o Microsoft

Prism for the
Windows Runtime for
Windows 8.1:

Developing a Windows Store
business app using
C#, XAML, and Prism

David Britch

Colin Campbell
Francis Cheung
Diego Antonio Poza
Rohit Sharma
Mariano Vazquez
Blaine Wastell

January 2014

patterns & practices

This documentis provided “as-is”. Information and views expressed in this document, including URL
and otherlInternet web site references, may change without notice.

Some examples depicted herein are provided forillustration onlyand are fictitious. No real
association orconnectionisintended orshould be inferred.

Thisdocument does not provide you with any legal rights to any intellectual property in any
Microsoft product. You may copy and use thisdocument foryour internal, reference purposes.
© 2013 Microsoft. All rightsreserved.

Microsoft, Visual Basic, Visual Studio, Windows Azure, and Windows are trademarks of the Microsoft
group of companies. All othertrademarks are property of their respective owners.

Contents
Developing a Windows Store business app using C#, XAML, and Prism for the Windows Runtime 2
(o)1 Y a1 o - Ic IO TN 2
L=y (=T o [U TR) = PPN 2
EXPIOring the GUILANCE......uu e e e et e e e et e e e e e bt e e eaaa e eeaanns 3
WHhat's IN The DOXP..cciiiiiiiiiiiiiiiitite ettt e e e bbb e bbbttt e bt bbb eb e b e bt bebebebesabssaasnanasnnes 3
WHETE 10 STAM? ettt ettt b e b e be e seaeneaesenenenee 4
Exploring the docUmMENTAtioNii i i e e e e e e e e e eeaean 4
(60eT 0101 0 018 oV 1Y /5O PRPPEN 5
REIEASE NOTES ...ttt s e e e e e e e e e e e e e e e neaeaeeenas 5
[WF T a1 o (=T 018 [(ol LT PSR PPRR 5
Downloads for the Previous rEIEASE..........uuuuuiie e e e e e e e e e e et e e e aeaeeeees 6
Getting started using Prism for the Windows RUNTIMEc.coiiiiiiiiiiiiieieieeeceeee e 7
(7o 17Y] a1 o Y- Ic IO N 7
Building and running the Sample........ oo 7

Visual Studio solution structure for a Windows Store business app that uses the MVVM pattern .. 8

The AdventureWorks.ShOpPer PrOJECE.....ciiii i e e et e e e e e eeaaa s 9
The AdventureWorks.UILOGIiC ProjECtuuuiiiiiii et e e e et e e e e et e eeees 10
The Adventure Works.WebServices ProjeCt.........uuuueiieeeeieeeiiiiiieeeeeeeeeeiiie e e e e e eeeabbe e e eeeeanes 10
The Microsoft.Practices.Prism.PUbSUbEVENts projectcoevvueieiiiiiiieiceeeeee e 11
The Microsoft.Practices.Prism.Store APPS PrOJECE ...uuiiiiiiiiiiiiiiie e e e e et e e e e e eeeeeeee 11
Where 10 S8t MOKE INTO....ciiiii et e e e et e e e et e e e et e e e eraaanas 11

Developer guidance summary and checklists for Windows Store business apps using C#, XAML, and

o] 0 2 PR 12
Windows Store business apps developer checklists.........ccooovviiiiiiiiiiii e, 14
DESIZNING the USEI XPEIIENCE. .. ciiitieeeiiiee e ee et e e et e e e etee e e et e e e ettt aeeeeett e eeetteeessstaaeasesnaaaaees 14
Using the Model-View-ViewModel (MVVM) Pattern.........ccouuuiiieeeieiieeiiiiiie e eeeeeeeens 15
Creating and navigating betWEEN PagES.......ciiiiiiii e 15

L LY 1 Y= o1 Lol o OO PPUPPPNt 16
Validating USEr INPUL .. ccoiii e et e e et e e e e et e e e e et e e e e et e e e eaaaanas 17
Managing apPliCatioN data......ccceeeeiiiiiiiiii e e e e e e e e e e e e e e e e e e a e e e e eeaaaas 17
Handling suspend, resume, and activationoiiiiiiiiiiiiiiie e 18
Communicating between loosely coupled componentsccouvveieeeeeiiieiiiiieie e, 18

WOTKINGWIth THES e e e et e e et e e e et e e e s et e e e b e e e sanannas 19

IMPlEMENEING SEAICH....ce ettt e e et e e e et e e e e ate e e sabaaaeens 19
IMPIOVING PEITOIMIANCEciiiiiiie e e e e e e e e ettt e e e e e e eea b eeeeeeeaeseessabanaeeeesenaees 20
Testing and dePlOYiNG APPS . ..uuu et e et e ettt e e et et e e et eeeeate e e e eat e e aanaaaaeas 21
Developer tasks for building a Windows Store business app using C#, XAML, and Prism 22
Windows Store business app developer tasks.........oue i e e 22
Guidance summary and checklists for Windows Store business apps..........cceeeeeeeeeieeviviinnennn. 22
Using Prism for the Windows RUNTIME.........oouuiiiiii e 23
DESIgNING the USET @XPEIIENCR. ... i e eieeeeiii it e e e e e ettt eee e e e e e e ettt ra e e e eeeeeeaataaaeeeeeseesrssaaaaeaaaeaanes 25
(O F Lo Y= o T 1= (L 25

L LY 1 Y= o1 Lol o RO PPUPPPNt 25
Managing application data.........oouuuiiiiiiiie e e e 25
WOTKINGWIth TS . eeeiiiiiiee e e e et e e e e e e e ettt e e e e e e aetaaaeeeeeas 26
IMPlEMENEING SEAICH....cee e e et e e e et e e e e tbe e e e eate e e eaaaeaaees 26
IMPIOVING PEITOIMANCE ...ceiiiiiiei et e e ettt e e e e e e ea b eeeeeeeeesssbaneeeeeeasanes 26
Testing and dePlOYiNg APPS..cuu e e e et e e e e e et e e e et e e et eeeeat e e e eat e e aaaaaaeas 26
Extended splash screen QUIckstartcoooeeeiiiiiiiii 27
Incremental loading QUICKSTArtcooiiiiii e e 27
Using Prism to create @ WindoWS STOrE @ ...uuueuuueme e e e e e e 28
Architecture of a Windows Store business app that uses Prism...........cccooeeiiiiiiiiiiiiiii e, 29
Creating a Windows Store app project using Prism and Unitycoovvieiiieiiiiiiiiiiiee e, 31
(O F LT~ RV 1= PO 33
Creating a VIeWw mMOdel Class.......oooeiiiiiiiiie e 33
Creating a model class with validation SUPPOrt.........ccouiiiiiiiii e 34
Adding items to the SEttiNGS PANE.......c i i e 35
Changing the Prism CONVENTIONSiiiiii e e e e e e e e e et e e e et eeeeaaaaas 35
Changing the convention for naming and 10cating VIEWSccooeeviiiiiiiiiiiiie e, 35
Changing the convention for naming, locating, and associating view models with views.............. 36

Registering a view model factory with views instead of using a dependency injection container.. 37

Designing the user experience of a Windows Store business app using C#, XAML, and Prism 38
AdventureWorks ShOpPEr USEr EXPEMAENCESccuuieeiiiiieeeeeiieeeeeeiee e e et e e e et e e e e et e e e e eteeeeesaannns 39
Deciding the USer eXPEHENCE OISiiiiiieiieiiiiie et e et e e et e e e e et e e e et e e e e e taseaeaaaaaaaees 40
DeCidiNg the QPP FIOW ... et e et e e e et e e e e et e e e raa e aees 40
Decidingwhat Windows fEatUIES 10 USE.......uiiiiiiiieiiiiciie e eeeeeee et e e e e e e et e e e e e e eeanns 42

Deciding how t0 MONEtize the @PP.....u i iiiiii et e e e et e e e e raaeeaees 43

Making @ 800d firSt IMPIrESSIONuuuiiiiiiiiiitt e e e e e e e e e e e e e e as 43
Validating the deSIGN......cciiiiiiiiiiiiiiiiiei ettt e e nene e 43

Using the Model-View-ViewModel (MVVM) patternin a Windows Store business app using C#,

p 0N AV =T T N 2 4 T o TP 44
MVVM in AdventureWOorks SHOPPETuuuueiiiiiiiiii e e e e e e e 48
WHAt IS IMIVVIMIZ. .ttt ettt e e e e e ettt et e e e e e e s bbbttt e e e aaeeeesanabbbaeeeaeens 49
Using a dependency injection CONTAINET........coouuiiiiiii e et e e e vt e e e 49
Bootstrapping an MVVM app using Prism's MVWMAPPBase Classcevevviieirieiiiireeeiieeeeerieeeees 50
Using the ViewModelLocator class to connect view models to VIEWSceeevviiieiiiiiiiieeiiieeen, 52

Using a convention-based approach to connect view models to VIEWS...........ccovvviviiiiineeenennne. 53
Other approaches to constructing view models and VIEWS............ccuuieeiiiiiiiiiiiiiieeece e, 53
Creating a view model declaratively ..o 54
Creating a view model programmaticallyooeiiiiiiiiiiii e 54
Creating a view defined as adata template.........cooovviiiiiiiiiiiiiecc e 54
Updating a view in response to changes in the underlying view model or model 55
Additional considerations when implementing property change notification.......................... 57
Ul interaction using the DelegateCommand class and Blend behaviorscccceeeviiiiiiiiinne, 58
Implementing command OBJECESuuuuuiiiei e e e e e e e e e e e e e e e eaans 58
INvoking commands fromM @ VIEWciiiiiii et e et e e e et e e e eaae e e 59
Implementing behaviors to supplement the functionality of XAML elements..........ccccceeeeeees 60
INVOking behaviors from @ VIEWcooiiiiiiii e e e e et e e e eaae e e 63
Additional MVVM CONSIAEIAtioNS.cvtiiiiiiiiiiiiiitiitieeeieiteeteeeeeeeeeeeeeeeeeeeeereaerbrsrerrearaaerarernrarenane 64
Centralize data conversions in the view model or a conversion layer.......cccccocvvvieiiiiiiieeeennnn... 64
Expose operational modes inthe view modelccooooiiiiiiiiiiiii e 64
Keep views and view modelsindependent...........couuoiiiiiiiiiiiiiiii e 64
Use asynchronous programming techniques to keep the Ul responsive..........ccccccceeeeeeeeeeeeee. 64

Creating and navigating between pages in Windows Store business app using C#, XAML, and Prism 65

Creating pages and navigating between them in AdventureWorks Shoppercccceeeeeeeivveennnnnn. 68
(O LY=o T = TP 69
Adding design tiMe data........oeiiiiiiiiiiiiiiiie ettt bbbttt bbbttt b bbb ————— 71
Supporting MUItiple VIEW StateS.......ciiiiii e e e e e e 71
Creating a custom GridView control that responds to layout changes...........ccceevvvivcieeeeeeeeennnnnnn. 73
Creating a custom GridView control that displays items at multiple sizes...........cccveeiiiiiienennnn. 74

K] 8V 1Y = elo T a1 (] S 76

Vi

Enabling page [0Calizationoe i et a it e 76
Separate resources for aCh 10CalEoovvviiiiiii e 76
Ensure thateach piece of text that appearsin the Ul is defined by a string resource................ 76
Add contextual comments to the app resource file.........ooovviiiiiiiiiiiiiieccc e, 77
Define the flow directionforall PAgESccovviuiiii e 77
Ensure error messages are read from the resourcefilecoveeeeiiiiiiiiiiiiiin e, 77

Enabling page accessibilityooeuuei i e 78

NaVigating DEIWEEN PAZES......coviiiiii e e ettt e e e e e e e ettt ee e e e e e ee ettt e e eeeeeeeasssaaaaeaeseraees 79
Handling Navigation r@QUESES......oouui i e et e e e et e e e e et e e e e eaaaaaans 80
Navigating to the hub page when AdventureWorks Shopperis activated...........ccccceeeeeeeeeennnes 82
Invoking navigation UsiNg behaViors.........cooiiiiiiii e e 84

Using touchin a Windows Store business app using C#and XAML...........ccceeeeeeeiiiiiiiiieeeeeeeeeirieeenn, 87

Touch in AdventureWorks SNOPPET........ i e e e e 89

L] ol o1 o] 10 g =10V o 1o o TSP 89

Y [Le (ST ol o - o [P 92

Swipe to select, command, N MOVEceeiiiiiiiiiiiiee e e e e e e e e e e e e eeaaeaaaans 94

Pinch and STretCh £0 ZOOMuuuiiiiiiiiiiieie e e 97

Swipe from edge for app CoOMMANS.......ooeveeiiiiiiieii 100

Swipe from edge for system comMMaNnds.........cooooiiiiiiiiiiii e 103

Validating user inputin a Windows Store business app using C#, XAML, and Prism..........c.ccceeennn. 105

Validationin AdventureWorks Shopper using Prism.........cccuuiiiiiiiiiiiiiie e, 106

Spedfying validation rUIESccceeeeeeeeee e 108

Triggering validation when properties Changecoovueei i 111

Triggering validation of all Properties........ovveeiieeiiii i 113

Triggering server-side Validationoui i 114

Highlighting validation errors with behaviors.............uuuiiiiiiii e 116

Persisting user input and validation errors when the app suspends and resumes.............cccc...... 119

Managing application datain a Windows Store business app using C#, XAML, and Prism............... 122

Managing application datain AdventureWorks SHOPPEr......ccovvvviiiiiiiiii e 125

Storing data in the apP data STOrESuueiiiiiii et e e 125
Local application dat@........coeuueiiiiiie et r e 126
Roaming application data........coooiiiiiiiie e et e s 126
Storing and roaming User Credentials.........uueiiieiiii i 127

Temporary application data..........ouiiiiiiiii i 129

vii

Exposing settings through the Settings charm.............ooiiiiii e 129
Creating data transfer ObJECES.......oovviiiiciie e e 132
Accessing data through a WD SEIVICEcoevueiiiiii e 133
(000 a0 a1 0= o - - 134
o To L N Y=de F-1 - ISRt 134
Data fOIMIALS. . eeeeiiie ettt e e e e e e e st e e e e e e e e reeeeas 135
Consuming data from a web service USiNg DTOS......c..iiiiiiiiiieieiiee e e e 135
Caching data from @ WED SEIVICE ..uuuui i e e 139
Authenticating users wWith @ Web Serviceooouueiiiiiiiii i 140

Handling suspend, resume, and activation in Windows Store business app using C#, XAML, Prism.145

Suspend and resume in AdventureWorks ShOPPer......c.uueiiiiiiii i 147
Understanding possible @XeCULION STAteS........iiiiiiiiieiiiiiie e e ee et e e e e e e e eeeeeeens 147
Implementation approaches for suspend and reSUME.........cciiiiiiiiieiiiiie e e 149
YUY o =Y oo [T T=d-Ta T o)« JE PP 150
SaVING VIEW MOE] STAte c.ovuue i e e e et e e e e e e eaaaas 152
SAVING VIEW STate.. it et et e e e e e e e e e e e nenaaes 152
Saving state from service and repository Classescoiiiiiiiiiiiiiiii e 153
RESUMING N @D ettt ettt e e et e ettt e ettt s e ettt e ettt s e e eeen s e e eeena s eeennnaseerena s eeennnasns 153
FAN o AT Y 1 I] o) « PPN 154
Restorning ViIeW Model STate.....ccoeeeie i 156
RESTONMNE VIEW STalE . iiuiiiiii e e e e et e et e e et e e et e e et e e eaneeaaneanen 156
Restoring state from service and repository Classes.........uuuuieeiieeeiieiiiiii e e 157
Other ways t0 CloSE the PP ...uu. e iiiiii it e e et e e e et e e e e et e e e eaaaeeeeaan 157
Communicating between looselycoupled componentsina Windows Store business app using C#,

DAY= T N = T o TP TR 159
Event aggregation in AdventureWorks ShOPPEI.......uuuuuiiiiiiiii s 160
oYY L Tod o (<Y~ | 1 (o] [PN 161
Defining and publishing pub/SUD @VENTS...........uviiiiiiiie e e e e 162
DEfiNING AN BVENT....e i e e e e e et e e e e tt e e e e et e e e et e e e rataaaes 162
PUDBIISRING @N EBVENT .. 162
SUDSCIDING 10 BVENES c.cvee e e e e e e e et e e e et e e e et e e e eaaanes 163
Default SUDSCIPLION .o 163
Subscribing onthe UL thread..........oouviiiiiiii e e e 163

Y] oYY ol T o 4o o I 1 =Y £ 1 V=P 164

viii

Subscribing USINg STrONG rETEIENCES.iiiiii e e 165
Unsubscribing from pub/sub @VENTS.........uuuuuiiiiiiiiiiiiiiiiii e eeeans 166
Working with tiles in a Windows Store business app using C#, XAML, and Prismcccoveee. 167
Tiles in AdventureWOorks SNOPPET ii i e e e et e e e e e e e e aa e s 168
(Ol gcF [T o] oI 1 [T U UPTR 169
Using periodic notifications to update tile content..........ccccceeeeeiiiiiiiiiiiii e, 170
Creating SEONAANY tHlES .. .ciiie et e e et e e et e e e et e e aaaaas 171
Launching the appfrom asecondary tile............uuueiiiiiiiiiiiiiiiiee e e 174
Implementing search in a Windows Store business app using C#, XAML, and Prism 176
Search in AdventUreWOrKS SNOPPETu e e e e e et e e e e e e eeaaaaeas 177
Adding search fUNCLONAlItYcouveiii e e e 178
Providing QUETIY SUBEESLIONS.ciiiieieiiiiiie e e e e e e eettciie e e e e e e et e e e e e e e eeartaeeeeeseesessaraaeeaeeesnsees 179
ResSponding t0 SEArCh QUETIEScceiiiieeeiiie et e e et e e e e et e e e e et e e e eeabeeeesaaaaas 180
Populating the search results page With data........ccc.cooiviiiiiiiiiii e, 181
Navigating to the result's detail PAge.......ccooeeieiii i 182
Enabling users to type into the search boX......cooovvviiiiiiiiii 183
Improving performance in a Windows Store business app using C#and XAMLccoeveeeerennn. 185
PerfOrmMance CONSIAEIATIONS. . .uuuuuieiiiiiiiiiiitieiiibbbt bbb s 187
Limit the StartUp timMe e et e e et e e e e et e e e e et e e e et e aaes 187
EM P NaSiZE M8 S PONSIVENESS . uuuueeeeeeeeeiiitcie e e ee e ettt ee s e e e e e eeeatt e s e e eeeeesasaaeaeeeserasssnnaaeeaeseensnenn 188
Trim resource diCtioNari®scoeeeieeeee e 188
Optimize the elemMeNnt COUNTcoiiii e e e e e e e e e e ea s 188
Reuse identical Brushescoooe oo 188
Use independent @animationsccuuuuiiieiie i i e e e et e e e e e et e e e e e e ee e e e e e eeseeeeneas 188
Minimize the communication between the app and the web service..........ccooeeveiviiiiiiininnn, 189
Limit the amount of data downloaded from the web service ..., 189
Use Ul VIFtUAHIZAtION ... 189
Use the IncrementalUpdateBehavior to implement incremental loading............cccceeeeeverennnee. 190
Avoid unnecessary termMiNAtioN.........cvii i e e e e e e e e e 192
Keep your app's memory usage low when it's suspended..........cooevueeieiiiiiiiiiiiiiieciiee e, 192
Reduce battery CONSUMPLIONiiiii e e e e e et e e e e et e e e e et e e e eaaaaeaes 192
Minimize the amount of resources that your app USES........cceuuiiiiiiiiiiiiiiiieecece e 192
Limit the time spent in transition between managed and native codecccceveiviiiiiiiinnnnns 193

Reduce garbage collection timMe........cooeiiiiiii e e e 193

Testing and deploying Windows Store business apps using C#, XAML, and Prism............ccccccceee... 194
Testing AdventureWorks ShOPPET.....ocuu i e e 195
Unit and inte@gration tESHING......ouu i et e e e e e e aa e 196

Testing synchronous fUNCLIONAlItYuueieieiiieeece e e ee e 197

Testing asynchronous funNCtionalitycoooeiiiiiiiii e 198
SuSPENd and FESUME tESHING. ... ciiiiiieiiiiie et e e e e e et e e e et e e e et e e e ataeeeaeannes 199
YT olB L (1 AV =1 o T 199
(o Tor | 12 11T TN A=K 1] oY= USSPt 199
ACCESSIDIItY tESHING. ..ceven e e e e e et e e e e e 200
LT a (oY g aaF- [0 SR 1T A1 = USSPt 200
DTNV oIl (=1 11 o TSN 200
Testing your app with the Windows App Certification Kit...........ccovvviiiiiiiiiiiiiiiiiii e, 201
Creating a Windows Store certification checklist............coooviiiiiiiiiiii e, 202
Deploying and managing WindoWs STOME @PPsS.....ccvvviruriiieeeeeeeeiiiiieeeeeeeeestiieaeeeeeeeesrssrnneeaseeens 202

Meet the AdventureWorks Shopper and Prism te€amccoeiiiiiiiiiiiiiii e 203

Quickstarts for Windows Store business apps using C#, XAML, and Prismc.ceeveviiiiiieieeenenennnns 205

Validation Quickstart for Windows Store apps using CH#, XAML, and Prismcccccevvieeiiiiieeeennnnn. 206
Building and running the QUICKSEAIuuuuuieiiiiiiiiiiiiie s 206
SOIULION SEIUCTUIE ... e e e 207
Key dasses in the QUICKSTArT...........uuuuiuiiiiiiiiieie s 208
Spedfying validation FUIEScouvii e et e e e e e 209
Triggering validation expliCitlycooiiiiiiiiiiii e 210
Triggering validation implicitly on property change.......cccoovvuiiiiiiiii e, 211
Highlighting validation ETOrS........uu i e e e e e e et e e e e e e e e aaaraareeeaaeees 212

Event aggregation Quickstart for Windows Store apps using CH#, XAML, and Prism...........c............. 214
Building and running the QUICKSLArt............uuiii i e e e 215
SOIULION SEIUCTUI .t e e e e e e e e e 216
Key dasses in the QUICKSEAIt...........ii i e e e e e e e e e aearr e e e e aeees 216
Defining the ShoppingCartChangedEVENT Classuueiiieeiiiiiiiiiie et e eeens 218
Notifying subscribers of the ShoppingCartChangedEventccoovviiiiiiiiiiii i, 218
Registering to receive notifications of the ShoppingCartChangedEvent..............cccovvvviviciineeennns 219

Bootstrapping an MVVM Windows Store app Quickstart using C#, XAML, and Prism...................... 221
Building and running the QUICKSEart............oiiiiiiiii e 222

Yo 101010 g Y o (8 Lot U (I 223

Key dasses in the QUICKSTAIT.........coeeiii i et e e e et e e e et e e e eraa e 223

Bootstrapping an MVVM app using MvvmAppBase class and a dependency injection container.223

Adding app specific startup behavior to the APpP Class.......ccuuieiiiiiiiiiiiiiieeeeeeeeeee e, 224
Bootstrapping without a dependency injection CoNtainer............ueeieeeiiieeiiiiiiie e, 227
Extended splash screen Quickstart for Windows Store apps using C#, XAML, and Prism................. 228
Building and running the QUICKSEart............oi i e 228
SOIULTION SEIUCTUIE .. 229
Key dasses in the QUICKSTAIT..........ie e i e et e e e e e e e e aaaraeeeeaeans 230
Creating the extended splash SCrEEN.........coouiii i 230
Responding to resize and image opened events for the extended splash screen..........ccccc.c..... 231
Displaying the extended splash screen and launching additional loading tasks.........ccccccceevuen..i. 232
Incremental loading Quickstart for Windows Store apps using C# and XAML...........cccceeeeeeeeeeeennee. 234
Building and running the QUICKSLart............oiiiiiiii e 235
SOTULTION SEIUCKUIE ..ttt e e e e sttt e e e e e e s e e snbbbreeeeeeeens 235
Using the IncrementalUpdateBehavior to add incremental loading...........cccoeeviviiiiiiiiiieiiiiienes 236
Handling the ContainerContentChanging eventin code-behind..........ccccooiiiiiiiiiiiiiiiininniieeeen, 238
Prism for the Windows RUNtime reference......coooe oo ii i 241
Microsoft.Practices.Prism.StoreApPs IDraryeeeeeeeeeiiii s 242

Microsoft.Practices.Prism.PubSubEvents libraryccooooviiiiiiiii e 244

Developing a Windows Store business app using C#, XAML, and Prism
for the Windows Runtime

This guide helps developers who wantto create a Windows Store business app using C#, XAML, the
Windows Runtime, and development patterns such as Model-View-ViewModeland event
aggregation. The guide comes with source code for Prism for the Windows Runtime, source code for
the AdventureWorks Shopper product catalog and shopping cart reference implementation, and
documentation. The documentation provides guidance on how to implement MVVMwith navigation
and app lifecycle management, validation, manage application data, implement controls, accessible
and localizable pages, touch, search, tiles, and tile notifications. It also provides guidance on testing

your app and tuningits performance.

Download

Download AdventureWorks Shopper sample
Download Prism StoreApps library

L Download book (PDF)

Here'swhat you'll learn:

¢ How to implement pages, touch, navigation, settings, suspend/resume, search, tiles, and tile
notifications.

e How to implementthe Model-View-ViewModel (MVVM) pattern.

e How to validate userinputforcorrectness.

e How to manage application data.

e How to testyourapp and tune its performance.

Note If you're just getting started with Windows Store apps, read Create your first Windows Store
app using C# or Visual Basicto learn how to create a simple Windows Store app with C#and XAML.
Then download the AdventureWorks Shopperreference implementation to see acomplete business
app that demonstrates recommended implementation patterns.

Prerequisites

¢ Windows38.1
e Microsoft Visual Studio 2013
e Aninterestin C#and XAML programming

Go to Windows Store app development to download the latest tools for Windows Store app
development.

http://msdn.microsoft.com/en-us/library/windows/apps/hh974581.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh974581.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211368.aspx
http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=275571

The AdventureWorks Shopper Microsoft Visual Studio solution has a number of nuget package
dependencies, which Visual Studio will attempt to download when the solution is first loaded. The
required nuget packagesare:

e Unityv3.0

e Microsoft.AspNet.WebApi.Clientv4.1.0-alpha-120809
e Newtonsoft.Jsonv4.5.11and v5.0.6

e Microsoft.AspNet.Mvcv4.0.20710.0

e Microsoft.AspNet.Razorv2.0.20715.0

e Microsoft.AspNet.WebApiv4.0.20710.0

e Microsoft.AspNet.WebApi.Client v4.1.0-alpha-120809
e Microsoft.AspNet.WebApi.Core v4.0.20710.0

e Microsoft.AspNet.WebApi.WebHostv4.0.20710.0

e Microsoft.AspNet.WebPagesv2.0.20710.0

e Microsoft.Net.Httpv2.0.20710.0

e Microsoft.Web.Infrastructurev1.0.0.0

Exploring the guidance

What's in the box?

e Documentation. The documentation provides guidance on how toimplement MVVMwith
navigation and app lifecycle management, manage application data, implement controls,
accessible and localizable pages, touch, validation, search, tiles, and tile notifications. It also
provides guidance on testing yourapp and tuningits performance.

e Portable Document Format (PDF). A PDF version of the on-line guidance, for printing or

reading offline.

e AdventureWorks Shopperreference implementation source code. A Visual Studio solution
containingall the projects that make up the AdventureWorks Shopper product catalogand
shopping cartreference implementation.

e Quickstarts. The guidance includes a number of Quickstarts thatillustrate specific concepts.
Many of the Quickstarts use Prism for the Windows Runtime.

e Prismforthe Windows Runtime source code. Source code forthe two libraries that help to

accelerate the development of managed Windows Store apps.
e Prismforthe Windows Runtime NuGet packages. NuGet packages forthe two libraries that
helptoaccelerate the development of managed Windows Store apps.

http://go.microsoft.com/fwlink/p/?LinkID=275571
http://go.microsoft.com/fwlink/p/?LinkID=275570

Where to start?

e Reviewthe AdventureWorks Reference implementation. Afteryou download the code, see
Getting started using Prism forthe Windows Runtime forinstructions on how to compile and
run the reference implementation, as well as understand the Visual Studio solution

structure.

e Review Quickstarts. The guidance provides five Quickstart samples that focus on specific
tasks—validation, event aggregation, bootstrappingan MVVMapp, extended splash screens,
and incremental loading of itemsin GridView controls.

e Create an app usingthe Prism forthe Windows Runtime. If you want to create yourown app
using Prism see Using Prism forthe Windows Runtime.

o Explore developertasks. Learn how the teamimplemented many of the tasks required to
create a Windows Store app.

e Reviewthe documentation. The associated documentation outlines the key decisions and
lessonslearned to create a Windows Store business app.

Exploring the documentation
Here are the major topicsinthisguide.

e Gettingstarted using Prism forthe Windows Runtime

e Developerguidance summary and checklists for Windows Store business apps using C#,
XAML, and Prism

e Developertasksforbuildinga Windows Store business app using C#, XAML, and Prism

e UsingPrismto create a Windows Store app

e Designingthe userexperience of a Windows Store business app using C#, XAML, and Prism

e Usingthe Model-View-ViewModel (MVVM) patternina Windows Store business app using
C#, XAML, and Prism

e Creatingand navigating between pagesin a Windows Store business app using C#, XAML,

and Prism
e Usingtouch ina Windows Store business app using C#and XAML

e ValidatinguserinputinaWindows Store business app using C#, XAML, and Prism
e Managing application dataina Windows Store business app using C#, XAML, and Prism
e Handlingsuspend, resume, and activationin a Windows Store business app using C#, XAML,

and Prism

e Communicatingbetween looselycoupled componentsina Windows Store business app
using C#, XAML, and Prism

e WorkingwithtilesinaWindows Store business app using C#, XAML, and Prism

e ImplementingsearchinaWindows Store business app using C#, XAML, and Prism

e Improvingperformance ina Windows Store business app using C##and XAML

e Testingand deploying Windows Store business apps using C#, XAML, and Prism
e Meetthe AdventureWorks Shopperand Prism team

e Quickstarts for Windows Store business apps using C#, XAML, and Prism

e Prismforthe Windows Runtime reference

Community

Prism forthe Windows Runtime, like many patterns & practices deliverables, has acommunity site.
On the community site you can post questions, provide feedback, connect with otherusers to share
ideas, and find additional content such as extensions and training material. Community members
can also help Microsoft planand test future releases of Prism for the Windows Runtime. For more
info see patterns & practices: Prism for the Windows Runtime.

Release notes

The release notes, whichinclude what's new in this release and achange log, can be found on the
community site. For more info see Prism forthe Windows Runtime release notes.

Learning resources

If you're new to C# programming for Windows Store apps, read Roadmap for Windows Store app

using C# or Visual Basic. To find out about debugging Windows Store apps see Debugging Windows
Store apps.

If you're familiar with using XAMLyou'll be able to continue using yourskills when you create
Windows Store apps. For more info about XAML as it relates to Windows Store apps, see XAML
overview.

The Windows Runtime is a programminginterface that you can use to create Windows Store apps.
The Windows Runtime supports the distinctive visual style and touch-based interaction model of
Windows Store apps as well as access to network, disks, devices, and printing. Formore info about
the Windows Runtime API, see Windows APl reference for Windows Store apps.

The .NET framework provides asubset of managed types that you can use to create Windows Store
apps using CH#. This subset of managed typesiscalled .NET for Windows Store apps and enables .NET
framework developers to create Windows Store apps within afamiliar programming framework. You
use these managed types with types from the Windows Runtime APIto create Windows Store apps.
You won't notice any differences between using the managed types and the Windows Runtime types
exceptthatthe managedtypesreside in namespacesthat start with System, and the Windows
Runtime typesresidein namespaces that start with Windows. The entire set of assemblies for .NET
for Windows Store appsisautomatically referenced in your project when you create aWindows
Store app using CH. For more infosee .NETfor Windows Store apps overview.

To learn about the componentsand tools that determine what platform capabilities are available to
your app, and how to access these capabilities see App capability declarations (Windows Store

aggs!.

The AdventureWorks Shopper referenceimplementation makes much use of the task-based
asynchronous pattern (TAP). Tolearn how to use TAP to implement and consume asynchronous
operations see Task-based Asynchronous Pattern.

http://go.microsoft.com/fwlink/?LinkID=288835
http://go.microsoft.com/fwlink/p/?LinkID=386786
http://msdn.microsoft.com/en-us/library/windows/apps/br229583.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229583.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441472.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441472.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700354.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700354.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211377.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230302.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://go.microsoft.com/fwlink/p/?LinkID=276827

You might also want toread Index of UX guidelines for Windows Store apps and Design Windows
Store apps using Blend for Microsoft Visual Studio 2013 to learn more about how to implementa
great userexperience.

Downloads for the previous release

The previous release of Prism, which works with Windows 8 but not with Windows 8.1, can be
downloaded usingthe links below.

e AdventureWorks Shoppersample
e Quickstarts

e PrismStoreAppslibrary

e PrismPubSubEventslibrary

e Book (PDF)

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://go.microsoft.com/fwlink/p/?LinkID=389062
https://prismwindowsruntime.codeplex.com/releases/view/106870
http://go.microsoft.com/fwlink/p/?LinkID=389064
http://go.microsoft.com/fwlink/p/?LinkID=389065
http://go.microsoft.com/fwlink/p/?LinkID=389066

Getting started using Prism for the Windows Runtime

Learn how to build and run AdventureWorks Shopper, the reference implementation for Prism for
the Windows Runtime, and how the source code is organized in Microsoft Visual Studio. The
AdventureWorks Shopper reference implementation demonstrates how to accelerate the
development of a Windows Store business app by using Prism.

Download

Download AdventureWorks Shopper sample

Download Prism StoreApps library

L Download book (PDF)

You will learn

e How to structure the Visual Studio solution fora Windows Store business app that uses the
Model-View-ViewModel (MVVM) pattern.

Applies to

e Windows Runtime for Windows 8.1
e CH
¢ Extensible Application Markup Language (XAML)

Building and running the sample
Build the AdventureWorks Shopper Visual Studio solution as you would build a standard solution.

1. Onthe Visual Studio menu bar, choose Build > Build Solution.

2. Afteryoubuildthe solution, you mustdeployit. Onthe menu bar, choose Build > Deploy
Solution. Visual Studio also deploys the project when you run the app from the debugger.

3. Afteryoudeploythe project, youshouldrunit. Onthe menubar, choose Debug > Start
Debugging. Make sure that AdventureWorks.Shopperis the startup project. Whenyou run
the app, the hub page appears.

http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=275571

ADVENTURE o
WDRI(S sarch for a Produc

\~
$1364.50

HL Mountain Frame

Each frame is hand-craft

$577.12 $229.49

Mountain-400-W Red, 42 HL Ferk LL Mountain Handlg

Thiz bike delivers a high-level of performance on a budget. it i responsive and. High-performance carbon road fork.. All-purpose bar for on o

Visual Studio solution structure for a Windows Store business app that uses
the MVVM pattern

The AdventureWorks Shopper Visual Studio solution organizes the source code and otherresources
into projects. All of the projects use Visual Studio solution folders to organize the source code and
otherresources into categories. The following table outlines the projects that make up the
AdventureWorks Shopperreference implementation.

Project Description

AdventureWorks.Shopper This project contains the views forthe
AdventureWorks Shopper reference
implementation, the package manifest, and the
App class that defines the startup behavior of the
app, along with supporting classes and resources.
For more infosee The AdventureWorks.Shopper
project.

AdventureWorks.UlLogic This project contains the business logicforthe

AdventureWorks Shopperreference
implementation, and comprises view models,
models, repositories, and serviceclasses. Formore
infosee The AdventureWorks.UlLogicproject.

AdventureWorks.WebServices

Microsoft.Practices.Prism.PubSubEvents

Microsoft.Practices.Prism.StoreApps

AdventureWorks.UlLogic.Tests

AdventureWorks.WebServices.Tests

Microsoft.Practices.Prism.PubSubEvents.Tests

Microsoft.Practices.Prism.StoreApps.Tests

This project contains the web service forthe
AdventureWorks Shopperreference
implementation. For more info see The
AdventureWorks.WebServices project.

This project contains classes thatimplement the
eventaggregator. Formore infosee The
Microsoft.Practices.Prism.PubSubEvents project.

This project containsinterfaces and classes that
provide MVVMsupport with lifecycle
management, and core services tothe
AdventureWorks Shopperreference
implementation. For more info see The
Microsoft.Practices.Prism.Store Apps project.

This project contains unittests forthe
AdventureWorks.UlLogic project.

This project contains unit tests forthe
AdventureWorks.WebServices project.

This project contains unit tests forthe
Microsoft.Practices.Prism.PubSubEvents project.

This project contains unit tests for the
Microsoft.Practices.Prism.Store Apps project.

You can reuse some of the componentsin the AdventureWorks Shopper reference implementation
inany Windows Store app with little or no modification. Foryour own app, you can adaptthe

organization and ideas thatthese files provide.

The AdventureWorks.Shopper project

The AdventureWorks.Shopper project contains the following folders:

e The Assets folder containsimages forthe splash screen, tile, and other Windows Store app

requiredimages.

e The Behaviors folder contains behaviors that are exposed to view classes.

¢ The Common folder contains the DependencyPropertyChangedHelper class which monitors
a dependency property forchanges, and standard styles used by the app.
¢ The Controls folder contains the AutoRotatingGridView and MultipleSizedGridView

controls.

e The Convertersfoldercontains data converters such as the BooleanToVisibilityConverter

and the NullToVisibleConverter.

e The DesignViewModels folder contains design-timeviewmodel classes that are used to
display sample datainthe visual designer.

e The Services foldercontains the AlertMessageService and SecondaryTileService classes.

10

The Strings folder contains resource strings used by this project, with subfolders foreach
supported locale.

The Themes folder contains the application styles used by the app.

The Views folder contains the pages and flyouts forthe app. The app uses a default
convention thatattemptstolocate pagesinthe "Views" namespace.

The AdventureWorks.UILogic project

The AdventureWorks.UlLogic project contains the model, repository, service, and view model
classes. Placing the model and view model classes into a separate assembly provides asimple
mechanism forensuring thatview models are independent from their corresponding views.

The AdventureWorks.UlLogic project contains the following folders:

The Models folder contains the entities thatare used by view model classes.

The Repositories folder contains repository classes that access the web service.

The Services folder containsinterfaces and classes thatimplement services that are
provided to the app, such as the AccountService and TemporaryFolderCacheService classes.
The Strings folder contains resource strings used by this project, with subfolders foreach
supported locale.

The ViewModels folder contains the application logicthatis exposed to XAML controls.
When a view classisassociated with a view model class adefault convention isused which
will attempttolocate the view model classinthe "ViewModels" namespace.

The AdventureWorks.WebServices project

The AdventureWorks.WebServices projectisasample web service that usesanin-memory database
to provide datato the Adventure Works Shopper reference implementation. When the reference

implementation is deployed through Visual Studio this web service is deployed locally on the
ASP.NET developmentserver.

The AdventureWorks.WebServices project contains the following folders:

The App_Start folder containsthe configurationlogicforthe web service.

The Controllers folder contains the controller classes used by the web service.

The Images folder contains productimages.

The Models folder contains the entities that are used by the web service. These entities
contain the same properties as the entitiesin the AdventureWorks.UlLogic project, with
some containing additional validation logic.

The Repositories folder contains the repository classes thatimplement the in-memory
database used by the web service.

The Strings folder contains aresource file containing strings used by the web service.

The Views folder contains the Web.config settings and configuration file for the web service.
It does not contain views because it uses the ASP.NET Web API, which returns datarather
than displaysviews.

11
Note The AdventureWorks.WebServices project does not provide guidance forbuildingaweb
service.
The Microsoft.Practices.Prism.PubSubEvents project

The Microsoft.Practices.Prism.PubSubEvents projectis a Portable Class Library that contains classes
that implement event aggregation. You can use this library forcommunicating between loosely

coupled componentsinyourown app. The project has no dependencies on any other projects. For
more info aboutthislibrary, see Prism for the Windows Runtime reference.

The Microsoft.Practices.Prism.StoreApps project

This project contains the reusable infrastructure of the AdventureWorks Shopper reference
implementation, which you can use for building your own Windows Store app. It contains classes to
build Windows Store apps that support MVVM, navigation, state management, validation, and
commands.

The Microsoft.Practices.Prism.StoreApps project uses Visual Studio solution folders to organize the

source code and otherresourcesintothese categories:

¢ TheInterfaces folder contains the interfacesthatare implemented by classesin this project.
e The Strings folder contains resource strings used by this project, with subfolders foreach
supported locale.

For more infoaboutthislibrary, see Prism forthe Windows Runtime reference.

Where to get more info

Forinfoaboutthe logical architecture of a Windows Store business app that uses Prism, see
Architecture of a Windows Store business app that uses Prism. For more info about using Prism see
Using Prism to create a Windows Store app. For more info about the tasks that this documentation
can help you with, see Developertasks for buildinga Windows Store business app.

12

Developer guidance summary and checklists for Windows Store
business apps using C#,XAML, and Prism

Explore checklists that providea consolidated view of the guidance included with the documentation
and illustrated in the AdventureWorks Shopper reference implementation, a Windows Store
business app that uses C#, XAML, and Prism for the Windows Runtime. We include checklists forthe
Model-View-ViewModel (MVVM) pattern, creating and navigating between pages, using touch,
validating userinput, managing app data, handling suspend, resume, and activation, communicating
between loosely coupled components, working with tiles, implementing search, improving
performance, and testingand deploying apps.

Download

Download AdventureWorks Shopper sample

Download Prism StoreApps library

i Download book (PDF)

Afteryou downloadthe code, see Getting started using Prism for the Windows Runtime for
instructions on how to compile and run the reference implementation, as well as understand the
Microsoft Visual Studio solution structure.

You will learn

e Aboutthe key decisions that must be made when developing a Windows Store business app.
e Aboutchecklists that you can use to accelerate the development of a maintainable and
testable Windows Store business app.

Applies to

¢ WindowsRuntime for Windows 8.1
o C#
e Extensible Application Markup Language (XAML)

Making key decisions

This guidance providesinformation to developers who wantto create a Windows Store app using
C#, XAML, the Windows Runtime, and modern development practices. When you develop anew
Windows Store app, you need to determine some key factors that will define the architecture of
your app.

http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=275571

13

The following are many of the key decisions that you will need to make:

o Decide on the design of the end user experience. When planning Windows Store apps, you
should think more about what experience you wantto provide to your users and less about
what Microsoft Windows features you wanttoinclude. Formore info see Designing the user

experience.
e Decide whetherto use a dependencyinjection container. Dependency injection containers

reduce the dependency coupling between objects by providing afacility to construct
instances of classes with theirdependencies injected, and manage theirlifetime based on
the configuration of the container. You will need to decidewhetherto use a dependency
injection container, which containerto use, and how to registerthe lifetime of components.
For more infosee Using the Model-View-ViewModel pattern.

e Decide whetherto provide a clean separation of concerns between the userinterface
controls and their logic. One of the mostimportant decisions when creatinga Windows
Store app iswhetherto place business logicin code-behindfiles, orwhethertocreate a
clean separation of concerns between the userinterface controls and theirlogic, in orderto
make the app more maintainable and testable. If you decide to provide a clean separation of
concerns, there are then many decisions to be made about how to do this. For more info see
Using the Model-View-ViewModel pattern.

e Decide how to create pages and navigate betweenthem. There are many decisionsto be
made about page designincluding the page layout, what content should be displayedin
different page views, whethertoinclude design time data on your pages, and whetherto
make pages localizable and accessible. In addition, you must also make decisions about page
navigation including how toinvoke navigation, and where navigation logicshould reside. For
more info see Creating and navigating between pages.

e Choose the touch interactions that the app will support. This includes selecting the

gestures from the Windows touch language that yourapp requires, and whetherto design
and implementyour own custom touch interactions. Formore info see Using touch.

e Decide how to validate userinput for correctness. The decision mustinclude how to
validate userinputacross physical tiers, and how to notify the userabout validation errors.
For more infosee Validatinguserinput.

e Decide how to manage application data. This shouldinclude deciding upon which of the
app data storesto use, what data to roam, deciding how to manage large data sets, how to

perform authentication between yourapp and a web service, and how to reliably retrieve
data froma web service. For more info see Managing application data.

o Decide how to manage the lifecycle of the app. The purpose and usage patterns of your app
must be carefully designed to ensure that users have the best possible experiencewhen an
app suspendsand resumes. Thisincludes deciding whetheryourapp needs to update the Ul
when resuming from suspension, and whether the app should start freshif a long period of
time has elapsedsince the userlastaccessedit. Formore infosee Handling suspend,

resume, and activation.

e Choose between platform provided eventing and loosely coupled eventing. Event
aggregation allows communication between loosely coupled componentsinanapp,
removingthe need forcomponentsto have areference to each other. If you decide to use

14

event aggregation, you must decide how to subscribe to events and unsubscribe from them.
For more info see Communicating between loosely coupled components.

Decide how to create tilesthat are engagingfor users. A tile isan app's representationon
the Start screenand allows you to presentrich and engaging contenttoyourusers whenthe
app isnot running. In orderto create engagingtiles you mustdecide ontheirshape andsize,
how to update tile content, and how often to update tile content. For more info see Working
withtiles.

Choose how to participate in search. If your app has contentthat users might wantto
search, youshould add a search box to your app canvas. The search box can respond to user
qgueriesand display search resultsin a page of your own design. However, there are still
decisionsto be made thatinclude whetherto provide query and result suggestions, filtering,
and whatto display on the search results page. Formore info see Implementing search.
Considerhow to improve app performance. A well-performingapp should respond to user

actions quickly, with no noticeabledelay. In order to deliverawell-performing app you will
needtodecide which toolsto use to measure performance,and where to optimize code. For
more info see Improving performance.

Decide how to test and deploy the app. Windows Store apps should undergo various modes
of testinginorderto ensure thatreliable, high quality apps are deployed. Therefore, you will
needtodecide how totest yourapp, how to deployit, and how to manage it after
deployment. For more infosee Testing and deploying Windows Store apps.

Windows Store business apps developer checklists

When developing a Windows Store business app you should consult the following checklists to
accelerate development whileensuring that a maintainable and testableappis produced.

Designing the user experience

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and
compelling userexperience. Planning ahead for different form factors, accessibility, monetization,
and sellingin the global market can reduce yourdevelopmenttime and make it easierto create a
high quality app and getit certified.

Check Description

L] Createda "greatat" statementto guide user experience planning.

U Decided the userexperiences to provide inthe app.

L] Followed the Index of UX guidelines for Windows Store apps forthe experiences the app
provides.

U Storyboarded the differentapp flows to decide how the app behaves.

1 Designedthe app fordifferent form factors.

U Designedthe app forall users regardless of their abilities, disabilities, or preferences.

For more info see Designing the user experience.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

15

Using the Model-View-ViewModel (MVVM) pattern

MVVM providesaway fordevelopersto cleanly separate the userinterface controls from theirlogic.
This separation makesiteasyto testthe businesslogicof the app.

Check Description

L Used a dependency injection containerto decouple concrete types from the code that
dependsonthose types, if appropriate.

1 Used view-first composition becausethe app is conceptually composed of views that
connectto the view models they depend upon.

] Limited view model instantiation to asingle class by using a view model locator object.

L] Used a convention-based approach forview model construction toremove the need for
some boilerplate code.

H Used an attached property to automatically connectviews to view models.

L] Promoted the testability of the app by exposing commands from the view models for
ButtonBase-derived controls onthe views.

L] Promoted the testability of the app by exposing behaviors to views for non-ButtonBase-
derived controls.

H Supported aview model hierarchyinorderto eliminateredundant code inthe view model

classes.

For more infosee Usingthe MVVM pattern.

Creating and navigating between pages

The app page is the focal point for designing your Ul. It holds al | of your contentand controls.
Whenever possible, you should integrate your Ul elementsinlineinto the app page. Presenting your
Ulinline lets users fullyimmerse themselves in yourapp and stay in context.

Check Description

L Used Visual Studio to work with the code-focused aspects of the app.

] Used Blend for Microsoft Visual Studio 2013 or the Visual Studio designerto work onthe
visual appearance of the app.

[

Provided flexible page layouts that supportlandscape, portrait, and minimal view states.

O

Followed a consistentlayout pattern for margins, page headers, gutter widths, and other
page elements.

1 Maintained state in minimal viewand possess feature parity across states.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

16

L1 uUsedthe Windows simulatorto test the app on a variety of screen sizes, orientations, and pixel
densities.

[1 Addedsample datato each page to easily view styling results and layout sizes, and to support
the designer-developer workflow.

L1 Incorporated accessible design principles into the pages, and planned for them to be localized.

[1 Placed navigation logicin view model classes to promote testability.

[1 Usedcommandsto implementanavigation actioninaview model class, for ButtonBase-
derived controls.

[1 used behaviorstoimplementanavigation action for non-ButtonBase-derived controls.

[1 Usedthe navigation barfor navigational elements that move the userto a different page and
used the bottom app bar for commands thatact on the current page.

L1 Implemented common page navigation functionality as a user control that is easily included on
each page.

[1 usedstringsto specify navigation targets.

For more info see Creating and navigating between pages.

Using touch

Touch interactionsin Windows use physical interactions to emulate the direct manipulation of Ul

elementsand provideamore natural, real-world experience when interacting with those elements
on the screen.

Check Description

L Used the Windows touch language to provide a concise set of touch interactions that are
used consistently throughoutthe system.

L] Used data bindingto connect standard Windows controls to the view models that
implementthe touchinteraction behavior.

H Ensured that touch targets are large enough to support direct manipulation.

L] Provided immediatevisual feedback to touch interactions.

O] Ensured that the app is safe to explore by making touch interactions reversible.

U Avoidedtimed touchinteractions.

H Used static gestures to handle single-fingertouchinteractions.

L] Used manipulation gestures to handle dynamic multi-touch interactions.

For more info see Using touch.

17

Validating user input

Any app that acceptsinput from users should ensure that the data is valid. Validation has many uses
including enforcing business rules, providing responses to userinput, and preventing an attacker
frominjecting malicious data.

Check Description

LI

L]

[

Performed client-side validation to provide immediate feedback to users, and server-side
validation toimprove security and enforce business rules on the server.

Performed synchronous validation to check the range, length, and structure of userinput.

Derived model classes from the ValidatableBindableBase classin orderto participate in
client-side validation.

Specified validation rules for model properties by adding data annotation attributes to the
properties.

Used dependency properties and data binding to make validation errors visible to the user
when the properties of the model objects change.

Notified users about validation errors by highlighting the control that contains the invalid
data, and by displayingan error message thatinforms the user why the dataisinvalid.

Saved userinputand any validation error messages when the app suspends, so thatthe app
can resume as the userleftit following reactivation.

For more infosee Validatinguserinput.

Managing application data

Application datais datathat the app itself creates and manages. Itis specifictothe internal
functions orconfiguration of an app, and includes runtime state, user preferences, reference
content, and other settings.

Check Description

L]

]

Used the application data APIs to work with application data, to make the system
responsible for managing the physical storage of data.

Stored passwordsinthe Credential Lockeronly if the user has successfully signed into the
app, and has opted to save passwords.

Used ASP.NET Web API to create a resource-oriented web service that can pass different
contenttypes.

Cached web service datalocally when accessing datathatrarely changes.

For more info see Managing application data.

18

Handling suspend, resume, and activation

Windows Store apps should be designed to suspend when the user switches away fromthem and
resume whenthe userswitches back tothem.

Check Description

L]

I B R I

Saved application datawhen the appis being suspended.

Savedthe page state to memory when navigating away from a page.

Allowed views and view models to save and restore state that's relevant to each.
Updatedthe Ul when the app resumesif the content has changed.

Usedthe saved application datato restore the app state, when the app resumes after being
terminated.

For more info see Handling suspend, resume, and activation.

Communicating betweenloosely coupled components

Eventaggregation allows communication between loosely coupled componentsinanapp, removing
the need forcomponentsto have a reference to each other.

Check Description

L] Used Microsoft .NET events for communication between components that have object
reference relationships.

H Used eventaggregation forcommunication between loosely coupled components.

L] Used the Microsoft.Practices.Prism.PubSubEvents library to communicate between loosely
coupled components.

] Defined apub/sub event by creatingan empty class that derives from the
PubSubEvent<TPayload> class.

O] Notified subscribers by retrieving the event from the event aggregatorand called its Publish
method.

] Registeredto receive notifications by using one of the Subscribe method overloads available
inthe PubSubEvent<TPayload> class.

H Requestthat notification of the pub/sub event will occurin the Ul thread when needingto
update the Ul in response to the event.

U Filtered required pub/sub events by specifying a delegate to be executed once when the
eventis published, to determine whetherornotto invoke the subscriber callback.

0 Used strongly referenced delegates when subscribing to a pub/sub event, where

performance problems have been observed.

For more info see Communicating between loosely coupled components.

19

Working with tiles

Tilesrepresentyourapp on the Start screen and are used to launch your app. They have the ability
to display acontinuously changing set of content that can be used to keep users aware of events
associated with yourapp whenit's not running.

Check Description

L Used live tiles to present engaging new content to users, which invites themtolaunch the
app.
L] Made live tiles compelling by providing fresh, frequently updated content that makes users

feelthatthe app isactive evenwhenit's not running.

O] Used a wide tile to display new and interesting content to the user, and periodic
notifications to update the tile content.

H Used peektemplates to breaktile contentinto two frames.

L] Setan expiration on all periodictile notifications to ensure that the tile's content does n ot
persistlongerthanit's relevant.

L] Updatedthe live tile asinformation becomes available, for personalized content.

1 Updated the live tile no more than every 30 minutes, for non-personalized content.

H Allowedthe userto create secondary tiles forany content that they wish to monitor.

For more info see Working with tiles.

Implementing search

If your app has contentthat users might want to search, you should add a search box to yourapp
canvas. The search box should respond to user queries and display search resultsinan app page of
your own design.

Check Description

Usedthe SearchBox control to let users search for contentinan app.
Implemented typeto search forthe app's hub, browse, and search pages.
Disabled type to search before showing flyouts, and restored it when flyouts close.
Showed placeholdertextinthe search box, to describe what users can search for.
Provided query suggestions to help the usersearch the app quickly.
Navigatedtothe searchresults page when the userselects aquery suggestion.

Used a grid layoutto display search results.

OO0 000000 d

Showed the user's query text on the search results page.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

20

[

Used hit highlighting to highlight the user's query on the search results page.

O

Enabled usersto navigate back to the last-viewed page aftertheylook atthe detailsfora
searchresult.

Provided app bar navigation on the search results page.
Provided asuitable messageif the search query returns no results.

Restored page state correctly upon reactivation.

I N I

Savedthe searchresults page for the last queryin case the usersearches forthat query
again.

For more info see Implementing search.

Improving performance

To deliverawell-performing, responsive Windows Store app you must think of performance as a
feature, to be planned forand measured throughout the lifecycle of your project.

Check Description

L Performed app profiling to determine where code optimizations will have the greatest
effectinreducing performance problems.

1 Measured app performance once you have code that performs meaningful work.

| Taken performance measurements on hardware that has the lowest anticipated
specification.

L] Optimized actual app performance and perceived app performance.

L] Limited the startup time of the app.

H Emphasized responsiveness inthe Ul.

O] Trimmed resource dictionaries to reduce the amount of XAML the framework parses when
the app starts.

] Reducedthe numberof XAML elements on a page to make the app renderfaster.

L Reused brushesin ordertoreduce memory consumption.

H Usedindependent animations to avoid blocking the Ul thread.

O] Minimized the communication between the app and the web service.

L] Limited the amount of data downloaded from the web service.

| Used Ul virtualization to only load into memory those Ul elements that are nearthe
viewport.

L] Used the IncrementalUpdateBehavior toimplementincremental loading.

L1 Avoided unnecessary app termination.

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx

21

Keptthe app's memory usage low whenit's suspended.
Reduced the battery consumption of the app.
Minimized the amount of resources that the app uses.

Limited the time spentin transition between managed and native code.

I [R B I

Reduced garbage collection time.

For more info see Improving performance.

Testing and deploying apps

Testinghelpstoensure thatan appis reliable, correct, and of high quality.

Check Description

L] Performed unittesting, integration testing, userinterfacetesting, suspend and resume
testing, security testing, localization testing, accessibility testing, performance testing,
device testing, and Windows certification testing.

L] Validated and test arelease build of the app by usingthe Windows App Certification Kit.

For more infosee Testing and deploying Windows Store business apps.

22

Developer tasks for building a Windows Store business app using C#,
XAML, and Prism

Learn aboutthe key developertasks that you will need to perform when developing a Windows
Store business app. Included are tasks for pages, touch, validation, application data, tiles, search,

performance, testing, extended splash screens, incremental loading, and the Prism libraries.

Download

Download AdventureWorks Shopper sample
Download Prism StoreApps library

Download Prism PubSubEvents library

L Download book (PDF)

Afteryou downloadthe code, see Getting started using Prism forthe Windows Runtime for
instructions on how to compile and run the reference implementation, as well as understand the

Microsoft Visual Studio solution structure.

Applies to

e WindowsRuntime for Windows 8.1
o CH
e Extensible Application Markup Language (XAML)

Windows Store business app developer tasks

This article provides lists to help you accomplish different tasks when developing Windows Store
business apps. The goal is to lessen the time it takes you to perform a developer task. While many of
the tasks link to contentthat discusses how to use Prism to solve the problem, thisis not always the
case. In addition, the task lists are not meant to provide you with detailed steps required to
complete atask. If yourequire more info, the contentthatislinkedtoincludeslinksto other
relevant documentation.

