the tutorial:

	Adding a Data Control to Display Products
	Using a Data Source Control to Bind Data
	Coding By Hand to Bind Data
	Using Model Binding to Bind Data

	Displaying Products
	Adding Code to Display Products
	Running the Application
	Adding a Data Control to Display Product Details
	Running the Application

	Summary
	Additional Resources

	Shopping Cart
	What you'll learn:
	Code features in this tutorial:
	Creating a Shopping Cart
	Add CartItem as a Model Class
	Update the Product Context
	Managing the Shopping Cart Business Logic
	Creating the Shopping Cart Class

	Creating the Add-To-Cart Functionality
	To create the Add-To-Cart functionality:

	Creating the Shopping Cart UI
	Retrieving the Shopping Cart Items

	Adding Products to the Shopping Cart
	Testing the Shopping Cart
	Calculating and Displaying the Order Total
	Modify the Shopping Cart Display
	Testing the Shopping Cart Total
	Adding Update and Checkout Buttons to the Shopping Cart
	Updating and Removing Shopping Cart Items
	Adding a Shopping Cart Counter

	Testing the Completed Shopping Cart
	Summary
	Addition Information

	Checkout and Payment with PayPal
	What you'll learn:
	Adding Order Tracking
	Add the Order and OrderDetail Model Classes

	Adding Checkout Access
	Add a Checkout Folder and Pages
	Add a Web.config File

	Enabling Logins from Other Sites Using OAuth and OpenID
	Modifying Login Functionality

	Migrating the Shopping Cart
	Updating the Database Connection

	Integrating PayPal
	Create PaylPal Test Accounts
	Add PayPal Class and API Credentials
	Update the LocalHost Port Number in the PayPal Class
	Add the PayPal Checkout Button
	Send Purchase Details to PayPal
	Review Order Details
	Complete Purchase
	Handle Cancel Purchase
	Handle Purchase Errors

	Running the Application
	Reviewing the Database
	Summary
	Additional Resources
	Disclaimer

	Membership and Administration
	What you'll learn:
	These features are included in the tutorial:
	Adding an Administrator
	Restricting Access to the Administration Page
	Add an Administration Folder and Page
	Add a Web.config File

	Including Administrator Navigation
	Enabling Product Administration
	Unobtrusive Validation
	Regular Expressions
	FileUpload Control
	Model Binding

	How the Application Will Work

	Running the Application
	Summary
	Additional Resources

	URL Routing
	What you'll learn:
	ASP.NET Routing Overview
	Routes
	URL Patterns
	Mapping and Registering Routes

	Retrieving and Using Route Data
	Setting Routes
	Enable Routes for Categories and Products
	Add Code for Product Details

	Running the Application
	Summary
	Additional Resources

	ASP.NET Error Handling
	What you'll learn:
	Overview
	Exception Class
	Exception Inheritance Hierarchy
	Exception Handling Hierarchy
	Application Level Error Handling
	Page Level Error Event Handling
	Code Level Error Handling

	Adding Error Logging Support
	Adding an Error Page
	Displaying Unhandled Error Messages for the Application
	Update the Configuration
	Running the Application

	Including an Exception for Testing Purposes
	Running the Application

	Adding Application-Level Error Handling
	Running the Application

	Adding Page-Level Error Handling
	Running the Application

	Removing the Exception Used for Testing
	Adding Code-Level Error Logging
	Inspecting the Error Logging Information
	Safe Error Messages

	Using ELMAH
	Viewing the ELMAH Log

	Summary
	Conclusion
	Additional Resources
	Acknowledgements
	Community Contributions