Guidance summary and checklists for Windows Store business apps

When developing a Windows Store business app you will need to make some key decisions that will
define the architecture of yourapp. The documentationincludes guidanceon:

e Making the key decisions that will affect the development of a Windows Store business app.
e Usingcheckliststo create a high quality, maintainable, and testable Windows Store business
app.

http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=296753
http://go.microsoft.com/fwlink/p/?LinkID=275571

23

Using Prism for the Windows Runtime

Prism forthe Windows Runtime providestwo libraries that help developers create Windows Store
apps using C#. The libraries accelerate development by providing support for bootstrapping MVVM

apps, state management, validation of userinput, navigation, event aggregation, data binding,
commands, and settings. The libraries can be used separately ortogether.

Usingthe Model-View-ViewModel (MVVM) pattern

The MVVM patternlendsitself naturally to Windows Store apps that use XAML. The documentation
includes guidance on:

e Creatinga Windows Store app project using Prism and Unity.

e Creatingaview usingPrism.

e Creatinga view model class using Prism.

e Creatinga model class with validation support using Prism.

e Connectingview modelstoviews.

Using Prism's ViewModellLocator class to connect view models to views.
Usinga convention-based approach to connect view modelstoviews.

O O O

Creatinga view model declaratively.
o Creatingaview model programmatically.
o Creatingaview defined as adata template.
e Changingthe conventionfornamingandlocatingviews using Prism.
e Changingthe conventionfornaming, locating, and associating view models with views using
Prism.
e Registeringaview model factory with views instead of using adependency injection
container.
e Bootstrappingan MVVM app using Prism's MvvmAppBase class and the Unity dependency
injection container.
e Updatingaviewinresponse tochangesinthe underlyingview modelor model.
e Creatingandinvokingcommandsfromviews.
e Creatingandinvoking Blend for Microsoft Visual Studio 2013 behaviors from views.

Navigating between pages

Navigation within a Windows Store app can result from the user's interaction with the Ul or fromthe
app itself asa result of internal logic-driven state changes. The documentation includes guidance on:

e Navigatingtothe main page or hub page when using Prism.
e Navigatingtoa page specified by asecondarytile using Prismwhenanappis activated from
a secondarytile.

24

Validating user input

Any app that acceptsinput from users should ensure that the data isvalid. Anapp could, for
example, check that the input contains only charactersina particularrange, is of a certainlength, or
matches a particularformat. Validation can be synchronous orasynchronous, and withoutita user
can supply datathat causes the app to fail. Validation enforces business rules, and prevents an
attackerfrom injecting malicious data. The documentationincludes guidance on:

e Validatingdatastoredinabound model object.

e Specifyingvalidation rules formodel properties by using data annotations.

e Triggeringvalidation when property values change.

e Triggeringvalidation onall properties.

e Highlighting validation errors with a custom Blend behavior.

e Savingvalidationerrors when the app suspends, and restore them when the appis
reactivated aftertermination.

Managing application data
Application datais datathat an app creates and manages. The documentationincludes guidance on:

e Storingpasswordsinthe credential locker.
e Addingitemstothe Settings pane using Prism.
e Usingthe Settings charmto allow usersto change app settings.

Handling suspend, resume, and activation

Windows Store apps should be designed to save theirstate and suspend when the user switches
away fromthem. They should restore theirstate and resume when the user switches back to them.
The documentation includes guidance on:

e Savingstate whenansuspends.
e Restoringstate whenanapp reactivates.

Communicating between loosely coupled components

Event aggregationisa design patternthat enables communication between classes thatare
inconvenienttolink by object and type references. This mechanism allows publishersand
subscribers to communicate without havingareference to each other. The documentationincludes
guidance on:

e Definingapub/subevent.

e Publishingapub/subevent.

e Subscribingtoa pub/subevent.

e Subscribingtoa pub/subeventonthe Ul thread.
e Performingeventsubscription filtering.

e Subscribingtoa pub/subevent by using strong references.
e Manually unsubscribing from a pub/sub event when usingastrong delegate reference.

Designing the user experience
Good Windows Store apps share an important set of traits that provide a consistent, elegant, and
compelling user experience. Planning ahead for different form factors, accessibility, monetization,
and sellingin the global market can reduce your development time and make iteasierto create a
high quality app and getit certified. The documentation includes guidance on:

e PlanningaWindows Store app and design the userexperience.

Creating pages

Windows Store app pages need to supporta fluid layout such as landscape, portrait, and minimal

view statesto be responsive to userresizing requests and support forrunning on multiple devices.

The user can change the screensize, orientation, and even input method and the app needs to
respondtothese requests. The app also needsto provide navigation between pages, accessibility,
and optionallylocalization. The documentation includes guidance on:

e Creatingpagesthatsupportdesigntime data.

e Supporting multiple view states.

e Usinga custom GridView control that responds to layout changes.

e Usinga custom GridView control that displays items at multiplesizes.
e Enabling page localization.

e Ensuringyourapp isaccessible.

e Navigating between pages.

25

o Passing parameters between pages, and the types of parameters that can be passed.

Using touch

Microsoft Windows provides a concise set of touchinteractions thatare used throughout the
system. Applying this language consistently makes yourapp feel familiarto what users already
know, increasing user confidence by making yourapp easiertolearn and use. The documentation
includes guidance on:

e Usingpinchand stretch to perform semanticzoom.
e Addingitemstothe top and bottom app bar.

Managing application data

Application datais datathat an app createsand manages. Itis specificto the internal functions or

configuration of the app, andincludes runtime state, user preferences, reference content, and other

settings. Application datais created, read, updated, deleted, and cached when an app is running.

26

The documentation includes guidance on:

e Performingcredentials-based authentication between a Windows Store app and a web
service.

Working with tiles

Atileisan app'srepresentation on the Start screen and allows you to presentrich and engaging
contentto youruserswhenthe app isnot running. Tiles should be appealing to usersin orderto give
them great first-impression of your Windows Store app. The documentation includes guidance on:

e Creatingan apptile.

e Usingperiodicnotifications to update tile content.

e Pinningandunpinningsecondarytilestothe Start screen fromwithinan app.
e launchingthe app to a specificpage froma secondarytile.

Implementing search

You should use the SearchBox control to let users search for contentin yourapp, inorderto ensure
that they have a consistentand predictable experience when they search. Regardless of whereyour
app’s contentislocated, you can use the search box to respond to user’s queries and display search
resultsinan app page of your own design. The documentation includes guidance on:

e Usingthe SearchBox control toimplement search functionality.
e Providingquery suggestions that help the usersearch quickly.

Improving performance

Users of Windows Store apps expect theirapps toremain responsiveand feel natural when they use
them. The documentationincludes guidance on:

e Performance considerations for Windows Store apps.
Testing and deploying apps

Testing helpsto ensure thatan appis robust, reliable, and of high quality. The documentation
includes guidance on:

e Testingsynchronous functionality.
e Testingasynchronous functionality.
e Testingsuspendand resume functionality.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

27

Extended splash screen Quickstart

An extended splash screenis asplash screenthat stays on the screenforan extended period of time.
Extended splash screens should be displayed when an app needs more time to prepare itsinitial Ul.
The documentationincludes guidance on:

e Creatingan extended splash screen using Prism.
e Respondingtoresize andimage opened eventsforthe extended splash screen.
e Displayinganextended splash screen using Prism.

Incremental loading Quickstart

Incremental loading enables anitemtemplatein a GridView or ListView to renderits controlsin

phases, thereby creating a more responsive and useful Ulwhen the userscrolls through large data
sets. The documentation includes guidance on:

e Improvingthe perceived performance of a GridView control by usingthe Blend
IncrementalUpdateBehavior.

e Improvingthe perceived performance of a GridView control by using the
ContainerContentChanging event.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx

28

Using Prism to create a Windows Store app

Summary

e Use Prismto implementthe Model-View-ViewModel (MVVM) patterninyour Windows
Store app.

e Use Prismto add validation supporttoyour model classes and add items to the Settings
pane.

e Use Prismto change the conventions fornaming andlocating views and view models.

Learn how to create a Windows Store business app using C#, Prism forthe Windows Runtime, and
Unity, and aboutthe logical architecture of such an app. The article provides instructions on creating
views, view models, model classes with validation support, addingitems to the settings pane, and
changingthe conventions fornamingand locatingaview and a view model, and how to registera
view model factory with views instead of using a dependency injection container.

You will learn

e Aboutthe logical architecture of a Windows Store business app that uses Prism.

e How to create a Windows Store app project using Prism and Unity.

e How to create a view, view model, and model class with validation support using Prism.
e How to additemsto the Settings pane using Prism.

e How to change the conventions used by Prism.

Applies to

e Windows Runtime for Windows 8.1
e CH
e Extensible Application Markup Language (XAML)

This article describesthe general steps adeveloper needs to performto use Prism to accomplish
different tasks. Itisnot meantto provide you with detailed steps required to complete atask. If you
require more info, each section has links to the relevant documentation.

Many of the topicsinthisarticle assume that you are usingthe Unity dependency injection
container, and that you are using conventions defined by Prism. This guidanceis provided to make it
easierforyouto understand how to get started with Prism. However, you are not required to use
Unity, or any otherdependency injection container, and you do not have to use the default
conventionsto associate views and view models. To understand how to use Prism without a
dependency injection container, or change the default conventions, see Changing the convention for
naming and locating views, Changing the convention for naming, locating, and associating view

models with views, Registering aview model factory with views instead of using adependency

injection container.

http://go.microsoft.com/fwlink/p/?LinkID=290899

29

For more info about the conventions defined by Prism, see Using a convention-based approach to

connectview modelstoviews. Formore info about Prism, see Prism forthe Windows Runtime

reference.

Architecture of a Windows Store business app that uses Prism

Developers of Windows Store business apps face several challenges. App requirements can change
overtime. New business opportunities and challenges may present themselves. Ongoing customer
feedback during development may significantly affect the requirements of the app. Therefore it's
importantto build an app thatit isflexible and can be easily modified or extended overtime.

Prism forthe Windows Runtime provides an architecture that helpstodo justthat. It is designedto
help developers create apps that need to accomplish the following:

e Addressthe common Windows Store app development scenarios.

e Separate the concerns of presentation, presentation logic, and model through support for
Model-View-ViewModel (MVVM).

e Use an architectural infrastructure to produce a consistent and high quality app.

The logical architecture of a typical Windows Store business app that uses Prismis showninthe
following diagram.

30

' . ~
Windows Store App
View View Infrastructure
Base
Bootstrap
T
App View Model App
Views Locatar Base
- E
View View Model 5
Model Base App prar
[
I 5
App View Delegate L
Models Command a
Mavigation =
Service m
el
Model g
Model Validation O
App Lifecycle E
Management
Data
Access Repositories
Event
Service Proxias 4—, Aggregator
o J
s | ~
Cloud or On-Premise
Services
Repositories
Domain
Model
Domain Domain Domain
Object Ohject Object
N Y,

Legend
I:I Provided by Prism

| | Pravided by Developer

Logical Mame Class

View Base VisualStateAwarePage
View Mode| Base ViewModel

App Base My MAppBase

Thisarchitecture is used by the AdventureWorks Shopperreference implementation. However,
there are also alternative architectures thatare equally valid.

31

The architecture provided by Prism helps to produce flexible, maintainable, and testable apps. It
includes components that help to accelerate development of yourapp by providing support for
MVVM, loosely coupled communication, and the core services required in Windows Store apps,
allowingyoutofocus on developingthe userexperiences foryourapp. Formore infosee Prism for
the Windows Runtime reference.

Creating a Windows Store app project using Prism and Unity

The following procedure shows how to update a Windows Store app to use the services provided by
Prism.

1. Adda reference tothe Microsoft.Practices.Prism.StoreApps library to your project to use the
services provided by the library.

2. Derive the App class fromthe MvvmAppBase class, provided by the
Microsoft.Practices.Prism.StoreApps library, in order to gain support for MVVM and the core
services required by Windows Store apps.

3. Delete the OnLaunched and OnSuspending methodsfromthe App class, as these methods
are provided by the MvvmAppBase class.

4. Override the OnLaunchApplication abstract method of the MvvmAppBase class, in the App
class, and add code to navigate to the first page of the app.

CH#

protected override Task OnLaunchApplication(LaunchActivatedEventArgs args)

{

NavigationService.Navigate("PageName", null);
return Task.FromResult<object>(null);

The OnLaunchApplication method returns a Task, allowingittolaunchalongrunning
operation. If you don't have a long running operation to launch you should return an empty
Task.

Note PageName should be withoutthe "Page" suffix. Forexample, use Homefor
HomePage.

5. Adda reference tothe Unity library toyour projectto use the Unity dependency injection
container.

Note The Microsoft.Practices.Prism.StoreApps libraryis notdependentonthe Unity library.
To avoid usinga dependency injection container see Registeringaview modelfactory with

views instead of usingadependency injection container.

6. Create an instance of the UnityContainer classinthe App class, so that you can use the
Unity dependency injection containerto registerand resolve types and instances.

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899
http://go.microsoft.com/fwlink/p/?LinkID=290899

32

CH#

private readonly IUnityContainer _container = new UnityContainer();

Override the OnRegisterKnownTypesForSerialization method in the App class to register
any non-primitivetypesthatneedto be saved and restored to survive app termination.

CH#

SessionStateService.RegisterKnownType (typeof(Address));

Override the Onlnitialize method inthe App classin order to registertypesforthe Unity
containerand perform any otherinitialization. Examples of app specificinitialization
behaviorinclude:

o Registeringinfrastructure services.

o Registeringtypesandinstancesthatyou use in constructors.

o Providingadelegate thatreturnsaview model type foragivenview type.

C#

protected override void OnInitialize(IActivatedEventArgs args)

{

_container.RegisterInstance(NavigationService);
_container.RegisterType<IAccountService, AccountService>
(new ContainerControlledLifetimeManager());
_container.RegisterType<IShippingAddressUserControlViewModel,
ShippingAddressUserControlViewModel>();

ViewModellLocator.SetDefaultViewTypeToViewModelTypeResolver((viewType)
>

~ 1l

return viewModelType;

s

Note For a detailed example of an Onlnitialize method see the App classinthe
AdventureWorks Shopperreference implementation.

Override the Resolve methodinthe App class to return a constructed view model instance.

CH#

protected override object Resolve(Type type)
{

return _container.Resolve(type);

33

For more info see Usingthe MVVM pattern, Registering aview modelfactory with views instead of
using a dependency injection container, Bootstrappingan MVVM Windows Store app Quickstart,
Creating and navigating between pages and Prism forthe Windows Runtime reference.

Creating a view

The following procedure shows how to create a view class that has supportforlayout changes,
navigation, and state management.

1. Completethe CreatingaWindows Store app project using Prism and Unity procedure.
Add a foldernamed Views to the root folder of your project.

3. Createanew pageinthe Viewsfolderwhose name ends with "Page," in orderto use the
FrameNavigationService's default convention to navigate to pagesin the Viewsfolder.

4. Modifythe page class to derive fromthe VisualStateAwarePage class, which provides

support for layout changes, navigation, and state management.

5. Addthe ViewModelLocator.AutoWireViewModel attached property toyourview XAMLin
orderto use the ViewModelLocator class toinstantiate the view model class and associate it
withthe view class.

XAML

prism:ViewModelLocator.AutoWireViewModel="true"

6. Override the OnNavigatedTo and OnNavigatedFrom methodsif your page class needs to
performadditional logic, such as subscribingto an eventor unsubscribing from an event,
when page navigation occurs. Ensure that the OnNavigatedTo and OnNavigatedFrom
overrides call base.OnNavigatedTo and base.OnNavigatedFrom, respectively.

7. Override the SaveState and LoadState methods if you have view state, such as scroll
position, that needs to survive termination and be restored when the appisreactivated.

For more info see Creating and navigating between pages, Using the MVVM pattern, and Handling

suspend, resume, and activation.

Creating a view model class

The following procedure shows how to create a view model class that has support for property
change notification, navigation, and state management.

1. Complete the Creatinga Windows Store app project using Prism and Unity procedure.
Add a folder named ViewModels to the root folder of your project.

3. Createanewclassin the ViewModels folder whose name corresponds with the name of a
view and ends with "ViewModel," in orderto use the ViewModelLocator's default
conventiontoinstantiate and associate view model classes with view classes.

34

Derive the view model class from the ViewModel base class, provided by the
Microsoft.Practices.Prism.StoreApps library, so that you can use the base class's

implementation of the INotifyPropertyChanged interface and gain support for navigation
and state management.

Modify the view model constructor so thatit accepts the servicesrequired by the view
model, such as an INavigationService instance.

Annotate properties with the [RestorableState] custom attribute if you want theirvalues to
survive termination.

For more info see Usingthe MVVM pattern.

Creating a model class with validation support

The following procedure shows how to create a model class that has support for validation.

Complete the Creatinga Windows Store app project using Prism and Unity procedure.
Add a reference tothe Behaviors SDK (XAML) library to your project to use Blend for
Microsoft Visual Studio 2013 behaviors.

Add a model class to your project and derive the model class fromthe
ValidatableBindableBase class, which provides validation support.

Adda property tothe model class and add the appropriate attributes that derivefromthe
ValidationAttribute attribute, in orderto specify the clientsidevalidation.

C#
[Required(ErrorMessage = "First name is required.")]
public string FirstName
{
get { return _firstName; }
set { SetProperty(ref _firstName, value); }
}

Update the view XAMLthat binds to the property created inthe previous step to show
validation error messages.

XAML

<TextBox Text="{Binding UserInfo.FirstName, Mode=TwoWay}">
<interactivity:Interaction.Behaviors>
<awbehaviors:HighlightFormFieldOnErrors PropertyErrors=
"{Binding UserInfo.Errors[FirstName]}" />
</interactivity:Interaction.Behaviors>
</TextBox>

Note The HighlightFormFieldOnErrors behavior can be foundinthe AdventureWorks
Shopperreferenceimplementation.

For more info Validating userinput and Validation Quickstart.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx

35

Adding items to the Settings pane
The following procedure shows how toadd an item to the Settings pane that can invoke an action.
1. Completethe CreatingaWindows Store app project using Prism and Unity procedure.

2. Override the GetSettingsCommands method inthe App classand add code to add items to
the Settings pane.

C#
protected override IList<SettingsCommand> GetSettingsCommand()
{
var settingsCommands = new List<SettingsCommand>();
settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),
"Text to show in Settings pane", ActionToBePerformed));
settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),
"Custom setting”, () => new CustomSettingFlyout().Show()));
return settingsCommands;
}

For more info see Managing application data.

Changing the Prism conventions

This section describes how to change the conventions fornamingand locating views, naming,
locating and associating view models with views, and registering aview model factory with views
instead of using a dependency injection container.

Changing the convention for naming and locating views

The following procedure shows how to configure the FrameNavigationService class to look forviews
ina location otherthanthe Viewsfolder.

1. Completethe CreatingaWindows Store app project using Prism and Unity procedure.
2. Override the GetPageType methodin the App class and add code to define the page
location and naming convention appropriateto yourapp.

CH

protected override Type GetPageType(string pageToken)
{
var assemblyQualifiedAppType = this.GetType() .GetTypeInfo()
.AssemblyQualifiedName;
var pageNameWithParameter =
assemblyQualifiedAppType.Replace(this.GetType().FullName, this
.GetType().Namespace + ".Pages.{@}View");
var viewFullName = string.Format(CultureInfo.InvariantCulture,
pageNameWithParameter, pageToken);

36

var viewType = Type.GetType(viewFullName);
return viewType;

For more infosee Usingthe MVVM pattern.

Changing the convention for naming, locating, and associating view models
with views

The following procedure shows how to configure the ViewModelLocator class to look forview
modelsinalocation otherthanthe ViewModels folderin the same assembly.

1. Complete the Creatinga Windows Store app project using Prism and Unity procedure.
2. Override the Onlnitialize method inthe App class and invoke the static
ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver method, passingin a

delegate that specifies aview type and returns a corresponding view model type.

C#

protected override void OnInitialize(IActivatedEventArgs args)

{
ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver((viewType)
=>
{

var viewModelTypeName = string.Format(
CultureInfo.InvariantCulture, "MyProject.VMs.{@}ViewModel,
MyProject, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=public_Key Token", viewType.Name);

var viewModelType = Type.GetType(viewModelTypeName);

return viewModelType;

1
}

For more info see Usingthe MVVM pattern.

37

Registering a view model factory with views instead of using a dependency
injection container

The following procedure shows how to configure the ViewModelLocator class to explicitly specify
how to construct a view model foragiven view type, instead of using a containerfordependency
resolution and construction.

1. Complete the Creatinga Windows Store app project using Prism and Unity procedure.
2. Override the Onlnitialize method inthe App class and registerafactory with the
ViewModelLocator class that will create a view model instancethat will be associated with a

view.
C#
protected override void OnInitialize(IActivatedEventArgs args)
{
ViewModelLocator.Register(typeof(MyPage).ToString(), () =>
new MyPageViewModel(NavigationService));
¥

For more info see Usingthe MVVM pattern and Bootstrappingan MVVM Windows Store app
Quickstart.

38

Designing the user experience of a Windows Store business app using
C#,XAML, and Prism

Summary

e Focuson the user experience and not on the features the app will have.

e Use storyboards toiterate quickly onthe userexperience.

e Use standard Windows features to provide a user experiencethatis consistent with other
apps. In addition, validatethe user experience with the Index of UX guidelines for Windows

Store apps.

Learn how to design the userexperiences and app flow fora Windows Store business app, priorto
storyboardingand prototyping the app.

You will learn

e How to plana Windows Store app.
¢ How youcan tieyour "great at" statementtothe app flow.
e How storyboards and prototypesdrive user experience design.

Applies to

e Windows Runtime for Windows 8.1
e CH
e Extensible Application Markup Language (XAML)

Making Kkey decisions

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and
compelling user experience. Planning ahead for different form factors, accessibility, monetization,
and sellinginthe global market can reduce your development time and make it easierto create a
high quality app and getit certified. The following list summarizes the decisions to make when
planningyourapp:

e How shouldIplanaWindows Store app?

e What guidelines should | follow to ensure agood overall userexperience?

e What experience doyouwantto provide toyourusers?

e Shouldthe apprun on differentform factors?

e How dol make the app accessible to usersregardless of theirabilities, disabilities, or
preferences?

e Shouldthe app be available inthe global market?

When planning a Windows Store app you should think more about what experience you want to
provide toyourusersand less about what Microsoft Windows features you wanttoinclude. We
recommend thatyou follow these steps:

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

39

Decide the user experience goals.

Decide the app flow.

Decide what Windows features toinclude.
Decide how to monetize yourapp.

Make a good firstimpression.

Validate the design.

o v A WN P

For more info see Planning Windows Store apps and AdventureWorks Shopper userexperiences.

There are many userexperience guidelines that can help you create a good Windows Store app.
However, the exact guidelinesthat you will follow willbe dependent on the experiences presentin
your app. For more infosee Index of UX guidelines for Windows Store apps.

In orderto decide whatexperienceyouwantto provide to your users we recommend that create a
"greatat" statementtoguide youruserexperience planning. Following this, you should design your
app flow. Anappflowisa set of related interactions that your users have with the app to achieve
theirgoals. To validate the design you should follow these steps:

1. Outlinethe flow of the app. Whatinteraction comes first? Whatinteraction follows the
previousinteraction?

2. Storyboardthe flow of the app. How should users move through the Ul to complete the
flow?

3. Prototype the app. Try out the app flow with a quick prototype.

For more infosee "Decidingthe userexperience goals" and "Deciding the app flow" below.

Appsshould be designed for different form factors, letting users manipulate the content tofit their
needsand preferences. Think of landscape view first so that yourapp will run on all form factors, but
rememberthat some screens rotate, so planthe layout of your content for different resolutions and
screensizes. Inaddition, because Windows is used worldwide, you need to design yourapp so that
resources, such as strings and images, are separated from their code to help make localization
easier. Also, yourapp should be availableto all users regardless of their abilities, disabilities, or
preferences. If you use the built-in Ul controls, you can get accessibility support with little extra
effort. Formore infosee Deciding what Windows features to use.

AdventureWorks Shopper user experiences

The AdventureWorks Shopperreferenceimplementationis ashoppingapp, and so we wanted to
design experiences that would enable users to shop easily and efficiently.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465427.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

40

Deciding the user experience goals

Our first step was to create a "greatat" statementto guide our user experience planning. Here's the
"greatat" statementforthe AdventureWorks Shopperreferenceimplementation:

AdventureWorks Shopperis great at letting users easily and efficiently order products from
AdventureWorks.

The goal of the AdventureWorks Shopper reference implementationis notto provide acomplete
shoppingapp, butto demonstrate how to architecta Windows Store business app. We used our
"greatat" statementto guide the design tradeoffsas we builtthe app, makingthe focus on what our
userswantto do, ratherthan whatthe app can do.

Deciding the app flow

We then brainstormed which aspects of ashoppingapp are the most crucial for a good user

experience, toletthese features guide us through the design process. The features that we came up
with are:

e Displayand navigate products.

e Searchfor products.

e Authenticate usercredentials.

e Validate userinput.

e Orderproducts.

e Payfororders.

e Enableroamingdata forusercredentials.
e Pinproductsto the Start screen.

Thereis plenty of otherfunctionality that we could provide in the AdventureWorks Shopper
reference implementation. But we feltthat the ability to browse, search, and order products best
demonstrate the functionality for creating a shopping app.

The app flowisconnectedtoour "greatat" statement. A flow defines how the userinteracts with
the app to performtasks. Windows Store apps should be intuitive and requireas few interactions as
possible. We used two techniques to help meet these goals: creating storyboards and mock-ups.

A storyboard defines the flow of an app. Storyboards focus on how we intend the app to behave,
and notthe specificdetails of what it will look like. Storyboards help bridge the gap between the
ideaofthe appand itsimplementation, but are typically fasterand cheaperto produce than
prototypingthe app. Forthe AdventureWorks Shopperreference implementation, storyboards were
critical to helping usto define the app flow. Thistechnique is commonly usedin the filmindustry and
isnow becomingstandardin userexperiencedesign. The following storyboard shows the main app
flow forthe AdventureWorks Shopper reference implementation.

41

ANRSRKE™* —A@

© AWl

[
] |

—

I I D

[© 6 [E—)
CIE T 1T

® Piodvied Informadion

l:ﬂ@y

[|

LTI I

N I |

—

Il

=N

=

|® ':-‘hDPP-""‘-ﬂ vt Ié Ender Information
-]
l 'I:l CooCs e =
] C] o | s |
| — ! | L p— | [i |
a
a k-]
@ checkow Smmany @® Seach

A mockup demonstrates the flow of the user experience, but more closely resembles what the end
product will look like. We created mock-ups based on our storyboards and iterated overtheir design
as ateam. These mockups also helped each team membergetafeel forwhatthe app shouldlook

like. The following mockup shows the hub page.

42

fADVENTURE

'WORKS

Duringthe planning phase of the app, we also created small prototypesto validate feasibility. A
prototypeisa small app that demonstrates the flow of the Ul or some minimal functionality. For
example, aprototype could be created that only contains page navigation and commands, but
doesn'timplementany otherfunctionality. By making the experience real through software,
prototyping enablesyoutotestand validate the flow of your design on devices such as tablets. You
can also create prototypesthat demonstrate core aspects of the app. For example, we created a
prototype that performs validation of userinputand notifies the user of anyinvalid input.
Prototypes enableyouto safely explore design approaches before deciding on the approach for the
app. Although you can prototype during the planning phase of yourapp, try not to focus too much
on writing code. Design the userexperience thatyou wantand then implement thatdesign whenit's
ready.

For more info see Laying outyour Ul, Laying out an app page, and Guidelines forwindow sizes and
scalingto screens.

Deciding what Windows features to use

When planninganew app it'simportantto provide an experience that's consistent with other
Windows Store apps. Doing so will make yourapp intuitiveto use. We researched the features that
the Windows platform provides by looking at the Index of UX guidelines for Windows Store apps, by
prototyping and team discussion, and by brainstorming which platform features would best support
our app flow.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465330.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

43

Deciding how to monetize the app

Although AdventureWorks Shopperisafree app, its purpose isto drive sales for AdventureWorks
through customers placingand paying for orders. In orderto significantly increasethe number of
users who could use the app we decided to make it world-ready. Being world-ready not only means
supportinglocalized strings and images, italso means being aware of how users from different
cultures will use the app. Formore info see Guidelines forglobalization and Guidelines forapp

resources.

For more info about monetizing yourapp see Plan for monetization and Advertising Guidelines.

Making a good first impression

Windows Store apps should convey their "great at" statement to users when they first launch the
app. Afterreferringback to our "great at" statement (AdventureWorks Shopper is great at letting
users easily and efficiently order products from AdventureWorks) we realized that product
promotion was key to allowing users to easilyand efficiently order products from AdventureWorks.
This could be enabled by:

e Havingalivetile, thatusestile notifications to promote products. When auser leaves the
app, we wanted to maintain agood impression by regularly updating the live tile with
product offers.

e Usingthe splashscreentoexpressthe app's personality. We chose asplash screenimage
that fits the AdventureWorks branding and that reinforces the whole userexperience.

¢ Havingahome page that clearly showsthe primary purpose of the app. Users will be more
likely toexplore the rest of the app if theirinitial impressionisfavorable.

Validating the design

Before beginning development, we presented our mockups and prototypesto stakeholdersin order
to gainfeedback to validate and polish our design. We also cross-checked the design againstthe
Index of UX guidelines for Windows Store apps to ensure that we complied with the Windows Store
userexperience guidelines. This prevented us from having to make core design changeslaterinthe
developmentcycle.

http://msdn.microsoft.com/en-us/library/windows/apps/hh969152.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465433.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj649139.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

Using the Model-View-ViewModel (MVVM) patternin a Windows Store
business app using C#, XAML, and Prism
Summary

e Use the Microsoft.Practices.Prism.StoreApps library to accelerate the development of
managed Windows Store apps that use the MVVM pattern.

e Use commandsto implementactionsinview model classes for controls that derive from
ButtonBase.

e Use BlendforMicrosoft Visual Studio 2013 behaviors to encapsulate interaction logicand
behaviorthat can be declaratively associated with controls.

Learn how to implement the Model-View-ViewModel (MVVM) patterninaWindows Store business
app by using Prism for the Windows Runtime. This includes bootstrapping an MVVMapp that uses
Prism, using a view model locatorto connect view models to views, and Ul interaction using
delegate commands and Blend behaviors.

You will learn

e How to use dependencyinjectionto decouple concrete types from the code that depends on
the types.

e How to bootstrapa Windows Store app that uses the MVVM pattern, by usinga dependency
injection container.

e How to connectview modelstoviews.

e How aviewisupdatedinresponse tochangesinthe underlyingview model.

e How to invoke commands and behaviors from views.

Applies to

e WindowsRuntime for Windows 8.1
o CH
¢ Extensible Application Markup Language (XAML)

Making key decisions

The MVVM patternis well documented, and it brings benefits to many categories of apps. However,
it is not always suited to every app. Forexample, using code-behind may be the best choice for small
apps that have a limited life span. Nonetheless, if you choose to use the MVVM pattern to construct
your app, you will have to make certain design decisions that will be difficult to change lateron.
Generally, thesedecisions are app-wide and their consistent use throughout the app will improve
developerand designer productivity.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

45

The following list summarizes the decisions to make whenimplementing the MVVM pattern:

e Shouldluse Prismto provide supportfor MVVM?
e Shouldluse a dependencyinjection container?
o Whichdependencyinjection containershouldluse?
o Whenis itappropriate toregisterand resolve components with adependency
injection container?
o Shouldacomponent'slifetime be managed by the container?
e Shouldthe app construct views orview models first?
e How shouldlconnectview modelstoviews?
o Shouldluse XAML or code-behind to setthe view's DataContext property?
o Shouldlusea view modellocatorobject?
o Shouldluse an attached property to automatically connect view models to views?
o Shouldluse a convention-based approach?
e Shouldlexpose commandsfrom myview models?
e Shouldluse behaviorsin myviews?
e Shouldlinclude designtime datasupportin myviews?
e Dolneedtosupporta view model hierarchy?

Prismincludes componentsto help accelerate the development of a managed Windows Store app
that usesthe MVVM pattern. It helps to accelerate development by providing core services
commonly required by a Windows Store app, allowing you tofocus on developing the user
experiencesforyourapp. Alternatively,you could choose to develop the core services yourself. For
more infosee Prism forthe Windows Runtime reference.

There are several advantagesto usingadependency injection container. First, a containerremoves
the needfora componenttolocate its dependencies and manage their lifetime. Second, a container
allows mapping of implemented dependencies without affecting the component. Third, a container
facilitates testability by allowing dependencies to be mocked. Forth, acontainerincreases
maintainability by allowing new components to be easily added to the system.

In the context of a Windows Store app that uses the MVVM pattern, there are specificadvantages to
a dependencyinjection container. A container can be used forregistering and resolving view models
and views. Inaddition, acontainercan be used for registering services, and injectingthem into view

models. Also, acontainercan create the view modelsandinject the views.

There are several dependency injection containers available, with two common choices being Unity
and MEF. Both Unity and MEF provide the same basicfunctionality for dependency injection, even
though they work very differently. When considering which containerto use, keep in mind the
capabilities shownin the following table and determine which fits your scenario better.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

46

Both containers Unityonly MEF only

Registertypesandinstances with Resolves concrete types without Recomposes properties and
the container. registration. collections as new types
are discovered.

Imperatively create instancesof ~ Resolvesopengenerics. Automatically exports
registered types. derivedtypes.
Injectinstances of registered Uses interception to capture calls

typesinto constructors and to objects and add additional

properties. functionalityto the target object.

Have declarative attributes for
marking types and dependencies
that need to be managed.

Resolve dependenciesinan
object graph.

If you decide to use a dependency injection container, you should also consider whetheritis
appropriate toregisterand resolve components using the container. Registeringand resolving
instances from a container has a performance cost because of the container's use of reflection for
creatingeach type, especially if components are being reconstructed for each page navigationin the
app. If there are many or deep dependencies, the cost of creation can increase significantly. In
addition, if the component does not have any dependencies oris not a dependency for othertypes,
it may not make sense to put itin the container. Also, if the componenthasasingle set of
dependenciesthatare integral tothe type and will never change, it may not make sense to putitin
the container.

You should also consider whetheracomponent's lifetime should be managed by the container.
Whenyou registera type the default behaviorforthe Unity containeristo create a new instance of
the registered type eachtime the type isresolved orwhen the dependency mechanisminjects
instancesinto otherclasses. Whenyou register aninstance the default behaviorforthe Unity
containeristo manage the lifetime of the object as a singleton. This means that the instance
remainsinscope as longas the containerisinscope, and itis disposed when the container goes out
of scope and is garbage-collected orwhen code explicitly disposes the container. If you want this
singleton behaviorforan objectthat Unity creates when you registertypes, you must explicitly
specify the ContainerControlledLifetimeManager class when registering the type. Formore info see
Bootstrappingan MVVM Windows Store app Quickstart.

If you decide not to use a dependency injection containeryou can use the ViewModelLocator class,
provided by the Microsoft.Practices.Prism.StoreApps library, to register view model factories for
views, orinferthe view modelusing a convention-based approach. Formore infosee Using the
ViewModellLocator class to connectview models to views and Bootstrapping an MVVMWindows
Store app Quickstart.

47

Decidingwhetheryourapp will construct views or the view models firstis anissue of preference and
complexity. With view first composition the app is conceptually composed of views which connect to
the view modelsthey depend upon. The primary benefit of this approachis that it makesit easy to
construct loosely coupled, unit testable apps because the view models have no dependence on the
viewsthemselves. It's also easy to understand the structure of an app by followingits visual
structure, ratherthan havingto track code executionin orderto understand how classes are created
and connectedtogether. Finally, view first construction aligns better with the Windows Runtime
navigation system becauseitis responsible for constructing the pages when navigation occurs,
which makes a view model first composition complex and misaligned with the platform. View model
first composition feels more natural to some developers, sincethe view creation can be abstracted
away allowingthemtofocus onthe logical non-Ul structure of the app. However, thisapproachis
often complex, and it can become difficult to understand how the various parts of the app are
created and connected together. It can be difficult to understand the structure of an app
constructed this way, as itofteninvolves timespentin the debugger examining what classes gets
created, when, and by whom.

The decision on how to connectview modelstoviewsis based on complexity, performance, and
resilience:

e Ifcode-behindisusedtoconnectview modelstoviewsitcan cause problemsforvisual
designers such as Blend and Visual Studio.

e Usinga view model locator object hasthe advantage that the app hasa single classthatis
responsible for the instantiation of viewmodels. The view model locator can also be used as
a point of substitution foralternate implementations of dependencies, such as for unit
testingordesign time data.

e A convention-based connection approach removes the need for much boilerplate code.

e An attached property can be usedto performthe connection automatically. This offers the
advantage of simplicity, with the view having no explicit knowledge of the view model.

Note The view will implicitly depend on specific properties, commands, and methods on the view
model because of the data bindings it defines.

In Windows Store apps, you typically invoke some actioninresponse to a user action, suchas a
button click that can be implemented by creatingan event handlerinthe code-behind file. However,
MVVM discourages placing code in the code-behindfile asit's not easily testable because itdoesn't
maintain a good separation of concerns. If you wish to promote the testability of yourapp, by
reducingthe number of event handlersinyour code-behind files, you should expose commands
fromyour view models for ButtonBase-derived controls, and use behaviorsin yourviews for
controlsthat don't derive from ButtonBase, in orderto connectthemto view model exposed
commandsand actions.

If you will be usingavisual designerto design and maintain your Ul you'll need toinclude design
time data supportinyourapp so that you can view layouts accurately and see realistic results for
sizingand styling decisions.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

48

You should supporta view model hierarchy if it will help to eliminate redundant code in yourview
model classes. If you find identical functionality in multiple view model classes, such as code to
handle navigation, itshould be refactoredinto a base view model class from which all viewmodels
classeswill derive.

MVVM in AdventureWorks Shopper

The AdventureWorks Shopper referenceimplementation uses the Unity dependency injection
container. The Unity containerreduces the dependency coupling between objects by providing a
facility toinstantiate instances of classes and manage theirlifetime. During an object's creation, the
containerinjectsany dependencies that the objectrequiresintoit. If those dependencies have not
yetbeen created, the containercreatesand resolves themfirst. Formore infosee Usinga
dependencyinjection container, Bootstrappingan MVVM Windows Store app Quickstart and Unity

Container.

In the AdventureWorks Shopperreference implementation, views are constructed before view
models. Thereis one view class per page of the Ul (a page is an instance of the
Windows.Ul.Xaml.Controls.Page class), with design time data being supported on each viewin

orderto promote the designer-developer workflow. For more info see Creating and navigating
between pages.

Each view modelis declaratively connected to a corresponding view using an attached propertyona
view model locator object to automatically perform the connection. View model dependencies are
registered with the Unity dependency injection container, and resolved when the view modelis
created. A base view model class implements common functionality such as navigation and
suspend/resumesupportforview modelstate. View modelclassesthen derivefromthis base class
inorder to inheritthe common functionality. For more info see Using the ViewModelLocator class
to connectview modelstoviews.

In orderfor a view model to participate in two-way data binding with the view, its properties must
raise the PropertyChanged event. View models satisfy this requirement by implementing the
INotifyPropertyChanged interface and raising the PropertyChanged event when a property is
changed. Listeners canrespond appropriately to the property changes when they occur. For more

infosee Updatinga view inresponse to changesinthe underlying viewmodel or model.

The AdventureWorks Shopper referenceimplementation uses two options forexecutingcode ona
view model inresponsetointeractions onaview, such asa buttonclick or item selection. If the
controlis a command source, the control’s Command property is data-bound to an ICommand
property onthe view model. Whenthe control’scommandisinvoked, the code inthe view model
will be executed. In addition to commands, behaviors can be attached to an objectin the view and
can listenforan eventto be raised. Inresponse, the behavior can then invoke an Actionor an
ICommand on the view model. Formore info see Ul interaction using the DelegateCommand class
and Blend behaviors.

http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/018hxwa8.aspx

49

All of the view modelsinthe AdventureWorks Shopperreference implementation share the app’s
domain model, whichis often just called the model. The modelconsists of classes that the view
models use toimplement the app’s functionality. View models are connected to the model classes
through model properties onthe view model. However, if you want a strong separation between the
model and the view models, you can package model classesinaseparate library.

In the AdventureWorks Shopper Visual Studio solution there are two projects that contain the view,
view model, and model classes:

e Theviewclassesarelocatedinthe AdventureWorks.Shopper project.
e Theview model and model classes are located in the AdventureWorks.UlLogic project.

Solution Explorer * 0 X
L -
e~ & 4|r= 8
Search Solution Explorer (Ctrl+ D -
&g Solution “AdventureWorksShopper' (9 projects)
P Auget
o Tests

I AdventureWorks.Shopper (Windows 8.1)

[AdventureWarks UlLogic (Windows 8.1)

[:'1 AclventureWorks WebServices

[.';_"_=| Micrasoft Practices Prism, PubSubEvents

[wlce] Microsoft Practices Prism . Storedpps (Windows 81)

What is MVVM?

MVVM is an architectural pattern that's a specialization of the presentation model pattern. It can be
used on many different platforms anditsintentisto provide aclean separation of concerns between
the userinterface controlsand theirlogic. Formore info about MVVM see MVVM Quickstart,
Implementing the MVVM Pattern, Advanced MVVMScenarios, and Developinga Windows Phone
Application using the MVVM Pattern.

Using a dependency injection container

Dependency injection enables decoupling of concrete types fromthe code thatdepends onthese
types. Itusesa containerthat holds a list of registrations and mappings between interfaces and
abstract typesandthe concrete typesthatimplement orextend thesetypes. The AdventureWorks
Shopperreferenceimplementation uses the Unity dependency injection containerto manage the
instantiation of the view model and service classesinthe app.

Before you can injectdependenciesinto an object, the types of the dependencies need to be
registered with the container. Afteratype is registered, itcan be resolved orinjectedasa
dependency. Formore infosee Unity.

http://msdn.microsoft.com/en-us/library/windows/apps/gg430869.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg405484.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg405494.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh848247.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh848247.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899

50

In the AdventureWorks Shopperreference implementation, the App classinstantiates the
UnityContainerobjectandisthe onlyclass inthe app that holds a reference to a UnityContainer
object. Types are registered in the Onlnitialize method in the App class.

Bootstrapping an MVVM app using Prism's MvvmAppBase class

When you create a Windows Store app from a Visual Studio template, the App class derives from the
Application class. In the AdventureWorks Shopper reference implementation, the App class derives
fromthe MvvmAppBase class. The MvvmAppBase class provides support for suspension,
navigation, settings, and resolving view types from view names. The App class derives fromthe
MvvmAppBase class and provides app specificstartup behavior.

The MvvmAppBase class, provided by the Microsoft.Practices.Prism.StoreApps library, is responsible

for providing core startup behaviorforan MVVM app, and derives from the Application class. The
MvvmAppBase class constructoris the entry pointforthe app. The following diagram shows a
conceptual view of how app startup occurs.

MvvmAppBase App MvvmAppBase App
Constructor Constructor CnwWindowCreated —* Onlnitialize
l App MvvmAppBase App
InitializeComponeant OnLaunched OnLaunchApplication
MvvmAppBase

InitializeFrameAsync

MwvvmAppBase

CreateNavigationService —

When deriving from the MvvmAppBase class, a required override is the OnLaunchApplication
method from where you will typically perform your initial navigation to alaunch page, or to the
appropriate page based on a secondary tile launch of the app. The following code example shows
how to override the OnLaunchApplication method inthe Appclass, in orderto respondtoapp
activationfroma tile orsecondary tile.

C#: AdventureWorks.Shopper\App.xaml.cs

protected override Task OnLaunchApplication(LaunchActivatedEventArgs args)

{
if (args != null && !string.IsNullOrEmpty(args.Arguments))

{
// The app was launched from a Secondary Tile
// Navigate to the item's page
NavigationService.Navigate("ItemDetail", args.Arguments);
}

else

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx

51

// Navigate to the initial page
NavigationService.Navigate("Hub", null);

Window.Current.Activate();
return Task.FromResult<object>(null);

This method navigates to the HubPage inthe app, whenthe app launches normally, orthe
ItemDetailPage if the appis launched froma secondary tile. "Hub" and " [temDetail" are specified as
the logical names of the views that will be navigated to. The default convention specified in the
MvvmAppBase class isto append "Page" tothe name and look forthat pagein a .Views child
namespace inthe project. Alternatively, another convention can be specified by overriding the
GetPageType methodinthe MvvmAppBase class. For more info see Handling navigation requests.

Note The OnLaunchApplication method returnsa Task, allowingittolaunchalong running
operation. If youdon'thave a longrunning operationtolaunch you should return an empty Task.

The app uses the Unity dependency injection containerto reduce the dependency coupling between
objects by providing afacility to instantiate instances of classes and manage their lifetime based on
the configuration of the container. Aninstance of the containeris created as a singleton in the App
class, as showninthe following code example.

C#: AdventureWorks.Shopper\App.xaml.cs

private readonly IUnityContainer _container = new UnityContainer();

The Onlnitialize method in the MvvmAppBase classis overriddenin the App class with app specific
initialization behavior. Forinstance, this method should be overridden if you need toinitialize
services, orseta defaultfactory or default view model resolver for the ViewModelLocator object.
The following code example shows some of the Onlnitialize method in the App class.

Ci#t: AdventureWorks.Shopper\App.xaml.cs

_container.RegisterInstance<INavigationService>(NavigationService);

_container.RegisterInstance<ISessionStateService>(SessionStateService);

_container.RegisterInstance<IEventAggregator>(EventAggregator);

_container.RegisterInstance<IResourcelLoader>(new ResourceloaderAdapter(
new ResourcelLoader()));

This code registers serviceinstances with the containeras singletons, based ontheirrespective
interfaces, sothatthe view model classes can take dependencies on them. This means that the
containerwill cache the instances on behalf of the app, with the lifetime of the instances then being
tied to the lifetime of the container.

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx

52

A view model locatorobjectis responsible for managing the instantiation of view models and their
associationtoviews. Formore info see Using the ViewModelLocator class to connect view models

to views. When the view model classes are instantiated the container will inject the dependencies
that are required. If the dependencies have notyet been created, the container creates and resolves
them first. This approach removesthe needforan object to locate its dependencies or manage their
lifetimes, allows swapping of implemented dependencies without affecting the object, and
facilitating testability by allowing dependencies to be mocked.

Using the ViewModelLocator class to connect view models to views
The AdventureWorks Shopper referenceimplementation uses aview model locator object to
manage the instantiation of view models and theirassociation to views. This has the advantage that

the app has a single class thatis responsible for the instantiation.

The ViewModelLocator class, in the Microsoft.Practices.Prism.StoreApps library, has an attached
property, AutoWireViewModel that is used to associate view models with views. Inthe view's XAML

this attached propertyis setto true to indicate that the view model should be automatically
connectedtothe view, asshowninthe following code example.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

prism:ViewModellLocator.AutoWireViewModel="true"

The AutoWireViewModel propertyis adependency property thatisinitialized to false, and whenits
value changes the AutoWireViewModelChanged event handleris called. This method resolves the
view model forthe view. The following code example shows how thisis achieved.

C#: Microsoft.Practices.Prism.StoreApps\ViewModelLocator.cs

private static void AutoWireViewModelChanged(DependencyObject d,
DependencyPropertyChangedEventArgs e)

{
FrameworkElement view = d as FrameworkElement;
if (view == null) return; // Incorrect hookup, do no harm

// Try mappings first
object viewModel = GetViewModelForView(view);
// Fallback to convention based
if (viewModel == null)
{
var viewModelType = defaultViewTypeToViewModelTypeResolver(
view.GetType());
if (viewModelType == null) return;

// Really need Container or Factories here to deal with injecting
// dependencies on construction
viewModel = defaultViewModelFactory(viewModelType);

}

view.DataContext = viewModel;

53

The AutoWireViewModelChanged method first attempts to resolve the view model from any
mappingsthat may have beenregistered by the Register method of the ViewModelLocator class. If
the view model cannot be resolved using this approach, forinstance if the mapping wasn't created,
the method falls back to using a convention-based approach to resolve the correct view model type.
This convention assumes that view models are in the same assembly as the view types, that view
modelsareina.ViewModels child namespace, thatviews are ina .Views child namespace, and that
view model names correspond with viewnames and end with "ViewModel." For more info see the
nextsection, "Usingaconvention-based approach to connect view models to views." Finally, the
method sets the DataContext property of the view type to the registered viewmodel type.

Using a convention-based approach to connectview models to views

The AdventureWorks Shopper referenceimplementation redefines the convention forresolving
view model types fromviewtypesinorderto allow views and view models toresidein separate
assemblies. This enablesthe business logicforthe appto reside in aseparate assembly that can be
easily targeted fortesting.

A convention-based approach to connecting view models to views removes the need formuch
boilerplate code. The convention used in AdventureWorks Shopperassumes that:

1. Viewmodeltypesarelocatedinaseparate assembly fromthe viewtypes.
2. Viewmodeltypesare located in the AdventureWorks.UlLogicassembly.
3. Viewmodel type namesappend "ViewModel" tothe view type names.

Using this convention, aview named HubPage will have aview model named HubPageViewModel.
The following code exampleshows how the App class overridesthe
SetDefaultViewTypeToViewModelTypeResolver delegatein the ViewModelLocator class, to define
how to resolve view model type names from view type names.

C#: AdventureWorks.Shopper\App.xaml.cs

ViewModellLocator.SetDefaultViewTypeToViewModelTypeResolver ((viewType) =>
{

var viewModelTypeName = string.Format(CultureInfo.InvariantCulture,
"AdventureWorks.UILogic.ViewModels.{0@}ViewModel,
AdventureWorks.UILogic, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=634ac3171lee5190a", viewType.Name);

var viewModelType = Type.GetType(viewModelTypeName);

return viewModelType;

})s

Other approaches to constructing view models and views

There are many approaches that can be used to construct views and view models and associate
them at runtime. The following sections describe three of theseapproaches.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

54

Creating a view model declaratively

The simplestapproachisforthe view to declaratively instantiateits corresponding view modelin
XAML. Whenthe view is constructed, the corresponding view model object willalso be constructed.
Thisapproach can be demonstrated inthe following code.

XAML

<Page.DataContext>
<HubPageViewModel />
</Page.DataContext>

When the Page is created, an instance of the HubPageViewModel is automatically constructed and
setas the view's data context. This approach requires yourview model to have adefault (parameter-
less) constructor.

This declarative construction and assignment of the view model by the view has the advantage that
it issimple and works well in design-time tools such as Blend and Visual Studio. The main
disadvantage of thisapproachisthat the view model requires adefault constructor.

Creating a view model programmatically

A view can have code in the code-behindfilethatresultsin the view model being assigned to its
DataContext property. Thisis often accomplishedinthe view's constructor, as shownin the
following code example.

C#
public HubPage()
{
InitializeComponent();
this.DataContext = new HubPageViewModel(NavigationService);
}

The programmaticconstruction and assignment of the view model within the view's code -behind
has the advantage thatit is simple and works well in design-time tools such as Blend and Visual
Studio. The main disadvantage of this approachis that the view needs to provide the view model
with anyrequired dependencies.

Creatinga view defined as a data template

A view can be defined as a data template and associated with aview model type. Datatemplates can
be defined asresources, orthey can be defined inline within the control that will display the view
model. The content of the control is the view model instance, and the datatemplate isused to
visually representit. This technique isan example of asituationin which the view modelis
instantiated first, followed by the creation of the view.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

55

Data templates are flexible and lightweight. The Ul designer can use them to easily definethe visual
representation of aview model without requiringany complex code. Datatemplates are restricted
to views that do not require any Ul logic(code-behind). Blend can be used to visually design and edit
data templates.

The following example shows the AutoRotatingGridView custom control thatis boundtoa
collection of ShoppingCartitemViewModels. Each objectin the ShoppingCartitemViewModels
collectionisaview model instance. The view for each ShoppingCartitemViewModel is defined by
the IltemTemplate property. The ShoppingCartltemTemplate specifies that the view foreach
ShoppingCartitemViewModel consists of a Grid containing multiple child elements,includingan
Image and several TextBlocks.

XAML: AdventureWorks.Shopper\Views\ShoppingCartPage.xaml

<awcontrols:AutoRotatingGridView x:Name="ShoppingCartItemsGridView"
x:Uid="ShoppingCartItemsGridView"

AutomationProperties.AutomationId="ShoppingCartItemsGridView"
SelectionMode="Single"
Width="Auto"
Grid.Row="2"
Grid.Column="1"
Grid.RowSpan="2"
VerticalAlignment="Top"
ItemsSource="{Binding ShoppingCartItemViewModels }"
SelectedItem="{Binding SelectedItem, Mode=TwoWay}"
ItemTemplate="{StaticResource

ShoppingCartItemTemplate}"
MinimalItemTemplate="{StaticResource
ShoppingCartItemTemplateMinimal}”

Margin="0,0,0,0">

For more info about the AutoRotatingGridView custom control see Creatinga custom GridView
control that responds to layout changes.

Updating a view in response to changes in the underlying view model or
model

Allview model and model classes that are accessible to the view should implement the
INotifyPropertyChanged interface. Implementing the INotifyPropertyChanged interface in your
view model ormodel classes allows them to provide change notifications to any d ata-bound controls
inthe view whenthe underlying property value changes. However, this can be repetitiveand error-
prone. Therefore, the Microsoft.Practices.Prism.Store Apps library provides the BindableBase class

that implements the INotifyPropertyChanged interface. The following code example shows this
class.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.grid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx

56

C#: Microsoft.Practices.Prism.StoreApps\BindableBase.cs

public abstract class BindableBase : INotifyPropertyChanged

{
public event PropertyChangedEventHandler PropertyChanged;
protected virtual bool SetProperty<T>(ref T storage, T value,
[CallerMemberName] string propertyName = null)
{
if (object.Equals(storage, value)) return false;
storage = value;
this.OnPropertyChanged(propertyName);
return true;
}
protected void OnPropertyChanged(string propertyName)
{
var eventHandler = this.PropertyChanged;
if (eventHandler != null)
{
eventHandler(this, new PropertyChangedEventArgs(propertyName));
}
}
}

Each view model classinthe AdventureWorks Shopper reference implementation derives from the
ViewModel base class thatinturn derives from the BindableBase base class. Therefore, each view
model class uses the SetProperty method in the BindableBase class to provide property change
notification. The following code example shows how property change notification isimplementedin
aview model classin the AdventureWorks Shopper reference implementation.

C#: AdventureWorks.UILogic\ViewModels\HubPageViewModel.cs

public IReadOnlyCollection<CategoryViewModel> RootCategories
{

get { return _rootCategories; }
private set { SetProperty(ref _rootCategories, value); }

For more info about data bindinginthe Windows Runtime, see Data binding overview.

http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx

57

Additional considerations when implementing property change notification

You should design yourapp forthe correct use of property change notification. Here are some
pointstoremember:

e Neverraise the PropertyChanged event during yourobject's constructorif you are
initializing a property. Data-bound controlsin the view cannot have subscribed to receive

change notifications at this point.

e Alwaysimplementthe INotifyPropertyChanged interface on any view model or model
classesthatare accessible tothe view.

e Alwaysraise a PropertyChanged eventif a public property's value changes. Do not assume
that you can ignore raising the PropertyChanged event because of knowledge of how XAML

binding occurs. Such assumptionslead to brittle code.

e Neverusea publicproperty's get method to modify fields or raise the PropertyChanged
event.

e Alwaysraise the PropertyChanged event for any calculated properties whosevalues are
used by other propertiesinthe view model ormodel.

¢ Neverraise a PropertyChanged eventif the property does not change. This means that you
must compare the old and new values before raising the PropertyChanged event.

e Neverraise more than one PropertyChanged event with the same property name argument
within asingle synchronous invocation of a publicmethod of your class. Forexample,
suppose you have a Count property whose backing store isthe _count field. Ifamethod
increments _counta hundred times during the execution of aloop, itshould only raise
property change notification onthe Count property once afterall the workis complete. For
asynchronous methodsyou can raise the PropertyChanged event fora given property name
in each synchronous segment of an asynchronous continuation chain.

e Alwaysraise the PropertyChanged event at the end of the method that makes a property
change, or whenyourobjectisknownto be in a safe state. Raising the eventinterrupts your
operation by invokingthe event's handlers synchronously. If this happensin the middle of
your operation, you may expose your object to callback functions whenitisinan unsafe,
partially updated state. Itis also possible for cascading changes to be triggered by
PropertyChanged events. Cascading changes generally require updates to be complete
before the cascading change is safe to execute.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx

58

Ul interaction using the DelegateCommand class and Blend behaviors

In Windows Store apps, you typically invoke some actioninresponse toa user action (suchas a
button click) that can be implemented by creatingan event handlerinthe code-behindfile.
However, inthe MVVM pattern, the responsibility forimplementing the action lies with the view
model, and you should try to avoid placing code in the code-behindfile.

Commands provide a convenient way to represent actions that can be easily bound to controlsinthe
Ul. They encapsulate the actual code that implements the action oroperationand help to keepit
decoupled fromitsactual visual representation in the view. The Windows Runtime includes controls
that can be declaratively connected toacommand. These controls will invoke the specified
command whenthe userinteracts with the controlin a specificway.

Behaviorsalsoallow youto connecta control to a command declaratively. However, behaviors can
be usedto invoke an action that is associated with a range of events raised by a control. Therefore,
behaviors address many of the same scenarios as command-enabled controls, while providing a
greaterdegree of flexibility and control. In addition, behaviors can also be used to associate
command objects or methods with controls that were not specifically designed tointeract with
commands. For more info see Implementing behaviors to supplement the functionality of XAML

elements.
Implementing command objects

View models typically expose command properties, for binding from the view, that are object
instances thatimplement the ICommand interface. XAMLinherently supports commands and
ButtonBase-derived controls providea Command property that can be data bound to an ICommand
object provided by the view model. The ICommand interface defines an Execute method, which
encapsulatesthe operationitself, and a CanExecute method, which indicates whetherthe command
can be invoked ata particulartime. The Microsoft.Practices.Prism.StoreApps library provides the
DelegateCommand class to implement commands.

The AdventureWorks Shopper referenceimplementation uses the DelegateCommand class that
encapsulates two delegates that each reference a method implemented within yourview model
class. It inherits from the DelegateCommandBase class thatimplements the ICommand interface’s
Execute and CanExecute methods by invoking these delegates. You specify the delegates toyour
view model methods in the DelegateCommand class constructor, which is defined as follows.

C#: Microsoft.Practices.Prism.StoreApps\DelegateCommand.cs

public DelegateCommand(Action<T> executeMethod, Func<T, bool> canExecuteMethod)
: base((o) => executeMethod((T)o), (o) => canExecuteMethod((T)o))
{
if (executeMethod == null || canExecuteMethod == null)
throw new ArgumentNullException("executeMethod");

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx

59

For example, the following code shows how a DelegateCommand instance, which represents asign
incommand, is constructed by specifying delegates to the SignlnAsyncand CanSignln view model
methods. The command is then exposed to the view through aread-only property thatreturnsa
reference toan ICommand.

C#: AdventureWorks.UILogic\ViewModels\SigninFlyoutViewModel.cs

public DelegateCommand SignInCommand { get; private set; }

SignInCommand = DelegateCommand.FromAsyncHandler(SignInAsync, CanSignIn);

The DelegateCommand classis a generictype. The type argument specifies the type of the
command parameter passed to the Execute and CanExecute methods. A non-genericversion of the

DelegateCommand classisalso provided for use whenacommand parameteris not required.

When the Execute methodis called onthe DelegateCommand object, it simply forwards the call to

the methodinthe view model class viathe delegate that you specified in the constructor. Similarly,
when the CanExecute methodis called, the corresponding method in the viewmodelclassis called.
The delegate to the CanExecute method in the constructoris optional. If adelegateis notspecified,
the DelegateCommand will always return true for CanExecute.

The view model canindicate achange in the command’s CanExecute status by callingthe
RaiseCanExecuteChanged method onthe DelegateCommand object. This causesthe
CanExecuteChanged eventto be raised. Any controlsin the Ul that are bound to the command will
update theirenabled status to reflect the availability of the bound command.

Invoking commands fromaview

Any controls that derive from ButtonBase, such as Button or HyperlinkButton, can be easily data
boundto a command through the Command property. The following code example shows how the
SubmitButton in the SigninFlyout binds to the SigninCommand in the SigninFlyoutViewModel class.

XAML: AdventureWorks.Shopper\Views\SigninFlyout.xaml

<Button x:Uid="SubmitButton"
x:Name="SubmitButton"
Background="{StaticResource AWShopperAccentBrush}"
Content="Submit"
HorizontalAlignment="Stretch"
Foreground="{StaticResource AWShopperButtonForegroundBrush}"
Margin="0,25,0,0"
Command="{Binding SignInCommand}"
AutomationProperties.AutomationId="SignInSubmitButton"/>

A command parameter can also be optionally defined usingthe CommandParameter property. The
type of the expected argumentis specified inthe Execute and CanExecute target methods. The
control will automatically invoke the target command when the userinteracts with that control, and

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecutechanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.hyperlinkbutton.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.commandparameter.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx

60

the command parameter, if provided, will be passed as the argumentto the command’s Execute
method.

Implementing behaviors to supplementthe functionality of XAML elements

A behaviorallows you to add functionality to a XAML element by writing that functionalityina
behaviorclassand attachingit to the elementasifit was part of the elementitself. Behaviors enable
you to implement code that you would normally have to write as code-behind because it directly
interacts with the APl of XAML elements, in such away that itcan be concisely attached toa XAML
elementand packaged forreuse across more than one view orapp. In the context of MVVM,
behaviors are a useful approach for connectingitems thatare occurringinthe view due to user
interaction, with the executioninaview model.

A behaviorthatisattached to a XAML element through attached propertiesis known as an attached
behavior. The behaviorcanthen use the exposed APl of the elementto whichitis attached to add
functionalitytothatelement or otherelementsinthe visual tree of the view. For more info see
Dependency properties overview, Attached properties overview, and Custom attached properties.

The AdventureWorks Shopper referenceimplementation does not contain any attached behaviors.

Blendincludes avariety of built-in behaviors, which are known as Blend behaviors. These behaviors
can be reusedin Windows Store apps through the Behaviors SDK. The SDK supports adding existing
behaviors and actions to Windows Store apps, and creating new ones. A Blend behavioradds some
behaviortoa XAML element, with an action adding functionality that’s invoked when a conditionis
met, such as an eventbeingraised. Collectively, behaviors and actions are known as interactions.

The AdventureWorks Shopperreferenceimplementation uses anumberof interactionsfromthe
Behaviors SDK and also includes custom behaviors. To create anew behavioryou should create a
classthat derives from the DependencyObject class, and implements the IBehaviorinterface. Inthe
AdventureWorks Shopper reference implementation this functionality is provided by the

Behavior<T> class. This class provides an AssociatedObject property that gives areference to the
elementtowhichthe behavioris attached, and Attach and Detach methods. Each custom behavior
then derives from the Behavior<T> class, overriding the OnAttached and OnDetached abstract
methodsto provide logicthat will be executed when the behavioris attached and detached from
XAML elements. The following code example shows the ComboBoxKeyboardSelection behavior

used by the AdventureWorks Shopper reference implementationtoselectthe ComboBoxIltem that

starts with the key pressed by the user.

http://msdn.microsoft.com/en-us/library/windows/apps/hh700353.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758282.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965327.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn457340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.dependencyobject.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.associatedobject.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.attach.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.detach.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.comboboxitem.aspx

61

C#: AdventureWorks.Shopper\Behaviors\ComboBoxKeyboardSelection.cs

public class ComboBoxKeyboardSelection : Behavior<ComboBox>

{
protected override void OnAttached()
{
ComboBox comboBox = this.AssociatedObject;
if (comboBox != null)
{
comboBox.KeyUp += comboBox_KeyUp;
}
}
private void comboBox_KeyUp (object sender, KeyRoutedEventArgs e)
{
var comboBox = (ComboBox)sender;
foreach (var item in comboBox.Items)
{
var comboBoxItemValue = item as ComboBoxItemValue;
if (comboBoxItemValue != null &&
comboBoxItemValue.Value.StartsWith(e.Key.ToString(),
StringComparison.OrdinalIgnoreCase))
{
comboBox.SelectedItem = comboBoxItemValue;
return;
}
}
}
protected override void OnDetached()
{
ComboBox comboBox = this.AssociatedObject;
if (comboBox != null)
{
comboBox.KeyUp -= comboBox_KeyUp;
}
}
}

The OnAttached and OnDetached methods are simply used toregisterand deregisteramethod for
the KeyUp event. The event handler method selects the ComboBoxItem that starts with the key
pressed by the user.

One of the interactions from the Behaviors SDK thatis used by the AdventureWorks Shopper
reference implementation is the NavigateToPageAction interaction, which invokes navigationtoa

specificpage inthe app. For instance, when the shopping carticon isselectedin the top app bar the
NavigateToPageAction interactionis used to navigate to the ShoppingCartPage, as shownin the
following code example.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.keyup.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.comboboxitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.aspx

62

XAML: AdventureWorks.Shopper\Views\TopAppBarUserControl.xaml

<Button x:Uid="ShoppingCartAppBarButton"
x:Name="ShoppingCartAppBarButton"
AutomationProperties.AutomationId="ShoppingCartAppBarButton"
Margin="0,0,5,0"
Height="125"
Style="{StaticResource CartStyle}"
Content="Shopping Cart">
<Interactivity:Interaction.Behaviors>
<Core:EventTriggerBehavior EventName="Click">

<Core:NavigateToPageAction
TargetPage="AdventureWorks. Shopper.Views.ShoppingCartPage"/>
</Core:EventTriggerBehavior>
</Interactivity:Interaction.Behaviors>
</Button>

The EventTriggerBehavior binds the Click event of the Button to the NavigateToPageAction. So
when the Button is selected the NavigateToPageAction is executed, which navigates to the
ShoppingCartPage. The NavigateToPageActioninteraction also allows a Parameter to be specified.

However, itis not currently possible to specify the event arguments that are associated with the
Clickeventinthe Parameter property. To solve this problem we created the
NavigateWithEventArgsToPageAction thatinvokes navigation to aspecified page, and allows the
eventargumentsto be passed as a parameterto the page being navigated to.

Ci#: AdventureWorks.Shopper\Behaviors\NavigateWithEventArgsToPageAction.cs

public class NavigateWithEventArgsToPageAction : DependencyObject, IAction
{
public string TargetPage { get; set; }
public string EventArgsParameterPath { get; set; }
object IAction.Execute(object sender, object parameter)
{
// Walk the ParameterPath for nested properties.
var propertyPathParts = EventArgsParameterPath.Split('."');
object propertyValue = parameter;
foreach (var propertyPathPart in propertyPathParts)

{
var propInfo = propertyValue.GetType().GetTypeInfo()
.GetDeclaredProperty(propertyPathPart);
propertyValue = propInfo.GetValue(propertyValue);
}

var pageType = Type.GetType(TargetPage);

var frame = GetFrame(sender as DependencyObject);
return frame.Navigate(pageType, propertyValue);

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.parameter.aspx

63

private Frame GetFrame(DependencyObject dependencyObject)

{
var parent = VisualTreeHelper.GetParent(dependencyObject);
var parentFrame = parent as Frame;
if (parentFrame != null) return parentFrame;
return GetFrame(parent);
}

To create a new action you must create a class that derives from the DependencyObject class, and
implementsthe lActioninterface. The IActioninterface has only one method that needsto be

implemented, named Execute. Here, the Execute method traverses the visual tree to obtain the
Frame control used by the current page, and then calls its Navigate method to navigate to the target
page, passinginthe specified parameter.

Invoking behaviors fromaview

Behaviors are particularly useful if you want to attach a method to a control that does not derive
from ButtonBase. For example, the AdventureWorks Shopper reference implementation uses the
NavigateWithEventArgsToPageAction interaction to enable the ItemClick event of the
MultipleSizedGridView control toinvoke page navigation.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<awcontrols:MultipleSizedGridView x:Name="itemsGridView"

AutomationProperties.AutomationId="HubPageItemGridView"
AutomationProperties.Name="Grouped Items"
Margin="0,0,0,0"

Padding="120,0,40,46"

ItemsSource="{Binding Source={StaticResource
groupedItemsViewSource}}"

ItemTemplate="{StaticResource
AWShopperItemTemplate}"

MinimalItemTemplate="{StaticResource

ProductTemplateMinimal}"
SelectionMode="None"

ScrollViewer.IsHorizontalScrollChainingEnabled="False"
IsItemClickEnabled="True"
Loaded="itemsGridView_Loaded" >
<interactivity:Interaction.Behaviors>
<core:EventTriggerBehavior EventName="ItemClick">
<awbehaviors:NavigateWithEventArgsToPageAction
TargetPage="AdventureWorks.Shopper.Views.ItemDetailPage"
EventArgsParameterPath="ClickedItem.ProductNumber" />
</core:EventTriggerBehavior>
</interactivity:Interaction.Behaviors>

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.dependencyobject.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.iaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.navigate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx

64

The EventTriggerBehavior binds the ItemClick event of the MultipleSizedGridView to the
NavigateWithEventArgsToPageAction. Sowhen a GridViewltem s selected the
NavigateWithEventArgsToPageAction is executed, which navigates from the HubPage to the
ItemDetailPage, passingin the ProductNumber of the Clickedltem to the ItemDetailPage.

Additional MVVM considerations

Here are some additional considerations when applyingthe MVVM pattern to Windows Store apps
in CH.

Centralize data conversionsin the view model ora conversionlayer

The view model provides datafromthe modelina formthat the view can easily use. To do this the
view model sometimes has to perform data conversion. Placing this data conversioninthe view
modelisa goodideabecauseitprovides propertiesinaformthat the Ul can bindto. It is also
possible to have aseparate data conversion layerthatsits betweenthe viewmodel and the view.
This might occur, for example, when datatypes need special formatting that the view model doesn’t
provide.

Expose operationalmodesin the view model

The view model may also be responsible for defining logical state changes that affect some aspect of
the displayinthe view, such asan indication that some operationis pending orwhethera particular
command is available. Youdon't need code-behind to enableand disable Ul elements—you can
achieve this by bindingtoa view model property, or with visual states.

Keep views and view modelsindependent

The binding of views to a particular propertyinits data source should be a view's principal
dependency onits corresponding view model. In particular, do notreference view types or the
Windows.Current object from view models. If you follow the principles we outlined here, you will
have the ability to test view modelsinisolation, and reduce the likelihood of software defects by
limiting scope.

Use asynchronous programming techniques to keep the Ul responsive

Windows Store apps are about a fast and fluid user experience. For that reason the AdventureWorks
Shopperreferenceimplementation keeps the Ul thread unblocked. AdventureWorks Shopperuses
asynchronous library methods for /O operations and raises events to asynchronously notify the
view of a property change.

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.window.current.aspx

65

Creating and navigating between pages in a Windows Store business
app using C#, XAML, and Prism
Summary

e Create pagesusingthe MVVM pattern if appropriate to your requirements. When using
MVVM, use XAML data bindingto link each page to a view model object.

e Designyourpagesforlandscape, portrait, and minimal layout. In addition, use the
VisualStateAwarePage class, provided by the Microsoft.Practices.Prism.StoreApps library, to

provide view management.

e Implementthe INavigationAware interface, provided by the
Microsoft.Practices.Prism.Store Apps library, to enable a class to participate in a navigation
operation. Use the FrameNavigationService class, provided by the
Microsoft.Practices.Prism.StoreApps library, to provide navigation supportto a class.

Learn how to implement accessible pagesthat supportafluid layout, are localizable, include design-
time data, and that can be easily navigated between, using Prism for the Windows Runtime.

You will learn

e How pageswere designedin AdventureWorks Shopper.

e How AdventureWorks Shopper creates pages.

e How to create design time datato support designers.

e How AdventureWorks Shopper pages support different layouts.

e How AdventureWorks Shopper pages supportlocalization and accessibility.
¢ How AdventureWorks Shopper performs navigation between pages.

Applies to

e WindowsRuntime for Windows 8.1
o CH
¢ Extensible Application Markup Language (XAML)

Making key decisions

The app page isthe focal point for designing your Ul. It holds all of your content and controlsfora
single point of interaction with the userwithinyourapp. Whenever possible, you shouldintegrate
your Ul elementsinline intothe app page. Presenting your Ulinline lets users fullyimmerse
themselvesinyourapp and stay in context, as opposed to using pop-ups, dialogs, or overlapping
windows that were common in previous Windows desktop application platforms. You can create as
many app pages as you need to supportyouruser scenarios.

66

The following list summarizes the decisions to make when creating pagesinyourapp:

e What tool should | use to create page content?

e What minimum resolution should | design my pages for?

e Should my page contentfill the screen, regardless of resolution?

e Should my pagesadapt to different orientations and layouts?

e How shouldllayout Ul elements on each page?

e What shouldIdisplayin minimal view?

e How should|test my page layout on different screen sizes?

e Shouldladd designtime datato my pages?

e Should I make my pages easily localizable?

e Should I make my pages accessible?

e Should|cache pagesinmy app?

e Where should navigation logicreside?

e How shouldlinvoke navigation fromaview?

e What commands belongon the navigation barand the bottom app bar?

e Should common page navigation functionality be implemented on each page, orcan it be
encapsulatedintoasingle control forreuse on each page?

e Shouldthe page being navigated toreside inthe same assembly that the navigation request
originatesfrom?

e How shouldIspecify anavigationtarget?

We recommend thatyou use Visual Studio to work with the code-focused aspects of your app.
Visual Studiois best suited for writing code, running, and debugging yourapp. We recommend that
you use Blend for Microsoft Visual Studio 2013 to work on the visual appearance of yourapp. You
can use Blend to create pages and custom controls, change templates and styles, and create
animations. Blend comes with minimal code-behind support. Formore info about XAML editing
tools, see Design Windows Store apps using Blend and Creating a Ul by using the XAML Designer.

There are two primary screen resolutions that yourapp should support. The minimum resolution at
which Windows Store apps will runis 1024x768. However, the minimum optimal resolution required
is1366x768. When designing pages fora minimum resolution of 1024x768 you should ensure that
all of your Ul fits on the screen without clipping. When designing pages foran optimal resolution of
1366x768 you should ensure thatall of your Ul fits on the screen without blank regions. Page
contentshouldfill the screentothe best of its ability and should appearto be thoughtfully designed
for varying screensizes. Users who buy larger monitors expect that theirapps will continue to look
good on these large screens andfill the screen with more content, where possible. For more info see
Guidelines forwindow sizes and scalingto screens.

Users can rotate and flip theirtablets, slates, and monitors, so you should ensurethat you app can
handle both landscape and portrait orientations. In addition, because users can work with up to two
apps at once, you should provide aminimal layout. The default minimum width of anappis 500
pixels. If you keep this width you do not have to make any special considerations foryour app at
narrow widths. You simply design yourapp so that it adapts fluidly when the userresizesit. You can
choose to change the minimum width to 320 pixels. If you choose to do this you should make some

http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh921077.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx

67

design changessothat the app is still functional and usable at this narrow width.
For more infosee Guidelines forlayouts, Guidelines for window sizes and scalingto screens, and

Guidelinesforresizing windows to tall and narrow layouts.

The user interface in Microsoft Windows strives to maintain a consistent silhouette across its apps.
The signature characteristicof the silhouetteis awide margin onthe top, bottom, and leftedges.
Thiswide margin helps users understand the horizontal panning direction of the content. You should
follow a consistent layout pattern for margins, page headers, gutter widths, and other such elements
on your pages. For more info see Layingoutan app page.

Whenyou plan forfull screen and minimal views, yourapp's Ul should reflow smoothly and
gracefully toaccommodate screen size, orientation, and userinteractions. You should maintain state
inminimal view, evenifit means showingless content or reducing functionality. In addition, you
should have feature parity across states. The userstill expectsto be able to interact with yourapp
whenitis in minimal view. Formore info see Guidelines for resizing windows to tall and narrow
layouts.

Most people don't have many devices at their disposal fortesting page layout on different screen
sizes. However, you can use the Windows Simulatorto run yourapp on a variety of screen sizes,
orientations, and pixel densities. In addition, Blend offers a platform menuthatenablesyouto
designyourapp on different screen sizes and pixel densities onthe fly. The Blend canvas then
updates dynamically based upon the chosen screen option.

Sample datashould be added to each page if you want to easily view styling results and layoutsizes
at designtime. This has the additional advantage of supporting the designer-developer workflow.

Preparingyour pagesforlocalization can help yourapp reach more usersininternational markets.
It's importantto considerlocalization early onin the development process, as there are some issues
that will affect Ul elements across various locales. As you design your pages, keep in mind that users
have a wide range of abilities, disabilities, and preferences. If you incorporate accessible design
principlesintoyourpagesyouwill helptoensure thatyourapp isaccessible tothe widest possible
audience, thus attracting more customers to yourapp. For more info see Globalizing your app and

Design foraccessibility.

Decidingwhetherto cache pages will be dependent upon how well-performing and responsive the
app is. Page cachingresultsin memory consumption for views that are not currently displayed,
which wouldincrease the chance of termination when the appis suspended. However, without page
cachingit does mean that XAML parsing and construction of the page and its view model will occur
every time you navigate to a new page, which could have a performance impact fora complicated
page. For a well-designed page that does not use too many controls, the performance should be
sufficient. However, if you encounter slow page load timesyoushould testto see if enabling page
cachingalleviates the problem. For more info see Quickstart: Navigating between pages.

Navigation within a Windows Store app can result from the user's interaction with the Ul or fromthe
app itselfasa result of internal logic-driven state changes. Page navigation requests are usually

http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965328.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh771188.aspx

68

triggered froma view, with the navigation logiceither beinginthe view's code-behind, orinthe data
boundview model. While placing navigation logicin the view may be the simplest approach, itis not
easily testablethrough automated tests. Placing navigation logicin the view model classes means
that the navigation logiccan be exercised through automated tests. In addition, the view model can
thenimplementlogicto control navigation to ensure that certain business rules are enforced. For
instance, an app may not allow the userto navigate away from a page without firstensuring that the
entered datais correct.

Users will trigger navigation from aview by selecting a Ul control, with the navigation logicresiding
inthe appropriate view model class. For controls derived from ButtonBase, such as Button, you
should use commandstoimplementanavigation actioninthe view model class. For controls that do
not derive from ButtonBase, you should use a Blend behaviortoimplement a navigation action. For
more info see Using the Model-View-ViewModel (MVVM) pattern.

In general, you should use the navigation barfor navigational elements that move the usertoa
different page and use the bottom app bar for commands that act on the current page. If every page
of yourapp is goingto include a navigation barthat allows the userto move to different pages, it
does not make sense toimplement this functionality individually on each page. Rather, the
functionalityshould be implemented as a user control that can be easily be included on each page.
In addition, you should follow placement conventions forcommands on the bottom app bar. You
should place New/Add/Create buttons on the farright, with view switching buttons being placed on
the far left. Also, you should place Accept, Yes, and OK buttons to the left of Reject, No, and Cancel
buttons. For more info see Guidelinesforapp bars.

The view classes that define your pages and the view model classes thatimplement the business
logicfor those pages can reside inthe same assembly or different assemblies. Thatisadesign
decisiontobe made when architecting yourapp. A page type resolution strategy should be used to
navigate to a page inany assembly, regardless of the assembly from which the navigation request
originates.

One approach for specifyinga navigation targetisto use a navigation service, which would require
the type of the view to navigate to. Because a navigation serviceis usually invoked from view models
inorder to promote testability, this approach would require view models to reference views (and
particularly views that the view model isn't associated with), which is notrecommended. The
recommended approachisto use a string to specify the navigation target that can be easily passed
to a navigation service, and whichis easily testable.

Creating pages and navigating between them in AdventureWorks Shopper

We used Blend and the Visual Studio XAML Designer to work with XAMLbecause these tools make it
straightforward to quickly add and modify page layout. Blend was usefultoinitially define pages and

controls; we used Visual Studio to optimizetheirappearances. Thesetools also enabled us toiterate

quickly through design choices because they giveimmediate visual feedback. In many cases, our user
experience designerwas able toworkin parallel with the developers because changing the visual

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465302.aspx

69

appearance of a page does not affectits behavior. Formore info see the next section, "Creating
pages."

Pageswere designed foraminimumresolution of 1024x768, and an optimal minimum resolution of
1366x768. In addition, pages were designed tofill the screen forvaryingscreen sizes. Each page is
able to adaptto landscape and portrait orientations, and a minimal layout. A consistent silhouetteis
maintained across all pages, with some pagesincluding design time data. Page layout was tested on
a variety of devices, andin the Windows simulator. Pages maintain state when switching between
differentview states, and possess feature parity across states. Formore info see Adding design time

data, Supporting multipleviewstates and Laying outan app page.

Page cachingis not usedinthe app. This prevents views that are not currently displayed from
consuming memory, which would increase the chance of termination when the appis suspended. All
pages are accessible, and support easy localization. Formore info see Enabling page localization and

Enabling page accessibility.

In the app, the view classes that define pages are in a different assembly to the view model classes
that implementthe business logicforthose pages. Therefore, a page type resolution strategy
implemented as a delegate is used to navigate to the pagesinthe AdventureWorks.Shopper
assembly when the navigation request originates fromview modelclassesinthe
AdventureWorks.UlLogicassembly. In addition, common page navigation functionality is
implemented as a user control that isembedded in the navigation bar for each page. Both
commands and Blend behaviors are used toimplement navigation actions, depending on the control
type. Navigation targets are specified by strings that represent the page to navigate to. For more
info see Navigating between pages, Handling navigation requests, and Invoking navigation using
behaviors.

Creating pages

Pagesin Windows Store apps are user controls that support navigation and contain other controls.
All page classes are subtypes of the Windows.UIl.Xaml.Page class, and represent content that can be

navigated to by the user.

In appsthat use Prism for the Windows Runtime, each page should derive fromthe
VisualStateAwarePage class in the Microsoft.Practices.Prism.StoreApps library. The
VisualStateAwarePage class provides view management and navigation support. The following code
example shows how the HubPage derives from the VisualStateAwarePage class.

http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130655.aspx

70

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<prism:VisualStateAwarePage
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation™
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006
xmlns:awbehaviors="using:AdventureWorks.Shopper.Behaviors"
xmlns:interactivity="using:Microsoft.Xaml.Interactivity"

core="using:Microsoft.Xaml.Interactions.Core"

views="using:AdventureWorks.Shopper.Views"

awcontrols="using:AdventureWorks.Shopper.Controls"

xmlns:designViewModels="using:AdventureWorks.Shopper.DesignViewModels

xmlns:prism="using:Microsoft.Practices.Prism.StoreApps"

x:Name="pageRoot"

x:Class="AdventureWorks.Shopper.Views.HubPage"

IsTabStop="false"

x:Uid="Page"

mc:Ignorable="d"

prism:ViewModellLocator.AutoWireViewModel="true"

d:DataContext="{d:DesignInstance designViewModels:HubPageDesignViewModel,

IsDesignTimeCreatable=True}">

xmlns:
xmlns:
xmlns:

Note All Flyoutclasses derive from the SettingsFlyout class.

There are twelve pagesin the AdventureWorks Shopper reference implementation, with the pages
beingthe views of the MVVM pattern.

Page

View model

BillingAddressPage
CategoryPage
CheckoutHubPage
CheckoutSummaryPage
GroupDetailPage
HubPage
ItemDetailPage
OrderConfirmationPage
PaymentMethodPage
SearchResultsPage
ShippingAddressPage
ShoppingCartPage

BillingAddressPageViewModel
CategoryPageViewModel
CheckoutHubPageViewModel
CheckoutSummaryPageViewModel
GroupDetailPageViewModel
HubPageViewModel
ItemDetailPageViewModel
OrderConfirmationPageViewModel
PaymentMethodPageViewModel
SearchResultsPageViewModel
ShippingAddressPageViewModel
ShoppingCartPageViewModel

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.settingsflyout.aspx

71

Data bindinglinks each page toits view model class in the AdventureWorks Shopper reference
implementation. The viewmodel class gives the page accessto the underlyingapp logicby using the
conventions of the MVVM pattern. For more info see Usingthe MVVM pattern.

Tip AdventureWorks Shopperusesthe MVVM pattern that abstracts the userinterface forthe app.
With MVVM you rarely need to customize the code-behind files. Instead, the controls of the user
interface are bound to properties of a view model object. If page -related code is required, it should
be limited to conveying datato and fromthe page's view model object.

If you are interested in AdventureWorks Shopper'sinteraction modeland how w e designed the user
experience, see Designing the userexperience of a Windows Store business app.

Adding design time data

Whenyou create a data bound userinterface, you candisplay sample datain the visual designerto
view styling results and layout sizes. To display datain the designeryou mustdeclare itin XAML. This
isnecessary because the designer parsesthe XAMLfor a page but does notrun its code -behind. In
the AdventureWorks Shopper reference implementation, we wanted to display design timedatain
orderto supportthe designer-developer workflow.

Sample datacan be displayed at design time by declaringitin XAMLby usingthe various data
attributes from the designernamespace. This namespace is typically declared with a d: prefix, as
shownin the following code example.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

Attributes with d: prefixes are then interpreted onlyat design time and are ignored at run time.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

d:DataContext="{d:DesignInstance designViewModels :HubPageDesignViewModel,
IsDesignTimeCreatable=True}"

The d:Designinstance attribute indicates that the designtime source isadesignercreatedinstance
based on the HubPageDesignViewModel type. The IsDesignTimeCreateable settingindicates that
the designerwill instantiate that type directly, whichis necessary to display the sample data
generated by the type constructor.

For more info see Data binding overview.

Supporting multiple view states

The AdventureWorks Shopper referenceimplementation was designed to be viewed full-screenin
landscape orientation. Windows Store apps must adaptto different application view states,

http://msdn.microsoft.com/en-us/library/windows/apps/xx130641.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx

72

including both landscape and portrait orientations. AdventureWorks Shopper supports
DefaultLayout (landscape fullscreen), PortraitLayout, and MinimalLayout view states.
AdventureWorks Shopper uses the VisualState class to specify changesto the visual display to
support each layout. The VisualStateManager class, used by the VisualStateAwarePage class,
manages state and the logicfor transitioning between states for controls. Forexample, here isthe
XAML specification of the layout changes forthe PortraitLayout view state on the hub page.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<VisualState x:Name="PortraitLayout">
<Storyboard>
<ObjectAnimationUsingKeyFrames Storyboard.TargetName="itemsGridView"
Storyboard.TargetProperty="Padding">
<DiscreteObjectKeyFrame KeyTime="0"
Value="40,0,0,30" />
</0ObjectAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames Storyboard.TargetName="semanticZoom"
Storyboard.TargetProperty="CanChangeViews">
<DiscreteObjectKeyFrame KeyTime="0"
Value="false" />
</0ObjectAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames Storyboard.TargetName="semanticZoom"
Storyboard.TargetProperty="IsZoomOutButtonEnabled">
<DiscreteObjectKeyFrame KeyTime="0"
Value="false" />
</0ObjectAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames Storyboard.TargetPropertys=
"Grid.ColumnDefinitions[@].Width"
Storyboard.TargetName="titleGrid">
<DiscreteObjectKeyFrame KeyTime="0" Value="40" />
</ObjectAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames Storyboard.TargetProperty=
"(views:SearchUserControl.IsCompact)"
Storyboard.TargetName="searchUserControl">
<DiscreteObjectKeyFrame KeyTime="0">
<DiscreteObjectKeyFrame.Value>
<x:Boolean>True</x:Boolean>
</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
</0ObjectAnimationUsingKeyFrames>
</Storyboard>
</VisualState>

We directly update individual properties for XAMLelements, in orderto specify changesto the visual
display. Forinstance, here the Storyboard specifies that the Padding property of the GridView
control named itemsGridView will change to avalue of "40,0,0,30" when the view state changesto
portrait. However, you could update the Style property when you need to update multiple
propertiesorwhenthere isadefined style that does what you want. Although styles enable you to
control multiple properties and also provide a consistent appearance throughoutyourapp,

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstatemanager.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.media.animation.storyboard.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.control.padding.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.style.aspx

73

providing too many can make your app difficult to maintain. Therefore, only use styles when it
makes sense to do so. For more info about styling controls, see Quickstart: styling controls.

Tip Whenyou developanappin Visual Studio, you can use the Windows Simulator debuggerto test
layouts. Todo this, press F5 and use the debuggertool bar to debug with the Windows Simulator.
You can also use Blend to define and test layouts.

For more infosee Part 7: Adaptingto differentlayouts.

Creating a custom GridView control that responds to layout changes

Many of the pagesinthe AdventureWorks Shopperreference implementation use the
AutoRotatingGridView custom control, whichis aview state detecting GridView control created for
the app. When, forexample, the view state changes from DefaultLayout to PortraitLayout the items
displayed by the control will be automatically rearranged to use an appropriate layoutforthe view
state. The advantage of thisapproach is that only one control is required to handle all the view
states, ratherthan havingto define multiple controls to handle the different viewstates.

In orderto take advantage of the functionality provided by this control you must specify additional
properties on your AutoRotatingGridView instance, such as the PortraititemsPanel and
MinimalltemTemplate properties. These additional properties are defined in the
AutoRotatingGridView class, and an example of theiruse isshown inthe following code example.

XAML

<awcontrols:AutoRotatingGridView x:Name="ShoppingCartItemsGridView'
x :Uid="ShoppingCartItemsGridView"
AutomationProperties.AutomationId=
"ShoppingCartItemsGridView"
SelectionMode="Single"
Width="Auto"
Grid.Row="2"
Grid.Column="1"
Grid.RowSpan="2"
VerticalAlignment="Top"
ItemsSource="{Binding ShoppingCartItemViewModels}
SelectedItem="{Binding SelectedItem, Mode=TwoWay}"
ItemTemplate="{StaticResource
ShoppingCartItemTemplate}"”
MinimalItemTemplate=
"{StaticResource
ShoppingCartItemTemplateMinimal}"”
Margin="0,0,0,0">
<awcontrols:AutoRotatingGridView.ItemsPanel>
<ItemsPanelTemplate>
<WrapGrid Orientation="Vertical”
TtemWidth="400" />
</ItemsPanelTemplate>
</awcontrols :AutoRotatingGridView.ItemsPanel>

http://msdn.microsoft.com/en-us/library/windows/apps/hh465381.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465045.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx

74

<awcontrols:AutoRotatingGridView.PortraitItemsPanel >
<ItemsPanelTemplate>
<WrapGrid Orientation="Horizontal"
TtemWidth="400" />
</ItemsPanelTemplate>
</awcontrols :AutoRotatingGridView.PortraitItemsPanel>
<awcontrols:AutoRotatingGridView.MinimalItemsPanel>
<ItemsPanelTemplate>
<StackPanel HorizontalAlignment="Left" />
</ItemsPanelTemplate>
</awcontrols:AutoRotatingGridView.MinimalItemsPanel >
<Style TargetType="Control">
<Setter Property="HorizontalAlignment"
Value="Stretch" />
<Setter Property="HorizontalContentAlignment"
Value="Left" />
</Style>
</awcontrols:AutoRotatingGridView>

Creating a custom GridView control that displays items at multiple sizes

On the hub page we wanted the first product to be displayed at twice the dimensions of the other
products, and the category page to also display the first productin each category at this larger size.

ADVENTURE —
WORKS

$577.12), $44.54

-W Red, 42 ork LL Mountain Hamdl4

To do this we created a new class named MultipleSizedGridView that derives from the

AutoRotatingGridView custom control. We then overrode the PrepareContainerForltemOverride

method from the GridView class to enable the first product to span multiple rows and columns of

the MultipleSizedGridView, as shown in the following code example.

C#: AdventureWorks.Shopper\Controls\MultipleSizedGridView.cs

75

protected override void PrepareContainerForItemOverride (DependencyObject element,

object item)

{
base.PrepareContainerForItemOverride(element, item);
var dataltem = item as ProductViewModel;
if (dataItem != null & dataItem.ItemPosition == @)
{
_colval = (int)LayoutSizes.PrimaryItem.Width;
_rowVal = (int)LayoutSizes.PrimaryItem.Height;
}
else
{
_colval = (int)LayoutSizes.SecondaryItem.Width;
_rowVal = (int)LayoutSizes.SecondaryItem.Height;
}
var uiElement = element as UIElement;
VariableSizedWrapGrid.SetRowSpan(uiElement, _rowVal);
VariableSizedWrapGrid.SetColumnSpan(uiElement, _colVal);
}

The PrepareContainerForltemOverride method gets the firstitem in the MultipleSizedGridView and

setsit to spantwo rows and two columns, with subsequentitems occupying one row and one

column. The static LayoutSizes class simply defines two Size objects that specify the number of rows

and columnsto span forthe firstitem, and subsequentitemsinthe MultipleSizedGridView,
respectively.

Ci#t: AdventureWorks.Shopper\Controls\MultipleSizedGridView.cs

public static class LayoutSizes

{
public static Size PrimaryItem
{
get { return new Size(2, 2); }
}
public static Size SecondaryItem
{
get{return new Size(1, 1); }
}

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.preparecontainerforitemoverride.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.preparecontainerforitemoverride.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.size.aspx

76

Styling controls

AdventureWorks Shopper's appearance was customized by styling and templating the controls used
inthe app. Styles enable youto set control properties and reuse those settings fora consistent
appearance across multiple controls. Styles are defined in XAMLeitherinline foracontrol, oras a
reusable resource. Resources can be defined atthe page level, app level, orin a separate resource
dictionary. Aresource dictionary can be shared across apps, and an app can use multiple resource
dictionaries. Formore info see Quickstart: Styling controls.

The structure and appearance of a control can be customized by defininganew ControlTemplate for
the control. Templating a control can be used to avoid having to write a custom control. For more

information, see Quickstart: Control templates.

Enabling page localization

Preparingforinternational markets can help you reach more users. Globalizing yourapp provides

guidelines, checklists, and tasks to help you create a user experience thatreaches more users by
helpingyouto globalize and localize each page of your app. It's important to considerlocalization
earlyoninthe development process, as there are some issues that will effect userinterface
elements across various locales. Here's the tasks that we carried out to support page localizationin
the AdventureWorks Shopper reference implementation.

e Separate resources foreachlocale.

e Ensurethat each piece of textthatappearsinthe Ul is defined by astringresource.
¢ Addcontextual commentstothe appresourcefile.

e Definethe flow directionforall pages.

e Ensure error messages are read from the resource file.

Separateresources foreachlocale

We maintain separate solution folders foreach locale. Forexample, Strings ->en-US->
Resources.resw defines the strings forthe en-US locale. For more info see Quickstart: Using string

resources, and How to name resources using qualifiers.

Ensure that each piece oftext that appearsin the Ul is defined by a stringresource

We usedthe x:Uid directive to provide aunique name forthe localization process to associate
localized strings with text that appears onscreen. The following example shows the XAMLthat
definesthe apptitle thatappearsonthe hub page.

XAML: AdventureWorks.Shopper\Views\ShoppingCartPage.xaml

<TextBlock x:Uid="ShoppingCartTitle"
x:Name="pageTitle"
Text="Shopping Cart"
Grid.Column="1"

http://msdn.microsoft.com/en-us/library/windows/apps/hh465381.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.controltemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465374.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965328.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965324.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758297.aspx

77

TextTrimming="WordEllipsis™"
Style="{StaticResource PageHeaderTextStyle}" />

For the en-USlocale, we define ShoppingCartTitle.Text in the resource fileas "Shopping Cart." We
specify the .Text part so that the XAML runtime will override the Text property of the TextBlock
control with the value from the resource file. We also use this techniqueto set Button content
(ContentControl.Content).

Add contextual comments to the app resourcefile

Commentsinthe resource file provide contextualinformation that helps localizers more accurately
translate strings. For more info see How to prepare forlocalization.

Define the flow direction for all pages

We define the Page.FlowDirection property in the string resources fileto set the flow direction for

all pages. For languagesthat use left-to-right reading order, such as English or German, we define
"LeftToRight" asitsvalue. Forlanguages thatread right-to-left, such as Arabicand Hebrew, you
define thisvalue as "RightTolLeft". We also defined the flowdirection for all app bars by defining
TopAppBar.FlowDirection and BottomAppBar.FlowDirection in the resource file.

Ensure error messages areread from the resourcefile

It's importanttolocalize error messages strings, including exception message strings, because these
strings will appeartothe user. The AdventureWorks Shopper reference implementation uses an
instance of the ResourceLoaderAdapter classto retrieve error messages fromthe resource file for
your locale. This class uses aninstance of the ResourceLoader class to load strings from the resource
file. When we provide an error message when an exceptionisthrown, we use the
ResourceLoaderAdapterinstance to read the message text. The following code example shows how
the SubmitOrderTransactionAsync methodinthe CheckoutSummaryPageViewModel class uses the
ResourceLoaderAdapterinstance toretrieve error message stringsfromthe resource file.

C#: AdventureWorks.UILogic\ViewModels\CheckoutSummaryPageViewModel.cs

catch (ModelValidationException mvex)

{
errorMessage = string.Format(CultureInfo.CurrentCulture,
_resourcelLoader.GetString("GeneralServiceErrorMessage"),
Environment .NewLine, mvex.Message);
}

if (!string.IsNullOrWhiteSpace(errorMessage))
{

await _alertMessageService.ShowAsync (errorMessage,
_resourcelLoader.GetString("ErrorProcessingOrder"));

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.text.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.contentcontrol.content.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh967762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.flowdirection.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.resources.resourceloader.aspx

78

This code displays an exception error message to the user, if a ModelValidationException occurs
when submittingan order. Forthe en-US locale, the "GeneralServiceErrorMessage" string is defined
as "The following error messages were received fromthe service: {0} {1}," and the
"ErrorProcessingOrder" stringis defined as "There was an error processing yourorder." Other
locales would have messages that convey the same error message.

Note When creatingan instance of the ResourceLoader class that uses strings that are definedina
classlibraryand not in the executable project, the ResourceLoader class has to be passed a path to
the resourcesinthe library. The path must be specified as /project name/Resources/ (forexample,
/Microsoft.Practices.Prism.StoreApps/Strings/).

You can testyour app's localization by configuring the list of preferred languagesin Control Panel.
For more infoaboutlocalizingyourapp and makingit accessible, see How to prepare forlocalization,
Guidelinesforapp resources, and Quickstart: Translating Ul resources.

Enabling page accessibility

Accessibility is about making your app usable by people who have limitations thatimpede or prevent
the use of conventional userinterfaces. This typically means providing support for screenreaders,
implementing keyboard accessibility, and supporting high-contrast themes.

Accessibility support for Windows Store apps written in C#comes from the integrated support for
the Microsoft Ul Automation framework thatis presentinthe base classesand the built-in behavior
of the classimplementation for XAML control types. Each control class uses automation peersand
automation patternsthat reportthe control's role and content to Ul automation clients. If you use
non-standard controls you will be responsible for making the controls accessible.

Here are the tasks that we carried out to support page accessibility in the AdventureWorks Shopper
reference implementation:

e Setthe accessible name foreach Ul element. An accessible name is ashort, descriptive text
stringthat a screenreaderusesto announce a Ul element. Forexample, in AdventureWorks
Shopper XAML controls specify AutomationProperties.Automationld and
AutomationProperties.Name attached properties to make the control accessibleto screen

readers.

XAML: AdventureWorks.Shopper\Views\ItemDetailPage.xaml

<FlipView x:Name="flipView"
AutomationProperties.AutomationId="ItemsFlipView"
AutomationProperties.Name="Item Details"
TabIndex="1"
Grid.Row="1"
ItemsSource="{Binding Items}"
SelectedIndex="{Binding SelectedIndex, Mode=TwoWay}"
SelectedItem="{Binding SelectedProduct, Mode=TwoWay}">

http://msdn.microsoft.com/en-us/library/windows/apps/hh967762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh967766.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965329.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.automation.automationproperties.automationid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.automation.automationproperties.name.aspx

79

For more info see Exposing basicinformation about Ul elements.

e Overriddenthe ToString method of the ShippingMethod, ProductViewModel,
CheckoutDataViewModel, and ShoppingCartitemViewModel classes in orderto support
Windows Narrator. Wheninstances of these classes are bound to the view they are styled
using data templates, but Windows Narrator uses the result of the ToString overrides.

e Implemented keyboard accessibility. Ensure that the tab order of controls corresponds to
the visual order of controls, and that Ul elements that can be clicked can also be invoked by
usingthe keyboard. For more info see Implementing keyboard accessibility.

e Visuallyverified the Ul to ensure that the text contrast is appropriate, and that elements
render correctly in high-contrast themes. For more info see Meeting requirements for

accessible text and Supporting high contrast themes.

e Ran accessibility tools to verify the screen reading experience. For more info see Testing
your app for accessibility.

e Ensuredthat the app manifest follows accessibility guidelines. For more info see Meeting
requirements foraccessible text.

For more info see Accessibility for Windows Store apps using C#/VB/C++and XAML.

Navigating between pages

Navigation within a Windows Store app can resultfrom the user'sinteraction with the Ul or fromthe
app itselfasa result of internal logic-driven state changes. Navigation usually involves moving from
one page to anotherpage in the app. Insome cases, the app may implement complex logic to
programmatically control navigation to ensure that certain business requirements are enforced. For
example, the app may not allow the userto navigate away from a page withoutfirst ensuring that
the entered datais correct.

The AdventureWorks Shopper referenceimplementation typically triggers navigation requests from
userinteractioninthe views. These requests could be to navigate to a particularview or navigate
back to the previousview. In some scenarios, forexample if the app needs to navigate toa new view
when a command completes, the viewmodel willneed to send amessage to the view. In other
scenarios, you might wantto triggerthe navigationrequest directly from the viewwithout involving
the view model directly. When you're usingthe MVV M pattern, you want to be able to navigate
without using any code-behind in the view, and withoutintroducing any dependency on the view
implementation in the view model classes.

The INavigationAware interface, provided by the Microsoft.Practices.Prism.StoreApps library, allows

an implementing class to participate in a navigation operation. The interface defines two methods,
as showninthe following code example.

http://msdn.microsoft.com/en-us/library/windows/apps/hh868160.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/aa939428.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868161.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452680.aspx

80

C#: Microsoft.Practices.Prism.StoreApps\INavigationAware.cs

public interface InavigationAware

{
void OnNavigatedTo(object navigationParameter, NavigationMode navigationMode,
Dictionary<string, object> viewModelState);
void OnNavigatedFrom(Dictionary<string, object> viewModelState,
bool suspending);
}

The OnNavigatedFrom and OnNavigatedTo methods are called during a navigation operation. Inthe
view model class for the page being navigated from, its OnNavigatedFrom method is called before
navigation takes place. The OnNavigatedFrom method allows the page to save any state beforeiitis
disposed of. Inthe view model class forthe page being navigated to, its OnNavigatedTo method is
called after navigationis complete. The OnNavigatedTo method allows the newly displayed page to
initialize itselfby loading any page state, and by using any navigation parameters passed toit. For
example, the OnNavigatedTo method in the ItemDetailPageViewModel class accepts a product
numberas a parameterthatis usedto load the productinformation for display onthe
ItemDetailPage.

The ViewModel base class implements the INavigationAware interface, providing virtual
OnNavigatedFrom and OnNavigatedTo methods that save and load view model state, respectively.
This avoids each view model class having toimplement this functionality to support the suspend and
resume process. The view model classes for each page derive from the ViewModel class. The
OnNavigatedFrom and OnNavigatedTo methods can thenbe overriddenin the viewmodel class for
the page if any additional navigation logicis required, such as processing anavigation parameter
that has been passedtothe page.

Note The OnNavigatedFrom and OnNavigatedTo methodsinthe ViewModel base class control
loading and saving page state during navigation operations. For more info see Handling suspend,
resume, and activation.

Handling navigationrequests

The XAML Ul framework provides a built-in navigation model that uses Frame and Page elements
and works much like the navigationinaweb browser. The Frame control hosts Pages, and has a

navigation history thatyou can use to go back and forward through pages you've visited.

Prism provides the FrameNavigationService class that allows view models to perform navigation
operations without takingadependency on Ul types such as the Frame class. This class, which
implements the INavigationServiceinterface, uses the Frame instance created inthe
InitializeFrameAsync method in the MvvmAppBase class to perform the navigation requestforthe
app. The MvvmAppBase class creates an instance of the FrameNavigationService class by calling the

CreateNavigationService method, which is shown in the following code example.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx

81

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

private INavigationService CreateNavigationService(IFrameFacade rootFrame,
ISessionStateService sessionStateService)

{
var navigationService = new FrameNavigationService(rootFrame, GetPageType,
sessionStateService);
return navigationService;
}

The CreateNavigationService method creates aninstance of the FrameNavigationService class,
which takes the GetPageType delegatetoimplement a page type resolution strategy. This strategy
assumesthatthe views that define pagesare inthe AdventureWorks.Shopperassembly and that the
view names end with "Page".

Aftercreating the instance of the FrameNavigationService class the MvvmAppBase class calls the
Onlnitialize overridein the App class to registerservice instances with the Unity dependency
injection container. When view model classes are instantiated, the containerwill inject the
dependenciesthatare requiredincluding the FrameNavigationService instance. View models can
theninvoke the Navigate method on the FrameNavigationService instance to cause the app to
navigate toa particularviewinthe app or the GoBack method toreturnto the previousview. The
following code example shows the Navigate method in the FrameNavigationService class.

C#: Microsoft.Practices.Prism.StoreApps\FrameNavigationService.cs

public bool Navigate(string pageToken, object parameter)

{
Type pageType = _navigationResolver(pageToken);

if (pageType == null)
{
var resourceloader = ResourcelLoader.GetForCurrentView
(Constants.StoreAppsInfrastructureResourceMapld);
var error = string.Format(CultureInfo.CurrentCulture,
resourcelLoader.GetString
("FrameNavigationServiceUnableResolveMessage"),
pageToken);
throw new ArgumentException(error, "pageToken");

// Get the page type and parameter of the last navigation to check if we

// are trying to navigate to the exact same page that we are currently on

var lastNavigationParameter =
_sessionStateService.SessionState.ContainsKey(LastNavigationParameterKey)
? _sessionStateService.SessionState[LastNavigationParameterKey] : null;

var lastPageTypeFullName =
_sessionStateService.SessionState.ContainsKey(LastNavigationPageKey) °?
_sessionStateService.SessionState[LastNavigationPageKey] as string :
string.Empty;

82

if (lastPageTypeFullName != pageType.FullName ||
IAreEquals(lastNavigationParameter, parameter))

{

return _frame.Navigate(pageType, parameter);

}

return false;

The Navigate method accepts a string parameterthat represents the page to be navigatedto,and a
navigation parameterthatrepresentsthe datato passto the page beingnavigatedto. Any data
being passedtothe page being navigated to will be received by the OnNavigatedTo method of the
view model class forthe page type. A null value is used as the navigation parameterif no data needs
to be passedto the page being navigated to.

Note The FrameNavigationService class usesthe Frame class to perform the navigation process.
Thisincludes managing the navigation history, the parameters passed in each navigation request,
and serializing the navigation state in orderto save and restore the app state whenitresumes
following termination. Therefore, any parameter passed during navigation must be supported for
serialization by the Frame class, which limits the parameterto basictypes such as string, char,
numericand GUID types.

Placing the navigation logicin view model classes means that the navigation logiccan be exercised
through automated tests. Inaddition, the view model can then implement logicto control navigation
to ensure that certain businessrules are enforced. Forinstance, an app may not allow the userto
navigate away from a page without first ensuring that the entered datais correct.

Navigating to the hub page when AdventureWorks Shopperisactivated

When the AdventureWorks Shopperreferenceimplementation starts up, and after the
bootstrapping process has completed, the OnLaunchApplication method inthe App class navigates
to the app's hub page, provided that the app hasn't been launched from a secondarytile.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx

83

ADVENTURE e e
WDRI(S sarch for a Produc

A

$1364.50

Road- 750 Black, 52 HL Mountain Frame

Entry level adult bie; offers a. Each frame s hand-craft

$577.12

Mountain-400-W Red, 42 LL Mountain Handld

This bike delivers a high-level of performance on a budget. It i responsive and. High-performance carbon road fock.. il-purpose bar for on o

The App class derives from the MvvmAppBase class in the Microsoft.Practices.Prism.Store Apps
library that in turn derives from the Windows.Ul.Xaml.Application class and overrides the
OnLaunched method. The OnLaunched method override calls the OnLaunchApplication methodin
the App class, whichisshownin the following code example.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx

84

C#: AdventureWorks.Shopper\App.xaml.cs

protected override Task OnLaunchApplication(LaunchActivatedEventArgs args)

{
if (args != null && !string.IsNullOrEmpty(args.Arguments))

{
// The app was launched from a Secondary Tile
// Navigate to the item's page
NavigationService.Navigate("ItemDetail", args.Arguments);
}
else
{
// Navigate to the initial page
NavigationService.Navigate("Hub", null);
}

Window.Current.Activate();
return Task.FromResult<object>(null);

This code example shows how AdventureWorks Shopper calls the Navigate method of the
NavigationService objecttoload contentthat is specified by the page type.

Note The OnLaunchApplication method returns a Task, allowingittolaunchalong running
operation. If youdon't have a longrunning operationto launch you should return an empty Task.

Invoking navigation using behaviors

Navigationis usually triggered from aview by a useraction. For instance, each pageinthe app has a
navigation bar which contains Button controls that allow the userto navigate to the hub page and
the shopping cart page. Ratherthan implement this functionality separately on each page, itis
implemented as a user control named TopAppBarUserControl that is added to each page. The
following code example shows the Button controls from the TopAppBarUserControl that allow the
userto navigate tothe hub page and the shopping cart page.

XAML: AdventureWorks.Shopper\Views\TopAppBarUserControl.xaml

<StackPanel Orientation="Horizontal" HorizontalAlignment="Left" Height="125"
Margin="0,15,0,0">
<Button x:Name="HomeAppBarButton" x:Uid="HomeAppBarButton"

AutomationProperties.AutomationId="HomeAppBarButton"

Margin="5,0"

Style="{StaticResource HouseStyle}"

Content="Home"

Height="125">

<Interactivity:Interaction.Behaviors>
<Core:EventTriggerBehavior EventName="Click">

<Core:NavigateToPageAction
TargetPage="AdventureWorks.Shopper.Views.HubPage"/>

</Core:EventTriggerBehavior>

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx

85

</Interactivity:Interaction.Behaviors>

</Button>

<Button x:Uid="ShoppingCartAppBarButton" x:Name="ShoppingCartAppBarButton"
AutomationProperties.AutomationId="ShoppingCartAppBarButton"

Margin="0,0,5,0"
Height="125"

Style="{StaticResource CartStyle}"

Content="Shopping Cart">

<Interactivity:Interaction.Behaviors>
<Core:EventTriggerBehavior EventName="Click">
<Core:NavigateToPageAction
TargetPage="AdventureWorks.Shopper.Views.ShoppingCartPage"/>
</Core:EventTriggerBehavior>
</Interactivity:Interaction.Behaviors>

</Button>
</StackPanel>

Note Button controlsare usedinthe TopAppBarUserControl rather than AppBarButton controls,
because theirdefaultappearance is rectangular. The AppBarButton control's defaultappearanceis

circularinstead of rectangular.

In this scenario, navigationis triggered from the Button controls by using the EventTriggerBehavior
and NavigateToPageAction interactions provided by the Behaviors SDK. The NavigateToPageAction
interaction's TargetPage property specifies the page that will be navigated to.

When you want to pass eventarguments to a navigation interaction you should use the custom
NavigateWithEventArgsToPageAction interaction, which enables the ItemClick event of the
MultipleSizedGridView to invoke navigation to anew page, and passesa propertyvalue asa

parameterthat's specified by the action's EventArgsParameterPath property.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<awcontrols:MultipleSizedGridView x:Name="itemsGridView"

AutomationProperties.AutomationId=
"HubPageItemGridView"
AutomationProperties.Name="Grouped Items"
Margin="0,0,0,0"
Padding="120,0, 40, 46"
ItemsSource="{Binding Source=
{StaticResource groupedItemsViewSource}}"
ItemTemplate="{StaticResource
AWShopperItemTemplate}"
MinimalItemTemplate="{StaticResource
ProductTemplateMinimal} "
SelectionMode="None"
ScrollViewer.IsHorizontalScrollChainingEnabled=
"False"
IsItemClickEnabled="True"
Loaded="itemsGridView_Loaded">

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbarbutton.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn457340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.targetpage.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx

86

<interactivity:Interaction.Behaviors>
<core:EventTriggerBehavior EventName="ItemClick">
<awbehaviors:NavigateWithEventArgsToPageAction
TargetPage="AdventureWorks.Shopper.Views.ItemDetailPage"

EventArgsParameterPath="ClickedItem.ProductNumber" />
</core:EventTriggerBehavior>

</interactivity:Interaction.Behaviors>

The EventTriggerBehavior binds the ItemClick event of the MultipleSizedGridView to the
NavigateWithEventArgsToPageAction. Therefore, when a GridViewltemis selected the
NavigateWithEventArgsToPageAction is executed, which navigates from the HubPage to the
ItemDetailPage, passingin the ProductNumber of the Clickedltem to the ItemDetailPage.

For more info see Implementing behaviors to supplement the functionality of XAMLelements.

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx

87

Using touch in a Windows Store business app using C# and XAML

Summary

e Whenpossible, use the standard touch gestures and controls that Microsoft Windows
provides.

e Providevisual feedback when atouchinteraction occurs.

e Use data bindingto connect standard Windows controls to the view models thatimplement
the touch interaction behavior.

Learn how to implement the tap, slide, swipe, pinch, and stretch touch interactionsinaWindows
Store business app. Databindingis used to connect standard Windows controls that use touch
gesturestothe view modelsthatimplementthose gestures.

You will learn

e How the Windows touch language was used in AdventureWorks Shopper.

Applies to

e WindowsRuntime for Windows 8.1
e CH
¢ Extensible Application Markup Language (XAML)

Making key decisions

Touch interactionsin Windows use physical interactions to emulate the direct manipulation of Ul
elements and provideamore natural, real-world experience when interacting with those elements
on the screen. The following list summarizes the decisions to make when implementing touch
interactionsinyourapp:

e Doesthe Windows touch language provide the experienceyourapp requires?
e What size should yourtouch targets be?
e Whendisplayingalistofitems, do the touch targetsfor each item needto be identically
sized?
e Shouldyouprovide feedback to touch interactions?
e Shouldtouchinteractions be reversible?
e How longshouldatouch interactionlast?
e Whenshouldyou use staticgestures versus manipulation gestures?
e Doyouneedtodesignandimplementacustominteraction?
o Doesthe custom interactionrequirespecifichardware supportsuch as a minimum
number of touch points?
o How willthe custominteraction be provided onanon-touch device?

88

Windows provides a concise set of touch interactions that are used throughout the system. Applying
this language consistently makes yourapp feel familiarto what users already know, increasing user
confidence by making yourapp easiertolearn and use. Most apps will not require touch interactions
that are not part of the Windows touch language. For more info see Touch interaction design.

There are no definitive recommendations forhow large a touch target should be or where it should
be placed withinyourapp. However, there are some guidelines that should be followed. The size
and targetarea of an objectdepend onvarious factors, including the user experience scenarios and
interaction context. They should be large enough to supportdirect manipulation and providerich
touch interaction data. Itis acceptable in some userexperience scenarios fortouch targetsina
collection of items to be differentsizes. Forinstance, when displaying a collection of products you
could choose to display some products at a larger size than the majority of the collection, inorderto
draw attention to specificproducts. Touch targets should react by changing color, changing size, or
by moving. Non-moving elements should return to their default state when the userslides or lifts
theirfingeroff the element. In addition, touch interactions should be reversible. You can make your
app safe to explore using touch by providing visual feedback to indicate what will happen when the
userliftstheirfinger. For more info see Guidelines fortargeting and Guidelines forvisual feedback.

Touch interactions that require compound or custom gestures need to be performed withina
certainamountof time. Try to avoid timed interactions like these because they can often be
triggered accidentally and can be difficult to time correctly. For more info see Responding to user

interaction.

Staticgestures events are triggered afteraninteractionis complete and are used to handle single-
fingerinteractions such as tapping. Manipulation gesture events indicatean ongoinginteraction and
are used fordynamicmulti-touch interactions such as pinching and stretching, and interactions that
useinertiaandvelocity data such as panning. This data is then used to determine the manipulation
and performthe interaction. Manipulation gesture events startfiringwhen the usertouchesthe
elementand continue until the userlifts theirfinger orthe manipulationis cancelled. For more info
see Gestures, manipulations, andinteractions.

Only create a custom interactionandif there is a clear, well-defined requirement and nointeraction
from the Windows touch language can supportyourscenario. If an existinginteraction provides the
experience yourapp requires, adaptyourapp to support thatinteraction. If you do need to design
and implement a custominteraction you will need to consideryourinteraction experience. If the
interaction depends onitems such as the number of touch points, velocity, and inertia, ensure that
these constraintsand dependencies are consistentand discoverable. Forexample, how users
interpretspeed can directly affect the functionality of yourapp and the users satisfaction with the
experience. Inaddition, youwillalso have to design and implement an equivalent version of the
interaction for non-touch devices. Formore info see Responding to userinteraction.

Important To avoid confusing users, do not create custom interactions that duplicate or redefine
existing, standard interactions.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465342.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj883700.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx

89

Touch in AdventureWorks Shopper

As previously described in Designing the UX, touch is more than simply an alternativeto usinga
mouse. We wanted to make touch an integrated part of the app because touch can add a personal

connection between the userandthe app. Touch isalso a natural way to enable usersto browse and
select products. Inaddition, we use SemanticZoom to highlight how levels of related complexity can
easily be navigated. With SemanticZoom users can easily visualize high level contentsuch as
categories,andthenzoominto those categoriestoview category items.

The AdventureWorks Shopper referenceimplementation uses the Windows touch language. We use
the standard touch interactions that Windows provides for these reasons:

e The Windows Runtime provides an easy way to work with them.

e We don'twant to confuse users by creating custom interactions.

e We wantusersto use the interactions that they already know to explore the app, and not
needtolearn newinteractions.

We alsowanted AdventureWorks Shopperto be intuitive for users who use amouse or similar
pointing device. The built-in controls work as well with amouse or other pointing device as they do
with touch. So whenyou design fortouch, you also get mouse and pen functionality. Forexample,
you can use the left mouse button toinvoke commands. In addition, mouse and keyboard
equivalents are provided for many commands. Forexample, you can use the right mouse button to
activate the app bar, and holding the Ctrl key down while scrolling the mouse wheelcontrols
SemanticZoom interaction. For more info see Guidelines forcommon userinteractions.

The document Touch interaction design explains the Windows touch language. The following

sections describe how we applied the Windows touch language in AdventureWorks Shopper.
Tap for primary action
Tappingan elementinvokesits primary action. Forexample, onthe GroupDetailPage, youtapona

product to navigate to the ItemDetailPage. The following diagram shows an example of the tap for
primary action gesture in the AdventureWorks Shopper reference implementation.

http://msdn.microsoft.com/en-us/library/windows/apps/jj883702.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx

90

ntain B

Mountain-500 Red, 40 Mountain-500 Red, 5
$564.99 $£564.99
Mountain- ed, 42 Mountain-500 Black,
$564.99 40

$£539.99
Mountain-500 Red, 44 Aountain=-500 Black,
Mountain-500 Red, 48 rkunhln 500 Black,

5539 99

$564.99

1 Reviews

astikulum

Malis

Products are displayed on the GroupDetailPage in the AutoRotatingGridView custom control. This
control displays acollection of itemsin aview state aware grid. This control isan ltemsControl, soit
can contain a collection of items of any type. A benefit of using this control isthatit derives fromthe
GridView control that has touch capabilities builtin.

To populate the AutoRotatingGridView custom control you can add objects directly toits Items
collection orbindits ItemsSource property to a collection of dataitems. Whenyou additemsto a
GridView-derived control they are automatically placed in a GridViewltem container that can be
styledto change how an itemisdisplayed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.items.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemssource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx

91

XAML: AdventureWorks.Shopper\Views\GroupDetailPage.xaml

<awcontrols:AutoRotatingGridView
Grid.Row="1"
x:Name="itemsGridView"
AutomationProperties.AutomationId="ItemsGridView"
AutomationProperties.Name="Items In Category"
TabIndex="1"
Margin="0,0,0,0"
Padding="120,90, 30, 50"
ItemsSource="{Binding Items}"
ItemTemplate="{StaticResource ProductTemplate}"
MinimalItemTemplate="{StaticResource ProductTemplateMinimal}"
SelectionMode="None"
IsItemClickEnabled="True"
Loaded="itemsGridView_Loaded">
<interactivity:Interaction.Behaviors>
<core:EventTriggerBehavior EventName="ItemClick">
<awbehaviors:NavigateWithEventArgsToPageAction
TargetPage="AdventureWorks.Shopper.Views.ItemDetailPage"
EventArgsParameterPath="ClickedItem.ProductNumber"/>
</core:EventTriggerBehavior>
</interactivity:Interaction.Behaviors>
<awcontrols:AutoRotatingGridView.ItemsPanel>
<ItemsPanelTemplate>
<WrapGrid Orientation="Vertical" />
</ItemsPanelTemplate>
</awcontrols :AutoRotatingGridView.ItemsPanel>
<awcontrols:AutoRotatingGridView.PortraitItemsPanel >
<ItemsPanelTemplate>
<WrapGrid Orientation="Horizontal"/>
</ItemsPanelTemplate>
</awcontrols :AutoRotatingGridView.PortraitItemsPanel>
<awcontrols:AutoRotatingGridView.MinimalItemsPanel>
<ItemsPanelTemplate>
<StackPanel HorizontalAlignment="Stretch" Margin="0,0,5,0"/>
</ItemsPanelTemplate>
</awcontrols:AutoRotatingGridView.MinimalItemsPanel >
<awcontrols:AutoRotatingGridView. ItemContainerStyle>
<Style TargetType="Control">
<Setter Property="HorizontalContentAlignment" Value="Stretch" />
<Setter Property="Padding" Value="5,5,5,5"/>
</Style>
</awcontrols :AutoRotatingGridView.ItemContainerStyle>
</awcontrols:AutoRotatingGridView>

The ItemsSource property specifies that the AutoRotatingGridView will bind to the Items property
of the GroupDetailPageViewModel class. The Items propertyisinitialized to a collection of type
ProductViewModel when the GroupDetailPage is navigated to.

92

The appearance of individual itemsin the AutoRotatingGridView is defined by the temTemplate
property. A DataTemplate is assigned to the ltemTemplate property that specifiesthateachitemin
the AutoRotatingGridView will display the product subtitle, image, and description.

When a user clicks an itemin the AutoRotatingGridView the app navigates to the ItemDetailPage.
Thisbehavioris enabled by settingthe SelectionMode property to None, setting the
IsltemClickEnabled property to true, and handling the ItemClick event. The EventTriggerBehavior
binds the ItemClick event of the AutoRotatingGridView to the
NavigateWithEventArgsToPageAction. Sowhen aGridViewltemis selected the
NavigateWithEventArgsToPageAction is executed, which navigates from the GroupDetailPage to
the ItemDetailPage, passingin the ProductNumber of the Clickedltem to the ItemDetailPage. For
more info about behaviors see Implementing behaviors to supplement the functionality of XAML
elements.

For more info see Adding ListView and GridView controls. For more info about the
AutoRotatingGridView custom control see Creating a custom GridView control that responds to

layout changes.

Slide to pan

The slide gesture is primarily used for panninginteractions. Panningis atechnique for navigating
short distances oversmall sets of content within asingle view. Panningis only necessary when the
amount of contentinthe view causesthe contentareato overflow the viewable area. Formore info
see Guidelinesforpanning. One of the uses of the slide gesture inthe AdventureWorks Shopper
reference implementationisto pan among productsina category. For example, when you browseto
a product, you can use the slide gesture to navigate to the previous or next productinthe
subcategory. The following diagram shows an example of the slide to pan gesture in
AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.datatemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.selectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewselectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isitemclickenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780618.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465310.aspx

93

Product Details

$539.99

17 Rurabena:
ok

Saitabd

In AdventureWorks Shopper this gesture isimplemented by the FlipView control. The FlipView
control displays a collection of items, and lets you flip through them one at a time. The FlipView
control is derived from the ItemsControl class, likethe GridView control, and so it shares many of
the same features. A benefit of using the FlipView control is thatit has touch capabilities builtin,
removingthe need foradditional code.

To populate a FlipView you can add objects directly toits Iltems collection or bind its ltemsSource
propertyto a collection of dataitems. Whenyou additemstoa FlipView they are automatically
placedina FlipViewltem container that can be styled to change how an itemis displayed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.flipview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.items.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemssource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.flipviewitem.aspx

94

XAML: AdventureWorks.Shopper\Views\ItemDetailPage.xaml

<FlipView x:Name="flipView"
AutomationProperties.AutomationId="ItemsFlipView"
AutomationProperties.Name="Item Details"”
TabIndex="1"
Grid.Row="1"
ItemsSource="{Binding Items}"
SelectedIndex="{Binding SelectedIndex, Mode=TwoWay}"
SelectedItem="{Binding SelectedProduct, Mode=TwoWay}">

The ItemsSource property specifiesthatthe FlipView binds to the Items property of the
ItemDetailPageViewModel class, whichis a collection of type ProductViewModel.

For more info see Quickstart: Adding FlipView controls, How to add a flip view, Guidelines for

FlipView controls.

Swipe to select, command, and move

With the swipe gesture,youslide yourfinger perpendicularto the panning direction to select
objects. The ability to use the swipe gesture depends upon the value of the SelectionMode property
on the ListViewBase-derived control. A value of None indicates thatitem selectionis disabled, while

avalue of Single indicates that single items can be selected using this gesture.

In the AdventureWorks Shopperreference implementation, the swipe gesturecan be usedto select
items on the ChangeDefaultsFlyout, the CheckoutSummaryPage, and the ShoppingCartPage. When
an itemisselected on the ShoppingCartPage the bottom app bar appears with the app bar
commands applyingto the selected item. The following diagram shows an example of the swipe to
select, command, and move gesture in AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/hh781233.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj150601.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780630.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780630.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.selectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewselectionmode.aspx

95

Shopping Cart

$120,00

D 4=

Tatal:

£120.00

The IsSwipeEnabled property of the GridView control indicates whetheraswipe gesture isenabled
for the control. Setting IsSwipeEnabled to false disables some default touch interactions, soit

should be setto true whenthese interactions are required. Forexample, when IsSwipeEnabled is
false:

e Ifitemselectionisenabled, ausercandeselectitems by right-clicking with the mouse, but
cannot deselectanitem with touch by using the swipe gesture.

e If CanDragltems istrue, a usercan drag items with the mouse, but not with touch.

o If CanReorderltemsis true, a user can reorderitems with the mouse, but not with touch.

The AdventureWorks Shopper referenceimplementation does not explicitly set the IsSwipeEnabled
property, asits defaultvalue is true. The following code example shows how anitemon the

ShoppingCartPage can be selected with the swipe gesture.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isswipeenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.candragitems.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.canreorderitems.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isswipeenabled.aspx

96

XAML: AdventureWorks.Shopper\Views\ShoppingCartPage.xaml

<awcontrols:AutoRotatingGridView x:Name="ShoppingCartItemsGridView"
x :Uid="ShoppingCartItemsGridView"
AutomationProperties.AutomationId=
"ShoppingCartItemsGridView"
SelectionMode="Single"
Width="Auto"
Grid.Row="2"
Grid.Column="1"
Grid.RowSpan="2"
VerticalAlignment="Top"
ItemsSource=
"{Binding ShoppingCartItemViewModels}"
SelectedItem=
"{Binding SelectedItem, Mode=TwoWay}"
ItemTemplate=
"{StaticResource ShoppingCartItemTemplate}
MinimalItemTemplate=
"{StaticResource
ShoppingCartItemTemplateMinimal}"”
Margin="0,0,0,0">
<awcontrols:AutoRotatingGridView.ItemsPanel>
<ItemsPanelTemplate>
<WrapGrid Orientation="Vertical"
TtemWidth="400" />
</ItemsPanelTemplate>
</awcontrols :AutoRotatingGridView.ItemsPanel>
<awcontrols:AutoRotatingGridView.PortraitItemsPanel >
<ItemsPanelTemplate>
<WrapGrid Orientation="Horizontal"
ItemWidth="400" />
</ItemsPanelTemplate>
</awcontrols:AutoRotatingGridView.PortraitItemsPanel>
<awcontrols:AutoRotatingGridView.MinimalItemsPanel>
<ItemsPanelTemplate>
<StackPanel HorizontalAlignment="Left" />
</ItemsPanelTemplate>
</awcontrols :AutoRotatingGridView.MinimalItemsPanel >
<Style TargetType="Control">
<Setter Property="HorizontalAlignment"
Value="Stretch" />
<Setter Property="HorizontalContentAlignment"
Value="Left" />

</Style>
</awcontrols:AutoRotatingGridView>

The Selectedltem property of the AutoRotatingGridView custom control can be used to retrieve the
itemselected by the swipe gesture. Here the Selectedltem property performs atwo-way bindingto
the Selectedltem property of the ShoppingCartPageViewModel class, whichis shownin the
following code example.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.selector.selecteditem.aspx

97

C#: AdventureWorks.UILogic\ViewModels\ShoppingCartPageViewModel.cs

public ShoppingCartItemViewModel SelectedItem

{
get { return _selectedItem; }
set
{
if (SetProperty(ref _selectedItem, value))
{
if (_selectedItem != null)
{
// Display the AppBar
IsBottomAppBarOpened = true;
IncrementCountCommand.RaiseCanExecuteChanged();
DecrementCountCommand .RaiseCanExecuteChanged();
}
else
{
IsBottomAppBarOpened = false;
}
OnPropertyChanged("IsItemSelected");
}
}
}

When the Selectedltem property is set the IsBottomAppBarOpened property will be setto control
whetherornot to display the bottom app bar.

For more info about the AutoRotatingGridView custom control see Creatinga custom GridView

control that responds to layout changes.

Pinch and stretch to zoom

Pinch and stretch gestures are notjust for magnification, or performing opticalzoom. The
AdventureWorks Shopper reference implementation uses SemanticZoom to help users navigate
between large sets of data. SemanticZoom enables you to switch between two different views of
the same content. You typically have amain view of your contentand a second view that allows
users to quickly navigate throughit. Users can pan or scroll through categories of content, and then
zoomintothose categoriesto view detailed information. The following diagram shows an example
of the pinch and stretch to zoom gesture in AdventureWorks Shopper.

98

$539.99 $1364.50

Rood-750 Black. 52 HL Mowatain Frame

{

$577.12 $229.49

Mosntan 420-W Red, 42 L Fork LL Mosntain Mand

Today’s Deals i Components

5 Products 95 Products 130 Products

Accessories Clothing

33 Products

To provide this zooming functionality, the SemanticZoom control usestwo other controls—oneto
provide the zoomed-in view and one to provide the zoomed-out view. These controls can be any two
controls that implement the ISemanticZoominformation interface. XAML provides the ListView and
GridView controls that meet this criteria.

Tip Whenyou use a GridView in a SemanticZoom control, always setthe
ScrollViewer.lsHorizontalScrollChainingEnabled attached property to false on the ScrollViewer

that's inthe GridView's control template.

For the zoomed-inview, we display a MultipleSizedGridView custom control that binds to products
that are grouped by sub-category. The MultipleSizedGridView also shows atitle (the category) for
each group.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.semanticzoom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.isemanticzoominformation.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.semanticzoom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.scrollviewer.ishorizontalscrollchainingenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.scrollviewer.aspx

99

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<awcontrols:MultipleSizedGridView x:Name="itemsGridView"
AutomationProperties.AutomationId=
"HubPageItemGridView"
AutomationProperties.Name="Grouped Items"
Margin="0,0,0,0"
Padding="120,0, 40, 46"
ItemsSource="{Binding Source=
{StaticResource groupedItemsViewSource}}"
ItemTemplate=
"{StaticResource AWShopperItemTemplate}"
MinimalItemTemplate=
"{StaticResource ProductTemplateMinimal}"
SelectionMode="None"
ScrollViewer.IsHorizontalScrollChainingEnabled=
"False"
IsItemClickEnabled="True"
Loaded="itemsGridView_Loaded">

The ItemsSource property specifies the itemsto be displayed by the MultipleSizedGridView. The
groupeditemsViewSource staticresource is a CollectionViewSource that provides the source data
for the control.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<CollectionViewSource x:Name="groupedItemsViewSource"
Source="{Binding RootCategories}"
IsSourceGrouped="true"
ItemsPath="Products" />

The RootCategories property on the HubPageViewModel specifies the datathatis boundto the
MultipleSizedGridView for the zoomed-in view. RootCategories is a collection of
CategoryViewModel objects. The ItemsPath property refers to the Products property of the
CategoryViewModel class. Therefore, the MultipleSizedGridView will show each product grouped
by the category it belongs to.

For the zoomed-outview, we display a GridView that binds to filled rectangles for each category.
Within each category the category title and number of productsis displayed.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<GridView x:Name="zoomedOutGrid"
Padding="120,0,0,0"
Foreground="White"
AutomationProperties.AutomationId="HubPageGridView"
ScrollViewer.IsHorizontalScrollChainingEnabled="False"
ItemTemplate="{StaticResource AWShopperItemTemplateSemanticZoom}">

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.collectionviewsource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.collectionviewsource.itemspath.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx

100

For more info about SemanticZoom, see Adding SemanticZoom controls, and Guidelines for
SemanticZoom. For more info about the MultipleSizedGridView custom control see Creatinga
custom GridView control that displays items at multiple sizes. For more info about the
AutoRotatingGridView custom control see Creating a custom GridView control that responds to

layout changes.

Swipe from edge for app commands

When there are relevant commands to display, the Adventure Works Shopper reference
implementation displays the app barwhen the userswipesfromthe bottom ortop ed ge of the
screen. Every page can define anavigation bar, a bottom app bar, or both. For instance,
AdventureWorks Shopper displays both when you activate the app bars on the ShoppingCartPage.
The following diagram shows an example of the swipe from edge forapp commands gesture in
AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/hh780622.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465319.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465319.aspx

101

. u =

Todal [bems: 7 b Wicaintin 400 W Red, 43

Discount Codes

Total:

The AppBar and CommandBar controls are toolbars for displaying app-specificcommands.
AdventureWorks Shopperdisplays app bars on each page. The Page.TopAppBar property can be
used to define the navigation bar, with the Page.BottomAppBar property being used to define the
bottom app bar. Each of these properties will contain either an AppBar or CommandBar control that
holds the app bar's Ul components. In general, you should use the bottom app barfor contextual
commands that act on the currently selected item on the page. Use the navigation barfor
navigational elements that move the userto a different page.

AdventureWorks Shopper uses both AppBar and CommandBar controls. Bottom app bars are
implemented by the CommandBar control, using AppBarButtons that define the commands that will

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.commandbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.topappbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.bottomappbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.commandbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbarbutton.aspx

102

appearon the app bar. A CommandBar must use AppBarButtons to display commands, and the
default appearance of an AppBarButton is circular. Using a CommandBar control ensures that the
commands will be laid out automatically, and resized when the app size changes.

AdventureWorks Shopperimplements the navigation bar foreach page as a usercontrol named
TopAppBarUserControl. This user control defines the Button controls that will appearinthe

navigation bar. Buttons are used to easily display non-circularcommands, and must be placed inside
an AppBar control.

XAML: AdventureWorks.Shopper\Views\TopAppBarUserControl.xaml

<StackPanel Orientation="Horizontal" HorizontalAlignment="Left" Height="125"
Margin="0,15,0,0">
<Button x:Name="HomeAppBarButton" x:Uid="HomeAppBarButton"
AutomationProperties.AutomationId="HomeAppBarButton"
Margin="5,0"
Style="{StaticResource HouseStyle}"
Content="Home"
Height="125">
<Interactivity:Interaction.Behaviors>
<Core:EventTriggerBehavior EventName="Click">
<Core:NavigateToPageAction
TargetPage="AdventureWorks.Shopper.Views.HubPage"/>
</Core:EventTriggerBehavior>
</Interactivity:Interaction.Behaviors>
</Button>
<Button x:Uid="ShoppingCartAppBarButton" x:Name="ShoppingCartAppBarButton"
AutomationProperties.AutomationId="ShoppingCartAppBarButton"
Margin="0,0,5,0"
Height="125"
Style="{StaticResource CartStyle}"
Content="Shopping Cart">
<Interactivity:Interaction.Behaviors>
<Core:EventTriggerBehavior EventName="Click">
<Core:NavigateToPageAction
TargetPage="AdventureWorks.Shopper.Views.ShoppingCartPage"/>
</Core:EventTriggerBehavior>
</Interactivity:Interaction.Behaviors>
</Button>
</StackPanel>

The VisualStateAwarePage.TopAppBar property on each page then usesthe
TopAppBarUserControl to define the navigation bar.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<prism:VisualStateAwarePage. TopAppBar>
<AppBar Style="{StaticResource AppBarStyle}"
x :Uid="TopAppBar">
<views:TopAppBarUserControl />

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.aspx

103

</AppBar>
</prism:VisualStateAwarePage.TopAppBar>

The following diagram shows the navigation bar buttons for each page.

Shopping Cart

Whenan itemon a page is selected, the app bar isshownin orderto display contextual commands,
by setting the IsOpen property onthe CommandBar control. If you have contextual commandson
an app bar, the mode should be set to sticky while the context exists so that the bar doesn't
automatically hide when the userinteracts with the app. When the contextis nolonger present,
sticky mode can be turned off. This can be achieved by setting the IsSticky property onthe
CommandBar control.

For more information see Adding app bars, How to use an app bar in different views, Controls, and

Guidelinesforapp bars.

Swipe from edge for system commands

Users can swipe fromthe edge of the screentoreveal app bars and charms, or to display previously
used apps. Therefore, itisimportant to maintain a sufficient distance between app controls and the
screen edges. The following diagram shows an example of the swipefrom edge for system
commands gesture in AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.isopen.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.issticky.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781230.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj662742.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/bg182878.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781231.aspx

104

ing Cart

Shopping Cart

Tatal items 476049 WS 400 W Red 42

Discaunt Codes: i Thia
Total: §577.1 E"(o e

[e] $577.12

For more infosee Laying outan app page.

http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx

105

Validating user input in a Windows Store business app using C#,
XAML, and Prism
Summary

e Derive model classes from the ValidatableBindableBase class, provided by the
Microsoft.Practices.Prism.StoreApps library, in order to participate in client-side validation.

e Specifyvalidation rules for model properties by adding dataannotation attributes to the
properties.

e Callthe ValidatableBindableBase.ValidateProperties method tovalidateall the properties
ina model objectthat possess an attribute that derives from the ValidationAttribute
attribute.

Learn how to validate form-based userinput, both synchronously and asynchronously, ina Windows
Store business app that uses Prism for the Windows Runtime. Prism demonstrates the ability to
validate model dataonthe client oron the server, and pass the errors back to the clientsothat the
AdventureWorks Shopperreference implementation can display themforuser correction.

You will learn

e How to validate datastoredinabound model object.

e How to specify validation rules for model properties by using dataannotations.

e How to triggervalidation when property values change.

e How to manually triggervalidation.

e How to triggerserverside validation.

e How to highlightvalidation errors with behaviors.

e How to save validation errors whenthe app suspends, and restore them when the appis
reactivated after termination.

Applies to

e Windows Runtime for Windows 8.1
o CH
e Extensible Application Markup Language (XAML)

Making key decisions

Any app that acceptsinputfrom users should ensure that the data is valid. An app could, for
example, check thatthe input contains only charactersin a particularrange, is of a certainlength, or
matches a particular format. Without validation, a usercan supply data that causesthe app to fail.
Validation enforces business rules, and prevents an attacker frominjecting malicious data.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx

106

The following list summarizes the decisions to make whenimplementing validation in your app:

e Shouldlvalidate userinputonthe client, onthe server, oron both?

e Shouldlvalidate userinputsynchronously orasynchronously?

e Shouldlvalidate userinputinview model objects orin model objects?

e How should|specifyvalidation rules?

e How shouldInotifythe useraboutvalidation errors?

e What approach should | use for saving validation errors when the app suspends?

Validation can be performed client-side, server-side, or both. Validation on the client provides a
convenient way forthe userto correct input mistakes without round trips tothe server. Validation
on the servershould be used when server-side resources are required, such as a list of valid values
storedina database, against which the input can be compared. Although client-side validation s
necessary, youshould notrelysolely onitbecause it can easily be bypassed. Therefore, you should
provide client-side and server-side validation. This approach provides a security barrier that stops
malicious users who bypass the client-side validation.

Synchronous validation can check the range, length, or structure of userinput. Userinput should be
validated synchronously whenitis captured.

User inputcould be validated in view model objects orin model objects. However, validating datain
view models often means duplicating model properties. Instead, view models can delegate
validationtothe model objects they contain, with validation then being performed on the model
objects. Validation rules can be specified onthe model properties by using dataannotations that
derive fromthe ValidationAttribute class.

Users should be notified about validation errors by highlighting the control that contains the invalid
data, and by displayingan error message thatinforms the user why the data isinvalid. There are
guidelines and requirements for the placement of error messagesin Windows Store apps. For more
infosee Guidelines fortextinput.

When a suspended appisterminated and laterreactivated by the operating system, the app should
returnto its previous operationaland visual state. If yourappis on a data entry page whenit
suspends, userinputand any validation error messages should be saved to disk, and restored if the
app isterminated and subsequently reactivated. For more info see Guidelines forapp suspend and
resume.

Validation in AdventureWorks Shopper using Prism

The AdventureWorks Shopper referenceimplementation uses the
Microsoft.Practices.Prism.StoreApps library to perform client-side and server-side validation.

Synchronous validation of data stored in model objectsis performed client-sidein orderto check the
range, length, and structure of userinput. Validation thatinvolves server-side business rules, such as
ensuringthatentered zip codes are valid for the entered state, and checkingif acredit card has

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh738358.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx

107

sufficientfunds to allow the purchase, occurs on the server. Inaddition, AdventureWorks Shopper
shows how the results of server-side validation can be returned to the client.

Model classes must derive from the ValidatableBindableBase class, provided by the
Microsoft.Practices.Prism.StoreApps library, in orderto participate in validation. This class provides
an error container(aninstance of the BindableValidator class thatis the type of the Errors property)

whose contents are updated wheneveramodel class property val ue changes. The BindableValidator
classand ValidatableBindableBase class derive from the BindableBase class, which raises property
change notification events. Formore info see Triggering validation when properties change.

The SetProperty method in the ValidatableBindableBase class performs validation when a model
propertyissetto a newvalue. The validation rules come from data annotation attributes that derive
from the ValidationAttribute class. The attributes are taken from the declaration of the model
property beingvalidated. Formore info see Specifying validation rules and Triggering validation
when properties change.

In the AdventureWorks Shopperreference implementation, users are notified about validation
errors by highlighting the controls that contain the invalid data with red borders, and by displaying
error messages thatinformthe user why the data isinvalid below the controls containinginvalid
data.

If the app suspends while adataentry page is active, userinputand any validation error messages
are saved todisk, and restored when the app resumes following reactivation. Therefore, when the
app suspendsitwill laterresumeas the userleftit. Formore infosee Highlighting validation errors

with behaviors and Persisting userinput and validation errors when the app suspends and resumes.

The following diagram shows the classesinvolved in performing validation in AdventureWorks
Shopper.

T INotifyPropertyChanged

BindableBase

derives from . .
T |
IValidatableBindableBase INﬁlIFYPrﬂDErtYChaﬂgEﬂ

ValidatableBinda ble\l =(BindableValidator
Base) creates and uses k

Y

get errors to

derives from
display

[Walidation rules] (
Model class "

/Iq set properties L‘

TextBox

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx

108

Specifying validation rules

Validation rules are specified by adding data annotation attributes to properties in model classes
that will require validation. To participate in validation amodel class must derive from the
ValidatableBindableBase class.

The data annotation attributes added to a model property whose datarequires validation derive
from the ValidationAttribute class. The following code example shows the FirstName property from

the Address class.

C#: AdventureWorks.UlLogic\Models\Address.cs

[Required(ErrorMessageResourceType = typeof (ErrorMessagesHelper),

ErrorMessageResourceName = "RequiredErrorMessage")]
[RegularExpression(NAMES_REGEX_PATTERN, ErrorMessageResourceType =

typeof (ErrorMessagesHelper), ErrorMessageResourceName = "RegexErrorMessage")]
public string FirstName
{

get { return _firstName; }

set { SetProperty(ref _firstName, value); }
}

The Required attribute of the FirstName property specifies that a validation failure occurs if the field
isnull, contains an empty string, or contains only white-space characters. The RegularExpression

attribute specifies that the FirstName property must match the regularexpression given by the
NAMES_REGEX_PATTERN constant. This regularexpression allows userinputto consist of all
unicode name characters as well as spaces and hyphens, as long as the spaces and hyphensdon't
occur in sequences and are notleading ortrailing characters.

The static ErrorMessagesHelper classis used to retrieve validation error messages fromthe resource
dictionary forthe currentlocale, andis used by the Required and RegularExpression validation
attributes. Forexample, the Required attribute on the FirstName property specifies thatif the
property doesn't contain a value, the validation error message will be that returned by the
RequiredErrorMessage property of the ErrorMessagesHelper class.

In the AdventureWorks Shopperreference implementation, all of the validation rules that are
specified onthe clientalso appearonthe server. Performing validation on the client helps users
correct input mistakes without round trips tothe server. Performingvalidation on the server
prevents attackers from bypassing validation code in the client. Client validation occurs when each
property changes. Servervalidation happens less frequently, usually when the user hasfinished
enteringall of the data on a page.

In AdventureWorks Shopper, additional validation rules exist on the serverside, forexample to
validate zip codes and authorize credit card purchases. The following example shows how the
AdventureWorks Shopperweb service performs server-side validation of the zip code dataentered
by the user.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx

109

C#: AdventureWorks.WebServices\Models\Address.cs

[Required(ErrorMessageResourceType = typeof(Resources), ErrorMessageResourceName =
"ErrorRequired")]
[RegularExpression(NUMBERS_REGEX_PATTERN, ErrorMessageResourceType =
typeof (Resources), ErrorMessageResourceName = "ErrorRegex")]
[CustomValidation(typeof(Address), "ValidateZipCodeState")]
public string ZipCode { get; set; }

The CustomValidation attribute specifies an application-provided method that will be invoked to
validate the property wheneveravalueis assignedtoit. The validation method must be publicand
static, and its first parameter must be the object tovalidate. The following code example shows the
ValidateZipCodeState method thatis used to validate the value of the ZipCode property on the

server.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.customvalidationattribute.aspx

110

C#: AdventureWorks.WebServices\Models\Address.cs

public static ValidationResult ValidateZipCodeState(object value,
ValidationContext validationContext)

{ bool isValid = false;
try
{
if (value == null)
{
throw new ArgumentNullException("value");
}
if (validationContext == null)
{
throw new ArgumentNullException("validationContext");
}
var address = (Address)validationContext.ObjectInstance;
if (address.ZipCode.Length < 3)
{
return new ValidationResult(Resources.ErrorZipCodeInvalidlLength);
}
string stateName = address.State;
State state = new StateRepository().GetAll().FirstOrDefault(
c => c.Name == stateName);
int zipCode = Convert.ToInt32(address.ZipCode.Substring(@, 3),
CultureInfo.InvariantCulture);
foreach (var range in state.ValidZipCodeRanges)
{
// If the first 3 digits of the Zip Code falls within the given range,
// it is valid.
int minValue = Convert.ToInt32(range.Split('-')[0],
CultureInfo.InvariantCulture);
int maxValue = Convert.ToInt32(range.Split('-")[1],
CultureInfo.InvariantCulture);
isValid = zipCode >= minValue && zipCode <= maxValue;
if (isVvalid) break;
}
}
catch (ArgumentNullException)
{
isValid = false;
}

if (isvalid)
{

return ValidationResult.Success;

111

}

else

{

return new ValidationResult(Resources.ErrorInvalidZipCodeInState);

The method checks that the zip code value is within the allowablerange fora given state. The
ValidationContext method parameter provides additional contextualinformation thatis used to
determine the contextin which the validationis performed. This parameter enables accessto the
Address objectinstance, from which the value of the State and ZipCode properties can be retrieved.

The server's StateRepository class returns the zip code ranges for each state, and the value of the
ZipCode propertyisthen checked against the zip code range for the state. Finally, the validation
resultisreturned asa ValidationResult object, in orderto enable the methodtoreturnanerror

message if required. For more info about custom validation methods, see
CustomValidationAttribute.Method property.

Note Althoughitdoesnotoccurinthe AdventureWorks Shopper reference implementation,
property validation can sometimes involve dependent properties. An example of dependent
properties occurs when the set of valid values for property A depends on the particularvalue that
has beensetin property B. If you want to check that the value of property Ais one of the allowed
values, you wouldfirst need to retrieve the value of property B. In addition, when the value of
property B changes youwould needtorevalidate property A.

Validating dependent properties can be achieved by specifying a CustomValidation attribute and
passing the value of property B in the ValidationContext method parameter. Custom validation logic
inthe model class could then validate the value of property A while taking the current value of

property B into consideration.

Triggering validation when properties change

Validationis automatically triggered on the client whenever a bound property changes. Forexample,
when atwoway bindinginaview setsa bound propertyina model class, that class shouldinvoke
the SetProperty method. This method, provided by the BindableBase class, sets the property value
and raises the PropertyChanged event. However, the SetProperty methodis also overridden by the
ValidatableBindableBase class. The ValidatableBindableBase.SetProperty method calls the
BindableBase.SetProperty method, and performs validation if the property has changed. The
following code example shows how validation happens aftera property change.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationcontext.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationresult.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.customvalidationattribute.method.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.customvalidationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationcontext.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

112

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

public bool ValidateProperty(string propertyName)

{ if (string.IsNullOrEmpty (propertyName))

{
throw new ArgumentNullException("propertyName");

}

var propertyInfo =
_entityTovalidate.GetType().GetRuntimeProperty(propertyName);

if (propertyInfo == null)

{
var errorString =

_getResourceDelegate(Constants.StoreAppsInfrastructureResourceMapld,
"InvalidPropertyNameException");

throw new ArgumentException(errorString, propertyName);

}

var propertyErrors = new List<string>();

bool isValid = TryValidateProperty(propertyInfo, propertyErrors);

bool errorsChanged = SetPropertyErrors(propertyInfo.Name, propertyErrors);

if (errorsChanged)

{
OnErrorsChanged(propertyName) ;
OnPropertyChanged(string.Format(CultureInfo.CurrentCulture, "Item[{O}]",

propertyName));
}
return isvalid;
}

This methodretrievesthe property thatisto be validated, and attempts to validate it by calling the
TryValidateProperty method. If the validation results change, for example, when new validation
errors are found or when previous errors have been corrected, then the ErrorsChanged and
PropertyChanged events are raised for the property. The following code exampleshows the
TryValidateProperty method.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

113

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

private bool TryValidateProperty(PropertyInfo propertyInfo,

{

List<string> propertyErrors)

var results = new List<ValidationResult>();

var context = new ValidationContext(_entityToValidate) { MemberName =
propertyInfo.Name };

var propertyValue = propertyInfo.GetValue(_entityToValidate);

// Validate the property
bool isValid = Validator.TryValidateProperty(propertyValue, context, results);

if (results.Any())
{

propertyErrors.AddRange (results.Select(c => c.ErrorMessage));

return isValid;

This method calls the TryValidateProperty method from the Validator class to validate the property
value againstthe validationrules forthe property. Any validation errors are added to a new | ist.

Triggering validation of all properties

Validation can also be triggered manually forall properties of amodel object. Forexample, this
occurs in AdventureWorks Shopper when the user selects the Submit button onthe
CheckoutHubPage. The button's command delegate calls the ValidateForm methods on the
ShippingAddressUserControlViewModel, BillingAddressUserControlViewModel, and
PaymentMethodUserControlViewModel classes. These methods call the ValidateProperties
method of the BindableValidator class. The following code example shows the implementation of
the BindableValidator class's ValidateProperties method.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validator.aspx

114

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

public bool ValidateProperties()

{
var propertiesWithChangedErrors = new List<string>();
// Get all the properties decorated with the ValidationAttribute attribute.
var propertiesToValidate = _entityToValidate.GetType()
.GetRuntimeProperties()
.Where(c =>
c.GetCustomAttributes(typeof (ValidationAttribute)).Any());
foreach (PropertyInfo propertyInfo in propertiesToValidate)
{
var propertyErrors = new List<string>();
TryValidateProperty(propertyInfo, propertyErrors);
// If the errors have changed, save the property name to notify the update
// at the end of this method.
bool errorsChanged = SetPropertyErrors(propertyInfo.Name, propertyErrors);
if (errorsChanged &&
IpropertiesWithChangedErrors.Contains (propertyInfo.Name))
{
propertiesWithChangedErrors.Add (propertyInfo.Name);
}
}
// Notify each property whose set of errors has changed since the last
// validation.
foreach (string propertyName in propertiesWithChangedErrors)
{
OnErrorsChanged(propertyName) ;
OnPropertyChanged (string.Format(CultureInfo.CurrentCulture, "Item[{0}]",
propertyName));
}
return _errors.Values.Count == 0;
}

This method retrieves any properties that have attributes that derivefrom the ValidationAttribute
attribute, and attempts to validate them by calling the TryValidateProperty method foreach

property. If the validation state changes, the ErrorsChanged and PropertyChanged events are raised
for each property whose errors have changed. Changes occur when new errors are seen or when

previously detected errors are nolonger present.
Triggering server-side validation

Server-sidevalidation uses web service calls. Forexample, when the userselects the Submitbutton
on the CheckoutHubPage, server-side validation is triggered by the GoNext method calling the

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

115

ProcessFormAsync method, once client-side validation has succeeded. The following code example
shows part of the ProcessFormAsync method.

C#: AdventureWorks.UlILogic\ViewModels\CheckoutHubPageViewModel.cs

try
{
// Create an order with the values entered in the form
await _orderRepository.CreateBasicOrderAsync(user.UserName, shoppingCart,
ShippingAddressViewModel.Address, BillingAddressViewModel.Address,
PaymentMethodViewModel.PaymentMethod);
_navigationService.Navigate ("CheckoutSummary", null);
}
catch (ModelValidationException mvex)
{
DisplayOrderErrorMessages(mvex.ValidationResult);
if (_shippingAddressViewModel.Address.Errors.Errors.Count > 0)
IsShippingAddressInvalid = true;
if (_billingAddressViewModel.Address.Errors.Errors.Count > 0 &&
lUseSameAddressAsShipping) IsBillingAddressInvalid = true;
if (_paymentMethodViewModel .PaymentMethod.Errors.Errors.Count > 0)
IsPaymentMethodInvalid = true;
}

This method calls the CreateBasicOrderAsync method on the OrderRepository instance to submit
the created orderto the web service. If the CreateBasicOrderAsync method successfully completes,
thenthe data has beenvalidated onthe server.

The CreateBasicOrderAsync method uses the HttpClient class to send the orderto the web service,

and then calls the EnsureSuccessWithValidationSupport extension method to process the response
fromthe web service. The following code example shows the EnsureSuccessWithValidationSupport
method.

C#: AdventureWorks.UILogic\Services\HttpResponseMessageExtensions.cs

public static async Task EnsureSuccessWithValidationSupportAsync(this
HttpResponseMessage response)

{

// If BadRequest, see if it contains a validation payload
if (response.StatusCode == HttpStatusCode.BadRequest)

{
ModelValidationResult result = null;

try

{
var responseContent = await response.Content.ReadAsStringAsync();
result =
JsonConvert.DeserializeObject<ModelValidationResult>(responseContent);

}

catch { } // Fall through logic will take care of it

if (result != null) throw new ModelValidationException(result);

http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx

116

}
if (response.StatusCode == HttpStatusCode.Unauthorized)

throw new SecurityException();

// Will throw for any other service call errors
response. EnsureSuccessStatusCode();

If the response contains a BadRequest status code the ModelValidationResultis read from the
response, and if the response isn't null a ModelValidationException is thrown, which indicates that
server-sidevalidation failed. This exception is caught by the ProcessFormAsync method, which will
then call the DisplayOrderErrorMessages method to highlight the controls containinginvalid data
and display the validation error messages.

Highlighting validation errors with behaviors
In the AdventureWorks Shopperreference implementation, client-side validation errors are shown

to the userby highlighting the control that containsinvalid data, and by displaying an error message
beneath the control, asshownin the following diagram.

First Name*

The HighlightFormFieldOnErrors custom behavioris used to highlight TextBox and ComboBox
controls when validation errors occur. The following code example shows how the
HighlightFormFieldOnErrors behavioris attached to a TextBox control.

XAML: AdventureWorks.Shopper\Views\ShippingAddressUserControl.xaml

<TextBox x:Name="FirstName" Header="First Name*"
x:Uid="FirstName"
AutomationProperties.AutomationId="FirstNameTextBox"
Margin="5,0"
Grid.Row="0"
Grid.Column="0"
AutomationProperties.IsRequiredForForm="True"
Text="{Binding Address.FirstName, Mode=TwoWay}">
<interactivity:Interaction.Behaviors>
<awbehaviors:HighlightFormFieldOnErrors PropertyErrors="{Binding
Address .Errors[FirstName]}" />
</interactivity:Interaction.Behaviors>
</TextBox>

http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpstatuscode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.combobox.aspx

117

The HighlightFormFieldOnErrors behavior gets and sets the PropertyErrors dependency property.
The following code example shows how the PropertyErrors dependency propertyis definedin the
HighlightFormFieldOnErrors class.

Ci#: AdventureWorks.Shopper\Behaviors\HighlightFormFieldOnErrors.cs

public static DependencyProperty PropertyErrorsProperty =
DependencyProperty.RegisterAttached("PropertyErrors”,
typeof(ReadOnlyCollection<string>), typeof(HighlightFormFieldOnErrors),
new PropertyMetadata(BindableValidator.EmptyErrorsCollection,
OnPropertyErrorsChanged));

The PropertyErrors dependency property is registered as a ReadOnlyCollection of strings, by the
RegisterAttached method. When the value of the PropertyErrors dependency property changes, the
OnPropertyErrorsChanged methodisinvoked to change the highlighting style of the input control.

Note The HighlightFormFieldOnErrors behavioralso defines adependency property named
HighlightStyleName. By default this property is set to HighlightTextBoxStyle, but can be set to
HighlightComboBoxStyle when declaring the behaviorinstance.

The following code example shows the OnPropertyErrorsChanged method.
C#: AdventureWorks.Shopper\Behaviors\HighlightFormFieldOnErrors.cs

private static void OnPropertyErrorsChanged(DependencyObject d,
DependencyPropertyChangedEventArgs args)

{
if (args == null || args.Newvalue == null)
{
return;
}
var control = ((Behavior<FrameworkElement>)d).AssociatedObject;
var propertyErrors = (ReadOnlyCollection<string>)args.NewValue;
Style style = (propertyErrors.Any()) ?
(Style)Application.Current.Resources|
((HighlightFormFieldOnErrors)d) .HighlightStyleName]
(Style)Application.Current.Resources|
((HighlightFormFieldOnErrors)d).OriginalStyleName];
control.Style = style;
}

The OnPropertyErrorsChanged method parameters give the instance of the control that the
PropertyErrors dependency property is attached to, and any validation errors for the control. Then,
if validation errors are present the value of the HighlightStyleName dependency propertyis applied
to the control, so that itis highlighted with ared BorderBrush.

http://msdn.microsoft.com/en-us/library/windows/apps/ms132474.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701833.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.border.borderbrush.aspx

118

Note The functionality provided by HighlightFormFieldOnErrors behavior could also be
implemented through acombination of DataTriggerBehavior and ChangePropertyActioninstances,

as showninthe following code example.

XAML

<core:DataTriggerBehavior Binding="{Binding Address.Errors[FirstName]. Count,
Mode=0OneWay}"
ComparisonCondition="NotEqual" Value="0">
<core:ChangePropertyAction PropertyName="Style" Value="{StaticResource
HighlightTextBoxStyle}" />
</core:DataTriggerBehavior>
<core:DataTriggerBehavior Binding="{Binding Address.Errors[FirstName].Count,
Mode=0OneWay}"
ComparisonCondition="Equal" Value="0">
<core:ChangePropertyAction PropertyName="Style" Value="{x:Null}"/>
</core:DataTriggerBehavior>

This code sets the HighlightTextBoxStyle when validation errors occur, and clears the style when the
validation errors are fixed. The problem with this approachis thatitrequires 6 lines of XAMLto be
added to every control that requires validation, as opposed to the more concise syntax provid ed by
using the HighlightFormFieldOnErrors custom behavior.

Similarly, the functionality could also be provided by a custom action, ratherthan a custom
behavior. However, thisapproach would stillneed to use two DataTriggerBehaviorinstances, and

therefore 6lines of XAML would still have to be added to every control that requires validation.

The Ul also displays validation error messages in TextBlocks below each control whose datafailed
validation. The following code example shows the TextBlock that displays avalidation error message
ifthe user has entered aninvalid first name fortheirshipping details.

XAML: AdventureWorks.Shopper\Views\ShippingAddressUserControl.xaml

<TextBlock x:Name="ErrorsFirstName"
Style="{StaticResource ErrorMessageStyle}"
Grid.Row="1"
Grid.Column="0"
Text="{Binding Address.Errors[FirstName],
Converter={StaticResource FirstErrorConverter}}"
TextWrapping="Wrap" />

Each TextBlock binds to the Errors property of the model object whose properties are being
validated. The Errors property is provided by the ValidateableBindableBase class, andis an instance
of the BindableValidator class. The indexer of the BindableValidator classreturns a
ReadOnlyCollection of error strings, with the FirstErrorConverterretrieving the firsterror from the

collection, fordisplay.

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.datatriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.changepropertyaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.datatriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ms132474.aspx

119

Persisting user input and validation errors when the app suspends and
resumes

Windows Store apps should be designed to suspend when the user switches away fromthem and
resume when the userswitches back tothem. Suspended apps that are terminated by the operating
system and subsequently reactivated should resumein the state that the user left themratherthan
starting afresh. This hasan impact on validationin thatif anapp suspends on a data entry page, any
userinputand validation error messages should be saved. Then, onreactivation the userinputand
validation error messages should be restored to the page. Formore info see Guidelines forapp
suspend and resume.

AdventureWorks Shopperaccomplishes this task by using overridden OnNavigatedFrom and
OnNavigatedTo methodsinthe view model class forthe page. The OnNavigatedFrom method
allows the view model to save any state before itis disposed of priorto suspension. The
OnNavigatedTo method allows anewly displayed page toinitialize itself by loading any view model
state when the app resumes.

All of the view model classes derive from the ViewModel base class, which implements
OnNavigatedFrom and OnNavigatedTo methods that save and restore view model state,
respectively. This avoids each view modelclass having toimplement this functionality to support the
suspend and resume process. However, the OnNavigatedFrom and OnNavigatedTo methods can be
overriddeninthe view model class forthe page if any additional navigation logicis required, such as
addingthe validation errors collection to the view state dictionary. The following code example
shows how the OnNavigatedFrom method in the BillingAddressUserControlViewModel class adds
any billing address validation errors to the session state dictionary that will be serialized to disk by
the SessionStateService class when the app suspends.

Ci#: AdventureWorks.UlLogic\ViewModels\BillingAddressUserControlViewModel.cs

public override void OnNavigatedFrom(Dictionary<string, object> viewState, bool
suspending)

{
base.OnNavigatedFrom(viewState, suspending);
// Store the errors collection manually
if (viewState != null)
{
AddEntityStateValue("errorsCollection", _address.GetAllErrors(),
viewState);
}
}

This method ensures that when the app suspends, the BillingAddressUserControlViewModel state
and any billing address validation error messages will be serialized to disk. View model properties
that have the RestorableState attribute will be added to the session state dictionary by the
ViewModel.OnNavigatedFrom method beforethe ViewModel.AddEntityStateValue method adds

http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx

120

the validation error message collection to the session state dictionary. The GetAllErrors method is
implemented by the ValidatableBindableBase class, which inturn calls the GetAllErrors method of
the BindableValidator class to return the validation error messages forthe Address model instance.

Whenthe app is reactivated after termination and page navigation is complete, the OnNavigatedTo
methodinthe active view model class will be called. The following code example shows how the
OnNavigatedTo method in the BillingAddressUserControlViewModel restores any billingaddress
validation errors from the session state dictionary.

C#: AdventureWorks.UILogic\ViewModels\BillingAddressUserControlViewModel.cs

public override async void OnNavigatedTo(object navigationParameter,
NavigationMode navigationMode, Dictionary<string, object> viewState)

{
// The States collection needs to be populated before setting the State
// property
await PopulateStatesAsync();

if (viewState != null)

{
base.OnNavigatedTo(navigationParameter, navigationMode, viewState);
if (navigationMode == NavigationMode.Refresh)
{
// Restore the errors collection manually
var errorsCollection = RetrieveEntityStateValue<IDictionary<string,
ReadOnlyCollection<string>>>("errorsCollection"”, viewState);
if (errorsCollection != null)
{
_address.SetAllErrors(errorsCollection);
}
}
}
if (navigationMode == NavigationMode.New)
{

_addressId = navigationParameter as string;
if (_addressId != null)

{
Address =
await _checkoutDataRepository.GetBillingAddressAsync (_addressId);
return;
}

if (_loadDefault)
{
var defaultAddress =
await _checkoutDataRepository.GetDefaultBillingAddressAsync();
if (defaultAddress != null)

{

// Update the information and validate the values

Address.
Address.
Address.
Address.
Address.
Address.
Address.
Address.
Address.

FirstName = defaultAddress.FirstName;
MiddleInitial = defaultAddress.MiddlelInitial;
LastName = defaultAddress.LastName;

StreetAddress = defaultAddress.StreetAddress;
OptionalAddress = defaultAddress.OptionalAddress;
City = defaultAddress.City;

State = defaultAddress.State;

ZipCode = defaultAddress.ZipCode;

Phone = defaultAddress.Phone;

This method ensuresthat when the app is reactivated following termination, the
BillingAddressUserControlViewModel state and any billing address validation error messages will be

121

restored from disk. View model properties that have the RestorableState attribute will be restored
from the session state dictionary by the ViewModel.OnNavigatedTo method, before the

ViewModel.RetrieveEntityStateValue method retrieves any validation error messages. The

SetAllErrors method isimplemented by the ValidatableBindableBase class, which inturn calls the

SetAllErrors method of the BindableValidator class to set the validation error messages forthe
Address model instance. Then, provided that the navigationisto anew instance of a page, the

billingaddressisretrieved.

For more info see Creating and navigating between pages and Handling suspend, resume, and

activation.

122

Managing application data in a Windows Store business app using C#,
XAML, and Prism

Summary

e Use the application data APIs to work with application data, makingthe system responsible
for managing the physical storage of data.

e Onlystore passwordsinthe credential lockerif the user has successfully signed into the app
and has opted to save passwords.

e Use ASP.NETWeb APl to create a resource-oriented web service that can pass different
contenttypes.

Learn how to manage application dataincluding storing data, caching data, authenticating users, and
retrieving datafroma web service while minimizing the network trafficand battery life of the device
the app isrunningon. The AdventureWorks Shopperreference implementation uses Prism for the
Windows Runtime to customize the default Settings pane shown in the Settings charm.

You will learn

e How to store data inthe app data stores.

e How to store passwordsin the credential locker.

e How to use the Settings charmto allow usersto change app settings.

e How to create data transfer objects to transfer data across a network boundary.

e How toreliablyretrievedatafroma web service using data transfer objects.

e How to cache data from a web service on disk.

e How to performcredentials-based authentication between a Windows Store app and a web
service.

Applies to

e Windows Runtime for Windows 8.1
e CH
¢ Extensible Application Markup Language (XAML)

Making key decisions

Application datais datathat the app itself creates and manages. Itis specificto the internal
functions orconfiguration of an app, and includes runtime state, user preferences, reference
content, and othersettings. App datais tied to the existence of the app and is only meaningful to
that app. The following list summarizes the decisions to make when managing application datain

your app:

e Where and how should | store application data?
e What type of data should | store as application data?

123

e Dol needtoprovide a privacy policy formy app, and if so, where should it be displayed to
users?

e How manyentriesshouldlinclude inthe Settings charm?

e What data should be allowed toroam?

e How shouldlimplementaweb service thata Windows Store app will connectto?

e How shouldlauthenticate users with aweb service inaWindows Store app?

e Shouldlcache data fromthe web service locally?

Windows Store apps should use app data stores for settings and files that are specificto each app
and user. The system manages the data stores foran app, ensuringthatthey are keptisolated from
otherapps and users. In addition, the system preserves the contents of these datastores whenthe
userinstalls an update toyour app and removes the contents of these datastores completelyand
cleanly whenyourappisuninstalled.

Application datashould not be used to store user data or anything that users might perceive as
valuable andirreplaceable. The user's libraries and Microsoft SkyDrive should be used to store this
sort of information. Application dataisideal for storing app-specificuser preferences, settings,
reference data, and favorites. Formore info see App data.

If your app uses or enables accesstoany Internet-based services, or collects or transmits any user's
personal information, you must maintain a privacy policy. You are responsible forinforming users of
your privacy policy. The policy must comply with applicable laws and regulations, inform users of the
information collected by yourapp and how thatinformationis used, stored, secured, and disclosed,
describe the controls that users have overthe use and sharing of theirinformation, and how they
may access theirinformation. You must provide access to your privacy policyinthe app's settings as
displayedinthe Settings charm. If you submityourapp to the Windows Store you must also provide
access to your privacy policy in the Description page of yourapp on the Windows Store. For more
info see App certification requirements forthe Windows Store.

The top part of the Settings pane lists entry points foryour app settings, with each entry point
performingan action such as openingaflyout, oropeningan external link. Similar orrelated options
should be grouped togetherunderone entry pointin orderto avoid adding more than four entry
points. Formore info see Guidelines forapp settings.

Utilizingroamingapplication datain appis easy and does not require significant code changes. Itis
bestto utilize roaming application dataforall size-bound dataand settings that are used to preserve
a user's settings preferences. Formore info see Guidelines forroaming application data.

There are a number of approachesforimplementingaweb service thata Windows Store app can
connect to:

e Windows Azure Mobile Services allow youtoadd a cloud-based service to your Windows
Store app. For more info see Windows Azure Mobile Services Dev Center.

e Windows Communication Foundation (WCF) enables you to develop web services based on
SOAP. These services focus on separating the service fromthe transport protocol. Therefore,

http://msdn.microsoft.com/en-us/library/windows/apps/jj553522.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770544.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465094.aspx
http://go.microsoft.com/fwlink/p/?LinkID=298977

124

you can expose the same service using different endpoints and different protocols such as
TCP, User Datagram Protocol (UDP), HTTP, Secure Hypertext Transfer Protocol (HTTPS), and
Message Queuing. However, this flexibility comes at the expense of the extensive use of
configuration and attributes, and the resulting infrastructure is not always easily testable. In
addition, new client proxies need to be generated whenever the input or output model for
the service changes.

e The ASP.NETWeb API allowsyoutodevelop web services thatare exposed directly over
HTTP, thus enablingyou to fully harness HTTP as an application layer protocol. Web services
can then communicate with abroad set of clients whetherthey are apps, browsers, or back-
endservices. The ASP.NET Web APl isdesigned to supportapps built with REST, but itdoes
not force appsto use a RESTful architecture. Therefore, if the input or output model forthe
service changes, the client simply has to change the query stringthat is sent to the web
service, or parse the data received fromthe web service differently.

The primary difference between WCF and the ASP.NET Web APl is that while WCFis based on SOAP,
the ASP.NETWeb APlis based on HTTP. HTTP offers the following advantages:

e Itsupportsverbsthatdefine actions. Forexample, you query information using GET, and
create information using POST.

e [t contains message headers thatare meaningfuland descriptive. Forexample, the headers
suggest the content type of the message's body.

e It containsa bodythat can be usedforany type of content, notjust XML contentas SOAP
enforces. The body of HTTP messages can be anything you want including HTML, XML,
JavaScript Object Notation (JSON), and binary files.

e ltusesUniform Resource Identifiers (URIs) to identify both resources and actions.

The decision of whetherto use WCF or the ASP.NET Web APl inyour app can be made by answering
the following the following questions:

e Do youwant to create a service that supports special scenarios such as one -way messaging,
message queues, and duplex communication? If so you should use WCF.

e Do youwant to acreate service that usesfast transport channels when available, such as
TCP, named pipes, or UDP? If so you should use WCF.

e Do youwant to create a service that usesfast transport channels when available, but uses
HTTP when all othertransport channels are unavailable? If so you should use WCF.

e Do youwant to simplyserialize objects and deserialize them as the same strongly-typed
objects at the otherside of the transmission? If so you should use WCF.

e Do youneedto use a protocol otherthan HTTP? If so you should use WCF.

e Do youwant to create a resource-oriented service thatis activated through simple action-
oriented verbs such as GET, and that responds by sending contentas HTML, XML, a JSON
string, or binary data? If so you should use the ASP.NET Web API.

e Do youhave bandwidth constraints? If so you should use the ASP.NET Web APl with JSON, as
it sendsasmaller payload than SOAP.

e Do youneedto supportclientsthatdon'thave a SOAP stack? If soyou should use the
ASP.NETWeb API.

125

There are a number of approaches that could be taken to authenticate users of aWindows Store app
with a webservice. Forinstance, credentials-based authentication or single sign-on with a Microsoft
account could be used. A user can link a local Microsoft Windows account with his or her Microsoft
account. Then, whenthe usersignsintoa device using that Microsoft account, any Windows Store
app that supports Microsoft accountsign-in can automatically detect thatthe useris already
authenticated and the app doesn'trequire the usertosigninapp. The advantage of thisapproach
overcredential roamingisthatthe Microsoft account works for websites and apps, meaningthat
app developers don't have to create theirown authentication system. Alternatively, apps could use
the web authentication brokerinstead. This allows apps to use internet authentication and
authorization protocols like Open Identification (OpenID) or Open Authentication (OAuth) to connect
to online identity providers. Thisisolate's the user's credentials from the app, as the brokeris the
facilitator that communicates with the app. Formore info see Managing userinfo.

Local caching of web service datashould be usedif you repeatedly access staticdata or data that
rarely changes, or when dataaccess is expensive in terms of creation, access, or transportation. This
brings many benefitsincludingimproving app performance by storing relevant data as close as
possible tothe dataconsumer, and saving network and battery resources.

Managing application data in AdventureWorks Shopper
The AdventureWorks Shopper referenceimplementation uses app data stores to store the user's

credentials and cached data from the web service. The user's credentials are roamed. For more info
see Storing datain the app data stores and Roaming application data.

AdventureWorks Shopper provides access toits privacy policy inthe app's settings as displayedin
the Settings charm. The privacy policy is one of several entry pointsinthe Settings charm, and
informs users of the personal information thatis transmitted, how thatinformationis used, stored,
secured, and disclosed. It describes the controls that users have overthe use and sharing of their
information and how they may access theirinformation. For more info see Local application data.

AdventureWorks Shopper usesthe ASP.NET Web APItoimplementits web service, and performs
credentials-based authentication with this web service. This approach creates aweb service that can
communicate with abroad set of clientsincluding apps, browsers, or back-end services. Product
data fromthe web service is cachedlocallyin the temporary app datastore. For more info see
Accessing datathrough a web service and Caching data froma web service.

Storing data in the app data stores

Whenan app isinstalled, the system givesitits own per-user datastores forapplication datasuch as
settings andfiles. The lifetime of application dataistied to the lifetime of the app. Ifthe app is
removed, all of the application data will be lost.

http://msdn.microsoft.com/en-us/library/windows/apps/br229572.aspx

126

There are three datastoresfor application data:

e Thelocal data storeis usedfor persistent data that exists only onthe device.

e Theroaming data storeis used for data that existson all trusted devices on which the user
has installed the app.

e Thetemporary data store is used for data that could be removed by the system atany time.

You use the application data APl to work with application datawith the system being responsiblefor
managingits physical storage.

Settingsinthe app data store are storedin the registry. When you use the application data API,
registry accessis transparent. Within its app data store each app hasa root containerforsettings.
Your app can add settings and new containers to the root container.

Filesinthe app data store are storedin the file system. Within its app datastore, each app has
system-defined root directories—oneforlocal files, one for roamingfiles, and one fortemporary
files. Yourapp can add new files and new directories to the root directory.

App settings andfiles can be local or roaming. The settings and files that yourapp adds to the local
data store are only present onthe local device. The system automatically synchronizes settings and
filesthatyourapp adds to the roaming data store on all trusted devices on which the user has
installed the app.

For more info see Accessing app datawith the Windows Runtime.

Local application data

Local application datashould be used to store data that needsto be preserved between application
sessions, anditis not suitable type orsize wise forroaming data. There is no size restriction on local
data.

In the AdventureWorks Shopperreference implementation only the SessionStateService class stores
datainthe local application datastore. For more info see Handling suspend, resume, and activation.

For more info see Quickstart: Local application data.

Roaming application data

If you use roamingdata inyour app, and a user installs yourapp on multiple devices, Windows keeps
the application datain sync. Windows replicates roaming datato the cloud whenitis updated and
synchronizesthe datatothe othertrusted devices on which the appisinstalled. This providesa
desirable userexperience, sincethe app on different devices is automatically configured according
to the userpreferences onthe first device. Any future changes to the settings and preferences will
alsotransition automatically. Windows can also transition session or state information. This enables
usersto continue touse an app sessionthat was abandoned onone device whentheytransfertoa
second device.

http://msdn.microsoft.com/en-us/library/windows/apps/hh464917.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700361.aspx

127

Roaming data should be usedforall size-bound dataand settings that are used to preserve auser's
settings preferences as well as app session state. Any datathat isonly meaningful on aspecific
device, such as the path to a local file, should not be roamed.

Each app has a quota forroamingapplication datathat is defined by the
ApplicationData.RoamingStorageQuota property. If your roaming data exceeds the quotaitwon't
roam until its size isless than the quotaagain. In AdventureWorks Shopper, we wanted to use
roaming data to transfer partially completed shopping cart data to otherdevices when the initial
deviceisabandoned. However, this was not feasible due to the enforced quota. Instead, this
functionalityis provided by the web service that the AdventureWorks Shopper reference
implementation connectsto. The datathat roams in AdventureWorks Shopper are the user's

credentials.

Note Roamingdataforan app isavailableinthe cloudaslongas itisaccessed by the userfrom
some device within 30 days. If the userdoes notrun an app for longerthan 30 days, its roaming data
isremoved fromthe cloud. If the user uninstalls an app, its roaming data isn't automatically
removed fromthe cloud. If the userreinstalls the app within 30days, the roaming datais
synchronized from the cloud.

Windows roams app data opportunistically and so an instant syncis not guaranteed. Fortime critical
settings aspecial high priority settings unitis available that provides more frequent updates. Itis
limited to one specificsetting that must be named "HighPriority." It can be a composite setting, but
the total sizeislimited to 8KB. This limitis notenforced and the setting will be treated as aregular
setting, meaningthatitwill be roamed underregularpriority, in case the limitis exceeded. However,
if you are using a high latency network, roaming could still be significantly delayed.

For more info see Guidelines forroaming application data.

Storing and roaming user credentials

Apps can store the user's passwordin the credential locker by using the
Windows.Security.Credentials namespace. The credential locker provides acommon approach for
storingand managing passwordsin a protected store. However, passwords should onlybe savedin
the credential lockerif the userhas successfully signedin and opted to save passwords.

Note The credential lockershould only be used forstoring passwords and not for otheritems of
data.

A credential inthe credential lockeris associated with a specificapp orservice. Appsand services do
not have access to credentials associated with other apps orservices. The credential | ocker from one
trusted device is automatically transferred to any othertrusted device for that user. This means that
credential roamingis enabled by default for credentials stored in the credential lockeron non -
domainjoined devices. Credentials from local connected accounts on domain-joined computers can
roam. However, domain-connected accounts are subject to roaming restrictions if the credentials
have only been saved onthe domain-joined device.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.applicationdata.roamingstoragequota.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465094.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.credentials.aspx

128

You can enable credentialroaming by connecting your device to the cloud by using your Microsoft
account. Thisallows your credentials toroamto all of yourtrusted devices wheneveryousignin
with a Microsoftaccount.

Note Datastoredinthe credential lockerwillonly roamifa userhas made a device trusted.

The ICredentialStore interface, provided by the Microsoft.Practices.Prism.StoreApps library, defines

method signaturesforloading and saving credentials. The following code example shows this
interface.

C#: Microsoft.Practices.Prism.StoreApps\ICredentialStore.cs

public interface ICredentialStore

{
void SaveCredentials(string resource, string userName, string password);
PasswordCredential GetSavedCredentials(string resource);
void RemoveSavedCredentials(string resource);

}

Thisinterface isimplemented by the RoamingCredentialStore class in the AdventureWorks.UlLogic
project.

The userisinvited to entertheircredentials onthe signinflyout, which can be invoked from the
Settings charm, or on the signindialog. When the userselects the Submitbutton on the
SigninFlyOut view, the SignInCommand in the SigninFlyOutViewModel class is executed, whichin
turns calls the SigninAsync method. This method then calls the SignlnUserAsync method onthe
AccountService instance, which in turn calls the LogOnAsync method on the IdentityServiceProxy
instance. The instance of the AccountService classis created by the Unity dependency injection
container. Then, provided that the credentials are valid and the user has opted to save the
credentials, they are stored in the credential locker by callingthe SaveCredentials method in the
RoamingCredentialStore instance. The following code example shows how the
RoamingCredentialStore classimplements the SaveCredentials method to save the credentialsin
the credential locker.

Ci#: AdventureWorks.UlLogic\Services\RoamingCredentialStore.cs

public void SaveCredentials(string resource, string userName, string password)

{

var vault = new PasswordVault();
RemoveAllCredentialsByResource(resource, vault);
// Add the new credential

var passwordCredential = new PasswordCredential(resource, userName, password);
vault.Add (passwordCredential);

http://go.microsoft.com/fwlink/p/?LinkID=290899

129

The SaveCredentials method creates anew instance of the PasswordVault class that representsa
credential locker of credentials. The old stored credentials forthe app are retrieved and removed
before the new credentials are added to the credential locker.

For more infosee Credential Locker Overview and How to store user credentials.

Temporary application data

Temporary application datashould be used for storingtemporary information during an application
session. The temporary datastore works like a cache and its files do notroam. The System
Maintenance task can automatically delete data at thislocation at any time, and the usercould also
clearfilesfromthe temporary datastore using Disk Cleanup.

For more info about how AdventureWorks Shopper uses the temporary app data store see Caching
data froma webservice.

Exposing settings through the Settings charm

The Settings charmis a fundamental part of any Windows Store app, and is used to expose app
settings. Itisinvoked by making a horizontal edge gesture, swiping left with afingeror stylus from
the right of the screen. This displays the charms and you can then select the Settings charmto
display the Settings pane. The Settings pane includes both app and system settings.

The top part of the Settings pane lists entry points for yourapp settings. Each entry pointopensa
Settings flyoutthat displays the settings themselves. Entry points let you create categories of
settings, groupingrelated controls together. Windows provides the Permissions and Rate and
review entry points forappsthat have beeninstalled through the Windows Store. Side-loaded apps
do not have the Rate and review entry point. The following diagram shows the top part of the
default Settings pane for AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj554668.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465069.aspx

130

Settings

ventureWorks Shopper C# sample

ysoft Cor ::njl.rv.:ztl:::vi
Login
Privacy Policy
Help

Permissions

Additional app settings are shown whenauserisloggedintothe app. The bottom part of the
Settings pane includes device settings provided by the system, such as volume, brightness, and
power.

In orderto customize the default Settings pane you can add a SettingsCommand thatrepresentsa

settings entry. Inthe AdventureWorks Shopper reference implementation thisis performed by the
MvvmAppBase class in the Microsoft.Practices.Prism.StoreApps library. The InitializeFrameAsync

methodinthe MvvmAppBase class subscribes to the CommandsRequested event of the

SettingsPane class that is raised when the useropens the Settings pane. Thisis shownin the
following code example.

Ci#t: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

SettingsPane.GetForCurrentView().CommandsRequested += OnCommandsRequested;

Whenthe eventisraised the OnCommandsRequested event handlerin the MvvmAppBase class
creates a SettingsCommand collection, as shown in the following code example.

Cit: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

private void OnCommandsRequested(SettingsPane sender,
SettingsPaneCommandsRequestedEventArgs args)

{
if (args == null || args.Request == null ||
args.Request.ApplicationCommands == null)
{
return;

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingspane.commandsrequested.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingspane.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx

131

var applicationCommands = args.Request.ApplicationCommands;
var settingsCommands = GetSettingsCommands();

foreach (var settingsCommand in settingsCommands)

{

applicationCommands.Add (settingsCommand);

This method retrieves the SettingsCommand collection and adds each SettingsCommand to the
ApplicationCommands. All the SettingsCommands willbe shown onthe Settings pane beforethe
Permissions entry point.

The SettingsCommands forthe app are defined by the GetSettingsCommands override in the App
class, as shownin the following code example.

C#: AdventureWorks.Shopper\App.xaml.cs

protected override IList<SettingsCommand> GetSettingsCommands ()

{

var settingsCommands = new List<SettingsCommand>();

var accountService = _container.Resolve<IAccountService>();
var resourcelLoader = _container.Resolve<IResourcelLoader>();
var eventAggregator = _container.Resolve<IEventAggregator>();
if (accountService.SignedInUser == null)

{

settingsCommands.Add (new SettingsCommand(Guid.NewGuid().ToString(),
resourceLoader.GetString("LoginText"), (c) =>
new SignInFlyout(eventAggregator).Show()));

else

settingsCommands.Add (new SettingsCommand(Guid.NewGuid().ToString(),
resourceLoader.GetString("LogoutText"), (c) =>
new SignOutFlyout().Show()));
settingsCommands.Add (new SettingsCommand(Guid.NewGuid().ToString(),
resourceLoader.GetString("AddShippingAddressTitle"), (c) =>
NavigationService.Navigate("ShippingAddress", null)));
settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),
resourcelLoader.GetString("AddBillingAddressTitle"), (c) =>
NavigationService.Navigate("BillingAddress", null)));
settingsCommands.Add (new SettingsCommand(Guid.NewGuid().ToString(),
resourceLoader.GetString("AddPaymentMethodTitle"), (c) =>
NavigationService.Navigate("PaymentMethod", null)));
settingsCommands.Add (new SettingsCommand(Guid.NewGuid().ToString(),
resourcelLoader.GetString("ChangeDefaults"), (c) =>
new ChangeDefaultsFlyout().Show()));
}
settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingspanecommandsrequest.applicationcommands.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx

132

resourcelLoader.GetString("PrivacyPolicy"), async (c) => await
Launcher.LaunchUriAsync (new
Uri(resourcelLoader.GetString("PrivacyPolicyUrl™)))));
settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),
resourceloader.GetString("Help"), async (c) => await
Launcher. LaunchUriAsync(new Uri(resourcelLoader.GetString("HelpUrl")))));

return settingsCommands;

Each SettingsCommand definesanitem thatis used to populate the Settings pane. Inthe
AdventureWorks Shopperreference implementation they allow one of three possible actions to

occur—a flyout to be shown, in-app navigation to take place, oran external hyperlink to be
launched.

When a user selects the Login entry point, the SigninFlyout must be displayed. This flyout class
derives from the SettingsFlyout class, which providesin-context access to settings that affect the
currentapp. The SettingsFlyout class provides the light dismiss behavior that's seen throughout
Windows. Therefore, when the userselectsa Ul elementthatis not part of the flyout, the flyout
automatically dismisses itself.

For more infosee Guidelinesforapp settings.

Creating data transfer objects

A data transferobject (DTO) isa containerfora set of aggregated data that needs to be transferred
across a network boundary. DTOs should contain no business logicand limit their behaviorto
activities such as validation.

Using the Model-View-ViewModel pattern describes the Model-View-ViewModel (MVVM) pattern
usedin AdventureWorks Shopper. The modelelements of the pattern are containedinthe
AdventureWorks.UlLogicand AdventureWorks.WebServices projects, which represent the domain

entitiesusedinthe app. The following diagram shows the key model classesinthe
AdventureWorks.UlLogic project, and the relationships between them.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.settingsflyout.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770544.aspx

133

ShoppingCart ¥ P ShoppingCartItems ShoppingCartItem % | F Product Product w
Class Class Class
F ShoppingCart P Products # pProducts
P Billingaddress ¥
W + Address] w
glgg:r P shippingaddress Class Category SearchResult
-+ validateBindableBase Class Class

Subcategories
F ShippingMethad ShippingMethod Y]
Hbke LogOnResult =
Class
F Userlnfo
F PaymentMethad PaymentMethod v P
- + Class userlnfo g
) UserInfo
—+ValidateBindableBase Class
P MewlUserinfo T P Olduserinfa
UserValidationResult ¥ UserChangedEventArgs ~
Class Class
—+EventArgs

The repository and controller classes in the AdventureWorks.WebServices project accept and return
the majority of these model objects. Therefore, they are used as DTOs that hold all the data that is
passed betweenthe app and the web service. The benefits of using DTOs to pass data to and receive
data froma web service are that:

e By transmitting more dataina single remote call, the app canreduce the number of remote
calls. In most scenarios, aremote call carrying a larger amount of data takes virtually the
same time as a call that carries only a small amount of data.

e Passingmore dataina single remote call more effectively hides the internals of the web
service behind a coarse-grained interface.

e DefiningaDTO can helpinthe discovery of meaningful business objects. When creating
DTOs, you often notice groupings of elements that are presented to a useras a cohesive set
of information. Often thesegroups serve as useful prototypes forobjects that describe the
business domain thatthe app deals with.

e Encapsulatingdataintoa serializable object canimprove testability.

For more info about how the model classes are used as DTOs see Consuming datafroma web
service using DTOs.

Accessing data through a web service

Web services extend the World Wide Web infrastructure to provide the means for software to
connectto othersoftware apps. Apps access web services via ubiquitous web protocols and data
formats such as HTTP, XML, SOAP, with no need to worry about how the web service is
implemented.

Connectingtoa web service froma Windows Store app introduces a set of development challenges:

134

e The app must minimizethe use of network bandwidth.

e Theapp must minimizeitsimpactonthe device's battery life.

e The webservice mustofferanappropriate level of security.

e Thewebservice mustbe easyto develop against.

e Thewebservice should potentially support arange of client platforms.

These challenges willbe addressed in the following sections.

Note Windows 8.1 introducesthe Windows.Web.Http namespace, which should be used for
Windows Store apps that connectto HTTP and REST-based web services.

Consuming data

The AdventureWorks Shopper referenceimplementation stores datain an in-memory database
that's accessed through a web service. The app mustbe able to send data to and receive datafrom
the web service. Forexample, it must be able toretrieve product datain orderto displayittothe
user, and it must be able to retrieve and send billing data and shopping cart data.

Users may be using AdventureWorks Shopperinalimited bandwidth environment, and so the
developers wanted to limitthe amount of bandwidth used to transfer data between the app and the
web service. Inadditiontothis, the developers wanted to ensure that the datatransferisreliable.
Ensuring that data reliably downloads fromthe web service isimportantin e nsuringagood user
experience and hence maximizing the number of potential orders that will be made. Ensuring that
shopping cartdata reliably uploads to the web service isimportantin orderto maximize actual
orders, and their correctness.

The developers also wanted a solution that was simple toimplement, and that could be easily
customizedinthe future if, forexample, authentication requirements were to change. In addition,
the developers wanted asolution that could potentially work with platforms otherthan Windows.

With these requirementsin mind, the AdventureWorks Shopperteam had to considerthree
separate aspects of the solution: how to expose datafrom the web service, the format of the data
that moves between the web serviceand the app, and how to consume web service datain the app.

Exposing data

The AdventureWorks Shopper referenceimplementation uses the ASP.NET Web APl toimplement
itsweb service, and performs credentials-based authentication with this web service. This approach
createsa resource-oriented web service thatis activated through simple action-oriented verbs such
as GET, and that can respond by sending contentinavariety of formats such as HTML, XML, a JSON
string, or binary data. The web service can communicate with abroad set of clientsincluding apps,
browsers, or back-end services. In addition, it offers the advantage thatif the input or output model
for the service changesinfuture, the app simply hasto change the query string that is sentto the
web service, or parse the data received from the web service differently.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.aspx

135

Data formats

The AdventureWorks Shopperreferenceimplementation uses the JSON format to transfer order
data to the web service, and to cache web service datalocally on disk, because it producesa
compact payload thatreduces bandwidth requirements andis relatively easy to use.

The AdventureWorks developers considered compressing data before transferringittothe web
service inorderto reduce bandwidth utilization, but decided that the additional CPUand battery
usage on devices would outweigh the benefits. You should evaluate this tradeoff between the cost
of bandwidth and battery consumptionin yourapp before you decide whetherto compress datayou
need to move overthe network.

Note Additional CPUusage affects boththe responsiveness of the deviceand its battery life.

For more info about caching see Caching datafrom a web service.

Consuming datafroma web service using DTOs

Analysis of the datatransferrequirements revealed only limited interactions with the web service,
so AdventureWorks Shopperimplements a set of custom DTO classes to handle the datatransfer
with the web service. Formore info see Creating data transfer objects. In orderto furtherreduce the
interaction with the web service, as much data as possibleisretrieved in asingle call toit. For
example, instead of retrieving product categoriesin one web service call, and then retrieving
products for a categoryin a second web service call, AdventureWorks Shopper retrieves a category
and its productsin a single web service call.

In the future, AdventureWorks may decideto use the OData protocol in orderto use features such
as batching and conflict resolution.

Note AdventureWorksShopperdoes notsecure the web service with Secure Sockets Layer (SSL), so
a malicious client could impersonate the app and send malicious data. Inyourown app, you should
protectany sensitive datathatyou needtotransferbetween the app and a web service by using SSL.

The following diagram shows the interaction of the classes thatimplement reading product category
data for the hub page in AdventureWorks Shopper.

136

AWShopper app

HubPFageviewMaodel TemporaryFolderCacheService

AWShopper
web service

CategoryController

|WInduw5_WEb_Htr.p_l-lttpt'llent

1
ProductCatalogRepository : | ProductCatalogServiceProxy |
1

T
I

|
I
|
|
I
|
|
I
|
I
I
T |
1
I H :
GetRootCategoriesasync :
* |
|
GetDatassync !
» i
[no valid data in cache] !
GetCategoriesasync |
I
|
|
GetAsync |
|
GetCategories
™
I
C!tEgEIFiES
+ /T
read]
response |
I
|
I
rESpONSE !
I
[ne valid data in cache] !
SaveDataAsync 1
[|
|
I
categarles |
- |

The ProductCatalogRepositoryis used to manage the data retrieval process, either fromthe web
service orfrom a temporary cache stored on disk. The ProductCatalogServiceProxy classis used to

retrieve product category datafromthe web service, with the TemporaryFolderCacheService class
being usedtoretrieve product category datafromthe temporary cache.

In the Onlnitialize method in the App class, the ProductCatalogRepository class isregisteredasa
type mappingagainst the IProductCatalogRepository type with the Unity dependency injection
container. Similarly, the ProductCatalogServiceProxy class is registered as a type mapping against
the IProductCatalogService type. Then, when aview model class such as the HubPageViewModel
class accepts an IProductCatalogRepository type, the Unity container will resolve the type and
return an instance of the ProductCatalogRepository class.

When the HubPage is navigated to, the OnNavigatedTo method in the HubPageViewModel class is
called. The following example shows code from the OnNavigatedTo method, which usesthe
ProductCatalogRepository instance to retrieve category datafordisplay on the HubPage.

C#: AdventureWorks.UILogic\ViewModels\HubPageViewModel.cs

rootCategories = await _productCatalogRepository.GetRootCategoriesAsync(5);

The call to the GetRootCategoriesAsync method specifies the maximum amount of products to be
returnedforeach category. This parameter can be used to optimize the amount of data returned by
the web service, by avoiding returning anindeterminate number of products for each category.

137

The ProductCatalogRepository class, whichimplements the IProductCatalogRepository interface,
usesinstances of the ProductCatalogServiceProxy and TemporaryFolderCacheService classes to
retrieve datafordisplay on the Ul. The following code example shows the GetSubCategoriesAsync
method, whichis called by the GetRootCategoriesAsync method, to asynchronously retrieve data
from eitherthe temporary cache on disk, orfrom the web service.

C#: AdventureWorks.UILogic\Repositories\ProductCatalogRepository.cs

public async Task<ReadOnlyCollection<Category>> GetSubcategoriesAsync(
int parentId, int maxAmountOfProducts)

string cacheFileName = String.Format("Categories-{0}-{1}", parentId,
maxAmountOfProducts) ;

try
{
// Case 1: Retrieve the items from the cache
return await _cacheService
.GetDataAsync<ReadOnlyCollection<Category>>(cacheFileName);

}
catch (FileNotFoundException)

1

// Retrieve the items from the service
var categories = await _productCatalogService
.GetCategoriesAsync(parentId, maxAmountOfProducts);

// Save the items in the cache
await _cacheService.SaveDataAsync(cacheFileName, categories);

return categories;

The method first calls the GetDataAsync method in the TemporaryFolderCacheService class to
checkif the requested data existsinthe cache, andif it does, whetherit has expired ornot.
Expirationis judgedto have occurred if the data is presentinthe cache, butitis more than5
minutesold. If the data existsinthe cache and hasn't expireditisreturned, otherwise a
FileNotFoundException is thrown. If the data does not existin the cache, or if it exists and has
expired, acall tothe GetCategoriesAsync method in the ProductCatalogServiceProxy class retrieves

the data from the web service beforeitis cached.

The ProductCatalogServiceProxy class, which implements the IProductCatalogServiceinterface, is
usedto retrieve product datafromthe web service if the datais not cached, or the cached data has
expired. The following code example shows the GetCategoriesAsync method thatisinvoked by the
GetSubCategoriesAsync method in the ProductCatalogRepository class.

http://msdn.microsoft.com/en-us/library/windows/apps/system.io.filenotfoundexception.aspx

138

C#: AdventureWorks.UILogic\Services\ProductCatalogServiceProxy.cs

public async Task<ReadOnlyCollection<Category>> GetCategoriesAsync(
int parentId, int maxAmountOfProducts)

{
using (var httpClient = new HttpClient())

{

var response = await httpClient.GetAsync(new Uri
(string.Format(" {0} ?parentId={1}&maxAmountOfProducts={2}",
_categoriesBaseUrl, parentId, maxAmountOfProducts)));
response.EnsureSuccessStatusCode ();
var responseContent = await response.Content.ReadAsStringAsync();
var result =
JsonConvert.DeserializeObject<ReadOnlyCollection<Category>>(responseContent);

return result;

This method asynchronously retrieves the product categories from the web service by using the
HttpClient class to send HTTP requests and receive HTTP responses from a URI. The call to
HttpClient.GetAsyncsends a GET request to the specified URI as an asynchronous operation, and
returns a Task of type HttpResponseMessage that represents the asynchronous operation. The

returned Task will complete afterthe contentfromthe response isread. For more infoaboutthe
HttpClient class see Connectingtoan HTTP server using Windows.Web.Http.HttpClient.

When the GetCategoriesAsync method calls HttpClient.GetAsyncthis calls the GetCategories
methodinthe CategoryController classinthe AdventureWorks.WebServices project, which is shown
inthe following code example.

C#: AdventureWorks.WebServices\Controllers\CategoryController.cs

public IEnumerable<Category> GetCategories(int parentId, int maxAmountOfProducts)

{

var categories = _categoryRepository.GetAll()
.Where(c => c.ParentId == parentld);

var trimmedCategories = categories.Select(NewCategory).ToList();
FillProducts (trimmedCategories);

foreach (var trimmedCategory in trimmedCategories)

{
var products = trimmedCategory.Products.ToList();
if (maxAmountOfProducts > 0)
{
products = products.Take(maxAmountOfProducts).ToList();
}
trimmedCategory.Products = products;
}

return trimmedCategories;

http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.getasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpresponsemessage.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn440594.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.getasync.aspx

139

This method uses an instance of the CategoryRepository class to return a static collection of
Category objects that contain the category data returned by the web service.

Caching datafroma web service

The AdventureWorks Shopper TemporaryFolderCacheService classis used to cache data fromthe
web service tothe temporary app data store used by the app. This helpsto reduce communication
with the web service, which minimizes the impact on the device's battery life. This service is used by
the ProductCatalogRepository class to decide whetherto retrieve products from the web service, or
from the cache in the temporary app data store.

As previously mentioned, the GetSubCategoriesAsync method in the ProductCatalogRepository
classis usedto asynchronously retrieve datafromthe product catalog. When it does thisitfirst
attemptsto retrieve cached datafromthe temporary app data store by callingthe GetDataAsync
method, whichis showninthe following code example.

C#: AdventureWorks.UILogic\Services\TemporaryFolderCacheService.cs

public async Task<T> GetDataAsync<T>(string cacheKey)

{
await CacheKeyPreviousTask(cacheKey);
var result = GetDataAsyncInternal<T>(cacheKey);
SetCacheKeyPreviousTask(cacheKey, result);
return await result;

}

private async Task<T> GetDataAsyncInternal<T>(string cacheKey)
{
StorageFile file = await _cacheFolder.GetFileAsync(cacheKey);
if (file == null) throw new FileNotFoundException("File does not exist");

// Check if the file has expired
var fileBasicProperties = await file.GetBasicPropertiesAsync();
var expirationDate = fileBasicProperties.DateModified
.Add(_expirationPolicy) .DateTime;
bool fileIsValid = DateTime.Now.CompareTo(expirationDate) < 9;
if (!fileIsvalid) throw new FileNotFoundException("Cache entry has expired.");

string text = await FileIO.ReadTextAsync(file);
var toReturn = Deserialize<T>(text);

return toReturn;

140

The CacheKeyPreviousTask method ensuresthatsince only one I/O operation at atime may access
a cache key, cache read operations always wait forthe priortask of the current cache key to
complete before they start. The GetDataAsynclnternal methodis called toseeif the requested data
existsinthe cache, and ifitdoes, whetherit has expired or not.

The SaveDataAsync method in the TemporaryFolderCacheService class saves dataretrieved from
the web service to the cache, andis showninthe following code example.

C#: AdventureWorks.UlLogic\Services\TemporaryFolderCacheService.cs

public async Task SaveDataAsync<T>(string cacheKey, T content)

{

await CacheKeyPreviousTask(cacheKey);

var result = SaveDataAsyncInternal<T>(cacheKey, content);
SetCacheKeyPreviousTask(cacheKey, result);

await result;

private async Task SaveDataAsyncInternal<T>(string cacheKey, T content)

{
StorageFile file = await _cacheFolder.CreateFileAsync(cacheKey,
CreationCollisionOption.ReplaceExisting);

var textContent = Serialize<T>(content);
await FileIO.WriteTextAsync(file, textContent);

As with the read operations, since only one |/O operation at a time may access a cache key, cache
write operations always wait for the priortask of the current cache key to complete before they
start. The SaveDataAsyncinternal methodis called to serialize the datafrom the web service to the
cache.

Note AdventureWorks Shopperdoes not directly cache images fromthe web service. Instead, we
rely on the Image control’s ability to cache images and display themif the serverresponds with an
image.

Authenticating users with a web service

The AdventureWorks Shopper web service needs to know the identity of the userwho places an
order. The app externalizes as much of the authentication functionality as possible. This provides the
flexibility to make changesto the approach used to handle authenticationin the future without
affectingthe app. Forexample, the approach could be changed to enable userstoidentify
themselves by using a Microsoft account. It's also important to ensure that the mechanism thatthe
app usesto authenticate usersis easy toimplementon otherplatforms.

Ideally the web service should use aflexible, standards-based approach to authentication. However,
such an approachis beyond the scope of this project. The approach adopted here is that the app
requests a password challenge string from the web service thatitthen hashes using the user's

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.aspx

141

password as the key. This hashed datais then sentto the web service where it'scompared againsta
newly computed hashed version of the password challenge string, using the user's password stored
inthe web service as the key. Authentication only succeeds if the app and the web service have
computed the same hash for the password challenge string. This approach avoids sending the user's
passwordto the web service.

Note Inthe future, the app could replace the simple credentials authentication system with a
claims-based approach. One optionisto use the Simple Web Token and OAuth 2.0 protocol. This
approach offers the following benefits:

e Theauthentication processis managed externally from the app.
¢ Theauthentication process uses established standards.
e Theapp can use a claims-based approach to handle any future authorization requirements.

The followingillustration shows the interaction of the classes thatimplement credentials-based
authenticationin the AdventureWorks Shopper reference implementation.

AWShopper app AWShopper web service

SigninFlyoutWiewMaodel | | IdentityServiceProxy | | IdentityController

T
1
AccountService : ‘ Windows.Web Http. HetpClient
1
1
1

SignInUserAsync
LogOnAsync

I
|
|
I
|
|
I
|
I
|
|
I
|
|
I
|
|
I
|
GetAsync :

GetPasswordChallenge
T

|
Encoded password challenge

read response - |

I
I
GetAsync I

Getlsvalid
a
|
UserInfo
o

read response

response

result

Credentials-based userauthenticationis performed by the AccountService and IdentityServiceProxy
classesinthe app, and by the IdentityController classinthe web service. In the Onlnitialize method
inthe App class the AccountService classis registered as atype mappingagainst the
IAccountService type with the Unity dependency injection container. Then, when aview model class
such as the SigninFlyoutViewModel class accepts an IAccountService type, the Unity container will
resolve the type and return an instance of the AccountService class.

When the user selects the Submit button on the SigninFlyout, the SignInCommandin the
SigninFlyOutViewModel class is executed, which in turn calls the SignInAsync method. This method

142

then calls the SigninUserAsync method on the AccountService instance. If the signinis successful,
the SigninFlyOutview is closed. The following code example shows part of the SigninUserAsync
method inthe AccountService class.

C#: AdventureWorks.UILogic\Services\AccountService.cs

var result = await _identityService.LogOnAsync(userName, password);

The SigninUserAsync method calls the LogOnAsync method inthe instance of the
IdentityServiceProxy class that's injected into the AccountService constructor from the Unity
dependency injection container. The IdentityServiceProxy class, which implements the
lldentityService interface, uses the LogOnAsync method to authenticate user credentials with the
web service. The following code example shows this method.

C#: AdventureWorks.UILogic\Services\ldentityServiceProxy.cs

public async Task<LogOnResult> LogOnAsync(string userId, string password)
{
using (var client = new HttpClient())
{
// Ask the server for a password challenge string
var requestId = CryptographicBuffer
.EncodeToHexString(CryptographicBuffer.GenerateRandom(4));
var challengeResponse = await client.GetAsync(new Uri(_clientBaseUrl +
"GetPasswordChallenge?requestId=" + requestId));
challengeResponse.EnsureSuccessStatusCode();
var challengeEncoded = await challengeResponse.Content
.ReadAsStringAsync();
challengeEncoded = challengeEncoded.Replace(@
var challengeBuffer = CryptographicBuffer
.DecodeFromHexString(challengeEncoded);

, string.Empty);

// Use HMAC_SHA512 hash to encode the challenge string using the password

// being authenticated as the key.

var provider = MacAlgorithmProvider
.OpenAlgorithm(MacAlgorithmNames.HmacSha512);

var passwordBuffer = CryptographicBuffer
.ConvertStringToBinary (password, BinaryStringEncoding.Utf8);

var hmacKey = provider.CreateKey(passwordBuffer);

var buffHmac = CryptographicEngine.Sign(hmacKey, challengeBuffer);

var hmacString = CryptographicBuffer.EncodeToHexString(buffHmac);

// Send the encoded challenge to the server for authentication (to avoid

// sending the password itself)

var response = await client.GetAsync(new Uri(_clientBaseUrl + userId +
"?requestID=" + requestId +"&passwordHash=" + hmacString));

// Raise exception if sign in failed
response.EnsureSuccessStatusCode();

143

// On success, return sign in results from the server response packet
var responseContent = await response.Content.ReadAsStringAsync();

var result = JsonConvert.DeserializeObject<UserInfo>(responseContent);
var serverUri = new Uri(Constants.ServerAddress);

return new LogOnResult { UserInfo = result };

This method generates arandomrequestidentifierthatis encoded asa hexstringand sentto the
web service. The GetPasswordChallenge method in the IdentityController classin the
AdventureWorks.WebServices project receives the request identifier and responds with a
hexadecimalencoded password challengestringthat the app reads and decodes. The app then
hashes the password challenge with the HMACSHA512 hash function, using the user's password as
the key. The hashed password challenge is then sentto the web service forauthentication by the
GetlsValid method in the IdentityController class in the AdventureWorks.WebServices project. If
authentication succeeds, a new instance of the LogOnResult classis returned by the method.

The LogOnAsync method communicates with the web service through calls to HttpClient.GetAsync,

which sends a GET request to the specified URI as an asynchronous operation, and returns a Task of
type HttpResponseMessage that represents the asynchronous operation. The returned Task will
complete afterthe contentfromthe responseisread. For more info about the HttpClientclass see

Connectingtoan HTTP serverusing Windows.Web.Http.HttpClient.

The IdentityController class, inthe AdventureWorks.WebServices project, is responsibleforsending
hexadecimalencoded password challenge strings to the app, and for performing authentication of
the hashed password challengesitreceives fromthe app. The class contains a static Dictionary
named Identities that contains the valid credentials for the web service. The following code example
shows the GetlsValid methodin the IdentityController class.

C#: AdventureWorks.WebServices\Controllers\IdentityController.cs

public UserInfo GetIsValid(string id, string requestId, string passwordHash)
{
byte[] challenge = null;
if (requestId != null && ChallengeCache.Contains(requestId))
{
// Retrieve the saved challenge bytes
challenge = (byte[])ChallengeCache[requestId];
// Delete saved challenge (each challenge is used just one time).
ChallengeCache.Remove(requestId);

}

lock (Identities)
{
// Check that credentials are valid.
if (challenge != null && id != null && passwordHash != null &&
Identities.ContainsKey(id))

http://msdn.microsoft.com/en-us/library/windows/apps/system.security.cryptography.hmacsha512.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.getasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpresponsemessage.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn440594.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xfhwa508.aspx

144

// Compute hash for the previously issued challenge string using the
// password from the server's credentials store as the key.

var serverPassword = Encoding.UTF8.GetBytes(Identities[id]);

using (var provider = new HMACSHA512(serverPassword))

{
var serverHashBytes = provider.ComputeHash(challenge);
// Authentication succeeds only if client and server have computed
// the same hash for the challenge string.
var clientHashBytes = DecodeFromHexString(passwordHash);
if (!serverHashBytes.SequenceEqual(clientHashBytes))
throw new HttpResponseException(HttpStatusCode.Unauthorized);

if (HttpContext.Current != null)
FormsAuthentication.SetAuthCookie(id, false);
return new UserInfo { UserName = id };

}

else

{
throw new HttpResponseException(HttpStatusCode.Unauthorized);

This methodis calledinresponse to the LogOnAsync method sending a hashed password challenge
stringto the web service. The method retrieves the previously issued password challenge string that
was sentto the app, and thenremovesitfromthe cache as each password challenge stringis used
onlyonce. The retrieved password challenge is then hashed with the HMACSHA512 hash function,
usingthe user's password stored in the web service as the key. The newly computed hashed
password challenge stringisthen compared against the hashed challenge string received fromthe
app. Authentication only succeedsif the app and the web service have computed the same hash for
the password challenge string, in which case anew Userlnfo instance containing the usernameiis
returned to the LogOnAsync method.

Note The Windows Runtime includes APIs that provide authentication, authorization and data
security. For example, the AdventureWorks Shopperreference implementation uses the
MacAlgorithmProvider class to securely authenticate user credentials overan unsecured channel.
However, thisis only one choice among many. For more info see Introduction to Windows Store app
security.

http://msdn.microsoft.com/en-us/library/windows/apps/system.security.cryptography.hmacsha512.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.macalgorithmprovider.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464989.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464989.aspx

145

Handling suspend, resume, and activationin a Windows Store
business app using C#, XAML, and Prism

Summary

e Save application datawhenthe appisbeingsuspended.

e Use the saved application datato restore the app when needed.

e Allowviewsandviewmodelstosave and restore state that's relevant to each by using the
MvvmAppBase class, the VisualStateAwarePage class, and the RestorableState custom
attribute, provided by the Microsoft.Practices.Prism.StoreApps library.

Learn how to use Prism forthe Windows Runtime to manage the execution states of Windows Store
business apps that use the Model-View-ViewModel (MVVM) pattern. The Adventure Works Shopper
reference implementation saves view and view modelstate whenthe appis suspended, and
restores thatstate whenthe app is reactivated from termination.

You will learn

e How Windowsdeterminesanapp's execution state.

e How toimplementsupportforsuspend, resume, and activation by usingthe
Microsoft.Practices.Prism.StoreApps library.

e How to save andrestore view model state.

e How to save andrestore view state.

e How to save andrestore state from service and repository classes.

e How to close a Windows Store app.

Applies to

e Windows Runtime for Windows 8.1
o CH
e Extensible Application Markup Language (XAML)

Making key decisions

Windows Store apps should be designed to save theirstate and suspend when the userswitches
away fromthem. They could restore theirstate and resume when the userswitches back to them.
The following list summarizes the decisions to make whenimplementing suspend and resumein

your app:

e Shouldyourapp be activated through any contracts or extensions orwill it only be activated
by the userlaunchingit?

e Doesyourappneedto behave differently whenit's closed by the userratherthan whenit's
closed by Windows?

146

e Doesyour appneedto resume asthe userleftit, rather than startingit fresh, following
suspension?

e Doesyourappneedto start freshifalong period of time has elapsed since the userlast
accessedit?

e Shouldyourapp update the Ul when resuming from suspension?

e Doesyourappneedtorequestdatafroma networkorretrieve large amounts of datafrom
disk whenlaunched?

Your app mustregistertoreceive the Activated eventin orderto participate in activation. If your
app needs to be activated through any contracts or extensions otherthan just normal launch by the
user, youcan use yourapp's Activated event handlerto testto see how the app was activated.
Examples of activation otherthan normal userlaunchinclude anotherapp launching afile whose file
type yourapp is registered to handle, and yourapp beingchosen as the target for a share operation.
For more info see Activatingan app.

If your app needsto behave differently whenitis closed by the user, ratherthan whenit is closed by
Windows, the Activated event handlercan be used to determine whetherthe app was terminated
by the useror by Windows. For more info see Activatingan app.

Following suspension, most Windows Store apps should resume as the user leftthem ratherthan
starting fresh. Explicitly saving yourapplication data helps ensure that the usercan resume your app
even if Windows terminatesit. It's a best practice to have yourapp save its state wheniit's
suspended andrestore its state when it's launched after termination. However, if your app was
unexpectedly closed, assumethat stored application datais possibly corrupt. The app should not try
to resume butratherstart fresh. Otherwise, restoring corrupt application data could lead toan
endless cycle of activation, crash, and being closed. For more info see Guidelines forapp suspend

and resume (Windows Store apps), Suspending an app, Resuming an app, and Activating an app.

Ifthere's a good chance that users won't rememberor care about what was happeningwhen they
lastsaw yourapp, launchit fromits defaultlaunch state. You must determine an appropriate period
afterwhich yourapp should start fresh. Forexample, anews readerapp should start afreshif the
downloaded news articles are stale. However, if there is any doubt about whetherto resume or start
fresh, youshould resume the app right where the userleft off. Formore info see Resumingan app
and Activating an app.

Whenresumingyourapp afterit was suspended, update the Ul if the content has changedssince it
was lastvisible tothe user. This ensures thattothe userthe app appearsas thoughit was runningin
the background. For more info see Resumingan app.

If your app needstorequestdatafroma network orretrieve large amounts of datafrom disk, when
the app islaunched, these activities should be completed outside of activation. Use a custom loading
Ul or an extended splash screen whilethe app waits for these long running operations to finish. For
more info see How to activate an app.

http://msdn.microsoft.com/en-us/library/windows/apps/hh438373.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh438373.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465093.aspx

147

Suspend and resume in AdventureWorks Shopper

The AdventureWorks Shopper referenceimplementation was designed to suspend correctly when
the user moves away from it, or when Windows enters alow power state. It was also designed to
resume correctly whenthe user moves back toit, or when Windows leaves the low power state.
AdventureWorks Shopper uses the Microsoft.Practices.Prism.StoreApps library to provide both view
and view model supportforsuspend and resume. This was achieved by:

e Savingapplication datawhenthe appisbeingsuspended.

¢ Resumingthe appinthe state thatthe userleftitin.

e Savingthe page state to minimize the time required to suspend the app when navigating
away froma page.

e Allowingviewsandviewmodels to save and restore state that's relevantto each. For
example, Adventure Works Shopper saves the scroll position of certain GridView controls as
view state. Thisis achieved by overriding the SaveState and LoadState methods of the
VisualStateAwarePage classina view's class.

e Usingthe savedapplication datatorestore the app state, when the app resumes after being
terminated.

For more info, see Guidelines forapp suspend and resume (Windows Store apps).

Understanding possible execution states

Which events occur whenyou activate an app dependsonthe app's execution history. There are five
casesto consider. The cases correspond tothe values of the
Windows.ActivationModel.Activation.ApplicationExecutionState enumeration.

¢ NotRunning

¢ Terminated

e ClosedByUser
e Suspended

¢ Running

The following diagram shows how Windows determines an app's execution state. In the diagram,
the white rectanglesindicate thatthe appisn'tloadedinto system memory. The blue rectangles
indicate thatthe app isin memory. The dashed arcs are changes that occur without any notification
to the runningapp. The solid arcs are actions that include app notification.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx

148

App install, user login or
operating system reboot

-
]

i

¥
Mot running/ —— Activate
Closed by user

Close
Activate —* Running
{resume)
Terminated Suspend
Resume
®
\.\k
h"“—-.__,_ — Suspended ‘

Tarminate

The execution state depends onthe app's history. Forexample, when the user starts the app for the
firsttime afterinstallingit or afterrestarting Windows, the previous execution state is NotRunning,
and the state afteractivationis Running. When activation occurs, the activation eventarguments
include a PreviousExecutionState property thatindicates the state the app was in before it was

activated.

If the userswitchestoa differentapp or if the system enters alow power mode of operation,
Windows notifiesthe app thatit's being suspended. At thistime, you must save the navigation state
and all user data that represents the user's session. You should also free exclusive system resources,
like openfilesand network connections.

Windows allows 5seconds foran app to handle the Suspending event. If the Suspending event
handlerdoesn't complete within thatamount of time, Windows behaves as though the app has
stopped respondingand terminatesit. Afterthe app respondsto the Suspending event, its stateis
Suspended. If the user switches back to the app, Windows resumesitandallowsitto run again.

Note In Windows 8.1 if the userclosesanapp and thenimmediately restartsit, the closed app is
givenupto five seconds to complete its termination before it restarts.

Windows might terminate an app, without notification, afterithas been suspended. Forexample, if
the device islow onresources it mightreclaimresources thatare held by suspended apps. If the
userlaunches yourapp after Windows has terminatedit, the app's previous execution state at the
time of activation is Terminated.

You can use the previous execution state to determine whetheryourapp needs torestore the data
thatitsaved whenitwas last suspended, or whetheryou mustload yourapp's default data. In
general, if the app stops responding orthe user closesit, restartingthe app should take the userto
the app's defaultinitial navigation state. When an app is activated after being terminated, it should
load the application data that it saved during suspension so thatthe app appears as it did wheniit
was suspended.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.previousexecutionstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.suspending.aspx

149

Whenan app issuspended but hasn'tyetbeen terminated, you can resume the app without
additional work as it will still be in memory.

For a description of the suspend and resume process, see Application lifecycle (Windows Store
apps). For more info about each of the possible previous execution states, see the
ApplicationExecutionState enumeration. You mightalsowantto consult Guidelines forapp suspend
and resume (Windows Store apps) forinfo about the recommended userexperience forsuspend
and resume.

Implementation approaches for suspend and resume

For Windows Store apps such as the AdventureWorks Shopper reference implementation that use
the Microsoft.Practices.Prism.StoreApps library, implementing suspend and resume involves four

components:

e Windows Core. The CoreApplicationView class's Activated event allows an app to receive

activation-related notifications.

e XAML. The Application class provides the OnLaunched method that yourapp's class should
override to perform applicationinitialization and to display the initial content. The
Application class invokes the OnLaunched method when the userstarts the app. Whenyou
create a new projectfora Windows Store app using one of the Visual Studio project
templatesfor C#apps, Visual Studio creates an App class that derives from Application and
overrides the OnLaunched method. In MVVMapps such as AdventureWorks Shopper, much
of the Visual Studio created code inthe App class has been moved to the MvvmAppBase
class that the App class then derivesfrom.

¢ Microsoft.Practices.Prism.StoreApps classes. If you base your MVVM app on the reusable

classes of the Microsoft.Practices.Prism.StoreApps library, many aspects of suspend/resume
will be provided foryou. Forexample, the SessionStateService class will provide away to
save and restore state. If you annotate properties of yourview models with the
RestorableState custom attribute, they will automatically be saved and restored at the
correct time. The SessionStateService also interacts with the Frame class to save and restore

the app's navigation stack foryou.

e Yourapp's classes. View classes can save view state with each invocation of the
OnNavigatedFrom method. Forexample, some view classes in AdventureWorks Shopper
save userinterface state such as scroll bar position. Model state is saved by view model
classes, through the base ViewModel class.

Note Auser can activate an app through a variety of contracts and extensions. The Application class
only calls the OnLaunched method in the case of a normal launch. For more info abouthow to
detectotheractivation events see the Application class.

AdventureWorks Shopperdoes not directly interact with the CoreApplicationView class's activation-
related events. We mentionthem here in case yourapp needs access to these lower-level
notifications.

http://msdn.microsoft.com/en-us/library/windows/apps/hh464925.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464925.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.core.coreapplicationview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh438373.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.core.coreapplicationview.aspx

150

Suspending an app

Suspension supportis provided by the Microsoft.Practices.Prism.StoreApps library. In ordertoadd
suspension support toan app that derives from the MvvmAppBase classin thislibrary, youonly
need to annotate properties of view models that you wish to save during suspension with the
RestorableState custom attribute. Inaddition, if additional suspension logicis required you should
override the OnNavigatedFrom method of the base ViewModel class. The following diagram shows
the interaction of the classes thatimplement the suspend operationin AdventureWorks Shopper.

WInduws.UI_}(aml.Applltaunn| | FrameNavigationService ‘ SessionStateService

MvvmAppBase

| Windows_Storage.StorageFile

T T T

U'bewﬂudel

Sessio nStatanrFram&
OnNavigatedFrom
Savehsync

Register for
Suspending
event

Suspending
event handler

Suspending

Write navigation and
view mudel state

Here, the MvvmAppBase class registersahandlerforthe Suspending eventthatis provided by the
Application base class.

Microsoft.Practices.Prism.Store Apps\MvvmAppBase.cs

CH#

this.Suspending += OnSuspending;

Windows invokes the OnSuspending event handler beforeitsuspendsthe app. The MvvmAppBase
classusesthe eventhandlerto save relevantapp and user data to persistent storage.

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

private async void OnSuspending(object sender, SuspendingEventArgs e)
{

IsSuspending = true;

try

{

var deferral = e.SuspendingOperation.GetDeferral();

//Bootstrap inform navigation service that app is suspending.
NavigationService.Suspending();

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.suspending.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx

151

// Save application state
await SessionStateService.SaveAsync();

deferral.Complete();

}
finally
{
IsSuspending = false;
}

The OnSuspending event handlerisasynchronous. If a Suspending event's handleris asynchronous,
it must notifyits callerwhenits work has finished. Todo this, the handlerinvokes the GetDeferral
method that returns a SuspendingDeferral object. The Suspending method of the
FrameNavigationService classis then called. The SessionStateService class's SaveAsync method
then persists the app's navigation and user data to disk. Afterthe save operation hasfinished, the

Complete method of the SuspendingDeferral objectis called to notify the operating system that the
app isready to be suspended. The following code example shows the Suspending method of the
FrameNavigationService class.

Ci#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

public void Suspending()
{

NavigateFromCurrentViewModel(true);

}

The Suspending method of the FrameNavigationService class calls the
NavigateFromCurrentViewModel method that handles the suspension. The following code example
shows the NavigateFromCurrentViewModel method of the FrameNavigationService class.

C#: Microsoft.Practices.Prism.StoreApps\FrameNavigationService.cs

private void NavigateFromCurrentViewModel(bool suspending)

{
var departingView = _frame.Content as FrameworkElement;
if (departingView == null) return;
var frameState = _sessionStateService.GetSessionStateForFrame(_frame);

var departingViewModel = departingView.DataContext as INavigationAware;

var viewModelKey = "ViewModel-" + _frame.BackStackDepth;
if (departingViewModel != null)

{
var viewModelState = frameState.ContainsKey(viewModelKey) ?
frameState[viewModelKey] as Dictionary<string, object> : null;
departingViewModel.OnNavigatedFrom(viewModelState, suspending);
}

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.suspending.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.webui.suspendingoperation.getdeferral.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.suspendingdeferral.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.suspendingdeferral.complete.aspx

152

The NavigateFromCurrentViewModel method gets the session state forthe currentview and calls
the OnNavigatedFrom method onthe current view model. All OnNavigatedFrom methods feature a
suspending parameterthattellsthe view modelwhetheritis being suspended. If the parameteris
true it meansthat no change should be made to state that would invalidate the page and thata
subsequent OnNavigatedTo method might not be called, forinstance if the app resumes without
beingterminated. Thisallows you toimplement additional functionality in view model classes that
may be required when the OnNavigatedFrom method is called when the appisn't being suspended.

In the NavigateFromCurrentViewModel method the frameState dictionaryisthe dictionary forthe
frame. Each iteminthe dictionaryisa view model thatis at a specificdepth inthe frame back stack.
Each view model also hasits own state dictionary, viewModelState, that is passed to the view
model's OnNavigatedFrom method. This approachis preferableto each view model creating entries
inthe frameState dictionary usingthe view modelstype as the key.

Saving view model state

All of the view model classes inthe AdventureWorks Shopper reference implementation derive from
the ViewModel class, provided by the Microsoft.Practices.Prism.StoreApps library, thatimplements
the OnNavigatedFrom method. This method calls the FillStateDictionary method to add any view
model state to the frame state, as shownin the following code example.

C#: Microsoft.Practices.Prism.StoreApps\ViewModel.cs

public virtual void OnNavigatedFrom(Dictionary<string, object> viewModelState,
bool suspending)

{ if (viewModelState != null)
{
FillStateDictionary(viewModelState, this);
}
}

The FillStateDictionary method iterates through any propertiesinthe view modeland stores the
value of any properties that possess the [RestorableState] custom attribute. The SaveAsync method
of the SessionStateService class then writes the current session state to disk.

Savingview state

The SaveAsync method calls the GetNavigationState method of each registered Frame objectin
orderto persistthe serialized navigation history (the frame stack). In AdventureWorks Shopper there
isonly one registered frame, and it corresponds to the rootFrame in the InitializeFrameAsync
methodinthe MvvmAppBase class.

When the SaveAsync method calls the GetNavigationState method, itinturninvokesthe
OnNavigatedFrom method of each of the frame's associated page objects. The OnNavigatedFrom

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.getnavigationstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.getnavigationstate.aspx

153

method inthe VisualStateAwarePage class theninvokes the SaveState method of any page that
derivesfromit, allowing pages to save view state such as the current scroll position of a control.

C#: AdventureWorks.Shopper\Views\HubPage.xaml.cs

protected override void SaveState(System.Collections.Generic.Dictionary<string,
object> pageState)

{
if (pageState == null) return;
base.SaveState(pageState);
pageState["scrollViewerOffsetProportion"] = ScrollViewerUtilities
.GetScrollViewerOffsetProportion(_itemsGridViewScrollViewer);
}

Here, the SaveState method preserves state associated with the HubPage, in this case beinga value
that reflects the proportion of scrolling that has occurred either horizontally or vertically, depending
on view state, within the ScrollViewer in the AutoRotatingGridView custom control. This valueis
retrieved by the GetScrollViewerOffsetProportion method in the ScrollViewerUtilities class. The
value can then be restored when reactivation occurs.

Saving state fromservice and repository classes

Some service and repository classes also persist state to survive termination. In orderto do this they
use an instance of the SessionStateService class thatimplements the ISessionStateService interface.
The following code example shows how the AccountService class persists the user's credentials.

C#: AdventureWorks.UlILogic\Services\AccountService.cs

_sessionStateService.SessionState[UserNameKey] = userName;
_sessionStateService.SessionState[PasswordKey] = password;

Resuming an app

When an app resumes from the Suspended state, it enters the Running state and continues from
where itwas whenit was suspended. No application datais lost, because it has notbeen removed
from memory. Most apps don't need to do anythingif they are resumed before they are terminated
by the operating system.

The AdventureWorks Shopper referenceimplementation does notregisteran event handlerforthe
Resuming event. In the rare case when an app does registeran event handlerforthe Resuming
event, the handleris called when the app resumes from the Suspended state.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.scrollviewer.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.resuming.aspx

154

Activating an app

Activation supportis provided by the Microsoft.Practices.Prism.StoreApps library. If Windows has
terminated asuspended app, the Application base class calls the OnLaunched method when the app
becomes active again. The following diagram shows the interaction of classesin AdventureWorks
Shopperthatrestore the app afterit has been terminated.

Windows UL Xam|.Application SessionStateService FrameNavigationService

L] T
1
MyvmappBase Windows. Storage. StorageFile :
1
T
' i

OnLaunched

Restorefsync

Read from disk

RestoreSavedMavigation

OnMavigatedTo

The MvvmAppBase class overrides the OnLaunched method of the Windows.Ul.Xaml.Application
base class. When the OnLaunched method runs, itsargumentisa LaunchActivatedEventArgs object.
This object contains an ApplicationExecutionState enumeration that tells you the app's previous
execution state. The OnLaunched method calls the InitializeFrameAsync method toinitialize the
app's Frame object. The following code example shows the relevant code fromthe
InitializeFrameAsync method.

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

if (args.PreviouskExecutionState == ApplicationExecutionState.Terminated)
{
await SessionStateService.RestoreSessionStateAsync();
}
OnInitialize(args);
if (args.PreviousExecutionState == ApplicationExecutionState.Terminated)
{
// Restore the saved session state and navigate to the last page visited
try
{

SessionStateService.RestoreFrameState();
NavigationService.RestoreSavedNavigation();
_isRestoringFromTermination = true;

}

catch (SessionStateServiceException)

{

// Something went wrong restoring state.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx

// Assume there is no state and continue

155

The code checksitsargumentto see whetherthe previous state was Terminated. If so, the method
calls the SessionStateService class's RestoreSessionStateAsync method to recover saved settings.
The RestoreSessionStateAsync method reads the saved state info, and then the Onlnitialize method

is called whichis overriddenin the App class. This method registersinstances and types with the
Unity dependency injection container. Then, if the previous execution state of the app was
Terminated, the saved session state isrestored and the app navigatesto the last page was that

visited priortotermination. Thisis achieved by calling the RestoreSavedNavigation method of the

FrameNavigationService class thatin turn simply calls the NavigateToCurrentViewModel method,

which getsthe session state forthe currentview, and calls the OnNavigatedTo method on the

currentview model.

C#: Microsoft.Practices.Prism.StoreApps\FrameNavigationService.cs

private void NavigateToCurrentViewModel(NavigationMode navigationMode,

{

object parameter)

var frameState = _sessionStateService.GetSessionStateForFrame(_frame);
var viewModelKey = "ViewModel-" + _frame.BackStackDepth;

if (navigationMode == NavigationMode.New)
{
// Clear existing state for forward navigation when adding a new
// page/view model to the navigation stack
var nextViewModelKey = viewModelKey;
int nextViewModelIndex = _frame.BackStackDepth;
while (frameState.Remove(nextViewModelKey))

{
nextViewModelIndex++;
nextViewModelKey = "ViewModel-" + nextViewModelIndex;
}
}
var newView = _frame.Content as FrameworkElement;
if (newview == null) return;

var newViewModel = newView.DataContext as INavigationAware;
if (newViewModel != null)
{

Dictionary<string, object> viewModelState;
if (frameState.ContainsKey(viewModelKey))

{
viewModelState = frameState[viewModelKey] as
Dictionary<string, object>;
}
else
{

viewModelState = new Dictionary<string, object>();

156

}

newViewModel.OnNavigatedTo(parameter, navigationMode, viewModelState);
frameState[viewModelKey] = viewModelState;

Restoring view model state

All of the view model classes in the AdventureWorks Shopper reference implementation derive from
the ViewModel base class, provided by the Microsoft.Practices.Prism.StoreApps library, which

implements the OnNavigatedTo method. This method simply calls the RestoreViewModel method
to restore any view model state from the frame state, as shown in the following code example.

C#: Microsoft.Practices.Prism.StoreApps\ViewModel.cs

public virtual void OnNavigatedTo(object navigationParameter,
NavigationMode navigationMode, Dictionary<string, object> viewModelState)

{ if (viewModelState != null)
{
RestoreViewModel(viewModelState, this);
}
}

The RestoreViewModel method iterates through any propertiesin the viewmodel and restores the
values of any properties that possess the [RestorableState] attribute, from the frame state.

Restoring view state

Saved session state isrestored by the RestoreFrameState method in the SessionStateService class.
This method calls the SetNavigationState method of each registered Frame objectin orderto

restore the serialized navigation history (the frame stack). In AdventureWorks Shopperthereis only
one registered frame, andit corresponds to the rootFrame in the InitializeFrameAsync methodin
the MvvmAppBase class.

When the RestoreFrameState method calls the SetNavigationState method, itin turninvokesthe

OnNavigatedTo method of each of the frame’s associated page objects. The OnNavigatedTo
method inthe VisualStateAwarePage class theninvokes the LoadState method of any page that
derives fromit, allowing pages to restore view state such as the current scroll position of a control.

C#: Microsoft.Practices.Prism.StoreApps\ViewModel.cs

protected override void LoadState(object navigationParameter,
System.Collections.Generic.Dictionary<string, object> pageState)

{
if (pageState == null) return;

base.LoadState(navigationParameter, pageState);

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.setnavigationstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.setnavigationstate.aspx

157

if (pageState.ContainsKey("scrollViewerOffsetProportion"))

{

_scrollViewerOffsetProportion = double
.Parse(pageState["scrollViewerOffsetProportion"].ToString(),
CultureInfo.InvariantCulture.NumberFormat);

}

Here, the LoadState method restores state associated with the HubPage, in this case a value that
reflects the proportion of horizontal or vertical scrolling that had occurred, depending on view state,
within the ScrollViewer in the AutoRotatingGridView custom control. The ScrollVieweris set with
the restoredvalue by the ScrollToProportion method in the ScrollViewerUtilites class once the
window hasrendered orchanged its renderingsize. Therefore, the userwill see the page content
scrolled to the exactlocationitwas at priorto termination or navigation, regardless of whetherthe
page orientation has changedin between termination and reactivation.

Restoring state from service and repository classes

Some service and repository classes also restore state that was previously persisted to survive
termination. In orderto do this they use an instance of the SessionStateService class that
implements the ISessionStateServiceinterface. The following code example shows how the
AccountService class restores the user's credentials.

C#: AdventureWorks.UILogic\Services\AccountService.cs

if (_sessionStateService.SessionState.ContainsKey (UserNameKey))

{

_userName = _sessionStateService.SessionState[UserNameKey].ToString();

}

if (_sessionStateService.SessionState.ContainsKey (PasswordKey))

{

_password = _sessionStateService.SessionState[PasswordKey].ToString();

Other ways to close the app

Appsdon't contain Ul for closing the app, but users can choose to close an ap p by pressing Alt+F4,
dragging the app to the bottom of the screen, or selecting the Close context menuforthe app when
it'sinthe sidebar. Whenanapp is closed by any of these methods, it enters the NotRunning state
for approximately 10seconds and then transitions to the ClosedByUser state.

Apps shouldn't close themselves programmatically as part of normal execution. When you close an
app programmatically, Windows treats this as an app crash. The app enters the NotRunning state
and remains there until the useractivatesitagain.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.scrollviewer.aspx

158

The following diagram shows how Windows determines an app's execution state. Windows takes
app crashesand userclose actionsinto account, as well asthe suspend or resume state. In the
diagram, the white rectanglesindicate thatthe appisn'tloadedinto system memory. The blue
rectanglesindicate thatthe appisin memory. The dashed lines are changes that occur without any
modification tothe runningapp. The solid lines are actions thatinclud e app notification.

App install, user login or
gperating system reboot

"
y
5

-
Mot running — Activate
Activate
. Suspend
App crash
M ‘ Suspended
Activate &V l‘,
. 1
Mot running Close Running E
T Terminate
L]
|- I i ;f;
10 second Activate Activate
time out i (resume) -

T Closed by user
* L Terminated

159

Communicating betweenloosely coupled components in a Windows
Store business app using C#, XAML, and Prism
Summary

e Use the Microsoft.Practices.Prism.PubSubEvents library to communicate between loosely
coupled componentsinyourapp.

o Notifysubscribers by retrievingthe pub/sub event from the event aggregator and callingits
Publish method of the PubSubEvent<TPayload> class.

e Registertoreceive notifications by using one of the Subscribe method overloads available in
the PubSubEvent<TPayload> class.

Learn about eventaggregation, provided by Prism for the Windows Runtime, which allows for
communication between loosely coupled components. Event aggregation can reduce dependencie s
between assembliesinasolution, while also allowing components to be independently developed
and tested.

You will learn

e How eventaggregation enables communication between loosely coupled componentsinan
app.

e How to defineapub/subevent, publishit, and subscribe to it using a default subscription.

e How to subscribe toan eventonthe Ul thread, perform event subscription filtering,and
subscribe to an event by using strong references.

e How to manually unsubscribe froma pub/sub eventwhen using astrong delegate reference.

Applies to

e Windows Runtime for Windows 8.1
o CH
e Extensible Application Markup Language (XAML)

Making key decisions

Event aggregation allows communication between loosely coupled componentsinan app, removing
the need forcomponentsto have a reference to each other. The following list summarizes the
decisions to make when usingevent aggregationinyourapp:

e Whenshouldluse eventaggregation over Microsoft .NET events?

e How should|subscribe to pub/subevents?

e How can asubscriber update the Ul if the eventis published from a background thread?
e Doesthesubscriberneedtohandle everyinstanceof apublished event?

e Dol needtounsubscribe from subscribed events?

160

Eventsin .NET implementthe publish-subscribe pattern. The publisher and subscriber lifetimes are
coupled by object referencesto each other, and the subscribertype must have areference to the
publishertype.

Event aggregationisa design pattern that enables communication between classes that are
inconvenienttolink by object and type references. This mechanism allows publishers and
subscribers to communicate without having areference to each other. Therefore, .NET events
should be used forcommunication between components that already have object reference
relationships (such as a control and the page that containsit), with event aggregation being used for
communication between loosely coupled components (such as two separate page view modelsin an
app). For more info see Event aggregation.

There are several ways to subscribe to events when using event aggregation. The simplestisto
registeradelegate reference of the event handler method that will be called onthe publisher's
thread. For more info see Subscribing to events.

If you needto be able toupdate Ul elements when an eventisreceived, you can subscribe to receive
the eventonthe Ul thread.

When subscribingto a pub/sub event, you can request that notification of the event willoccurin the
Ul thread. This is useful, forexample, when you need to update the Ul in response to the event. For
more infosee Subscribing on the Ul thread.

Subscribers do not need to handle everyinstance of apublished event, as they can specify a
delegate thatis executed when the eventis published to determineif the payload of the published
event matches aset of criteriarequired to have the subscriber callback invoked. For more info see
Subscription filtering.

By default, event aggregation maintains aweak delegate reference toa subscriber's handler. This
means that the reference will not prevent garbage collection of the subscriber, anditrelieves the
subscriberfromthe needto unsubscribe. If you have observed performance problems with events,
you can use strongly referenced delegates when subscribing to an event, and then unsubscribe from
the eventwhenit'snolongerrequired. For more info see Subscribing using strong references.

Event aggregation in AdventureWorks Shopper

The AdventureWorks Shopper referenceimplementation uses the
Microsoft.Practices.Prism.PubSubEvents library to communicate between loosely coupled
components. Thisis a Portable Class Library that contains classes thatimplement event aggregation.

For more info see Prism forthe Windows Runtime reference.

The AdventureWorks Shopper referenceimplementation defines the ShoppingCartUpdatedEvent
class and ShoppingCartltemUpdatedEvent class for use with event aggregation. You invoke the
ShoppingCartUpdatedEvent singleton instance's Publish method when the signed in user has
changed, to notify the ShoppingCartTabUserControl of the change. The

161

ShoppingCartTabUserControl is included on the HubPage, GroupDetailPage, and ItemDetailPage
views, with there being no type orobject references between the ShoppingCartTabUserControl and
its parent pages.

The ShoppingCartitemUpdated eventis published whenevera productis added to the shopping
cart, so that the ShoppingCartTabUserControlViewModel class can be updated. For more info see
Eventaggregation.

Pub/subeventsinthe AdventureWorks Shopper reference implementation are published on the Ul
thread, with the subscribers receivingthe event on the same thread. Weak reference delegates are
used forboth events, and so the events do not need to be unsubscribed from. For more info see
Subscribing to events.

Note Lambdaexpressions that capture the this reference cannot be used as weak references. You
should use instance methods as the Subscribe method's action and filter parametersif you wantto
take advantage of the PubSubEvent class's weak reference feature.

Event aggregation

.NET events are the most simple and straightforward approach fora communication layer between
componentsifloose couplingis notrequired. Event aggregation should be used forcommunication
whenit'sinconvenientto link objects with type and object references.

Note If you use .NETevents, you have to consider memory management, especially if you have a
short lived object that subscribes to an event of a staticor long lived object. If you do not remove
the event handler, the subscriber will be keptalive by the reference toitinthe publisher, and this
will prevent ordelay the garbage collection of the subscriber.

The eventaggregator provides multicast publish/subscribe functionality. This means that there can
be multiple publishers thatinvoke the Publish method of a given PubSubEvent<TPayload>instance
and there can be multiple subscribers listening to the same PubSubEvent<TPayload>instance. A
subscriber can have more than one subscriptionto a single PubSubEvent<TPayload>instance. The
following diagram shows this relationship.

Publisher ——— —— Subscriber
e ™

EventAggregator

+ PubSubEvent -~
Publisher ————— s—— Subscriber

PubSubEvent

Publisher }7 - ———— Subscriber

162

The EventAggregator classis responsible for locating or building singleton instances of pub/sub
eventclasses. The classimplements the IEventAggregatorinterface,showninthe following code
example.

C#: Microsoft.Practices.Prism.PubSubEvents\IEventAggregator.cs

public interface IEventAggregator

{
TEventType GetEvent<TEventType>() where TEventType : EventBase, new();

}

In the AdventureWorks Shopper reference implementation, aninstance of the EventAggregator
classis createdin the OnLaunched methodinthe App class. Thisinstance isthen passed as an
argument to the constructors of view model classes that needit.

Defining and publishing pub/sub events

In apps such as the AdventureWorks Shopper reference implementation that use event aggregation,
event publishers and subscribers are connected by the PubSubEvent<TPayload> class, whichis the
base classfor an app's specificevents. TPayload is the type of the event's payload. The
PubSubEvent<TPayload> class maintains the list of subscribers and handles event dispatching to the
subscribers. The class contains Subscribe method overloads, and Publish, Unsubscribe, and Contains
methods.

Defining an event

A pub/sub event can be defined by creatingan empty class that derives fromthe
PubSubEvent<TPayload> class. The eventsin the AdventureWorks Shopper reference
implementation do not all pass a payload because in some circumstances the event handling only
needsto know that the eventoccurred and thenretrieve the updated state related to the event
througha service. Insuch cases, they declare the TPayload type as an Object and pass a null
reference when publishing. The following code example shows how the ShoppingCartUpdatedEvent
from AdventureWorks Shopperis defined.

C#: AdventureWorks.UILogic\Events\ShoppingCartUpdatedEvent.cs

public class ShoppingCartUpdatedEvent : PubSubEvent<object>

{
}

Publishing an event

Publishers notify subscribers of apub/sub event by retrievingasingletoninstance that represents
the eventfromthe EventAggregator class and calling the Publish method of thatinstance. The
EventAggregator class constructs the instance on first access. The following code demonstrates
publishing the ShoppingCartUpdatedEvent.

163

C#: AdventureWorks.UILogic\Repositories\ShoppingCartRepository.cs

private void RaiseShoppingCartUpdated()

{
// Documentation on loosely coupled communication is at
// http://go.microsoft.com/fwlink/?LinkID=288820&clcid=0x409
_eventAggregator.GetEvent<ShoppingCartUpdatedEvent>().Publish(null);
}

Subscribing to events

Subscribers can enlist with an event using one of the Subscribe method overloads available inthe
PubSubEvent<TPayload> class. There are several approaches to event subscription.

Defaultsubscription

In the simplest case, the subscriber must provide ahandlerto be invoked wheneverthe pub/sub
eventis published. Thisisshownin the following code example.

C#: AdventureWorks.UILogic\ViewModels\ShoppingCartPageViewModel.cs

public ShoppingCartPageViewModel(...)

{
eventAggregator.GetEvent<ShoppingCartUpdatedEvent>()
.Subscribe(UpdateShoppingCartAsync);
}
public async void UpdateShoppingCartAsync(object notUsed)
{
}

In the code, the ShoppingCartPageViewModel class subscribes to the ShoppingCartUpdatedEvent
using the UpdateShoppingCartAsync method as the handler.

Subscribing on the Ul thread

A subscriber will sometimes need to update Ul elementsinresponse to events. In Windows Store
apps, only the app's main thread can update Ul elements.

By default, each subscribed handleractionisinvoked synchronously from the Publish method, in no
definedorder. If your handleraction needs to be called from the Ul thread, for example, in orderto
update Ul elements, you can specify a ThreadOption when you subscribe. Thisisshowninthe
following code example.

164

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

public SubscriberViewModel(IEventAggregator eventAggregator)
{

_eventAggregator.GetEvent<ShoppingCartChangedEvent>()
.Subscribe(HandleShoppingCartUpdate, ThreadOption.UIThread);

The ThreadOption enumeration allows three possible values:

e PublisherThread. This value should be used toreceive the event on the publishers'thread,
and isthe default setting. The invocation of the handleractionis synchronous.

e BackgroundThread. This value should be used to asynchronously receive the eventona
thread-pool thread. The handleractionis queued using a new task.

e UlThread. This value should be used toreceive the event on the Ul thread. The handler
actionis postedtothe synchronization context that was used to instantiate the event
aggregator.

Note For Ul thread dispatchingtowork, the EventAggregator class must be created onthe Ul
thread. This allows it to capture and store the SynchronizationContext thatis usedto dispatch to the
Ul thread forsubscribers that use the ThreadOption.UIThread value.

In addition, itis notrecommended that you modify the payload object from within a callback
delegate becauseseveral threads could be accessing the payload object simultaneously. In this
scenarioyou should have the payload be immutableto avoid concurrency errors.

Subscription filtering

A subscriber may not need to handle everyinstance of a published event. In this case, the subscriber
can use a Subscribe method overload that accepts a filter parameter. The filter parameteris of type
System.Predicate<TPayload>andis executed whenthe eventis published. If the payload does
satisfy the predicate, the subscriber callbackis not executed. The filter parameteris showninthe
following code example.

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

public SubscriberViewModel(IEventAggregator eventAggregator)
{

_eventAggregator.GetEvent<ShoppingCartChangedEvent>()
.Subscribe(HandleShoppingCartUpdateFiltered, ThreadOption.UIThread,
false, IsCartCountPossiblyTooHigh) ;

http://msdn.microsoft.com/en-us/library/windows/apps/system.threading.synchronizationcontext.aspx

165

The Subscribe method returns asubscription token of type
Microsoft.Practices.Prism.PubSubEvents.SubscriptionToken that can later be used to remove a
subscription tothe event. Thistokenis usefulif you are usinganonymous delegates as the callback
delegate orwhenyouare subscribing to the same event handlerwith different filters.

Note Thefilteractionisexecuted synchronously from the context of the Publish method regardless
of the ThreadOption value of the current subscription.

Subscribing using strong references

The PubSubEvent<TPayload> class, by default, maintains aweak delegatereference tothe
subscriber's handlerand anyfilter, on subscription. This means that the reference that the
PubSubEvent<TPayload> class holds onto will not prevent garbage collection of the subscriber.
Therefore, usingaweak delegatereferencerelieves the subscriber from the need to unsubscribe
fromthe event, and allows for garbage collection.

Maintaining aweak delegate reference has a slightly higher performance impact than usinga
corresponding strong delegate reference. If yourapp publishes many eventsinavery short period of
time, you may notice a performance cost when using weak delegate references. However, for most
apps the performance willnot be noticeable. Inthe event of noticing a performance cost, you may
need tosubscribe to events by using strong delegate references instead. If you do use strong
delegate references, your subscriber will need to unsubscribe from events when the subscriptionis
no longerneeded.

To subscribe with astrong delegate reference, use an overload of the Subscribe method that has the
keepSubscriberReferenceAlive parameter, as shown in the following code example.

CH#

public SubscriberViewModel(IEventAggregator eventAggregator)
{

bool keepSubscriberReferenceAlive = true;

_eventAggregator.GetEvent<ShoppingCartChangedEvent>().Subscribe
(HandleShoppingCartUpdateFiltered, ThreadOption.UIThread,
keepSubscriberReferenceAlive);

The keepSubscriberReferenceAlive parameteris of type bool. When set to true, the eventinstance
keepsastrong reference to the subscriberinstance, thereby not allowingit to be garbage collected.
For info about how to unsubscribe see Unsubscribing from pub/sub events. When set to false, which

isthe defaultvalue whenthe parameteris omitted, the event maintains aweak reference to the
subscriberinstance, thereby allowing the garbage collectorto dispose the subscriberinstance when
there are no otherreferencestoit. Whenthe subscriberinstance is garbage collected, the eventis
automatically unsubscribed.

166

Unsubscribing from pub/sub events

If your subscribernolongerwantto receive events, you can unsubscribe by using your subscriber's
handlerorby usinga subscription token. The following code example shows how to unsubscribe by
usingyoursubscriber's handler.

CH#

ShoppingCartChangedEvent shoppingCartChangedEvent =
_eventAggregator.GetEvent<ShoppingCartChangedEvent>();

shoppingCartChangedEvent. Subscribe (HandleShoppingCartUpdate,
ThreadOption.PublisherThread);

shoppingCartChangedEvent.Unsubscribe(Handle ShoppingCartUpdate);

The following code example shows how to unsubscribe by using asubscription token. The tokenis
suppliedasareturn value from the Subscribe method.

CH#

ShoppingCartChangedEvent shoppingCartChangedEvent =
_eventAggregator.GetEvent<ShoppingCartChangedEvent>();

subscriptionToken = shoppingCartChangedEvent.Subscribe(HandleShoppingCartUpdate,
ThreadOption.UIThread, false, IsCartCountPossiblyTooHigh);

shoppingCartChangedEvent.Unsubscribe(subscriptionToken);

167

Working with tiles in a Windows Store business app using C#, XAML,
and Prism

Summary
e Use live tilesto presentengaging new contentto users thatinvites themtolaunchthe app.
e Use secondarytilesand deep links to promote specificcontentinyourapp.

e Use periodicnotifications to update tiles on afixed schedule.

Learn how to create an app tile thatis updated by periodicnotifications, and how to create
secondarytilesand deep links to promote specificcontent from an app onto the Start screen. The
AdventureWorks Shopper reference implementation demonstrates this, and how to launch the app
froma secondarytile using Prism for the Windows Runtime.

You will learn

e How to create and update an app tile with periodic notifications.
e How to pinand unpinsecondarytiles tothe Start screenfrom withinan app.
e How tolaunchthe app to a specific page froma secondarytile.

Applies to

e Windows Runtime for Windows 8.1
e CH
e Extensible Application Markup Language (XAML)

Making key decisions

Atileisan app'srepresentation onthe Start screen and allows you to presentrich and engaging
contentto yourusers whenthe app is not running. Tiles should be appealing to usersin orderto give
them great first-impression of your Windows Store app. The following list summarizes the decisions
to make when creatingtilesforyourapp:

e Whyshouldlinvestina livetile?

e How dol make a live tile compellingto users?

e What shape should mytile be?

e What ssize should mytileimage be?

e Whichtiletemplatesshould luse?

¢ What mechanismshould | use to delivertile notifications?

e How oftenshould mylive tile contentchange?

e Shouldmyapp include the ability to pin secondary tiles to Start?

Tiles can be live, meaning they are updated through notifications, orstatic. Forinfoabouttiles,
includingwhyyoushouldinvestinalive tile, how to make alive tile compellingto users, what shape
and size a tile should be, which tiletemplates you should use, how often yourlivetile content should

168

change, and secondarytiles, see Guidelines fortiles and badges, Tile and toastimage sizes, The tile

template catalog, Sending notifications, and Secondary tiles overview.

The choice of which mechanismto use todeliveratile notification depends onthe content you want
to show and how frequently that content should be updated. Local notifications are a good way to
keepthe apptile current, evenif youalso use other notification mechanisms. Many apps will use
local notifications to update the tile when the app is launched or when state changes within the app.
Thisensuresthatthe tile isup-to-date whenthe app launches and exits. Scheduled notifications are
ideal forsituations where the contentto be updatedis knowninadvance, such as a meeting
invitation. Periodic notifications provide tile updates with minimal web or cloud service and client
investment, and are an excellent method of distributing the same contentto awide audience. Push
notifications are idealforsituations where yourapp has real-time data or data that is personalized
for youruser. Push notifications are also usefulin situations wherethe datais time-sensitive, and
where the contentis generated at unpredictable times. Periodic notifications offer the most suitable
notification solution forside-loaded apps, but don't provide notifications on demand. In addition,
with periodicnotifications, afterthe initial pollto the web or cloud service Windows will continue to
poll fortile updatesevenifyourappisneverlaunchedagain. Formoreinfosee Choosinga
notification delivery method.

Note Push notifications use the Windows Push Notification Services (WNS) to deliver updates to
users. Before you can send notifications using WNS, your app must be registered with the Windows
Store Dashboard. For more info see Push notification overview.

Tiles in AdventureWorks Shopper

The AdventureWorks Shopper referenceimplementation includes medium and wide default tiles,
which were created according to the pixel requirements for each. Choosingasmalllogo that
represents yourappisimportantso that users can identify it when the tile displays custom content.
For more infosee Creatingapp tiles.

The defaulttiles are made live by updating them with periodic notifications, at 30 minute intervals,
to advertise specific products to users on their Start screen. The periodic notifications use peek
templatessothatthe live tile willanimate between two frames. The first frame shows an image of
the advertised product, with the second frame showing product details. Both wide and medium
peektile templates are used. While AdventureWorks Shopper will defaultto the wide tile, it can be
changedto the mediumtile by the user. Formore info see Using periodic notifications to update tile

content.

AdventureWorks Shopperincludes the ability to create secondary tiles by pinning specific products
to the Start screen from the ItemDetailPage. The following diagram shows the two frames of a
secondary tile created from one of the products sold in AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465403.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781198.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh779722.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465372.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh779721.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh779721.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx

169

Men's Bib-Shorts, S

Selecting asecondarytile launches the app and displays the previously pinned product on the
ItemDetailPage. For more info see Creating secondary tiles.

Creating app tiles

Tilesbeginasa defaulttile definedinthe app's manifest. A statictile will always display the default
content, whichisgenerally afull-tile logoimage. Alive tile can update the default tile to show new
content, but can return to the defaultif the notification expires orisremoved. The following
diagrams show the default small, medium, and wide logo images that can be foundinthe Assets
folderinthe AdventureWorks Shopper Visual Studio solution. Each logo has a transparent
background. Thisis particularly importantforthe small logo so that it will blend in with tile
notification content.

30 x 30 pixels

150 x 150 pixels

310 x 150 pixels

170

Note Image assets, includingthe logos, are placeholdersand meantfortraining purposes only. They
cannot be used as a trademark or for other commercial purposes.

The Visual Studio manifest editor makes the process of adding the default tiles easy. For more info
see Quickstart: Creating adefaulttile using the Visual Studio manifest editor. For more info about
working with image resources, see Quickstart: Usingfile orimage resources and How to name

resources using qualifiers.

Ifonlya mediumlogois providedinthe app's manifestfile, the app's tile will always be square. If
botha mediumand a wide logo are provided inthe manifest, the app'stile willdefau lt toawide tile
whenitis installed. You mustdecide whetheryou wantto allow a wide tile as well. This choice is
made by providing awide logoimage when you define your defaulttilein your app manifest.

Using periodicnotifications to update tile content

Periodicnotifications, which are sometimes called polled notifications, update tiles at a fixed interval
by downloading contentdirectly fromaweb or cloud service. To use periodic notifications your app
must specify the Uniform Resource Identifier (URI) of aweb location that Windows polls fortile
updates, and how often that URI should be polled.

Periodicnotifications requirethat yourapp hosts a web or cloud service. Any valid HTTP or Secure
Hypertext Transfer Protocol (HTTPS) web address can be used as the URI to be polled by Windows.
The following code exampleshows the GetTileNotification method in the TileNotificationController
classin the AdventureWorks.WebServices project, which is used to send tile content to the
AdventureWorks Shopper reference implementation.

Ci#: AdventureWorks.WebServices\Controllers\TileNotificationController.cs

public HttpResponseMessage GetTileNotification()
{

var tileXml =
GetDefaultTileXml ("http://localhost:2112/Images/hotrodbike_red_large.jpg",
"Mountain-400-W Red, 42");
tileXml = string.Format(CultureInfo.InvariantCulture, tileXml,
DateTime.Now.ToShortDateString(), DateTime.Now.ToShortTimeString());

// create HTTP response
var response = new HttpResponseMessage();

// format response
response.StatusCode = System.Net.HttpStatusCode.OK;
response.Content = new StringContent (tileXml);

//Need to return xml format to TileUpdater.StartPeriodicUpdate
response.Content.Headers.ContentType =

new System.Net.Http.Headers.MediaTypeHeaderValue("text/xml");
return response;

http://msdn.microsoft.com/en-us/library/windows/apps/hh868247.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965325.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965324.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965324.aspx

171

This method generatesthe XMLtile content, formatsit, and returnsit as a HTTP response. The tile
content must conformto the Tile schemaand be 8-bit Unicode Transformation Format (UTF-8)
encoded. The tile contentis specified using the TileWidePeeklmage01and
TileSquarePeeklmageAndText02 templates. Thisis necessary because whilethe app will use the
wide tile by default, it can be changed to the square tile by the user. For more infosee Thettile
template catalog.

At a pollinginterval of 30 minutes, Windows sends an HTTP GET request to the URI, downloads the
requested tile contentas XML, and displays the contenton the app's tile. Thisis accomplished by the
OnlInitialize methodinthe App class, as shown inthe following code example.

C#: AdventureWorks.Shopper\App.xaml.cs

_tileUpdater = TileUpdateManager.CreateTileUpdaterForApplication();
_tileUpdater.StartPeriodicUpdate(new Uri(Constants.ServerAddress +
"/api/TileNotification"), PeriodicUpdateRecurrence.HalfHour);

A new TileUpdaterinstance is created by the CreateTileUpdaterForApplication method inthe
TileUpdateManager class, in orderto update the apptile. By default, atile onthe Start screen shows
the content of a single notification until itis replaced by a new notification. However, you can e nable

notification cycling so that up to five notifications are maintained inaqueue and the tile cycles
throughthem. Thisisaccomplished by calling the EnableNotificationQueue method witha
parameter of true, onthe TileUpdaterinstance. Finally, a call to StartPeriodicUpdate is made to poll
the specified URIin orderto update the tile with the received content. After thisinitial poll,
Windows will continue to provide updates every 30 minutes, as specified. Polling then continues

until you explicitly stopit, oryourapp is uninstalled. Otherwise Windows will continue to poll for
updatestoyourtile evenifyourappisneverlaunchedagain.

Note While Windows makes abest effortto poll asrequested, the interval is not precise. The
requested poll interval can be delayed by up to 15 minutes.

By default, periodictile notifications expire three days from the time they are downloaded.
Therefore, itisrecommended thatyou setan expiration on all periodictile notifications, using atime
that makessense foryourapp, to ensure thatyour tile's content does not persistlongerthanit's
relevant. This also ensures the removal of stale contentif your web orcloud service becomes
unreachable, orif the user disconnects from the network foran extended period of time. Thisis
accomplished by returning the X-WNS-Expires HTTP header to specify the expiration date and time.

For more info see Periodic notification overview, Using the notification queue, and Guidelines for
periodicnotifications.

Creating secondary tiles

A secondarytile allows ausertolaunchto a specificlocationinanapp directly from the Startscreen.
Apps cannot pin secondary tiles programmatically without userapproval. Users also have explicit

http://msdn.microsoft.com/en-us/library/windows/apps/br212859.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdater.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdatemanager.createtileupdaterforapplication.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdatemanager.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdater.enablenotificationqueue.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdater.startperiodicupdate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj150587.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781199.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761461.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761461.aspx

172

control oversecondary tile removal. This allows users to personalize their Start screen with the
experiencesthatthey use the most.

Secondary tiles are independent of the main app tile and can receive tile notifications
independently. When asecondary tile is activated, an activation contextis presented to the parent
app so thatit can launchin the context of the secondary tile.

The optionto create a secondary tile isseen onthe bottom app bar of the ItemDetailPage as the Pin
to Start app bar button. This enables you to create a secondary tile for the product being displayed.
Selectingthe secondary tilelaunches the app and displays the previously pinned product on the
ItemDetailPage. The following diagram shows an example of the flyout thatis displayed when you
selectthe Pinto Start button. The flyout shows a preview of the secondary tile, and asks you to
confirmits creation.

ADVENTURE

WORKS

ad-750 Black, 52

Road-750 Black, 52

Pinningand unpinning secondary tilefunctionality is provided by the SecondaryTileService class,
which implementsthe ISecondaryTileServiceinterface. Inthe Onlnitialize method in the App class,
the SecondaryTileService classis registered as a type mapping against the ISecondaryTileService
type with the Unity dependency injection container. Then, when the ItemDetailPageViewModel
classis instantiated, which accepts an ISecondaryTileService type, the Unity container will resolve
the type and return an instance of the SecondaryTileService class.

The workflow AdventureWorks Shopper uses to pina secondary tile to Start is as follows:

1. Youinvoke the PinProductCommand through the Pinto Start app bar button on the
ItemDetailPage.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

PinProductCommand = DelegateCommand.FromAsyncHandler (PinProduct,
() => SelectedProduct != null);

2.

AdventureWorks Shopper checksto ensure thatthe tile hasn't already been pinned by
calling the SecondaryTileExists predicatein the SecondaryTileServiceinstance.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

bool isPinned = _secondaryTileService.SecondaryTileExists(tileld);

AdventureWorks Shopper calls the PinWideSecondaryTile method in the
SecondaryTileService instance to create asecondarytile. The
SelectedProduct.ProductNumber propertyis used asa unique ID.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

isPinned = await _secondaryTileService.PinWideSecondaryTile(tileId,
SelectedProduct.Title, SelectedProduct.ProductNumber);

The PinWideSecondaryTile method creates anew instance of the SecondaryTile class,
providinginformation such as the short name, the display name, the logo, and more.

C#: AdventureWorks.UlILogic\Services\SecondaryTileService.cs

var secondaryTile = new SecondaryTile(tileId, displayName, arguments,
_squarelLogoUri, TileSize.Wide310x150);

secondaryTile.VisualElements.ShowNameOnWide310x150Logo = true;

secondaryTile.VisualElements.Wide310x150Logo = _widelogoUri;

173

The RequestCreateAsync method s called on the SecondaryTile instance to display a flyout

that shows a preview of the tile, asking you to confirmiits creation.

C#: AdventureWorks.UlILogic\Services\SecondaryTileService.cs

bool isPinned = await secondaryTile.RequestCreateAsync();

You confirm and the secondary tile isadded to the Start screen.

The workflow AdventureWorks Shopper usesto unpinasecondary tile from Start is as follows:

1

2.

AdventureWorks Shopperinvokes the UnpinProductCommand through the Unpin from
Start app bar button on the ItemDetailPage.
C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

UnpinProductCommand = DelegateCommand.FromAsyncHandler(UnpinProduct,
() => SelectedProduct != null);

AdventureWorks Shopper checks to ensure thatthe tile hasn'talready been unpinned by
calling the SecondaryTileExists predicatein the SecondaryTileServiceinstance.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.startscreen.secondarytile.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.startscreen.secondarytile.aspx

174

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

bool isPinned = _secondaryTileService.SecondaryTileExists(tileId);

AdventureWorks Shopper calls the UnpinTile method on the SecondaryTileService instance
to remove the secondary tile. The tile can be identified by the
SelectedProduct.ProductNumber property as the unique ID.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

isPinned = (await _secondaryTileService.UnpinTile(tileId)) == false;

The UnpinTile method creates a new instance of the SecondaryTile class, using the
SelectedProduct.ProductNumber property as the unique ID. By providingan ID foran
existing secondary tile, the existing secondary tile willbe overwritten.

C#: AdventureWorks.UILogic\Services\SecondaryTileService.cs

var secondaryTile = new SecondaryTile(tileld);

The RequestDeleteAsync method is called on the SecondaryTile instance to display a flyout
that shows a preview of the tile to be removed asking youto confirmits removal.

C#: AdventureWorks.UILogic\Services\SecondaryTileService.cs

bool isUnpinned = await secondaryTile.RequestDeleteAsync();

5. You confirmandthe secondarytile isremoved fromthe Start screen.

Note Secondarytilescanalsobe removed throughthe Startscreen app bar. When this occurs the
app is not contacted for removal information, the useris notasked fora confirmation, andthe app is

not notified thatthe tile is nolonger present. Any additional cleanup action that the app would have
takeninunpinningthe tile must be performed by the app at its nextlaunch.

For more infosee Secondary tiles overview and Guidelines for secondary tiles.

Launching the app froma secondary tile

Wheneverthe appislaunched the OnLaunched methodinthe MvvmAppBase class is called (the
MvvmAppBase class is provided by the Microsoft.Practices.Prism.StoreApps library). The

LaunchActivatedEventArgs parameterin the OnLaunched method will contain the previous state of

the app and the activation arguments. If the appislaunched by its primary tile, the Tileld property of

the LaunchActivatedEventArgs parameter will have the same value as the applicationldin the
package manifest. If the appislaunched by a secondarytile, the Tileld property will have anID that

was specified when the secondary tile was created. The OnLaunched method in the MvwvmAppBase

class will call the OnLaunchApplication method in the App class onlyif the app is notresuming

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.startscreen.secondarytile.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.startscreen.secondarytile.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465372.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465398.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.tileid.aspx

175

following suspension, orif the app was launched through asecondary tile. The OnLaunchApplication
method, whichisshownin the following code example, provides app specificlaunch behavior.

C#: AdventureWorks.Shopper\App.xaml.cs

protected override Task OnLaunchApplication(LaunchActivatedEventArgs args)

{
if (args != null && !string.IsNullOrEmpty(args.Arguments))

{
// The app was launched from a Secondary Tile
// Navigate to the item's page
NavigationService.Navigate("ItemDetail", args.Arguments);
}
else
{
// Navigate to the initial page
NavigationService.Navigate("Hub", null);
}

Window.Current.Activate();
return Task.FromResult<object>(null);

In this method the LaunchActivatedEventArgs parameter contains the previous state of the app and
the activationarguments. If the appis beinglaunched fromthe app tile then the activation
Arguments property will not contain any data and so the HubPage will be navigated to. Ifthe appis
beinglaunched from asecondary tile then the activation Arguments property will contain the
product number of the product to be displayed. The ItemDetailPage will then be navigated to, with
the product numberbeing passed tothe OnNavigatedTo override in the ItemDetailPageViewModel
instance, so that the specified productis displayed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.arguments.aspx

176

Implementing search in a Windows Store business app using C#,
XAML, and Prism

Summary
e Provide querysuggestions asthe usertypestospeed up searching.
¢ Implementtype tosearchforyourapp's hub, browse, and search pages.

e Savethesearch results page forthe last queryin case the user searches forthat query again.

Learn how to search app contentand provide query suggestions by adding asearch box to yourapp
canvas. The AdventureWorks Shopper reference implementation uses Prism forthe Windows
Runtime toimplement the search functionality as asingle user control and accompanying view
model class that can be reused throughoutthe app.

You will learn

e How to use the SearchBox control to implement search functionality in a Windows Store
app.

e How to provide query suggestions that help the userto search quickly.

e How to populate the searchresults page with results.

¢ How to navigate tothe result's detail page.

e How tosearchfor contentinthe app by typingdirectlyinto the search box, without selecting
it first.

Applies to

e Windows Runtime for Windows 8.1
o C#
¢ Extensible Application Markup Language (XAML)

Making key decisions

Whenyou add a search box to your app, users can search yourapp’s content from within the app.
The following list summarizes the decisions to make whenimplementing search in yourapp:

e How shouldlinclude search functionalityinmyapp?
e Shouldlprovide query and result suggestions?

e Shouldladd asearchiconto the app canvas?

e What should I display on my search results page?

You should use the SearchBox control to let userssearch forcontentin yourapp, inorderto ensure
that they have a consistentand predictable experience when they search. Regardless of whereyour
app’s contentislocated, you can use the search box to respondto user’s queriesand display se arch
resultsinan app page of your own design.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

177

When users start typing a query into a search box, apps can provide search suggestions beneath the
search box. An app can provide two types of search suggestions: query suggestions and result
suggestions. Query suggestions can be used as a way to auto complete query textthat users can
searchforinyour app, helpingthem search quickly by reducingthe amount of typing needed to
complete asearch. Resultsuggestions can be used to directly take the usertothe details of aresult
withoutfirst takingthemto a search results page.

A search boxis a great way for users to know where to start searching. However, if spaceisa
concernforyourlayout, youshould use an icon that expandsto reveal asearch box.

When users submita search query to your app, they see a page that shows search results for the
query.Youdesign the search results page foryour app, and so must ensure that the presented
results are useful and have an appropriate layout. You should use agrid layout to display search
results, and let users see theirquery textonthe page. Also, you should indicate why asearch result
matchesthe query by highlightingthe user's query in each result, whichis known as hit highlighting.
In addition, you should let users navigate back tothe last-viewed page aftertheylook at the details
for a searchresult. This can be accomplished by including a back buttoninthe app's Ul. This back
button should be used to go to the page that the userwas interacting with beforethey submitted
theirsearch. Your app could also provide amechanism to exit the searchresults page, such as a top
app bar button that performs navigation.

For more info see Guidelines forsearch.

Search in AdventureWorks Shopper

The AdventureWorks Shopperreferenceimplementation uses the SearchBox control to respond to
user'squeries and display searchresultsinan app page. When a userstarts typing on a page that
contains a search box the keyboard inputis automatically captured by the search box. As the user
entersa query, a maximum of 5 query suggestions are provided as a way to auto complete the query
textthat the useris searchingfor.

Searchresults are displayed using the AutoRotatingGridView custom control. The search results
page includes the user's query text, hit highlighting toindicate why asearch result matchesthe
guery, and lets users navigate back to the last-viewed page and to the HubPage and the
ShoppingCartPage. For more info see "Adding search functionality" in the following section.

AdventureWorks Shopperincludes asearch box on the app canvas forthe HubPage, CategoryPage,
GroupDetailPage, ItemDetailPage, and SearchResultsPage. When the appisinthe portrait or
minimal view state the search box is shownina compact state. The search boxis prominently
located nexttothe shoppingcarticon, as showninthe following diagram. Formore infosee "Adding
search functionality" below.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

178

Search far a Product

Adding search functionality

The SearchUserControl class defines the SearchBox control that’s added to the app canvas on the
HubPage, CategoryPage, GroupDetailPage, ItemDetailPage, and SearchResultsPage. This approach
allows the search functionality toreside inasingle user control and accompanying view model class,
rather than havingto be repeated across the classes foreach page.

XAML: AdventureWorks.Shopper\Views\SearchUserControl.xaml

<SearchBox x:Name="searchBox"
Height="40"
x:Uid="SearchBoxUserControl"
PlaceholderText="Search for a Product”
VerticalAlignment="Center"
SearchHistoryEnabled="False"
Padding="10,10,0,0" >
<interactivity:Interaction.Behaviors>
<core:EventTriggerBehavior EventName="QuerySubmitted">
<core:InvokeCommandAction Command="{Binding SearchCommand}" />
</core:EventTriggerBehavior>
<core:EventTriggerBehavior EventName="SuggestionsRequested">
<core:InvokeCommandAction Command=
"{Binding SearchSuggestionsCommand}" />
</core:EventTriggerBehavior>
</interactivity:Interaction.Behaviors>
</SearchBox>

The SearchBox control isusedto enable searchinanapp by letting the user enter queries and by
displaying suggestions. Placeholdertextis shownin the search box, to describe what users can
search forin AdventureWorks Shopper. The textis only shown whenthe search boxisempty, andis
clearedif the userstarts typinginto the box. Thisis accomplished by settingthe PlaceholderText
property of the SearchBox class. In addition, the SearchHistoryEnabled property has beensetto
falseinorder to disable search history suggestions for queries. This helps to reduce confusion over

whetheraresultisa search history suggestion oraquery suggestion.

Blend for Microsoft Visual Studio 2013 behaviors are used toinvoke view model commandsin
response to events being raised on the SearchBox. When the user submits asearch query the
QuerySubmitted eventisraised by the SearchBox, and the SearchCommand in the
SearchUserControlViewModel is executed. For more info see "Responding to search queries" below.
Whenthe user’s query text changes and the app needs to provide new query suggestions the
SuggestionsRequested eventisraised by the SearchBox, and the SearchSuggestionsCommand in
the SearchUserControlViewModel is executed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.placeholdertext.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.searchhistoryenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.querysubmitted.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.suggestionsrequested.aspx

179

The SearchSuggestionRepository class, in the AdventureWorks.WebServices project, provides query
suggestionsto help the user quickly search the app. Thisclassis called by the ProductRepository
classto retrieve the query suggestions that are used to populate the search suggestionsinthe
search pane. For more infosee "Providing query suggestions" in the following section.

The SearchResultsPage includes aback buttonand a top app bar that allows users to navigate tothe
HubPage and the ShoppingCartPage. If AdventureWorks Shopperis suspended while the
SearchResultsPage is active, the app will correctly restore page state upon reactivation by usingthe
Microsoft.Practices.Prism.StoreApps library. Thisincludes the AutoRotatingGridView scroll position,
the user's query text, and the searchresults. This avoids the need torequery the data usingthe
guery text. Formore info see Populating the search results page with data.

For more info see Adding search to an app and Quickstart: Adding search toan app.

Providing query suggestions

When the user’s query text changes and the app needsto provide new query suggestions the
SuggestionsRequested eventisraised by the SearchBox, and the SearchSuggestionsCommand in
the SearchUserControlViewModel is executed. Thisinturn executes the
SearchBoxSuggestionsRequested method, which retrieves query suggestionsfromthe
AdventureWorks Shopperweb service, andis shownin the following code example.

C#: AdventureWorks.UILogic\ViewModels\SearchUserControlViewModel.cs

private async Task
SearchBoxSuggestionsRequested(SearchBoxSuggestionsRequestedEventArgs args)
{

var queryText = args.QueryText != null ? args.QueryText.Trim() : null;

if (string.IsNullOrEmpty(queryText)) return;

var deferral = args.Request.GetDeferral();

try
{

var suggestionCollection = args.Request.SearchSuggestionCollection;

var querySuggestions = await _productCatalogRepository
.GetSearchSuggestionsAsync(queryText);
if (querySuggestions != null && querySuggestions.Count > 0)
{
var querySuggestionCount = 0;
foreach (string suggestion in querySuggestions)

{

querySuggestionCount++;
suggestionCollection.AppendQuerySuggestion(suggestion);
if (querySuggestionCount >= MaxNumberOfSuggestions)

{

break;

http://msdn.microsoft.com/en-us/library/windows/apps/jj130767.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868180.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.suggestionsrequested.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

180

}
}

}
}
catch (Exception)
{

// Ignore any exceptions that occur trying to find search suggestions.
}

deferral.Complete();

The SearchUserControlViewModel class provides the suggestionCollection variable that’s used to
populate the query suggestions. This variable is populated with alist of query suggestions by the
ProductCatalogRepository instance, which gets the query suggestions fromthe
SearchSuggestionRepository class inthe AdventureWorks.WebServices project. The
AppendQuerySuggestion method then appends any query suggestions from the
suggestionCollection variablethat match the user’s query to the list of search suggestions shown
below the SearchBox. The MaxNumberOfSuggestions constantis usedtolimitthe numberof query

suggestions thatis shownto 5.

For more infosee Quickstart: Addingsearchtoan app.

Responding to search queries

When the user submits asearch query the QuerySubmitted eventis raised by the SearchBox, and
the SearchCommand in the SearchUserControlViewModel is executed. Thisin turn executes the
SearchBoxQuerySubmitted method, whichis showninthe following code example.

C#: AdventureWorks.UILogic\ViewModels\SearchUserControlViewModel.cs

private void SearchBoxQuerySubmitted(SearchBoxQuerySubmittedEventArgs eventArgs)

{

var searchTerm =
eventArgs.QueryText != null ? eventArgs.QueryText.Trim() : null;
if (!string.IsNullOrEmpty(searchTerm))

{

_navigationService.Navigate("SearchResults", searchTerm);

}

This method responds to the QuerySubmitted event by navigating to the SearchResultsPage with
the user’s query provided that the query contains data.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchsuggestioncollection.appendquerysuggestion.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868180.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.querysubmitted.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

181

Populating the searchresults page with data

When users search AdventureWorks Shopperthe SearchResultsPage is used to display search
results. The OnNavigatedTo method in the SearchResultsPageViewModel classis used to populate
the page with the searchresults, as showninthe following code example.

C#: AdventureWorks.UILogic\ViewModels\SearchResultsPageViewModel.cs

public async override void OnNavigatedTo(object navigationParameter,
NavigationMode navigationMode, Dictionary<string, object> viewModelState)
{
base.OnNavigatedTo(navigationParameter, navigationMode, viewModelState);
var queryText = navigationParameter as String;
string errorMessage = string.Empty;
this.SearchTerm = queryText;
this.QueryText = '\u20lc' + queryText + '\u201d’;

try
{
ReadOnlyCollection<Product> products;
if (queryText == PreviousSearchTerm)
{
products = PreviousResults;
}
else
{

var searchResults = await
_productCatalogRepository.GetFilteredProductsAsync(queryText, 0);

products = searchResults.Products;

TotalCount = searchResults.TotalCount;

PreviousResults = products;

var productViewModels = new List<ProductViewModel>();
foreach (var product in products)

{
productViewModels.Add(new ProductViewModel(product));

// Communicate results through the view model

this.Results = new
ReadOnlyCollection<ProductViewModel>(productViewModels);

this.NoResults = !this.Results.Any();

// Update VM status
PreviousSearchTerm = SearchTerm;

}

catch (Exception ex)

{

errorMessage = string.Format(CultureInfo.CurrentCulture, _resourcelLoader
.GetString("GeneralServiceErrorMessage"), Environment.NewLine,
ex.Message);

182

}
if (!string.IsNullOrWhiteSpace(errorMessage))
{
await _alertMessageService.ShowAsync(errorMessage, _resourcelLoader
.GetString("ErrorServiceUnreachable"));
}

This method uses the ProductCatalogRepository instance to retrieve products fromthe web service
if they match the queryText parameter, and store them in the Results property fordisplay by the
SearchResultsPage. If noresults are returned by the ProductCatalogRepository, the NoResults
propertyissetto true and the SearchResultsPage displays a message indicating that no products
match yoursearch. The method also savesthe searchresults forthe last queryin case the user
searchesforthat query again. This handles the scenario whereby the user might submitasearch
qguery to AdventureWorks Shopper, selectanitem fromthe search results, and then navigate back to

the search results. This approach avoids retrieving a new set of search results, instead loading the
previous search results.

For more infosee Guidelines forsearch.

Navigating to the result's detail page

The ItemClick event of the AutoRotatingGridView custom control in the SearchResultsPage is used
to invoke page navigationtothe ItemDetailPage, in orderto display detailed information about a
userselectedresult.

XAML: AdventureWorks.Shopper\Views\SearchResultsPage.xaml

<awcontrols:AutoRotatingGridView x:Name="itemsGridView"
AutomationProperties.AutomationId="ResultsGridView"
AutomationProperties.Name="Search Results"
TabIndex="1"
Grid.Row="1"
Padding="100,0, 80, 50"
SelectionMode="None"
IsItemClickEnabled="True"
ItemsSource="{Binding Results}"
ItemTemplate="{StaticResource SearchResultsTemplate}"
MinimalItemTemplate="{StaticResource SearchResultsTemplateMinimal}"
Loaded="itemsGridView_Loaded">
<interactivity:Interaction.Behaviors>
<core:EventTriggerBehavior EventName="ItemClick">
<awbehaviors:NavigateWithEventArgsToPageAction
TargetPage= "AdventureWorks.Shopper.Views.ItemDetailPage"
EventArgsParameterPath="ClickedItem.ProductNumber"/>
</core:EventTriggerBehavior>
</interactivity:Interaction.Behaviors>

http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx

183

The EventTriggerBehavior binds the ItemClick event of the AutoRotatingGridView custom control
to the NavigateWithEventArgsToPageAction. So when a GridViewltem s selected the
NavigateWithEventArgsToPageAction is executed, which navigates from the SearchResultsPage to
the ItemDetailPage, passingin the ProductNumber of the Clickedltem to the ItemDetailPage.

For more info about using Blend behaviors toinvoke page navigation, see Implementing behaviors to
supplementthe functionality of XAMLelements.

Enabling users to type into the search box

The AdventureWorks Shopper referenceimplementation provides the ability to search for contentin
the app by typing without selecting the search box first. This feature is known as type to search.
Enablingtype to search makes efficient use of keyboard interaction and makes the app's search
experience consistent with the Startscreen.

Type to search isenabled in AdventureWorks Shopperforthe pages on whichthe
SearchUserControl is displayed, and is controlled through the FocusOnKeyboardInput property of
the SearchBox control. However, type to search will be disabled when the SigninFlyoutis displayed
inorder to allow the userto entertheirlogin credentials.

The SearchBox control inthe SearchUserControl class uses the EnableFocusOnKeyboardinput,
DisableFocusOnKeyboardinput, and FocusOnKeyboardinputToggle methodsto setthe
FocusOnKeyboardinput property, in orderto control whetherthe SearchBox receivesinput when

userstype.

C#: AdventureWorks.Shopper\Views\SearchUserControl.xaml.cs

public void EnableFocusOnKeyboardInput()

{ this.searchBox.FocusOnKeyboardInput = true;
if (_eventAggregator != null)
{
_eventAggregator.GetEvent<FocusOnKeyboardInputChangedEvent> ()
.Subscribe (FocusOnKeyboardInputToggle);
}
}

public void DisableFocusOnKeyboardInput()
{

this.searchBox.FocusOnKeyboardInput = false;

if (_eventAggregator != null)

{
_eventAggregator.GetEvent<FocusOnKeyboardInputChangedEvent> ()

.Unsubscribe(FocusOnKeyboardInputToggle);

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.focusonkeyboardinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.focusonkeyboardinput.aspx

184

private void FocusOnKeyboardInputToggle(bool value)
{

this.searchBox.FocusOnKeyboardInput = value;

}

There can only be one SearchBox control with FocusOnKeyboardInput behaviorenabled perthread.

Because there are multiple instances of the SearchBox control in AdventureWorks Shopper, all with
FocusOnKeyboardInput behaviorenabled, then the last control to be enabled will gain keyboard
focus while the othercontrols will nolonger receive FocusOnKeyboardinput behavior. Inorderto
ensure consistent behavioracross all SearchBox controlsinan app itis necessary to disable the
FocusOnKeyboardinput behavior fora page’s SearchBox before navigating away from the page, and
enable it while navigatingto a page. Therefore, the EnableFocusOnKeyboardinput method is
invoked from the OnNavigatedTo method of any page that uses the SearchUserControl, with the
DisableFocusOnKeyboardinput method beinginvoked from the OnNavigatedFrom method of any
page that uses the SearchUserControl.

The EnableFocusOnKeyboardinput and DisableFocusOnKeyboardinput methods also use event
aggregation to subscribe to the FocusOnKeyboardIinputEvent, providing a handlerthat will be
invoked whenthe eventis published. The purpose of this eventis to allow AdventureWorks Shopper
to disable type to search when showingthe SigninFlyout, and restore it when the SigninFlyout
closes.

C#: AdventureWorks.Shopper\Views\SigninFlyout.xaml.cs

public SignInFlyout (IEventAggregator eventAggregator)
{

_eventAggregator.GetEvent<FocusOnKeyboardInputChangedEvent>().Publish(false);

}

void SignInFlyout_Unloaded(object sender, Windows.UI.Xaml.RoutedEventArgs e)

{
_eventAggregator.GetEvent<FocusOnKeyboardInputChangedEvent>().Publish(true);

}

When the SignInFlyoutis shown, its constructor publishes the
FocusOnKeyboardIinputChangedEvent with a payload of false. The FocusOnKeyboardinputToggle
methodinthe SearchUserControl class receivesthe payload forthe event, and changesthe
FocusOnKeyboardInput property to false which disables type to search. When the SigninFlyout
closes, the control is unloaded and the FocusOnKeyboardinputChangedEvent s published with a
payload of true, to restore type to search functionality.

For more info about event aggregation see Communicating between loosely coupled components.
For more infoabouttype to search see Guidelines forsearch.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.focusonkeyboardinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx

185

Improving performance ina Windows Store business app using C#
and XAML

Summary
e Planfor performance and measure itearly and throughout the lifecycle of your project.

e Use asynchronous APIs that execute in the background and inform the app when they've
completed.

¢ Use performance toolsto measure, evaluate, and target performance -related issuesin your
app.

Learn about general performance practices, such as the differences between actual and perceived
performance, using Ul virtualization to only load into memory those Ul elements that are near the
viewport, and how to performincremental loading of data. These were used when developing the
AdventureWorks Shopper reference implementation.

You will learn

¢ Thedifferences between performance and perceived performance.
e Guidelinesthathelpto create a well-performing, responsive Windows Store app.

Applies to

e Windows Runtime for Windows 8.1
o C#
e Extensible Application Markup Language (XAML)

Making key decisions

Users have a number of expectations forapps. They wantimmediate responses to touch, clicks, and
key presses. They expect animations to be smooth. They expectthatthey'll never have towaitfor
the app to catch up with them. Performance problems show up invarious ways. They can reduce
battery life, cause panningand scrollingto lagbehind the user's finger, or make the app appear
unresponsive foraperiod of time. The following list summarizes the decisions to make when
planningawell-performing, responsive app:

e Shouldloptimize actual app performance or perceived app performance?

e What performance tools should | use to discover performance-related issues?

e WhenshouldItake performance measurements?

e What devicesshould I take performance measurements on?

e Dolneedtocompletelyunderstand the platformto determinewhere toimproveapp
performance?

186

Optimizing performance is more than justimplementing efficient algorithms. Another way to think
about performance isto considerthe user's perception of app performance. The user's app
experience can be separated into three categories —perception, tolerance, and responsiveness.

e Perception. User perception of performance can be defined as how favorably they recall the
time ittook to performtheirtasks within the app. This perception doesn't always match
reality. Perceived performance can be improved by reducingthe amount of time between
activitiesthatthe userneedsto performtoaccomplishatask, and by allowing
computationallyintensive operations to execute without blocking the user from performing
otheractivities.

e Tolerance. A user'stolerance fordelay depends on how longthe userexpects an operation
to take. For example, auser mightfind sending datatoa web service intolerable if the app
becomes unresponsive duringthis process, evenforafew seconds. You can increase auser's
tolerance fordelay by identifying tasks in yourapp that require substantial processingtime
and limiting or eliminating user uncertainty during those tasks by providing a visual
indication of progress. And you can use async APIs to avoid making the app appearfrozen.

e Responsiveness. Responsiveness of anappis relative to the activity being performed. To
measure and rate the performance of an activity, you must have a time interval to compare
it against. We used the guideline thatif an activity takes longerthan 500 milliseconds, the
app mightneedto provide feedback tothe userinthe form of a visual indication of
progress.

Therefore, both actual app performance and perceived app performance should be optimizedin
orderto deliverawell-performing, responsive app.

One technique for determining where code optimizations have the greatest effectinreducing
performance problemsis to perform app profiling. The profilingtools for Windows Store apps
enable youtomeasure, evaluate, and find performance-related issuesin your code. The profiler
collects timinginformation forapps by using a sampling method that collects CPU call stack
information atregularintervals. Profiling reports display information about the performance of your
app and help you navigate through the execution paths of your code and the execution cost of your
functions so that you can find the best opportunities for optimization. For more info see How to
profile Visual C++, Visual C#, and Visual Basic code in Windows Store apps on a local machine. To

learn how to analyze the datareturned fromthe profilersee Analyzing performance dataforVisual

C++, Visual C#, and Visual Basiccode in Windows Store apps. Inadditionto using profilingtools to
measure app performance, we also used PerfView and Windows Performance Analyzer (WPA).

PerfViewisaperformance analysis tool that helpsisolate CPUand memory-related performance
issues. WPA is a set of performance monitoringtools used to produce performance profiles of apps.
We used both of these tools fora general diagnosis of the app’s performance. For more info about
PerfView see PerfView Tutorial. For more info about WPA see Windows Performance Analyzer.

Measuringyourapp's performance duringthe early stages of development can add enormous value
to your project. We recommend that you measure performance as soon as you have code that
performs meaningful work. Early measurements give you agoodidea of where the high costsin your
app are, and can inform design decisions. It can be very costly to change design decisions lateronin

http://msdn.microsoft.com/en-us/library/windows/apps/hh696631.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh696631.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780914.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780914.aspx
http://go.microsoft.com/fwlink/p/?LinkID=278825
http://msdn.microsoft.com/en-us/library/windows/apps/ff191077.aspx

187

the project. Measuring performance late in the product cycle can resultin last minute changes and
poor performance. Formore info see General best practices for performance.

At a minimum, take performance measurements on hardware that has the lowest anticipated
specifications. Microsoft Windows runs on a wide variety of devices, and taking performance
measurements on one type of device won'talways show the performance characteristics of other
formfactors.

You don't need to completely understand the platform to determine where you might need to
improve performance. By knowing what parts of your code execute most frequently, you can
determine the best places to optimize yourapp.

Performance considerations

A well-performing app responds to useractions quickly, and with no noticeable delay. We spent
much time learning what works and what doesn't work when creating a responsive Windows Store
app. Here are some thingsto remember:

e Limitthe startup time.

e Emphasize responsiveness.

e Trim resource dictionaries

e Optimize the elementcount.

e Reuseidentical brushes.

e Use independentanimations.

e Minimize the communication between the app and the web service.
e Limitthe amountof data downloaded fromthe web service.

e Use Ul virtualization.

e Use the IncrementalUpdateBehaviortoimplementincremental loading.
e Avoidunnecessary termination.

e Keepyourapp's memoryusage low whenit's suspended.

e Reduce battery consumption.

e Minimize the amount of resources that yourapp uses.

e Limitthe time spentintransition between managed and native code.
e Reduce garbage collection time.

Limit the startup time

It's importantto limit how much time the userspends waiting whileyour app starts. There are a
number of techniques you can use to do this:

e You can dramaticallyimprove the loading time of an app by packingits contentslocally,
including XAML, images, and any otherimportant resources. If an app needs a particularfile
atinitialization, you can reduce the overall startup time by loading it from disk instead of
retrievingitremotely.

http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx

188

e Youshouldonly reference assemblies that are necessary to the launch of your appin startup
code so that the common language runtime (CLR) doesn'tload unnecessary modules.

o Deferloadinglarge in-memory objects while the appis activating. If you have large tasks to
complete, providea custom splash screen so that yourapp can accomplish these tasksin the
background.

In addition, apps have different startup performance atfirstinstall and at steady state. When your
app isfirstinstalled onauser's machine, itis executed usingthe CLR's just-in-time (JIT) compiler.
This meansthat the firsttime a method is executed it has towait to be compiled. Later, apre -
compilation service pre-compiles all of the modules that have been loaded onauser's machine,
typically within 24 hours. Afterthis service has run most methods nolongerneedtobe JIT compiled,
and yourapp benefits fromanimproved startup performance. For more info see Minimize startup
time.

Emphasize responsiveness

Don't block yourapp with synchronous APIs, because if you dothe app can't respond to new events
while the APlis executing. Instead, use asynchronous APIs that executein the background and
informthe app whenthey've completed by raisingan event. Formore infosee Keep the Ul thread

responsive.

Trimresource dictionaries

App-wide resources should be stored inthe Application object to avoid duplication, butif youuse a
resource ina single page thatis not the initial page, putthe resource in the resource dictionary of
that page. This reduces the amount of XAML the framework parses when the app starts. For more
infosee Optimizeloading XAML.

Optimize the elementcount

The XAML framework is designed to display thousands of objects, but reducing the number of
elements on apage will make yourapp renderfaster. You can reduce a page’s element count by
avoiding unnecessary elements, and collapsing elements that aren't visible. Formore info see
Optimize loading XAMIL.

Reuseidentical brushes

Create commonly used brushes asrootelementsinaresource dictionary, and then refertothose
objectsintemplates as needed. XAMLwill be able to use the same objects across the different
templates and memory consumption will be less than if the brushes were duplicated in templates.
For more info see Optimize loading XAML.

Use independentanimations

An independentanimation runs independently from the Ul thread. Many of the animation types
usedin XAML are composed by a composition enginethatruns on a separate thread, with the

http://msdn.microsoft.com/en-us/library/windows/apps/hh994639.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994639.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994635.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994635.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994641.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994641.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994641.aspx

189

engine’swork being offloaded from the CPUto the graphics processing unit (GPU). Moving
animation composition toanon-Ul thread means thatthe animation won’tjitter or be blocked by
the app workingonthe Ul thread. Composingthe animation onthe GPU greatly improves
performance, allowing animations to run at a smooth and consistent frame rate.

You don’t need additional markup to make youranimationsindependent. The system determines
whenit's possible to compose the animation independently, but there are some limitations for
independent animations. For more info see Make animations smooth.

Minimize the communication between the app and the web service

In orderto reduce the interaction between the AdventureWorks Shopper reference implementation
and its web service as much data as possible isretrievedinasingle call. Forexample, instead of
retrieving product categoriesin one web service call, and then retrieving products fora categoryina
second web service call, AdventureWorks Shopperretrieves a category and its productsin a single
web service call.

In addition, the AdventureWorks Shopper referenceimplementation uses the
TemporaryFolderCacheService class to cache data from the web service to the temporary app data
store. This helpsto minimize the communication between the app and the web service, provided
that the cached data isn't stale. For more info see Caching data from a web service.

Limit the amount ofdata downloaded from the web service

The GetRootCategoriesAsync method in ProductCatalotRepository class retrieves data for display
on the HubPage, as shown in the following code example.

C#: AdventureWorks.UILogic\ViewModels\HubPageViewModel.cs

rootCategories = await _productCatalogRepository.GetRootCategoriesAsync(5);

The call to the GetRootCategoriesAsync method specifies the maximum amount of products to be
returned by each category. This parametercan be usedto limitthe amount of data downloaded
fromthe web service, by avoiding returning an indeterminate number of products for each category.
For more info see Consuming datafrom a web service using DTOs.

Use Ul virtualization

Ul virtualization enables controls that derive from ItemsControl (thatis, controls that can be usedto
presentacollection of items) toonlyload into memory those Ul elements that are near the
viewport, orvisibleregion of the control. As the user pans through the collection, elements that
were previously nearthe viewport are unloaded from memory and new elements are loaded.

Controlsthat derive from ItemsControl, such as ListView and GridView, perform Ul virtualization by
default. XAMLgenerates the Ul for the itemand holdsitin memory when the itemis close to being

http://msdn.microsoft.com/en-us/library/windows/apps/hh994638.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx

190

visible onscreen. Whenthe itemisnolongerbeingdisplayed, the control reuses that memory for
anotheritemthatis close to being displayed.

If you restyle an IltemsControl to use a panel otherthanits default panel, the control continues to
support Ul virtualization aslongasit uses a virtualizing panel. Standard virtualizing panelsinclude
ItemsStackPanel and ItemsWrapGrid. Using standard non-virtualizing panels, which include
VariableSizedWrapGrid and StackPanel, disables Ul virtualization for that control.

In addition, make sure thatthe Ul objects that are created are not overly complex. Asitems come
intoview, the framework must update the elementsin cached item templates with the data of the
items coming onto the screen. Reducing the complexityof those XAMLtrees can pay off bothinthe
amount of memory needed to store the elements and the time it takes to data bind and propagate
the individual properties within the template. This reduces the amount of work that the Ul thread
must perform, which helpsto ensure thatitems appearimmediatelyinacollectionthatauserpans
through. For more info see Load, store, and display large sets of data efficiently.

Use the IncrementalUpdateBehavior to implementincremental loading

Often GridView and ListView controls display alarge number of dataitems, which can have a
performance impacton an app. Ul virtualization can reduce some of the performance impact, but
there may still be problems displaying the dataitems smoothly when scrolling through the dataset,
particularly if the dataitemsare complex.

The AdventureWorks Shopper referenceimplementation solves this problem by using the
IncrementalUpdateBehavior that allows incremental updating of dataitems displayed by
ListViewBase-derived controls, to support faster updating. It promotes asmootherscroll experience
by deferring updates to some of the elementsin the temTemplate until there isrendertime

available.

The behavioris triggered when the databeing displayed by the ListViewBase-derived control
changes. The orderin which to update elementsin the ItemTemplate can be specified by adding the
IncrementalUpdateBehaviorto each elementin the DataTemplate to be displayed, and settingits

Phase property accordingly. The Phase propertyis used to setthe priority of the incremental
update, inrelation to otheritemsinthe DataTemplate. The following code example shows how the
IncrementalUpdateBehavioris usedin the ProductTemplate.

XAML: AdventureWorks.Shopper\Themes\DataTemplates.xaml

<DataTemplate x:Key="ProductTemplate">
<Grid MinWidth="420">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="*" />
</Grid.ColumnDefinitions>
<Border Background="{StaticResource
ListViewItemPlaceholderBackgroundThemeBrush}
BorderBrush="White"

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemsstackpanel.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemswrapgrid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.variablesizedwrapgrid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.stackpanel.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994637.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.datatemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.phase.aspx

191

BorderThickness="2"
Width="150"
Height="100">
<Image Source="{Binding Image}"
Stretch="UniformToFill">
<Interactivity:Interaction.Behaviors>
<Core:IncrementalUpdateBehavior Phase="2"/>
</Interactivity:Interaction.Behaviors>
</Image>
</Border>
<StackPanel Grid.Column="1"
Margin="10, -10,0,0" HorizontalAlignment="Stretch">
<TextBlock Text="{Binding Title}"
Margin="5"
FontSize="25"
Height="Auto"
MaxHeight="80"
TextWrapping="Wrap"
TextTrimming="WordEllipsis">
<Interactivity:Interaction.Behaviors>
<Core:IncrementalUpdateBehavior Phase="1"/>
</Interactivity:Interaction.Behaviors>
</TextBlock>
<TextBlock Text="{Binding SalePrice}"
Style="{StaticResource BodyTextStyle}"
Margin="5"
FontSize="32"
FontWeight="ExtraBold">
<Interactivity:Interaction.Behaviors>
<Core:IncrementalUpdateBehavior Phase="2"/>
</Interactivity:Interaction.Behaviors>
</TextBlock>
</StackPanel>
</Grid>
</DataTemplate>

The DataTemplate specifies that the Title for each data item will be displayed in the first rendering
phase, with the Image and SalePrice foreach data item beingdisplayedin the second rendering

phase. This helps to promote a smootherexperience when scrolling through a data set that contains
a large amount of data.

Note The Phase property value starts from 1 rather than 0.
If your app requires better performance than that provided by the IncrementalUpdateBehavior you

shouldinstead consider handling the ContainerContentChanging eventin code. For more info see
Incremental loading Quickstart.

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.phase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.containercontentchanging.aspx

192

Avoid unnecessary termination

An app can be suspended when the user movesittothe background or whenthe systementersa
low power state. When the app is being suspended, it raises the Suspending eventand hasupto 5
secondsto save its data. If the app's Suspending event handler doesn't complete within 5seconds,
the systemassumesthatthe app has stopped responding and terminatesit. Aterminated app hasto
go through the startup process againinstead of beingimmediately loaded into memory when auser
switchestoit.

The AdventureWorks Shopperreferenceimplementation saves page state while navigatingaway
froma page, ratherthan savingall page state on suspension. This reduces the amount of time that it
takesto suspendthe app, and hence reduces the chance of the system terminating the app during
suspension. Inaddition, AdventureWorks Shopper does not use page caching. This prevents views
that are not currently active from consuming memory, which would increase the chance of
termination when suspended. For more info see Minimize suspend/resume time and Handling

suspend, resume and activation.

Keep your app's memory usagelow whenit's suspended

When your app resumes from suspension, it reappears nearly instantly. But whenyourapp restarts
afterbeingclosed, it might take longerto appear. So preventing yourapp from being closed when
it's suspended can help to manage the user's perception and tolerance of app responsiveness.

When your app begins the suspension process, it should freeany large objects that can be easily
rebuiltwhenitresumes. Doingso helpsto keepyourapp's memory footprintlow, and reduces the
likelihood that Windows will terminate yourapp after suspension. For more info see Minimize
suspend/resumetime and Handling suspend, resume and activation.

Reduce battery consumption

The CPU isa major consumer of battery poweron devices, even atlow utilization. Windows tries to
keepthe CPUinalow powerstate whenitis idle, butactivatesitasrequired. While most of the
performance tuning that you undertake will naturally reduce the amount of powerthat yourapp
consumes, you can furtherreduce yourapp's consumption of battery power by ensuring that it
doesn'tunnecessarily pollfor datafrom web services and sensors. Formore infosee General best
practices for performance.

Minimize the amount of resources that your app uses

Windows has to accommodate the resource needs of all Windows Store apps by using the Process
Lifetime Management (PLM) system to determine which appsto close in orderto allow otherapps
torun. Aside effectof thisisthat if yourapp requests alarge amount of memory, otherapps might
be closed, evenif yourapp thenfreesthat memory soon afterrequestingit. Minimize the amount of
resourcesthatyour app usesso that the userdoesn'tbegin to attribute any perceived slownessin

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.suspending.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994640.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994640.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994640.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx

193

the systemto yourapp. Formore info see Improve garbage collection performance and Garbage

Collection and Performance.

Limit the time spentin transition between managed and native code

Most of the Windows Runtime APIs are implemented in native code. This hasanimplication for
Windows Store apps writtenin managed code, because any Windows Runtime invocation requires
that the CLR transitions from a managed stack frame to a native stack frame and marshals function
parametersto representations accessible by native code. While this overhead is negligible for most
apps, if you make many calls to Windows Runtime APIsin the critical path of an app, this cost can
become noticeable. Therefore, you should try to ensure that the time spentin transition between
languagesis small relative to the execution of the rest of your code.

The .NET for Windows Store apps types don'tincurthis interop cost. You can assume that typesin

namespace which begin with "Windows." are part of the Windows Runtime, and typesin namespace
which beginwith "System." are .NET types.

If your app isslow because of interop overheard, you canimprove its performance by reducing calls
to Windows Runtime APIs on critical code paths. Forexample, if acollectionis frequently accessed,
thenit is more efficient to use a collection from the System.Collections namespace, ratherthana

collection from the Windows.Foundation.Collections namespace. For more info see Keep yourapp
fast whenyou useinterop.

Reduce garbage collection time

Windows Store apps written in managed code get automatic memory management fromthe .NET
garbage collector. The garbage collector determines when to run by balancing the memory
consumption of the managed heap with the amount of work a garbage collection needs to do.
Frequent garbage collections can contribute toincreased CPUconsumption, and therefore increased
power consumption, longerloadingtimes, and decreased frame ratesinyourapp.

If you have an app with a managed heap size that's substantially largerthan 100MB, you should
attemptto reduce the amount of memory you allocate directly in orderto reduce the frequency of
garbage collections. For more info see Improve garbage collection performance.

http://msdn.microsoft.com/en-us/library/windows/apps/hh994643.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ee851764.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ee851764.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230232.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.collections.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.collections.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994636.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994636.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994643.aspx

194

Testing and deploying Windows Store business apps using C#, XAML,
and Prism

Summary
e Use multiple modes of testing for best results.
e Use unittestsandintegration teststoidentify bugs attheirsource.

e Testasynchronous functionality by creatinga mock version of the instance that the class to
be tested depends on, and specify an asynchronous delegateinthe unittestthatwill be
executed by the asynchronous method inthe mock object.

Learn how to perform various modes of testingin orderto ensure thatreliable, high quality apps
result. We provide guidance for unit testing,integration testing, userinterface testing, suspend and
resume testing, security testing, localization testing, accessibility testing, performance testing,
device testing, and validation of the app user experience againstthe user experience guidelines on
the Windows Developer Center.

You will learn

¢ How the various modes of testing contribute to the reliability and correctness of an app.

e How to testsynchronous and asynchronous functionality in automated tests.

e How to performdifferent types of testing, including suspend and resume testing, localization
testing, and accessibility testing.

Applies to

e Windows Runtime for Windows 8.1
o C#
¢ Extensible Application Markup Language (XAML)

Making key decisions

Testing helpsto ensure thatan appis reliable, correct, and of high quality. The following list
summarizes the decisions to make when testing a Windows Store app:

e How shouldltesttheapp?

e How shouldIdeploythe app?

e How can | testthe app for compliance with the Windows Store certification requirements?
e How should I manage the app after deployment?

You can testyour app in many ways including unit testing, integration testing, userinterface testing,
suspend and resume testing, security testing, localization testing, accessibility testing, performance
testing, device testing,and validation of the app user experience against the user experience
guidelines onthe Windows Dev Center. Formore info see "Testing AdventureWorks Shopper"inthe
following section.

195

While you can use the Windows Store to market and distribute apps, business apps willoften be
distributed directly tothe end-user by the IT organization within acompany. Formore info see
Deploying and managing Windows Store apps.

Regardless of how yourapp will be deployed, you should validate and test it by usingthe Windows
App Certification Kit. The kit performs anumber of tests to verify that your app meets certification
requirements forthe Windows Store. In addition, as you plan your app, you should create a
publishing-requirements checklist to use whenyou testyourapp. For more info see Testing yourapp
with the Windows App Certification Kit and Creating a Windows Store certification checklist.

Tools such as Windows Intune and System Center Configuration Manager can be used to manage
access to business apps. In addition, IT staff can control the availability and functionality of the
Windows Store to client computers based on the business policies of their environment. For more
infosee Deploying and managing Windows Store apps.

Testing AdventureWorks Shopper

The AdventureWorks Shopper referenceimplementation was designed for testability, with the
following modes of testing being performed:

e Unittesting testsindividual methodsinisolation. The goal of unittestingisto check that
each unitof functionality performs as expected so thaterrors don't propagate throughout
the app. Detectingabug where it occurs is more efficient than observing the effectofabug
indirectly ata secondary point of failure. For more info see the nextsection, "Unitand
integration testing."

¢ Integrationtesting verifies thatthe components of anapp work together correctly.
Integration tests examine app functionality inamannerthat simulates the way the appis
intended to be used. Normally, anintegration test will drivethe layerjust belowthe user
interface. Inthe AdventureWorks Shopper referenceimplementation, you can recognize this
kind of test because itinvokes methods of the view model. The separation of views from the
view model makes integration testing possible. For more info see the nextsection, "Unitand
integration testing."

e Userinterface (Ul) testing involves directinteraction with the userinterface. This type of
testing often needs to performed manually. Automated integration tests can be substituted
for some Ul testing but can't eliminate it completely.

e Suspendand resume testing ensures thatyour app behaves as expected when Windows
suspendsorresumesit, oractivatesitaftera suspend and shutdown sequence. For more
info see Suspend and resume testing.

e Security testing focus on potential securityissues. It's based on a threat model that
identifies possible classes of attack. Formore info see Security testing.

e Localization testing makes sure that an app worksin all language environments. For more
infosee Localization testing.

e Accessibility testing makes sure than an app supports touch, pointer, and keyboard
navigation. Italso makes sure that different screen configurations and contrasts are

196

supported, and that the contents of the screen can be read with Windows Narrator. For
more info see Accessibility testing.

e Performance testingidentifies how anapp spendsitstime whenit's running. In many cases,
performance testing can locate bottlenecks or methods that take a large percentage of an
app's CPU time. Formore info see Performance testing.

e Device testing ensures than app works properly on the range of hardware that it supports.

For example, it'simportantto testthatan app works with various screen resolutions and
touch-input capabilities. Formore info see Device testing.

For more info on test automation, see Testing for Continuous Delivery with Microsoft Visual
Studio 2012.

Unit and integration testing

You should expectto spend about the same amount of time writing unitand integration tests as you
do writingthe app's code. The effortis worth the work because it resultsin much more stable code
that has fewerbugs and requires less revision.

In the AdventureWorks Shopperreference implementation we used the Model -View-ViewModel
(MVVM) pattern to separate the concerns of presentation, presentation logic, and model. The
MVVM pattern makes it easierto maintainandtest your Windows Store app, especially asit grows.
For more infosee Usingthe MVVM pattern.

The AdventureWorks.UlLogic.Tests, AdventureWorks.WebServices.Tests,
Microsoft.Practices.Prism.PubSubEvents.Tests, and Microsoft.Practices.Prism.Store Apps.Tests
projects of the AdventureWorks Shopper Visual Studio solution contain all the code that supports
testing the Microsoft.Practices.Prism.PubSubEvents and Microsoft.Practices.Prism.Store Apps
libraries, and the AdventureWorks Shopperreference implementation. The

AdventureWorks.WebServices.Tests project usesthe
Microsoft.VisualStudio.QualityTools.UnitTestFramework, with the remaining test projects using the
MsTestFramework for Windows Store apps. Test methods can be identified by the TestMethod
attribute above the method name.

You can examine the unittests by opening the AdventureWorks Shopper Visual Studio solution. On
the menu bar, choose Test> Windows > Test Explorer. The Test Explorer window lists all of the
AdventureWorks Shopper unit tests, as shownin the following diagram.

http://msdn.microsoft.com/en-us/library/windows/apps/jj159345.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj159345.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.visualstudio.testtools.unittesting.testmethodattribute.aspx

197

Test Explorer * 0 X

':'; [{: - Search p -

B Streaming Video: Improving quality wit -

Run All | Run... = | Playlist : All Tests «

4 Passed Tests (177} -
ﬂ Add_[rvalidatesCachedCart 1 ms
] AddCheckoutData_Maviga.. < 1ms
@ AdderoductToCart_aAddsMe,, 3 ms
ﬂ AddProductToCart_AddsM.,. < 1 ms
& AddProductToCart_addsM.. < 1 ms

ﬂ AddUpdate_Adds < 1 ms
ﬂ AddUpdate_adds 1 ms
@ AddUpdate_Updates < 1lms
@ addUpdate_Updates < 1lms

ﬂ AutoWireViewModel _With_ 1 ms
ﬂ AutoWirehiewhodel _With_ 1 ms
ﬂ AutoWireViewdodel_With_F.. 3 ms

Unit tests should focus on how the code undertestfunctionsinresponse tovalues returned by
dependent objects. Agood approach to increase software testability is to isolate dependent objects
and have them passed into your businesslogicusing an abstraction such as an interface. This
approach allows the dependent object to be passedintothe businesslogicatrun time. In addition,
inthe interests of testability, it allows a mock version of the dependent object to be passedin at test
time. By using mocks, the return values or exceptions to be thrown by mock instances of dependent
objects can easily be controlled.

Testing synchronous functionality

Synchronous functionality can easily be tested by unit tests. The following code example shows the
Validation_Of_Field_When_Valid_Should_Succeed test method that demonstrates testing
synchronous functionality. The unit test verifies that the BindableValidator class can successfully
validate the value of the Title property in the MockModelWithValidation class.

C#: Microsoft.Practices.Prism.StoreApps.Tests\BindableValidatorFixture.cs

[TestMethod]
public void Validation Of_ Field When_Valid_Should_Succeeed()

{
var model = new MockModelWithValidation() { Title = "A valid Title" };
var target = new BindableValidator(model);

bool isValid = target.ValidateProperty("Title");

Assert.IsTrue(isValid);
Assert.IsTrue(target.GetAllErrors().Values.Count == @);

198

This method createsinstances of the MockModelWithValidation and the BindableValidator classes.
The BindableValidatorinstance is used to validate the contents of the Title propertyinthe
MockModelWithValidation instance by calling the ValidateProperty method on the
BindableValidatorinstance. The unit test passesif the ValidateProperty method returns true, and
the BindableValidatorinstance has no errors.

For more info about validation, see Validating userinput.

Testing asynchronous functionality

Asynchronous functionality can be tested by creatinga mock version of the dependent service that
has an asynchronous method, and specifying an asynchronous delegate in the unit test that will be
executed by the asynchronous method inthe mock object. The following code example shows the
OnNavigatedTo_Fill_Root_Categories test method, which demonstrates testing asynchronous
functionality. The unit test verifies that when the hub page is navigated to the RootCategories
property of the HubPageViewModel class will contain three categories.

C#: AdventureWorks.UlLogic.Tests\ViewModels\HubPageViewModelFixture.cs

[TestMethod]
public void OnNavigatedTo_Fill RootCategories()

{
var repository = new MockProductCatalogRepository();
var navigationService = new MockNavigationService();

repository.GetRootCategoriesAsyncDelegate = (maxAmmountOfProducts) =>

{

var categories = new ReadOnlyCollection<Category>(new List<Category>{
new Category(),
new Category(),
new Category()

s

return Task.FromResult(categories);

s

var viewModel = new HubPageViewModel (repository, navigationService, null,
null);
viewModel .OnNavigatedTo(null, NavigationMode.New, null);

Assert.IsNotNull(viewModel.RootCategories);
Assert.AreEqual (((ICollection<CategoryViewModel>)viewModel.RootCategories)
.Count, 3);

The method createsinstances of the mock classes that are required to create an instance of the
HubPageViewModel class. The GetRootCategoriesAsyncDelegate, when executed, returns a Task of
type ReadOnlyCollection with three Category objects. An instance of the HubPageViewModel class
isthen created, with its OnNavigatedTo method being called. The OnNavigatedTo method calls the

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ms132474.aspx

199

GetRootCategoriesAsync method, in this case on the MockProductCatalogRepository instance,
whichinturn executesthe GetRootCategoriesAsyncDelegate. The result of thisisthat the
RootCategories property of the HubPageViewModel instanceis populated with the datareturned
by the GetRootCategoriesAsyncDelegate. The unit test passes if the RootCategories property
containsthree items of data.

Note If you use the awaitoperatorina test method, the test method mustreturn a Task and use
the async modifierinits method signature.

For more infoaboutthe unittestingtoolsin Visual Studio, se e Verifying Code by Using Unit Tests.

Suspend and resume testing

When you debuga Windows Store app, the Debug Location toolbar contains a drop-down menu
that enables youto suspend, resume, or suspend and shut down (terminate) the running app. You
can use thisfeature to ensure thatyourapp behaves as expected when Windows suspends or
resumesit, oractivatesitafter a suspendand shutdown sequence. The following diagram shows the
drop-down menuthatenablesyoutosuspendthe runningapp.

Process; | [E368] AdventureWorks.Shoppere ~ | [F] Suspend = Thread

Suspend

Rrsume

Suspend and shutdown

If you wantto demonstrate suspending from the debugger, run AdventureWorks Shopperin the
Visual Studio debuggerand set breakpointsin the MvvmAppBase.OnSuspending and
MvvmAppBase.InitializeFrameAsync methods. Then select Suspend and shutdown from the Debug
Location toolbar. The app will exit. Restart the app inthe debugger, and the app will follow the code
path forresuming from the Terminated state. In AdventureWorks Shopper, thislogicisin the
MvvmAppBase.InitializeFrameAsync method. For more info see Guidelines forapp suspend and
resume and Handling suspend, resume, and activation.

Security testing

We usedthe STRIDE methodology forthreat modeling as a basis for security testingin
AdventureWorks Shopper. Formore info see Uncover Security Design Flaws Using The STRIDE
Approach and Windows security features test.

Localization testing

We used the Multilingual App Toolkit to provide pseudo-localized versions of AdventureWorks
Shopperforlocalization testing. For more info see How to use the Multilingual App Toolkit,
Guidelinesforappresources, and Guidelines forglobalization .

http://msdn.microsoft.com/en-us/library/windows/apps/hh156528.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh156513.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd264975.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://go.microsoft.com/fwlink/p/?linkid=260913
http://go.microsoft.com/fwlink/p/?linkid=260913
http://msdn.microsoft.com/en-us/library/windows/apps/hh920280.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj572370.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh969152.aspx

200

Accessibility testing

We used a number of testing tools to verify the accessibility of AdventureWorks Shopper, including
Windows Narrator, Inspect, Ul Accessibility Checker, Ul Automation Verify, and Accessible Event
Watcher. For more infosee Testing your app for accessibility and Design foraccessibility.

Performance testing

In additionto using profiling tools to measure app performance, we also used the Windows
Performance Toolkit (WPT). WPT can be used to examine app performance, bothinreal time and by
collectinglogdataforlateranalysis. We used this tool fora general diagnosis of the app's
performance. For more info see Windows Performance Toolkit Technical Reference, General best
practicesfor performance, and Performance best practices for Windows Store apps using C++, CH,

and Visual Basic.

Device testing

Visual Studioincludes a simulatorthat you can use to run your Windows Store app in various device
environments. Forexample, you can use the simulatorto check whetheryourapp works correctly
with a variety of screen resolutions and with avariety of input hardware. You can simulate touch
gesturesevenifyou're developingthe app ona computerthat doesn't supporttouch. The following
diagram shows AdventureWorks Shopper runningin the simulator.

http://msdn.microsoft.com/en-us/library/windows/apps/aa939428.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd318521.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh920985.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh920986.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd317979.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd317979.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh162945.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh750313.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh750313.aspx

201

®© Shopping Cart

Total Terms: $769.49 Mountain-400-W Red, 42

Discount Codes: $192.37 This bike dell
Total: $577.12 % e

E7112

To start the simulator, click Simulatorin the drop-down menu onthe Debugtoolbarin Visual Studio.
The other choicesin this drop-down menu are Local Machine and Remote Machine.

In additionto using the simulator, we also tested AdventureWorks Shopperon a variety of
hardware. You can use remote debuggingtotestyourapp on a device thatdoesn't have Visual
Studioinstalled onit. For more info see Running Windows Store apps on a remote machine, Testing
Windows Store apps Running on a Device Usingthe Exploratory Test Window, and Testing Windows

Store apps Running on a Device Using Microsoft Test Runner.

Testing your app with the Windows App Certification Kit

Regardless of how yourapp will be deployed, you should validate and test it by usingthe Windows
App Certification Kit. The kit performs anumber of tests to verify that your app meets certain
certification requirements forthe Windows Store. These testsinclude:

e Examiningthe app manifestto verify thatits contentsare correct.

e Inspectingtheresources definedin the app manifesttoensure thattheyare presentand
valid.

e Testingthe app'sresilienceand stability.

e Determininghow quickly the app starts and how fastit suspends.

e Inspectingthe appto verify thatit callsonly APIs for Windows Store apps.

o Verifyingthatthe app uses Windows security features.

http://msdn.microsoft.com/en-us/library/windows/apps/hh441469.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh873101.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh873101.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh405417.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh405417.aspx

202

You must run the Windows App Certification Kit on a release build of yourapp; otherwise, validation
fails. Formore info, see How to: Set Debug and Release Configurations.

In addition, it's possible to validateyourapp wheneveryou buildit. If you're running Team
Foundation Build, you can modify settings on your build machine so that the Windows App
Certification Kit runs automatically every time yourapp is built. Formore info, see Validatinga
package in automated builds.

For more info, see Using the Windows App Certification Kit.

Creating a Windows Store certification checklist

You may choose to use the Windows Store as the primary method to make yourapp available. For
infoabout how to prepare and submityour app, see Overview of publishing an app to the Windows
Store.

As you planyour app, we recommend that you create a publishing-requirements checklist to use
laterwhen youtest your app. This checklist can vary depending on how you've configured your
business operations and the kind of app you're building. For more info and standard checklists, see
Publishing yourapp to the Store.

Before creating your app package foruploadto the Windows Store, be sure to do the following:

e Reviewthe app-submission checklist. This checklistindicates the information that you must
provide whenyou upload yourapp. For more info, see App submission checklist.
e Ensurethat youhave validated arelease build of your app with the Windows App

Certification Kit. Formore info, see Testing your app with the Windows App Certification Kit

inthe previoussection.
e Take some screen shots that show off the key features of yourapp.
e Have other developerstestyourapp. Formore info, see Sharingan app package locally.

In addition, if yourapp collects personal data or uses software thatis provided by others, you must
alsoinclude a privacy statementoradditional license terms.

Deploying and managing Windows Store apps

While you can use the Windows Store to market and distribute apps, business apps will often be
distributed directly to the end-user by the IT organization within acompany. The process of installing
apps on Microsoft Windows devices without going through the Windows Store is called side-loading.
For infoabout some best practicesto help ensure that users have agood experience installing and
running side-loaded apps for the first time, see Deployment.

IT managers have several options formanaging side-loaded apps and apps distributed from the
Windows Store. For more info see Management of Windows Store apps.

http://msdn.microsoft.com/en-us/library/windows/apps/wx0123s5.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994667.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994667.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694081.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj657972.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj657972.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj657972.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694062.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh975356.aspx
http://go.microsoft.com/fwlink/p/?LinkID=296263
http://go.microsoft.com/fwlink/p/?LinkID=296264

203

Meet the AdventureWorks Shopper and Prism team

Meet the AdventureWorks Shopper reference implementation and Prism for the Windows Runtime
team. Learn how the team works to create "proven practicesforpredictable results."

Meet the team

The goal of patterns & practicesis to enhance developer success through guidance on designingand
implementing software solutions. We develop content, reference implementations, samples, and
frameworks that explain how to build scalable, secure, robust, maintainable software solutions. We
work with community and industry experts on every project to ensure that some of the best minds
inthe industry have contributed toand reviewed the guidanceas it develops. Visit the patterns &
practices Developer Center tolearn more about patterns & practices and what we do.

This guide was produced by:

¢ Program Management: Blaine Wastell
¢ Development: Francis Cheung, Brian Noyes (Solliance), Diego Poza (Southworks SRL),

Mariano Vazquez (Southworks SRL)

¢ Writtenguidance: Michael Blome, David Britch (Content Master Ltd)

e Test: ColinCampbell (Modeled Computation LLC), Carlos Farre, Mitesh Neema (Infosys Ltd),
Hardik Patel (Infosys Ltd), Rohit Sharma, Veerapat Sriarunrungrueang (Adecco)

http://www.microsoft.com/practices
http://www.microsoft.com/practices

204

e Graphicdesign: ChrisBurns (LindaWerner & AssociatesInc.)

e Editorial support: RoAnn Corbisier

e Bicycle Photography: Lincoln Potter(SamayaLLC) and Mike Rabas (Woodinville Bicycle)
e PDF Production: Nelly Delgado

We wantto thankthe customers, partners, and community members who have patiently reviewed
our early contentand drafts. We especially want to recognize Damir Arh, Christopher Bennage, Ifiigo
Bosque (Independent Consultant), Alon Fliess (Chief Architect, CodeValue), Ariel Ben Horesh
(CodeValue), Ohad Israeli (Director of business development, NServiceBus), Brian Lagunas
(Infragistics), Thomas Lebrun, Jeremy Likness (Principal Consultant, Wintellect), Chan Ming Man
(Section Manager, AMD), Paulo Morgado, Oleg Nesterov (Senior Developer, Sberbank CIB), Jason De
Oliveira (CTO at Cellenza, MVP C#), Caio Proiete (Senior Trainer, CICLO.pt), Jenner Maciejewsky
Rocha (Consultor e Desenvolvedor, MVP Visual Basic), Mitchel Sellers (CEQ/Director of
Development, lowaComputerGurus Inc.), Tomer Shamam (Software Architect, CodeValue), Bruno
Sonnino (Revolution Software), Perez Jones Tsisah (Freelance Software Developer), Daniel Vaughan,
and Davide Zordan (Microsoft MVP) for their technical insights and support throughout this project.

We hope thatyou enjoy working with Prism for the Windows Runtime, the AdventureWorks
Shopperreferenceimplementation source files, and this guide as much as we enjoyed creating it.
Happy coding!

http://www.lincolnpotter.com/
http://www.woodinvillebicycle.com/

205

Quickstarts for Windows Store business apps using C#, XAML, and
Prism

The Quickstarts for Windows Store business apps demonstrate validation of userinput, event
aggregation between looselycoupled components, bootstrapping a Windows Store business app
that uses Prism forthe Windows Runtime, displaying an extended splash screen, and incremental
loading of data items.

Download

Download sample

Download Prism StoreApps library

Quickstarts are small, focused apps thatillustrate specificconcepts. The following Quickstarts are
includedinthis guidance:

e Validation Quickstart for Windows Store apps using C#, XAML, and Prism

e Eventaggregation Quickstartfor Windows Store apps using C#, XAML, and Prism

e Bootstrappingan MVVM Windows Store app Quickstart using C#, XAML, and Prism

e Extendedsplashscreen Quickstartfor Windows Store apps using CH#, XAML, and Prism
¢ Incremental loading Quickstart for Windows Store apps using C#and XAML

http://go.microsoft.com/fwlink/p/?LinkID=296755
http://go.microsoft.com/fwlink/p/?LinkID=296754

206

Validation Quickstart for Windows Store apps using C#, XAML, and
Prism

Summary

e Specifyvalidationrulesformodel properties by adding dataannotation attributes to the
properties.

e Callthe ValidatableBindableBase.ValidateProperties method to validateall the properties
ina model object that possesses an attribute that derives from the ValidationAttribute
attribute.

e Implementthe ValidatableBindableBase.ErrorsChanged eventinyourview model class, in
orderto be notified when the validation errors change.

Learn how to validate userinputforcorrectnessinaWindows Store business app by using Prism for
the Windows Runtime. The Quickstart uses the Model-View-ViewModel (MVVM) pattern, and
demonstrates how to synchronously validate data, and how to highlight validation errors on the Ul
by usinga Blend behavior.

Download

Download sample

Download Prism StoreApps library

You will learn

e How to synchronously validate data stored ina bound model object.

e How to specify validation rules for model properties by using dataannotations.
¢ How to manually triggervalidation.

e How to triggervalidation through PropertyChanged events.

e How to highlightvalidation errors on the Ul with a behavior.

Applies to

e WindowsRuntime for Windows 8.1
e CH

¢ Extensible Application Markup Language (XAML)
Building and running the Quickstart
Build the Quickstartas you would a standard project:
1. On the Microsoft Visual Studio menu bar, choose Build > Build Solution.

2. Afteryoubuildthe project, you mustdeployit. Onthe menu bar, choose Build > Deploy
Solution. Visual Studio also deploys the project when you run the app from the debugger.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://go.microsoft.com/fwlink/p/?LinkID=296755
http://go.microsoft.com/fwlink/p/?LinkID=296754

207

3. Afteryoudeploythe project, pick the Quickstarttile torunthe app. Alternatively, from
Visual Studio, on the menu bar, choose Debug > Start Debugging.

When the app runs you will see a page similarto the one showninthe following diagram.

Validation Quickstart

First Mamsa

Middle Name

Last Mane

Validate

This Quickstart performs synchronous validation of data stored ina model object. The page contains
three text boxesthatenable you to enteryourname. Whenyou enterdata into a text box and the
text box losesfocus, the entered datais validated. Inaddition, when you select the Submit button,
the content of each text box isvalidated. To pass validation each text box must contain data
consisting of letters, spaces, and hyphens. If avalidation error occurs, the text box containing the
invalid datais highlighted with ared borderand the validation error details are displayed inred text
below the Submitbutton.

For more info about validation, see Validating userinput.

Solution structure

The ValidationQuickstart Visual Studio solution contains two projects: ValidationQuickstart, and
Microsoft.Practices.Prism.Store Apps. The ValidationQuickstart project uses Visual Studio solution
folderstoorganize the source code into these logical categories:

e The Assets foldercontainsthe splash screenandlogoimages.

e TheBehaviors folder contains the behaviorthatis used to highlight controls that have
validation errors.

e The Common foldercontains the style resource dictionaries usedinthe app.

e The Modelsfoldercontainsthe model class usedinthe app, and a helperclassthatreturns
strings from the app's resource file.

208

e The Strings folder contains resource strings forthe en-USlocale.
e TheViewModels folder containsthe view model class thatis exposed tothe view.
e TheViewsfoldercontainsthe view that makes up the Ul for the app's page.

The Microsoft.Practices.Prism.StoreApps library contains reusable classes used by this Quickstart.
For more info about thislibrary, see Prismforthe Windows Runtime reference. With littleorno

modification, you can reuse many of the classesfrom this Quickstartin anotherapp. You can also
adapt the organization and ideas that this Quickstart provides.

Note This Quickstartdoes notinclude any suspend and resume functionality. Foravalidation
implementation thatincludes suspend and resume functionality see Validating userinput.

Key classes in the Quickstart

There are several classesinvolved invalidation. The text boxes in the UserinfoView page bind to
properties of a Userinfo model object.

The UserInfo class derives from the ValidatableBindableBase class thatis provided by the
Microsoft.Practices.Prism.Store Apps library. The base class contains an instance of the

BindableValidator class, and usesit to invoke validation wheneverabound property changes, or
whenthe userselects the Validate button.

The BindableValidatorinstance acts as the data source for validation error messages that are shown
inthe userinterface. Itisthe type of the ValidatableBindableBase class's Errors property.

To perform the validation, the BindableValidator class retrieves validation rules that are encoded as
custom attributes of the Userinfo object. It raises PropertyChanged and ErrorsChanged events

when validation state changes.

The following diagram shows a conceptual view of the key classes involved i n performing validation
inthis Quickstart.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

209

T INotifyPropertyChanged

BindableBase

derives from
IValidatableBindableBase IMotifyPropertyChanged

ValidatableBinda DIE\I _._(
Base) creates and uses k

BindableValidator

N

get errors to

derives from
display

[Validatian rulasw (
Userlnfo : TextBox
_) set properties L‘

Specifying validation rules

Validation rules for dataare specified inthe Userlnfo model class. To participate in validation the
Userinfo class must derive from the ValidatableBindableBase class.

The text boxes on the UserinfoView page use compound binding path expressions such as "{Binding
UseriInfo.FirstName, Mode=TwoWay}". This expression associates the text box's contents with the
FirstName property of the object that is returned by the Userinfo property of the page's data
context. This page's data contextis a UserInfoViewModel object.

The UserInfo class contains properties for storing the first, middle, and last names. Validation rules
for the value of each property are specified by adding attributes to each property that derive from
the ValidationAttribute attribute. The following code example shows the FirstName property from
the Userlnfo class.

Ci#: ValidationQuickstart\Model\UserlInfo.cs

private const string RegexPattern = @"\A\p{L}+([\p{Zs}\-1[\p{L}]+)*\z";

[Required(ErrorMessageResourceType = typeof(ErrorMessagesHelper),
ErrorMessageResourceName = "FirstNameRequired")]
[RegularExpression(RegexPattern, ErrorMessageResourceType

typeof (ErrorMessagesHelper), ErrorMessageResourceName
public string FirstName

{

"FirstNameRegex")]

get { return _firstName; }
set { SetProperty(ref _firstName, value); }

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx

210

The Required attribute of the FirstName property specifies that a validation failure occurs if the field
isnull, contains an empty string, or contains only white-space characters. The RegularExpression
attribute specifies that when the FirstName propertyis validated it must match the specified regular
expression.

The static ErrorMessagesHelperclassis used to retrieve validation error messages from the resource
dictionary forthe locale, andis used by the Required and RegularExpression validation attributes.

For example, the Required attribute on the FirstName property specifies thatif the property doesn't
contain avalue, the validation error message will be the resource stringreturned by the
FirstNameRequired property of the ErrorMessagesHelper class. In addition, the RegularExpression
attribute on the FirstName property specifies thatif the data inthe property contains characters
otherthan letters, spaces, and hyphens, the validation error message will be the resource string
returned by the FirstNameRegex property of the ErrorMessagesHelper class.

Note Usingresource strings supportslocalization. However, this Quickstart only provides strings for
the en-USlocale.

Similarly, Required and RegularExpression attributes are specified on the MiddleName and
LastName propertiesinthe Userinfo class.

Triggering validation explicitly

Validation can be triggered manually when the userselects the Validate button. This calls the
ValidatableBindableBase.ValidateProperties method, which inturn calls the
BindableValidator.ValidateProperties method.

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

public bool ValidateProperties()
{

var propertiesWithChangedErrors = new List<string>();

// Get all the properties decorated with the ValidationAttribute attribute.
var propertiesToValidate = _entityToValidate.GetType()
.GetRuntimeProperties()
.Where(c =>
c.GetCustomAttributes(typeof(ValidationAttribute)).Any());

foreach (PropertyInfo propertyInfo in propertiesToValidate)
{
var propertyErrors = new List<string>();
TryValidateProperty(propertyInfo, propertyErrors);

// If the errors have changed, save the property name to notify the update
// at the end of this method.
bool errorsChanged = SetPropertyErrors(propertyInfo.Name, propertyErrors);
if (errorsChanged &&

IpropertiesWithChangedErrors.Contains (propertyInfo.Name))

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx

propertiesWithChangedErrors.Add (propertyInfo.Name);

// Notify each property whose set of errors has changed since the last

// validation.
foreach (string propertyName in propertiesWithChangedErrors)

{
OnErrorsChanged(propertyName) ;

OnPropertyChanged (string.Format(CultureInfo.CurrentCulture,
"Item[{0©}]", propertyName));

return _errors.Values.Count == 0;

211

This method retrieves all properties that have attributes that derive from the ValidationAttribute

attribute, and attempts to validate them by calling the TryValidateProperty method for each

property. If new validation errors occur the ErrorsChanged and PropertyChanged events are raised
for each property than containsa new error.

The TryValidateProperty method uses the Validator class to apply the validation rules. Thisis shown
inthe following code example.

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

private bool TryValidateProperty(PropertyInfo propertyInfo, List<string>

propertyErrors)

{

var results = new List<ValidationResult>();
var context new ValidationContext(_entityToValidate)
{ MemberName = propertyInfo.Name };
var propertyValue = propertyInfo.GetValue(_entityToValidate);

// Validate the property

bool isValid = Validator.TryValidateProperty(propertyValue, context, results);

if (results.Any())
{

propertyErrors.AddRange (results.Select(c => c.ErrorMessage));

}

return isvalid;

Triggering validation implicitly on property change

Validationis automatically triggered wheneverabound property's value changes. When atwo way

bindingin the UserinfoView class sets abound property inthe Userlnfo class, the SetProperty

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validator.aspx

212

method is called. This method, provided by the BindableBase class, sets the property value and
raises the PropertyChanged event. However, the SetProperty methodis also overridden by the
ValidatableBindableBase class. The ValidatableBindableBase.SetProperty method calls the
BindableBase.SetProperty method, and then provided that the property value has changed, calls
the ValidateProperty method of the BindableValidator class instance.

The ValidateProperty method validates the property whose name is passed to the method by calling
the TryValidateProperty method shown above. If a new validation error occurs the ErrorsChanged
and PropertyChanged events are raised for the property.

Highlighting validation errors

Each text box on the Ul uses the HighlightFormFieldOnErrors behaviorto highlight validation errors.
This behaviorcanalso be used to highlight validation errors on ComboBox controls. The following
code example shows how this behavioris attached to a text box.

XAML: ValidationQuickstart\Views\UserlnfoView.xaml

<TextBox x:Name="FirstNameValue"
Grid.Row="2"
Text="{Binding UserInfo.FirstName, Mode=TwoWay}">
<interactivity:Interaction.Behaviors>
<quickstartbehaviors:HighlightFormFieldOnErrors PropertyErrors=
"{Binding UserInfo.Errors[FirstName]}" />
</interactivity:Interaction.Behaviors>
</TextBox>

The HighlightFormFieldOnErrors behavior gets and sets the PropertyErrors dependency property.
The following code example shows how the PropertyErrors dependency property is definedin the
HighlightFormFieldOnErrors class.

C#: ValidationQuickstart\Behaviors\HighlightFormFieldOnErrors.cs

public static DependencyProperty PropertyErrorsProperty =
DependencyProperty .RegisterAttached("PropertyErrors",
typeof(ReadOnlyCollection<string>),
typeof(HighlightFormFieldOnErrors),
new PropertyMetadata(BindableValidator.EmptyErrorsCollection,
OnPropertyErrorsChanged));

The PropertyErrors dependency propertyis registered as a ReadOnlyCollection of strings, by the
RegisterAttached method. The dependency property also has property metadataassignedtoit. This
metadataspecifies adefault value that the property system assigns to all cases of the property, and
a static method thatis automatically invoked by the property system wheneveranew property
value isdetected. Therefore, when the value of the PropertyErrors dependency property changes,
the OnPropertyErrorsChanged methodisinvoked.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.combobox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ms132474.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701833.aspx

213

Note The HighlightFormFieldOnErrors behavioralso defines adependency property named
HighlightStyleName. By default this property is set to HighlightTextBoxStyle, but can be set to the
HighlightComboBoxStyle when declaring the behaviorinstance.

The following code example shows the OnPropertyErrorsChanged method.

C#: ValidationQuickstart\Behaviors\HighlightFormFieldOnErrors.cs

private static void OnPropertyErrorsChanged(DependencyObject d,
DependencyPropertyChangedEventArgs args)

{
if (args == null || args.Newvalue == null)
{

return;

var control = ((Behavior<FrameworkElement>)d).AssociatedObject;
var propertyErrors = (ReadOnlyCollection<string>)args.NewValue;

Style style = (propertyErrors.Any()) ?
(Style)Application.Current.Resources|
((HighlightFormFieldOnErrors)d) .HighlightStyleName] : null;
control.Style = style;

The OnPropertyErrorsChanged method parameters give the instance of the control that the
PropertyErrors dependency property is attached to, and any validation errors for the control. Then,
if validation errors are presentthe value of the HighlightStyleName dependency propertyis applied
to the control, so that itis highlighted with ared BorderBrush.

The Ul also displays validation error me ssages belowthe Submit buttonin an ItemsControl. This
ItemsControl binds to the AllErrors property of the UserinfoViewModel class. The
UserIinfoViewModel constructor subscribes to the ErrorsChanged event of the Userinfo class, which
is provided by the ValidatableBindableBase class. When this eventisraised, the OnErrorsChanged
handlerupdates the AllErrors property with the list of validation error strings from the dictionary
returned by the call to the GetAllErrors method on the Userinfo instance, as showninthe following
code example.

C#: ValidationQuickstart\ViewModels\UserinfoViewModel.cs

private void OnErrorsChanged(object sender, DataErrorsChangedEventArgs e)
{
AllErrors = new ReadOnlyCollection<string>(_userInfo.GetAllErrors().Values
.SelectMany(c => c).ToList());

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.border.borderbrush.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx

214

Event aggregation Quickstart for Windows Store apps using C#, XAML,
and Prism

Summary

o Defineapub/subeventby creatingan empty class that derives fromthe
PubSubEvent<TPayload> class.

o Notifysubscribers by retrievingthe pub/sub event from the event aggregator and callingits
Publish method.

e Registertoreceive notifications by using one of the Subscribe method overloads available in
the PubSubEvent<TPayload> class.

Learn how to perform eventaggregation using Prism for the Windows Runtime. Event aggregation
allows communication between loosely coupled componentsinan app, removingthe needfor
componentsto have a reference to each other.

Download

Download sample

Download Prism StoreApps library

Download Prism PubSubEvents library

You will learn

e How eventaggregation enables communication between loosely coupled componentsina
Windows Store app.

e How to defineapub/subevent.

e How to notify subscribers by retrieving a pub/sub event from the event aggregator.

e How to registertoreceive notifications fora pub/sub event.

Applies to

e Windows Runtime for Windows 8.1
e CH
e Extensible Application Markup Language (XAML)

The Quickstart contains a publisherand several subscribers that communicate using aninstance of
the Microsoft.Practices.Prism.PubSubEvents library 's PubSubEvent<TPayload> class. Thisinstance is
managed by an EventAggregator object.

In this Quickstart, the lifetimes of publishers and subscribers are independent because the objects
are not connected by objectreferences. There are also notype dependencies between publishers
and subscribers—publisherand subscriber classes can be packaged in unrelated assemblies.

http://go.microsoft.com/fwlink/p/?LinkID=296755
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=296753

215

Nonetheless, when the publisherinvokes the PubSubEvent<TPayload> class's Publish method, the
systemwill runall actions that have been registered by the PubSubEvent<TPayload> class's
Subscribe method. Subscribers can control how the actions run. The Quickstart shows the following
options:

e Theactionisinvokedsynchronouslyinthe same thread as the Publish thread.
e Theactionisscheduledtoruninthe backgroundona thread-pool thread.
e Theactionisdispatchedtotheapp's Ul thread.

Subscriptionsin this Quickstart use weak references. Registering a subscription action doesnotadda
reference tothe subscriber.

Building and running the Quickstart
Build the Quickstart as you would a standard project:
On the Microsoft Visual Studio menu bar, choose Build > Build Solution.
Afteryoubuild the project, you mustdeployit. Onthe menu bar, choose Build > Deploy
Solution. Visual Studio also deploys the project when you run the app from the debugger.
3. Afteryoudeploythe project, pickthe Quickstarttile torunthe app. Alternatively, from

Visual Studio, on the menu bar, choose Debug > Start Debugging.

When the app runs you will see a page similartothe one showninthe following diagram.

Ul Thread ID: 3

Subscriber

Publisher

Items in Cart: 1

Add Item to Cart (Ul Thread) Add Background Subscriber
Add Item to Cart (Background Thread) GC Background Subscriber

Panelsrepresent the PublisherViewModel and SubscriberViewModel classes. In the left panel are
two buttons that allow you to add items to a shopping cart, from the Ul thread and from a
backgroundthread. Selecting either button causes the PublisherViewModel class to add an item to

216

the shopping cart and invoke the Publish method of the ShoppingCartChangedEvent class that
derives from the PubSubEvent<TPayload> class. The SubscriberViewModel class has two
subscriptionstothisevent, in orderto update the count of the number of itemsin the shoppingcart,
and to display awarning message once there are more than 10 itemsin the shoppingcart.

On the right of the page there's a button for adding a background subscriberto the
ShoppingCartChangedEvent. If this buttonis selected, amessage dialogis shown from the
background subscriber whenever the ShoppingCartChangedEventis published. There's also abutton
that forces the background subscriberto be garbage collected. No special cleaned isrequired —the
background subscriberdid not need to call the ShoppingCartChangedEvent class's Unsubscribe
method.

For more info about eventaggregation, see Communicating between loosely coupled components.

Solution structure

The EventAggregatorQuickstart Visual Studio solution contains three projects:
EventAggregatorQuickstart, Microsoft.Practices.Prism.PubSubEvents, and

Microsoft.Practices.Prism.StoreApps. The EventAggregatorQuickstart project uses Visual Studio

solution foldersto organize the source code into these logical categories:

e The Assets folder contains the splash screenand logoimages.

¢ The Common folder containsthe styles resource dictionary usedinthe app.

e The Events folder contains the ShoppingCartChangedEvent class.

e The Modelsfoldercontains the two model classes usedin the app.

e The ViewModels folder contains the view model classes that are exposed tothe views.
e TheViewsfoldercontainsthe viewsthat make up the Ul for the app's page.

The Microsoft.Practices.Prism.StoreApps library contains reusable classes used by this Quickstart.
The Microsoft.Practices.Prism.PubSubEvents projectis a Portable Class Library (PCL) thatimplements
event aggregation. Formore info about portal class libraries, see Cross-Platform Development with
the .NET Framework. This project has no dependencies on any other projects, and can be added to
your own Visual Studio solution without the Microsoft.Practices.Prism.StoreApps library. For more

info aboutthese libraries, see Prism forthe Windows Runtime reference. With little orno

modification, you can reuse many of the classes from this Quickstartin anotherapp. You can also
adapt the organization and ideas that this Quickstart provides.

Key classes in the Quickstart

The EventAggregator classis responsible for locating or building events and for managing the
collection of eventsinthe system. In this Quickstart, an instance of the EventAggregator class is
createdinthe OnLaunched methodinthe App class. The EventAggregatorinstance must be created
on the Ul thread in orderfor Ul thread dispatching to work. Thisinstance is then passedinto the
view model classes through constructorinjection. Thisis shown in the following code examples.

http://msdn.microsoft.com/en-us/library/windows/apps/gg597391.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg597391.aspx

217

C#: EventAggregatorQuickstart\Bootstrapper.cs

public void Bootstrap(INavigationService navService)

{
// Create the singleton EventAggregator so it can be dependency injected down
// to the view models who need it
_eventAggregator = new EventAggregator();
ViewModelLocator.Register(typeof(MainPage).ToString(),
() => new MainPageViewModel(_eventAggregator));
}

The app has a singletoninstance of the EventAggregator class thatis created on the Ul thread.

C#: EventAggregatorQuickstart\ViewModels\MainPageViewModel.cs

public MainPageViewModel(IEventAggregator eventAggregator)

{
// Pass the injected event aggregator singleton down to children since there
// 1s no container to do the dependency injection
SubscriberViewModel = new SubscriberViewModel (eventAggregator);
PublisherViewModel = new PublisherViewModel(eventAggregator);

}

View models, such as the MainPageViewModel, take the event aggregator object as a constructor
parameterand pass this objectto any of theirchild objects that need to use eventaggregation. In
the code example, the MainPageViewModel passes the event aggregatorto the
SubscriberViewModel and PublisherViewModel instances that it contains.

The PubSubEvent<TPayload> class connects event publishers and subscribers, and is the base class
for an app'sspecificevents. TPayloadis the type of the event's payload, andis the argument that
will be passedtosubscribers when an eventis published. Compile-time checking helps publishers
and subscribers provide successful event connection.

The following diagram shows a conceptual view of how event aggregationis used in this Quickstart.

ra .

ShoppingCartChangedEvent

t N

publishes subscribes invokes invokes
— ‘\ ./'
PublisherViewModel | SubscriberViewModel BackgroundSubscriber
| PublishOnUIThread ‘ | HandleShoppingCartUpdate | | HandleShoppingCartChanged |
~ -
PublishOnBackgroundThread ‘ | HandleShoppingCartUpdateFiltered | -

_), _

218

Defining the ShoppingCartChangedEvent class

The ShoppingCartChangedEvent class's Publish method isinvoked when the useraddsanitemto
the shopping cart. This class, which derives from the PubSubEvent<TPayload>class, is used to
communicate between the loosely coupled PublisherViewModel and SubscriberViewModel classes.
The following code example shows how the ShoppingCartChangedEventis defined, specifying
ShoppingCart as the payload type.

C#: EventAggregatorQuickstart\Events\ShoppingCartChangedEvent.cs

public class ShoppingCartChangedEvent : PubSubEvent<ShoppingCart> { }

Notifying subscribers of the ShoppingCartChangedEvent

Users can add an item to the shopping cart from both the Ul thread and from a background thread.
Whenan itemis added to the shopping cart the PublisherViewModel class calls the
ShoppingCartChangedEvent's Publish method in ordertoalert subscribers of the change to the
shopping cart. The following code example shows how the subscribers are notified.

Cit: EventAggregatorQuickstart\ViewModels\PublisherViewModel.cs

private void PublishOnUIThread()

{
AddItemToCart();
// Fire the event on the UI thread
_eventAggregator.GetEvent<ShoppingCartChangedEvent>().Publish(_cart);
}
private void PublishOnBackgroundThread()
{
AddItemToCart();
Task.Factory.StartNew(() =>
{
// Fire the event on a background thread
_eventAggregator.GetEvent<ShoppingCartChangedEvent>().Publish(_cart);
Debug.WriteLine(String.Format("Publishing from thread: {0}",
Environment.CurrentManagedThreadId));
})s
}
private void AddItemToCart()
{
var item = new ShoppingCartItem("Widget", 19.99m);
_cart.AddItem(item);
}

Publishing can occur from any thread. The EventAggregator and PubSubEvent<TPayload> classes
are thread safe. The Quickstart shows this by notifying subscribers from both the Ul thread and a
backgroundthread.

219

Note If you access objects from more than one thread you must ensure thatyou appropriately
serialize reads and writes. For example, the ShoppingCart class in this Quickstartis a thread safe
class.

The PublishOnUIThread and PublishOnBackgroundThread methods add an itemto the shopping
cart by creating and initializing an instance of the ShoppingCartltem class. Then, the
ShoppingCartChangedEventis retrieved from the EventAggregator class and the Publish method is
invoked onit. This supplies the ShoppingCartinstance as the ShoppingCartChangedEvent event's
parameter. The EventAggregator class's GetEvent method constructs the eventifit has not already
been constructed.

Registering to receive notifications of the ShoppingCartChangedEvent

Subscribers can register actions with a PubSubEvent<TPayload> instance using one of its Subscribe
method overloads. The SubscriberViewModel class subscribes to the ShoppingCartChangedEvent
on the Ul thread, regardless of which thread published the event. The subscriberindicates this
during subscription by specifying a ThreadOption.UIThread value, as showninthe following code
example.

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

// Subscribe indicating this handler should always be called on the UI Thread

_eventAggregator.GetEvent<ShoppingCartChangedEvent>()
.Subscribe(HandleShoppingCartUpdate, ThreadOption.UIThread);

// Subscribe indicating that this handler should always be called on UI thread,

// but only if more than 10 items in cart

_eventAggregator.GetEvent<ShoppingCartChangedEvent>()
.Subscribe(HandleShoppingCartUpdateFiltered, ThreadOption.UIThread, false,

IsCartCountPossiblyTooHigh);

Subscribers provide an action with asignature that matches the payload of the pub/sub event. For
example, the HandleShoppingCartUpdate method takes a ShoppingCart parameter. The method
updatesthe numberof itemsthatare inthe shoppingcart.

A second subscription is made to the ShoppingCartChangedEvent using afilter expression. The filter
expression defines a condition that the payload must meetforbefore the action will be invoked. In
this case, the conditionis satisfied if there are more than 10 itemsin the shoppingcart. The
HandleShoppingCartUpdateFiltered method shows awarning message to the user, indicating that
they have more than 10 itemsintheirshopping cart.

Note For Ul thread dispatchingtowork, the EventAggregator class must be created onthe Ul
thread. Thisallows it to capture and store the SynchronizationContext thatis used to dispatch to the
Ul thread forsubscribers that use the ThreadOption.UIThread value. If you want to use dispatching
on the Ul thread, you must make sure that you instantiate the EventAggregatorclassinyourapp's

Ul thread.

http://msdn.microsoft.com/en-us/library/windows/apps/system.threading.synchronizationcontext.aspx

220

The PubSubEvent<TPayload> class, by default, maintains aweak delegatereference to the
subscriber's registered action and any filter. This means that the reference that the
PubSubEvent<TPayload> class holds onto will not prevent garbage collection of the subscriber.
Usinga weak delegate reference relieves the subscriber from the need to unsubscribe from the
event. The garbage collector will dispose the subscriberinstance when there are noreferencestoit.

Note Lambdaexpressionsthat capture the this reference cannotbe used as weak references. You
should use instance methods as the Subscribe method's action and filter parametersif you wantto
take advantage of the PubSubEvent<TPayload>class's weak reference feature.

When the Add Background Subscriber button is selected the AddBackgroundSubscriber method is
invoked. This method creates a background subscriber and holds onto the reference to the
subscribing objectin orderto preventitfrombeing garbage collected. The method also subscribes
using the HandleShoppingCartChanged method as the subscribed action. Afterthe subscriptionis
established, any call to the ShoppingCartChangedEvent's Publish method will synchronously invoke
the HandleShoppingCartChanged method that displays a message dialogthatinformsthe userthat
the shopping cart has been updated. The messages gives the numerical thread ID of the calling
thread. You can use this to see that the expected thread was used forthe action, depending on
which buttonyouusedto add the shopping cartitem.

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

private void AddBackgroundSubscriber()
{

if (_subscriber != null) return;

// Create subscriber and hold on to it so it does not get

// garbage collected

_subscriber = new BackgroundSubscriber(Window.Current.Dispatcher);

// Subscribe with defaults, pointing to subscriber method that

// pops a message box when the event fires

_eventAggregator.GetEvent<ShoppingCartChangedEvent> ()
.Subscribe(_subscriber.HandleShoppingCartChanged);

}

When the GC Background Subscriber buttonis selected the GCBackgroundSubscriber method is
invoked. This methodreleases the referenceto the background subscriberand forces the garbage
collectortorun. This garbage collects the background subscriber. The registered action will then no
longerbeinvoked by the Publish method.

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

private void GCBackgroundSubscriber()
{
// Release and GC, showing that we don't have to unsubscribe to keep the
// subscriber from being garbage collected
_subscriber = null;
GC.Collect();

221

Bootstrapping an MVVM Windows Store app Quickstart using C#,
XAML, and Prism

Summary

e Bootstrap your Windows Store app by deriving your App class from the MvvmAppBase
class, and provide app specificstartup behaviorin your App class to supplementthe core
startup behavior of the MvvmAppBase class.

¢ Use adependencyinjection containerto abstract dependencies between objects, and
automatically generatedependent objectinstances.

e Limitview modelinstantiationto asingle class by using a view model locator object.

Learn how to bootstrap a Windows Store business app that uses the Model -View-ViewModel
(MVVM) pattern and Prism forthe Windows Runtime. Prism provides core services to a Windows
Store business app, including support for bootstrapping MVVMapps, state management, validation
of userinput, navigation, event aggregation, data binding, commands, and settings.

Download

Download sample

Download Prism StoreApps library

You will learn

e How to bootstrapa Windows Store app that uses the MVVM pattern and a dependency
injection container.

e How to add specificstartup behaviorto a Windows Store app that uses the MVVM pattern.

e How to bootstrap a Windows Store app that uses the MVVM pattern withoutadependency
injection container.

Applies to

¢ Windows Runtime for Windows 8.1
e CH#
¢ Extensible Application Markup Language (XAML)

This Quickstart uses the Unity container fordependency resolution and construction during the
bootstrapping process. However, you are not required to use Unity, or any other dependency
injection container, when bootstrappingan MVVMWindows Store app. To understand how to
perform bootstrapping without using adependency injection container, see Bootstrapping withouta

dependency injection container.

http://go.microsoft.com/fwlink/p/?LinkID=290899
http://go.microsoft.com/fwlink/p/?LinkID=296755
http://go.microsoft.com/fwlink/p/?LinkID=296754

222

Building and running the Quickstart
Build the HelloWorldWithContainer Quickstart as you would a standard project:

1. Onthe Microsoft Visual Studio menu bar, choose Build > Build Solution.

2. Afteryoubuildthe project, you mustdeployit. Onthe menu bar, choose Build > Deploy
Solution. Visual Studio also deploys the project when you run the app from the debugger.

3. Afteryoudeploythe project, pick the Quickstarttile torunthe app. Alternatively, from
Visual Studio, onthe menu bar, choose Debug > Start Debugging.

When the app runs you will see the page showninthe following diagram.

Hello World (with Container)!

Features

Application structuring with MVWM and dependencies

Page navigation with ViewhModel participation and navigation commanding
Application state management through suspend, terminate, and resume
User input validation on client and server side with validation error displ

Loosely coupled communications with Commands and Pub/Sub events

Mavigate To User Input Page

The page lists some of the architectural features of Prism, and has a Button that allows you to
navigate to a second page. Selecting the Navigate To User Input Page button will take youtothe
second page of the app, as shown inthe following diagram.

Hello World (with Container)!

User input retained in view modal:

User input retained in repository: _

This page allows youto enterdata into two TextBox controls. If you suspend the app on this page
any data will be serialized to disk, and when the app resumes the datawill be deserialized and
displayedinthe TextBox controls. Thisis accomplished by using the RestorableState attributefor

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx

223

the data retainedin the view model, and the SessionStateService class forthe dataretainedinthe
repository. Formore info about the SessionStateService class and the RestorableState attribute see
Handling suspend, resume, and activation.

Solution structure

The HelloWorldWithContainer Visual Studio solution contains two projects:
HelloWorldWithContainer, and Microsoft.Practices.Prism.StoreApps. The HelloWorldWithContainer
project uses Visual Studio solution folders to organize the source code into these logical categories:

e The Assets folder containsthe splash screenandlogoimages.

¢ The Common folder contains the styles resource dictionary usedinthe app.

e The Services foldercontains the IDataRepositoryinterface anditsimplementing class.
e The ViewModels folder contains the view model classes that are exposed to the views.
¢ The Viewsfoldercontainsthe views that make up the Ul for the app's page.

The Microsoft.Practices.Prism.StoreApps library contains reusable classes used by this Quickstart.
For more info about this library, see Prism forthe Windows Runtime reference. With little orno

modification, you can reuse many of the classesfrom this Quickstartin anotherapp. You can also
adapt the organization and ideas that this Quickstart provides.

Key classes in the Quickstart

The MvvmAppBase class provides core startup behaviorforan MVVM app, with its constructor
beingthe entry pointforthe app. The App class adds app specificstartup behaviorto the app.

There are twoview classesinthe app, MainPage and UserlnputPage that bind to the
MainPageViewModeland UserlnputPageViewModel classes respectively. Each view class derives
fromthe VisualStateAwarePage class, provided by the Microsoft.Practices.Prism.StoreApps library,
that provides view managementand navigation support. Each view model class derives from the
ViewModel base class, provided by the Microsoft.Practices.Prism.StoreApps library, that provides
support for navigation and suspend/resume functionality. A static ViewModelLocator object,
provided by the Microsoft.Practices.Prism.StoreApps library, is used to manage the instantiation of

view models andtheirassociation to views. This approach has the advantage that the app has a
single class thatisresponsible forthe location and instantiation of view model classes. For more info
about how the ViewModelLocator object manages the instantiation of view models and their
associationtoviews, see Using the MVVM pattern.

Bootstrapping an MVVM app using the MvvmAppBase class and a
dependency injection container

The MvvmAppBase class, provided by the Microsoft.Practices.Prism.StoreApps library, is responsible
for providing core startup behaviorforan MVVM app, and derives from the Application class. The
MvvmAppBase class constructoris the entry point forthe app. The following diagram shows a
conceptual view of how app startup occurs.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx

224

MyvmAppBase App MwvmAppBase App
Constructor — Constructor OnWindowCreated — Onlnitialize
1 App MvvmappBase App
InitializeComponent OnLaunched OnLaunchApplication
MvvmAppBase
InitializeFrameAsync

MwvvmAppBase

CreateNavigationService —

The MvvmAppBase class helps bootstrap Windows Store apps with suspension, navigation, and
otherservices.

In orderto bootstrap an app usingthe MvvmAppBase class, the App class must derive fromthe
MvvmAppBase class, as shownin the following code examples.

XAML: HelloWorldWithContainer\App.xaml

<prism:MvvmAppBase

xmlns:prism="using:Microsoft.Practices.Prism.StoreApps">
<Application.Resources>

</Application.Resources>
</prism:MvvmAppBase>

C#: HelloWorldWithContainer\App.xaml.cs

sealed partial class App : MvvmAppBase

Adding app specific startup behavior to the App class

When deriving from the MvvmAppBase class, app specificstartup behavior can be added to the App
class. A required overridein the App classis the OnLaunchApplication method from where you will
typically perform yourinitial navigation to alaunch page, or to the appropriate page basedon a
search, sharing, or secondary tile launch of the app. The following code example shows the
OnlLaunchApplication methodinthe App class.

C#: HelloWorldWithContainer\App.xaml.cs

public override Task OnLaunchApplication(LaunchActivatedEventArgs args)

{

NavigationService.Navigate("Main", null);
return Task.FromResult<object>(null);

225

This method navigates to the MainPage in the app, when the app launches. "Main" is specified as
the logical name of the view that will be navigated to. The default convention specified in the
MvvmAppBase class isto append "Page" to the name and look for that page in a.Views child
namespace in the project. Alternatively, another convention can be specified by overriding the
GetPageType methodinthe MvvmAppBase class.

Note The OnLaunchApplication method returnsa Task, allowingittolaunchalong running
operation. If youdon'thave a long running operationto launch you should return an empty Task.

The app usesthe Unity dependency injection containerto reduce the dependency coupling between
objects by providing afacility to instantiate instances of classes and manage theirlifetime based on
the configuration of the container. Aninstance of the containeris created as a singletoninthe App
class, as shownin the following code example.

C#: HelloWorldWithContainer\App.xaml.cs

IUnityContainer _container = new UnityContainer();

If you require app specificinitialization behavior you should override the Onlnitialize method inthe
App class. For instance, this method should be overridden if you need toinitialize services, orseta
default factory ordefault view model resolver forthe ViewModelLocator object. The following code
example shows the Onlnitialize method.

C#: HelloWorldWithContainer\App.xaml.cs

protected override void OnInitialize(IActivatedEventArgs args)

{

// Register MvvmAppBase services with the container so that view models can
// take dependencies on them
_container.RegisterInstance<ISessionStateService>(SessionStateService);
_container.RegisterInstance<INavigationService>(NavigationService);

// Register any app specific types with the container
_container.RegisterType<IDataRepository, DataRepository>();

// Set a factory for the ViewModellLocator to use the container to construct
// view models so their dependencies get injected by the container
ViewModelLocator.SetDefaultViewModelFactory((viewModelType)

=> _container.Resolve(viewModelType));

This method registers the SessionStateService and NavigationService instances from the
MvvmAppBase class with the containeras singletons, based on their respective interfaces, so that
the view model classes can take dependencies onthem. The DataRepository classis thenregistered
with the container, based onitsinterface. The DataRepository class provides datafor display on the
MainPage, and methods for reading and writing datainput from one of the TextBox controls on the
UserlnputPage. The Onlinitialize method then sets the default view model factory forthe

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx

226

ViewModelLocator object sothat it uses the containerto construct view model instances whose
dependencies are injected by the container.

In this Quickstart the ViewModelLocator object uses a convention-based approach to locate and
instantiate viewmodels from views. This convention assumes that view models are in the same
assembly as the view types, that view models are ina .ViewModels child namespace, that views are
ina .Views child namespace, and that view model names correspond with viewnames and end with
"ViewModel". The ViewModellLocator class has an attached property, AutoWireViewModel, thatis
used to manage the instantiation of view models and theirassociation toviews. In the view's XAML
this attached propertyissetto true to indicate that the view model class should be automatically
instantiated fromthe view class.

XAML: HelloWorldWithContainer\Views\MainPage.xaml

prism:ViewModellLocator.AutoWireViewModel="true"

The AutoWireViewModel propertyisadependency property thatisinitialized to false, and wheniits
value changesthe AutoWireViewModelChanged event handlerin the ViewModellLocator classis
calledtoresolve the view modelforthe view. The following code example shows how this is
achieved.

C#: Microsoft.Practices.Prism.StoreApps\ViewModelLocator.cs

private static void AutoWireViewModelChanged(DependencyObject d,
DependencyPropertyChangedEventArgs e)

FrameworkElement view = d as FrameworkElement;
if (view == null) return; // Incorrect hookup, do no harm

// Try mappings first
object viewModel = GetViewModelForView(view);
// Fallback to convention based
if (viewModel == null)
{
var viewModelType = defaultViewTypeToViewModelTypeResolver(view

.GetType());
if (viewModelType == null) return;

// Really need Container or Factories here to deal with injecting
// dependencies on construction
viewModel = defaultViewModelFactory(viewModelType);

}

view.DataContext = viewModel;

The AutoWireViewModelChanged method first attempts to resolve the view model based on
mappingsthatare not presentinthis Quickstart. If the view model cannot be resolved using this
approach, for instance if the mapping wasn't registered, the method falls back to using the

227

convention-based approach outlined earlier to resolve the correct view model type. The view model
factory, set by the Onlnitialize method in the App class, uses the dependency injection containerto
construct view model instances whose dependencies are injected by the container. When the view
model instances are constructed, dependencies specified by the constructor parameters are
resolved by the containerand then passed into the view model. Thisis referred to as constructor
injection. Thisapproachremoves the need foran object to locate its dependencies or manage their
lifetimes, allows swapping of implemented dependencies without affecting the object, and facilitates
testability by allowing dependencies to be mocked. Finally, the method sets the DataContext
property of the view type tothe registered view model instance.

Bootstrapping without a dependency injection container

You are notrequired to use Unity, or any other dependency injection container, when bootstrapping
Windows Store apps. The HelloWorld Quickstart demonstrates how to bootstrap a Windows Store
app that uses the MVVM pattern by registering factory methods against view types, with aview
model locator object.

As previously mentioned, if you require app specificinitialization behavior you should override the
Onlnitialize methodinthe App class. For instance, this method should be overridden if you need to
initialize services, orset a default factory or default view model resolverforthe ViewModelLocator
object. The following code example shows the Onlnitialize method.

C#: HelloWorld\App.xaml.cs

protected override void OnInitialize(IActivatedEventArgs args)

{
// New up the singleton data repository, and pass it the state service it
// depends on from the base class
_dataRepository = new DataRepository(SessionStateService);
// Register factory methods for the ViewModellLocator for each view model that
// takes dependencies so that you can pass in the dependent services from the
// factory method here.
ViewModelLocator.Register(typeof(MainPage).ToString(),
() => new MainPageViewModel(_dataRepository, NavigationService));
ViewModelLocator.Register(typeof(UserInputPage).ToString(),
() => new UserInputPageViewModel (_dataRepository, NavigationService));
}

This method creates a singleton from the DataRepository class, passingin the SessionStateService
fromthe MvvmAppBase class. The DataRepository class provides datafordisplay onthe MainPage,
and methods forreading and writing datainput from one of the TextBox controls onthe
UserlnputPage. The Onlinitialize method also registers afactory method foreach view type with the
staticViewModelLocator object. This ensures that the ViewModelLocator object instantiates the
correct view model object fora view type, passingin dependent services to the view model
constructorfrom the factory method.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx

228

Extended splash screen Quickstart for Windows Store apps using C#,
XAML, and Prism

Summary
e Create an extended splash screen by creatingaclass that derives fromthe Page class.

e Displayanextended splash screen by setting the ExtendedSplashScreenFactory propertyin
Prism’s MvvmAppBase class to a delegate thatreturns aninstance of the extended splash
screen class.

e Whiledisplayingthe extended splash screen, launch any additional loading tasks from the
OnLaunchApplication methodin the App class.

Learn how to use Prism forthe Windows Runtime to display an extended splash screen thatimitates
the splash screen displayed by Windows. An extended splash screenis asplash screenthatstays on
the screenfor an extended period of time, and should be displayed when an app needs more time to
prepare itsinitial Ul.

Download

Download sample

Download Prism StoreApps library

You will learn

e How to create an extended splash screen that responds toresize events.

e How to positionand size the extended splash screen correctly.

e How to use Prismforthe Windows Runtime to display an extended splash screen while an
app completes additional loading tasks.

Applies to

¢ WindowsRuntime for Windows 8.1
o CH
e Extensible Application Markup Language (XAML)

Building and running the Quickstart
Build the Quickstartas you would a standard project:

1. On the Microsoft Visual Studio menu bar, choose Build > Build Solution.

2. Afteryoubuildthe project, you mustdeployit. Onthe menu bar, choose Build > Deploy
Solution. Visual Studio also deploys the project when you runthe app fromthe debugger.

3. Afteryoudeploythe project, pick the Quickstarttile torunthe app. Alternatively, from
Visual Studio, onthe menu bar, choose Debug > Start Debugging.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://go.microsoft.com/fwlink/p/?LinkID=296755
http://go.microsoft.com/fwlink/p/?LinkID=296754

229

When the app runs you will see the extended splash screen forthe app, asshowninthe following
diagram.

A/NWORKS

This Quickstart demonstrates how to use Prism forthe Windows Runtime to display an extended
splash screenthatimitatesthe splash screen displayed by Windows. If an app needs more time to

prepare its Ul or load network data, you can use an extended splash screen to display amessage to
the useras the app completes those tasks.

For more info about extended splash screens, see How to extend the splash screen and Guidelines
for splash screens.

Solution structure

The ExtendedSplashScreen Visual Studio solution contains two projects:
ExtendedSplashScreenQuickstart, and Microsoft.Practices.Prism.StoreApps. The

ExtendedSplashScreenQuickstart project uses Visual Studio solution folders to organize the source
code intothese logical categories:

e The Assets folder containsthe splash screenandlogoimages.

¢ The Common folder contains classes provided by Visual Studio that help to simplify
application development.

e The DataModels folder containsthe sample datausedinthe app.

e The Viewsfoldercontainsthe views that make up the Ul for the app's pages.

http://msdn.microsoft.com/en-us/library/windows/apps/hh868191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465338.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465338.aspx

230

The Microsoft.Practices.Prism.StoreApps library contains reusable classes used by this Quickstart.

For more infoaboutthislibrary, see Prism forthe Windows Runtime reference. With little orno

modification, you can reuse many of the classes from this Quickstartin anotherapp. You can also
adapt the organization andideas that this Quickstart provides.

Key classes in the Quickstart

The MvvmAppBase class provides core startup behaviorfora Prismapp, with its constructor being
the entry pointfor the app. The App class adds app-specificstartup behavior to the app.

The ExtendedSplashScreen class defines the extended splash screen that imitates the splash screen
that isdisplayed by Microsoft Windows.

Creating the extended splash screen

An extended splash screenis simply asplash screen that stays on the screenfor an extended period
of time. It can be defined by creating a class that derives from the Page class, as shownin the
following code example.

XAML: ExtendedSplashScreenQuickstart\ExtendedSplashScreen.xaml

<Page ...>
<Canvas Background="#1d1d1d">
<!-- The real position of these controls will change during runtime -->
<Image Stretch="None" x:Name="splashImage"
Source="Assets/SplashScreen.png"
Canvas.Left="350"
Canvas.Top="250"/>
<ProgressRing x:Name="progressRing"
Height="50"
Width="50"
IsActive="True"
Canvas.Left="650"
Canvas.Top="550"/>
</Canvas>
</Page>

An extended splash screen must contain an Image control as the child of a Canvas control. The
Canvas displays the image thatis used on the extended splash screen. The image itself must have a
resolution of 620x300 pixels. The ProgressRing control is used toinform users that the app hasn’t

crashed and will be ready soon. This helpsto create a positive loading experience.

Note Anextended splashscreenshould use the same background colorandimage as the Windows
splash screen. This helps to ensure asmooth transition from the Windows splash screento the
extended splash screen.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.canvas.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.progressring.aspx

231

Responding to resize and image opened events for the extended splash
screen

The extended splash screen should adjust the coordinates of itsimage whenever the window size
changes, forexample if the user changes the orientation of the device. This helpsto ensure a
smoothloading experience, regardless of how users manipulatetheirdevices or change the layout of
apps ontheirscreens.

To position the extended splash screenimage atthe same screen coordinates where Windows
positions the splash screenimage requires a SplashScreen instance to be passed to the
ExtendedSplashScreen class. The SplashScreeninstance is passedinto the class through its
constructor.

C#: ExtendedSplashScreenQuickstart\ExtendedSplashScreen.xaml.cs

public ExtendedSplashScreen(SplashScreen splashScreen)

{
this.splashScreen = splashScreen;
this.InitializeComponent();
this.SizeChanged += ExtendedSplashScreen_SizeChanged;
this.splashImage.ImageOpened += splashImage_ImageOpened;
}

The constructor registers event handlers for two events. The event handlerforthe SizeChanged
eventof the window ensures that the extended splash screenis positioned and sized correctly. The
eventhandlerforthe ImageOpened event of the Image control is used to prevent flickeringwhen
transitioning from the splash screen displayed by Windows to the extended splash screen. It does
this by notactivatingthe window until the extended splash screenis ready to be shown. Each event
handler calls the Resize method of the ExtendedSplashScreen class, whichis showninthe following
code example.

Ci: ExtendedSplashScreenQuickstart\ExtendedSplashScreen.xaml.cs

private void Resize()

{

if (this.splashScreen == null) return;

// The splash image's not always perfectly centered. Therefore we need to set
// our image's position to match the original one to obtain a clean transition
// between both splash screens.

this.splashImage.Height = this.splashScreen.ImagelLocation.Height;
this.splashImage.Width = this.splashScreen.Imagelocation.Width;

this.splashImage.SetValue(Canvas.TopProperty,
this.splashScreen.ImagelLocation.Top);
this.splashImage.SetValue(Canvas. LeftProperty,

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.window.sizechanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.imageopened.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.aspx

232

this.splashScreen.Imagelocation. Left);

this.progressRing.SetValue(Canvas.TopProperty,
this.splashScreen.Imagelocation.Top +
this.splashScreen.Imagelocation.Height + 50);

this.progressRing.SetValue(Canvas.LeftProperty,
this.splashScreen.Imagelocation.Left +
this.splashScreen.ImagelLocation.Width / 2 - this.progressRing.Width / 2);

The Resize method is usedto correctly position and size the controlsin the extended splash screen
by updatingtheirvalues based upon the coordinates of the splash screen image displayed by
Windows.

Displaying the extended splash screen and launching additional loading
tasks

Prism forthe Windows Runtime defines an ExtendedSplashScreenFactory propertyinthe
MvvmAppBase class. The MvvmAppBase class will check this property during app startup, and if it’s
defined it willshow the extended splash screen. Therefore the property should be settoa delegate
that returnsthe app’s extended splash screen. In this Quickstart this occurs in the constructor of the
App class.

C#: ExtendedSplashScreenQuickstart\App.xaml.cs

this.ExtendedSplashScreenFactory =
(splashscreen) => new ExtendedSplashScreen(splashscreen);

When an app islaunched the system passes splash screeninformation to the app’s launch activation
eventhandler. Thisinformation should be used to correctly position the image onthe extended
splash screen page, overthe splash screenimage displayed by Windows. Inan app that uses Prism
for the Windows Runtime, the app’s launch activation event handleris the OnLaunched methodin
the MvvmAppBase class. This methodin turn calls the InitializeFrameAsync method in the same

class, passingin the launch activation event arguments.

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

rootFrame = new Frame();

if (ExtendedSplashScreenFactory != null)
{
Page extendedSplashScreen =
this.ExtendedSplashScreenFactory.Invoke(args.SplashScreen);
rootFrame.Content = extendedSplashScreen;

233

Inside the InitializeFrameAsync method, if the ExtendedSplashScreenFactory property is defined
the factory will create the extended splash screen page and place itin the Frame for display, before
continuing with furtherinitialization. This approach allows the extended splash screen to be
displayed without performing a navigation operation, ensuring that it will not form part of the app's
navigation history.

Once frame initialization is complete, the OnLaunched method will call the OnLaunchApplication
method inthe App class.

C#: ExtendedSplashScreenQuickstart\App.xaml.cs

protected override async Task OnLaunchApplication(LaunchActivatedEventArgs args)

{

if (args.PreviousExecutionState != ApplicationExecutionState.Running)

{

// Here we would load the application's resources.
await this.LoadAppResources();

}

this.NavigationService.Navigate("GroupedItems"”, null);

The OnLaunchApplication methodin the App class adds app-specificstartup behaviorto the app.
The LoadAppResource method is called provided that the app is being activated. This method
simulates the asynchronous loading of resources by creating a Task that will completeaftera?7
second delay. Once the Task has completed the GroupedltemsPage is navigated to.

Forinfoabouthow app startup occurs and the interaction between the MvvmAppBase class and the
App class, see Bootstrappingan MVVM Windows Store app Quickstart.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx

234

Incremental loading Quickstart for Windows Store apps using C# and
XAML

Summary

¢ Use incremental loading functionality in your GridView or ListView to enable anitem
template torenderits controlsin phases when the userscrolls faster than the XAML

renderingenginecan keep up with.

e Use the IncrementalUpdateBehavior from the Behavior SDK (XAML) to implement

incremental loading.

e Handle the ContainerContentChanging eventin code-behindinscenariosthatrequire more
specialized control overrendering phases, or when the Behavior SDK behaviors do not
provide sufficient performance.

Learn how to add incremental loading capabilities to a GridView or ListView to create a more
responsive and useful Ulwhen the userscrolls through large datasets.

Download

Download sample

You will learn

¢ How to addthe IncrementalUpdateBehaviorto a XAML controlinan item template.
e How to handle the ContainerContentChanging event and define in code-behind what
happensduringeachrendering phase.

Applies to

e Windows Runtime for Windows 8.1
o CH
e Extensible Application Markup Language (XAML)

This Quickstart demonstrates how to add incremental loading capabilities to a GridView or ListView.
However, use of incrementalloading techniques in most cases do not significantly impact the total
loadingtime forall the items compared to simple databinding. The benefit thatincrementalloading
providesisto make the items usable sooner, by first displaying just enough item datato enable the

userto decide whether they are interested inthe item or not.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.containercontentchanging.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://go.microsoft.com/fwlink/p/?LinkID=296755

235

Building and running the Quickstart
Build the Quickstart as you would a standard project:

1. Onthe Microsoft Visual Studio menu bar, choose Build > Build Solution.

2. Afteryoubuildthe project, you mustdeployit. Onthe menu bar, choose Build > Deploy
Solution. Visual Studio also deploys the project when you runthe app fromthe debugger.

3. Afteryoudeploythe project, pick the Quickstarttile torunthe app. Alternatively, from
Visual Studio, onthe menu bar, choose Debug > Start Debugging.

When the app runs you will see a page similarto the one showninthe following diagram.

Content Container Changing Blend Behavior

This demonstration shows This demonstration shows This demonstration shows

basic DataBinding, which is how to use the how to use a Blend

the simplest to implement, ContainerContentChanging behavior to achieve layered

but does not always scale event to render grid items item rendering. The perf is

well for larger data sets. in layers, which is more not as good as with the
complex to code, but ContainerContentChanging
provides best perf for event code, but it is simpler
larger data sets. and does scale well for

larger data sets.

Each button demonstrates adifferentapproach toincremental loading using the same data setand

GridView template. The DataBinding buttonis provided for comparison purposes. Press the button
and thenscroll rapidly through the itemsto observe how the rendering experience differs with each
approach.

Solution structure

The IncrementalLoadingQuickstart Visual Studio solution uses Visual Studio solution folders to
organize the source code into these logical categories:

e The Assets folder containsthe itemimages.

e The Common foldercontains the auto-generated helper classes used for navigation and app
lifecycle management.

e The SampleData folder containsthe non-image datathatis usedto populate the items.

In the mainfolder, the DataBindingScenario.* files show basicdatabinding with noincremental
loading. The BlendBehaviorScenario.* files show the IncrementalUpdateBehavior and the
CCCWithCodeScenario.* files show the handling of the ContainerContentChanging event. The

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.containercontentchanging.aspx

236

ItemViewer.*files define a user control that we use to representeachiteminthe GridView. The
ItemViewer class contains the methods thatare called in response to ContainerContentChanging
eventsinthe second scenario described below.

Using the IncrementalUpdateBehavior to add incremental loading

To use the IncrementalUpdateBehavior, you mustfirstadd a reference tothe Behaviors SDK
(XAML). In Solution Explorer, right click on the References node and in the left pane, choose
Extensions and in the middle pane, check the Behaviors SDK option.

Reference Manager - IncrementalloadingQuickstart ?
b Assemblies Filtered to: SDKs applicable to IncrementalLoadingQuickstart Search Windows (Ciri<E) O =
b Solution Mame Version
— — Name:
4 Windows Vv Behaviors SDE (XAML) 120 Behaviars SOL {XaML
Microsoft Advertising SDE for Windows 8.1 (Xaml) 81 Version:
Care yer Frames 1 120
.h..1.|rr0=.01r Player Framework . 1 B32
Recent Microsoft Player Framework Adaptive Streaming.. 18322
P Browse ! e ! :
Microsoft Player Framework Advertising Flugin 1822

Next, add the Microsoft.Xaml.Interactivity and Microsoft.Xaml.Interactions.Core namespaces to
the root Page element.

XAML: IncrementalLoadingQuickstart\BlendBehaviorScenario.xaml

xmlns:Interactivity="using:Microsoft.Xaml.Interactivity"
xmlns:Core="using:Microsoft.Xaml.Interactions.Core"

Allthatis lefttodo isto attach the behaviorstothe controls and assign a phase numberto each
behavior, asshowninthe following code example.

XAML: IncrementalLoadingQuickstart\BlendBehaviorScenario.xaml

<Interactivity:Interaction.Behaviors>
<Core:IncrementalUpdateBehavior Phase="2"/>
</Interactivity:Interaction.Behaviors>

In thisexample three phases are defined. Asageneral rule, three phasesisthe maximum number
because it shouldn'ttake more two or three phases to display enough contentto make the item
usable, and inthe phase afterthat you mightas well just render the rest of the item template. The
following example shows the entire item template forthe GridView, with behaviors attached to
each element. Note that multiple elements can be assigned the same phase number.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx

237

XAML: IncrementalLoadingQuickstart\BlendBehaviorScenario.xaml

<GridView.ItemTemplate>

<DataTemplate>
<Grid HorizontalAlignment="Left" Background="{StaticResource

ApplicationPageBackgroundThemeBrush}" >
<StackPanel Orientation="Horizontal" Margin="10,10,0,0">

<Grid>
<Image Source="ms-appx:///Assets/placeHolderImage.png"

Height="100" Width="60" VerticalAlignment="Center"
Margin="0,0,10,0"/>
<Image Source="{Binding ImageUri}" Height="100" Width="60"
VerticalAlignment="Center" Margin="0,0,10,0">
<Interactivity:Interaction.Behaviors>
<Core:IncrementalUpdateBehavior Phase="3"/>
</Interactivity:Interaction.Behaviors>
</Image>
</Grid>
<StackPanel Margin="0,0,0,0" Orientation="Vertical">
<TextBlock Text="{Binding Title}" TextWrapping="Wrap"
Foreground="{StaticResource
ApplicationForegroundThemeBrush}" FontSize="14.667"
FontWeight="Light" Width="100" VerticalAlignment="Center"
HorizontalAlignment="Left" FontFamily="Segoe UI">
<Interactivity:Interaction.Behaviors>
<Core:IncrementalUpdateBehavior Phase="1"/>
</Interactivity:Interaction.Behaviors>
</TextBlock>
<TextBlock Text="{Binding Category}" TextWrapping="Wrap"
Foreground="{StaticResource
ApplicationForegroundThemeBrush}" FontSize="14.667"
FontWeight="Light" Width="100" MaxHeight="20"
VerticalAlignment="Center" HorizontalAlignment="Left">
<Interactivity:Interaction.Behaviors>
<Core:IncrementalUpdateBehavior Phase="2"/>
</Interactivity:Interaction.Behaviors>
</TextBlock>
<HyperlinkButton Content="{Binding Link}"
NavigateUri="{Binding Link}">
<Interactivity:Interaction.Behaviors>
<Core:IncrementalUpdateBehavior Phase="2"/>
</Interactivity:Interaction.Behaviors>
</HyperlinkButton>
</StackPanel>
</StackPanel>
</Grid>
</DataTemplate>
</GridView.ItemTemplate>

238

The following diagram shows what happens when a userscrolls quickly as the items are loading. In
thisimage, phases 1 and 2 have completed on all the items, and phase 3 is about to start.

The effect will typically be more noticeable on ARM devices.

Handling the ContainerContentChanging event in code-behind

If the IncrementalUpdateBehavior approach does not provide you with the control or performance
you need, thenyou can try handlingthe ContainerContentChanging event thatis raised by the
ListViewBase class wheneveritis called up to re-renderits content, forexample in response to the
userscrollingtothe right or left. Fora full tutorial on how to handle this event, see Update GridView
and ListView itemsincrementally.

The firststepis to add the eventtothe XAML GridView element.

XAML: IncrementalLoadingQuickstart\CCCWithCodeScenario.xaml

ContainerContentChanging="ItemGridView_ContainerContentChanging"

In the event handler, we first check whetherthe dataisinthe "recycle queue." This meansthatthe
containerisbeingreused, and we clearthe contents before settingitagaininthe various phases.
The current phase is passedin the ContainerContentChangingEventArgs argument. For each phase,
we call a method that changes the opacity of the item elementsin various ways to achieve the
desired effect. If the opacity of an elementissetto zero, the XAML engine will not bothertorender
it at all, which of course speeds up that phase. Note alsothatinthe firsttwo phases, acallbackis
registered thattellsthe XAMLengine to call this handleragain when the next phase begins.

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.containercontentchanging.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn465797.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn465797.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.containercontentchangingeventargs.aspx

239

C#: IncrementalLoadingQuickstart\CCCWithCodeScenario.xaml.cs

void ItemGridView_ContainerContentChanging(ListViewBase sender,
ContainerContentChangingEventArgs args)

{
ItemViewer iv = args.ItemContainer.ContentTemplateRoot as ItemViewer;
if (args.InRecycleQueue == true)
{
iv.ClearData();
}
else if (args.Phase == 0)
{
iv.ShowPlaceholder(args.Item as Item);
// Register for async callback to visualize Title asynchronously
args.RegisterUpdateCallback(ContainerContentChangingDelegate);
}
else if (args.Phase == 1)
{
iv.ShowTitle();
iv.ShowImagePlaceHolder();
args.RegisterUpdateCallback(ContainerContentChangingDelegate);
}
else if (args.Phase == 2)
{
iv.ShowCategory();
iv.ShowLinkbutton();
args.RegisterUpdateCallback(ContainerContentChangingDelegate);
}
else if (args.Phase == 3)
{
iv.ShowImage();
}
// For improved performance, set Handled to true since app is visualizing the
// data item
args.Handled = true;
}

The following example shows the methods that are called from the event handlerand which
performthe work of adjusting the opacity levels on the elements. An Opacity value of zero means
the elementwill not be rendered atall and a value of one means that it will be rendered completely
opaque, with noblending overthe background. You can also set Opacity to intermediate levels
between0and 1, but doingso will nothelptospeeduprendering.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.opacity.aspx

240

C#: IncrementalLoadingQuickstart\ltemViewer.xaml.cs

public void ShowPlaceholder(Item item)

{
_item = item;
titleTextBlock.Opacity = ©;
categoryTextBlock.Opacity = 0;
image.Opacity = 0;
linkButton.Opacity = ©;

}

/// <summary>

/// Visualize the Title by updating the TextBlock for Title and setting Opacity
/// to 1.

/// </summary>

public void ShowTitle()

{
titleTextBlock.Text = _item.Title;

titleTextBlock.Opacity = 1;

public void ShowLinkbutton()
{

linkButton.Content = _item.Link;
linkButton.NavigateUri = new System.Uri(_item.Link);
linkButton.Opacity = 1;

241

Prism for the Windows Runtime reference

Summary

e Use the Microsoft.Practices.Prism.StoreApps library toadd MVVM support with lifecycle

management, and core services to your Windows Store app.

e Use the Microsoft.Practices.Prism.PubSubEvents library to communicate between loosely
coupled componentsinyourapp.

Learn aboutthe Prismfor the Windows Runtime libraries that help developers create Windows
Store business apps using C#and XAML. The libraries accelerate the development of apps by
providing support for Model-View-ViewModel (MVVM), loosely coupled communication, state
management, navigation, validation of userinput, data binding, commands, and settings.

You will learn

e Aboutthe classesandinterfaces containedin the Microsoft.Practices.Prism.StoreApps
library.

e Aboutthe classesandinterfaces containedin the Microsoft.Practices.Prism.PubSubEvents
library.

Applies to

e Windows Runtime for Windows 8.1
e CH
e Extensible Application Markup Language (XAML)

Prism helps developers create managed Windows Store apps. It accelerates development by
providing supportfor MVVM, loosely coupled communication, and the core services requiredin
Windows Store apps. Itis designed to help developers create apps that need to accomplish the
following:

e Addressthe common Windows Store app development scenarios.

e Separate the concerns of presentation, presentation logic, and model through support for
Model-View-ViewModel (MVVM).

e Use an architectural infrastructure to produce a consistent and high quality app.

Both librariesin Prism ship as source, with the Microsoft.Practices.Prism.PubSubEvents library also

shippingas a signed binary.

http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=296753
http://go.microsoft.com/fwlink/p/?LinkID=296753

242

Microsoft.Practices.Prism.StoreApps library

The Microsoft.Practices.Prism.StoreApps libraryis aclass library that provides MVVM support with

lifecycle management, and core services toa Windows Store app.

The followingtable lists the classes contained in the Microsoft.Practices.Prism.StoreApps library:

Class

Description

AppManifestHelper

BindableBase

BindableValidator

Constants

DelegateCommand

DelegateCommand<T>

DelegateCommandBase

FrameFacadeAdapter

FrameNavigationService

MvvmAppBase

MvvmNavigatedEventArgs

ResourceLoaderAdapter

RestorableStateAttribute

Loads the package manifestand allows youto retrieve the application
id, and checkif the app usesthe Search contract. This class can be
extendedto retrieve otherapp manifestvalues that are not exposed
by the API.

Implementation of the INotifyPropertyChanged interface, to simplify
view model and model class property change notification.

Validates entity property values against entity-defined validation rules
and exposes, through anindexer, a collection of errors for properties
that did not pass validation.

An internal class that contains constants used by the library.

An ICommand implementation whose delegates do not take any
parameters for Execute() and CanExecute().

An ICommand implementation whose delegates can be attached for
Execute(T) and CanExecute(T).

The base ICommand implementation whose delegates can be attached
for Execute(Object) and CanExecute(Object).

A facade and adapterclass that implements the IFrameFacade
interface to abstract the Frame object.

A service class thatimplements the INavigationService interface to
navigate through the pages of an app.

Helpsto bootstrap Windows Store apps that use the MVVM pattern,
with services provided by the Microsoft.Practices.Prism.Store Apps
library.

Provides datafornavigation methods and event handlers that cannot
cancel a navigation request.

An adapterclass that implements the IResourceLoaderinterface to
adapt the ResourceLoaderobject.

Defines an attribute thatindicates thatany marked property will save
its state on suspension, provided that the marked propertyisinan
instance of a class that derives from the ViewModel class.

http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.resources.resourceloader.aspx

243

SessionStateService

ValidatableBindableBase

ViewModel

ViewModellLocator

VisualStateAwarePage

A service class thatimplements the ISessionStateService interface to
capture global session state in orderto simplify process lifetime
management foranapp.

Implements the IValidatableBindableBase interface to validate model
property values against theirvalidation rules and return any validation
errors.

The base view model class thatimplements the INavigationAware
interface to provide navigation support and state managementto
derived view model classes.

Locatesthe view model class forviews that have the
AutoWireViewModel attached property set to true.

The base view class for pages that need to be aware of layout changes
and update theirvisual state accordingly.

The following table lists the interfaces contained in the Microsoft.Practices.Prism.StoreApps library:

Interface

Description

ICredentialStore

IFlyoutViewModel

IFrameFacade

INavigationAware

INavigationService

IResourceLoader

ISessionStateService

IValidatableBindableBase

Definesaninterface forthe RoamingCredentialStore class that
abstracts the PasswordVault object for managing user credentials.

Definesaninterface thatshould be implemented by flyout view model
classesto provide actions foropeningand closing a flyout, and
navigation away fromthe flyout.

Definesaninterface forthe FrameFacadeAdapter class that abstracts
the Frame objectforuse by apps that derive from the MvvmAppBase
class.

Definesaninterface thatallowsanimplementing class to participate in
a navigation operation.

Definesaninterface thatallows animplementing class to create a
navigation service.

Definesaninterface forthe ResourceLoaderAdapter class that abstracts
the ResourceLoaderobject for use by apps that derive fromthe
MvvmAppBase class.

Definesaninterface thatallows animplementing class to capture global
session state.

Definesaninterface thatallows animplementing class to add validation
supportto model classes that contain validation rules.

http://go.microsoft.com/fwlink/p/?LinkID=296754
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.resources.resourceloader.aspx

244

Forinfoabouthow thislibrary was usedin the AdventureWorks Shopper reference implementation,
see Using the Model-View-ViewModel (MVVM) pattern, Creating and navigating between pages,

Validating userinput, Managing application data, Handling suspend, resume, and activation,
Communicating between looselycoupled components, and Implementing search.

Microsoft.Practices.Prism.PubSubEvents library

The Microsoft.Practices.Prism.PubSubEvents library is a Portable Class Library (PCL) that contains
classesthatimplementevent aggregation. You can use this library forcommunicating between

loosely coupled componentsinyourown app. The library has no dependencies on otherlibraries,
and can be addedto your Visual Studio solution without the Microsoft.Practices.Prism.Store Apps
library. The PCL targets:

e Microsoft.NET for Windows Store apps
e .NETFramework 4 and higher

e MicrosoftSilverlight4and higher

e WindowsPhone 7and higher

e Xbox 360

For more info about portal class libraries, see Cross-Platform Development with the .NET Framework

The followingtable lists the classes contained in the Microsoft.Practices.Prism.PubSubEvents library:

Class Description

BackgroundEventSubscription<TPayload> Extends EventSubscription<TPayload>toinvoke the
Action delegate inabackground thread.

DataEventArgs<TData> Genericarguments class to pass to event handlers that
needtoreceive data.

DelegateReference Represents areference to a Delegate that may contain
a WeakReference to the target. This classis used
internally.

DispatcherEventSubscription<TPayload> Extends EventSubscription<TPayload>toinvoke the
Action delegate in aspecific Dispatcher.

EventAggregator Implements IEventAggregator.
EventBase Defines abase classto publishand subscribe to events.
EventSubscription<TPayload> Providesaway to retrieve a Delegate to execute an

action dependingonthe value of asecond filter
predicate that returns true if the action should execute.

PubSubEvent<TPayload> Defines aclass that manages publication and
subscription to events.

SubscriptionToken Subscription token returned from EventBase on
subscribe.

http://go.microsoft.com/fwlink/p/?LinkID=296753
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://msdn.microsoft.com/en-us/library/windows/apps/gg597391.aspx
http://go.microsoft.com/fwlink/p/?LinkID=296753
http://msdn.microsoft.com/en-us/library/windows/apps/system.delegate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.weakreference.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.threading.dispatcher.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.delegate.aspx

245

The following table lists the interfaces contained in the Microsoft.Practices.Prism.PubSubEvents
library:

Interface Description

IDelegateReference Representsareference toa Delegate.
IEventAggregator Definesaninterface togetinstancesofaneventtype.

IEventSubscription Definesacontract foran eventsubscription to be used by EventBase.

The followingtable lists the enumerations contained in the Microsoft.Practices.Prism.PubSubEvents
library:

Enumeration Description

ThreadOption Specifies on whichthread a PubSubEvent<TPayload>subscriberwill be called.

Forinfoabout publishingand subscribing to events, see Communicating between loosely coupled

components and Event aggregation Quickstart.

http://go.microsoft.com/fwlink/p/?LinkID=296753
http://msdn.microsoft.com/en-us/library/windows/apps/system.delegate.aspx
http://go.microsoft.com/fwlink/p/?LinkID=296753

	Developing a Windows Store business app using C#, XAML, and Prism for the Windows Runtime
	Download
	Prerequisites
	Exploring the guidance
	What's in the box?
	Where to start?

	Exploring the documentation
	Community
	Release notes
	Learning resources
	Downloads for the previous release

	Getting started using Prism for the Windows Runtime
	Download
	You will learn
	Applies to
	Building and running the sample
	Visual Studio solution structure for a Windows Store business app that uses the MVVM pattern
	The AdventureWorks.Shopper project
	The AdventureWorks.UILogic project
	The AdventureWorks.WebServices project
	The Microsoft.Practices.Prism.PubSubEvents project
	The Microsoft.Practices.Prism.StoreApps project

	Where to get more info

	Developer guidance summary and checklists for Windows Store business apps using C#, XAML, and Prism
	Download
	You will learn
	Applies to
	Making key decisions
	Windows Store business apps developer checklists
	Designing the user experience
	Using the Model-View-ViewModel (MVVM) pattern
	Creating and navigating between pages
	Using touch
	Validating user input
	Managing application data
	Handling suspend, resume, and activation
	Communicating between loosely coupled components
	Working with tiles
	Implementing search
	Improving performance
	Testing and deploying apps

	Developer tasks for building a Windows Store business app using C#, XAML, and Prism
	Download
	Applies to
	Windows Store business app developer tasks
	Guidance summary and checklists for Windows Store business apps
	Using Prism for the Windows Runtime
	Designing the user experience
	Creating pages
	Using touch
	Managing application data
	Working with tiles
	Implementing search
	Improving performance
	Testing and deploying apps
	Extended splash screen Quickstart
	Incremental loading Quickstart

	Using Prism to create a Windows Store app
	You will learn
	Applies to
	Architecture of a Windows Store business app that uses Prism
	Creating a Windows Store app project using Prism and Unity
	Creating a view
	Creating a view model class
	Creating a model class with validation support
	Adding items to the Settings pane
	Changing the Prism conventions
	Changing the convention for naming and locating views
	Changing the convention for naming, locating, and associating view models with views
	Registering a view model factory with views instead of using a dependency injection container

	Designing the user experience of a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	AdventureWorks Shopper user experiences
	Deciding the user experience goals
	Deciding the app flow
	Deciding what Windows features to use
	Deciding how to monetize the app
	Making a good first impression
	Validating the design

	Using the Model-View-ViewModel (MVVM) pattern in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	MVVM in AdventureWorks Shopper
	What is MVVM?
	Using a dependency injection container
	Bootstrapping an MVVM app using Prism's MvvmAppBase class
	Using the ViewModelLocator class to connect view models to views
	Using a convention-based approach to connect view models to views

	Other approaches to constructing view models and views
	Creating a view model declaratively
	Creating a view model programmatically
	Creating a view defined as a data template

	Updating a view in response to changes in the underlying view model or model
	Additional considerations when implementing property change notification

	UI interaction using the DelegateCommand class and Blend behaviors
	Implementing command objects
	Invoking commands from a view
	Implementing behaviors to supplement the functionality of XAML elements
	Invoking behaviors from a view

	Additional MVVM considerations
	Centralize data conversions in the view model or a conversion layer
	Expose operational modes in the view model
	Keep views and view models independent
	Use asynchronous programming techniques to keep the UI responsive

	Creating and navigating between pages in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Creating pages and navigating between them in AdventureWorks Shopper
	Creating pages
	Adding design time data
	Supporting multiple view states
	Creating a custom GridView control that responds to layout changes
	Creating a custom GridView control that displays items at multiple sizes
	Styling controls
	Enabling page localization
	Separate resources for each locale
	Ensure that each piece of text that appears in the UI is defined by a string resource
	Add contextual comments to the app resource file
	Define the flow direction for all pages
	Ensure error messages are read from the resource file

	Enabling page accessibility
	Navigating between pages
	Handling navigation requests
	Navigating to the hub page when AdventureWorks Shopper is activated
	Invoking navigation using behaviors

	Using touch in a Windows Store business app using C# and XAML
	You will learn
	Applies to
	Making key decisions
	Touch in AdventureWorks Shopper
	Tap for primary action
	Slide to pan
	Swipe to select, command, and move
	Pinch and stretch to zoom
	Swipe from edge for app commands
	Swipe from edge for system commands

	Validating user input in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Validation in AdventureWorks Shopper using Prism
	Specifying validation rules
	Triggering validation when properties change
	Triggering validation of all properties
	Triggering server-side validation
	Highlighting validation errors with behaviors
	Persisting user input and validation errors when the app suspends and resumes

	Managing application data in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Managing application data in AdventureWorks Shopper
	Storing data in the app data stores
	Local application data
	Roaming application data
	Storing and roaming user credentials
	Temporary application data

	Exposing settings through the Settings charm
	Creating data transfer objects
	Accessing data through a web service
	Consuming data
	Exposing data
	Data formats
	Consuming data from a web service using DTOs
	Caching data from a web service
	Authenticating users with a web service

	Handling suspend, resume, and activation in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Suspend and resume in AdventureWorks Shopper
	Understanding possible execution states
	Implementation approaches for suspend and resume
	Suspending an app
	Saving view model state
	Saving view state
	Saving state from service and repository classes

	Resuming an app
	Activating an app
	Restoring view model state
	Restoring view state
	Restoring state from service and repository classes

	Other ways to close the app

	Communicating between loosely coupled components in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Event aggregation in AdventureWorks Shopper
	Event aggregation
	Defining and publishing pub/sub events
	Defining an event
	Publishing an event

	Subscribing to events
	Default subscription
	Subscribing on the UI thread
	Subscription filtering
	Subscribing using strong references

	Unsubscribing from pub/sub events

	Working with tiles in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Tiles in AdventureWorks Shopper
	Creating app tiles
	Using periodic notifications to update tile content

	Creating secondary tiles
	Launching the app from a secondary tile

	Implementing search in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Search in AdventureWorks Shopper
	Adding search functionality
	Providing query suggestions
	Responding to search queries
	Populating the search results page with data
	Navigating to the result's detail page
	Enabling users to type into the search box

	Improving performance in a Windows Store business app using C# and XAML
	You will learn
	Applies to
	Making key decisions
	Performance considerations
	Limit the startup time
	Emphasize responsiveness
	Trim resource dictionaries
	Optimize the element count
	Reuse identical brushes
	Use independent animations
	Minimize the communication between the app and the web service
	Limit the amount of data downloaded from the web service
	Use UI virtualization
	Use the IncrementalUpdateBehavior to implement incremental loading
	Avoid unnecessary termination
	Keep your app's memory usage low when it's suspended
	Reduce battery consumption
	Minimize the amount of resources that your app uses
	Limit the time spent in transition between managed and native code
	Reduce garbage collection time

	Testing and deploying Windows Store business apps using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Testing AdventureWorks Shopper
	Unit and integration testing
	Testing synchronous functionality
	Testing asynchronous functionality

	Suspend and resume testing
	Security testing
	Localization testing
	Accessibility testing
	Performance testing
	Device testing
	Testing your app with the Windows App Certification Kit
	Creating a Windows Store certification checklist
	Deploying and managing Windows Store apps

	Meet the AdventureWorks Shopper and Prism team
	Meet the team

	Quickstarts for Windows Store business apps using C#, XAML, and Prism
	Download

	Validation Quickstart for Windows Store apps using C#, XAML, and Prism
	Download
	You will learn
	Applies to
	Building and running the Quickstart
	Solution structure
	Key classes in the Quickstart
	Specifying validation rules
	Triggering validation explicitly
	Triggering validation implicitly on property change
	Highlighting validation errors

	Event aggregation Quickstart for Windows Store apps using C#, XAML, and Prism
	Download
	You will learn
	Applies to
	Building and running the Quickstart
	Solution structure
	Key classes in the Quickstart
	Defining the ShoppingCartChangedEvent class
	Notifying subscribers of the ShoppingCartChangedEvent
	Registering to receive notifications of the ShoppingCartChangedEvent

	Bootstrapping an MVVM Windows Store app Quickstart using C#, XAML, and Prism
	Download
	You will learn
	Applies to
	Building and running the Quickstart
	Solution structure
	Key classes in the Quickstart
	Bootstrapping an MVVM app using the MvvmAppBase class and a dependency injection container
	Adding app specific startup behavior to the App class
	Bootstrapping without a dependency injection container

	Extended splash screen Quickstart for Windows Store apps using C#, XAML, and Prism
	Download
	You will learn
	Applies to
	Building and running the Quickstart
	Solution structure
	Key classes in the Quickstart
	Creating the extended splash screen
	Responding to resize and image opened events for the extended splash screen
	Displaying the extended splash screen and launching additional loading tasks

	Incremental loading Quickstart for Windows Store apps using C# and XAML
	Download
	You will learn
	Applies to
	Building and running the Quickstart
	Solution structure
	Using the IncrementalUpdateBehavior to add incremental loading
	Handling the ContainerContentChanging event in code-behind

	Prism for the Windows Runtime reference
	You will learn
	Applies to
	Microsoft.Practices.Prism.StoreApps library
	Microsoft.Practices.Prism.PubSubEvents library

