

Prism for the
Windows Runtime for
Windows 8.1:
Developing a Windows Store
business app using
C#, XAML, and Prism

David Britch

Colin Campbell

Francis Cheung

Diego Antonio Poza

Rohit Sharma

Mariano Vazquez

Blaine Wastell

January 2014

ii

This document is provided “as-is”. Information and views expressed in this document, including URL

and other Internet web site references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real

association or connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any

Microsoft product. You may copy and use this document for your internal, reference purposes.

© 2013 Microsoft. All rights reserved.

Microsoft, Visual Basic, Visual Studio, Windows Azure, and Windows are trademarks of the Microsoft

group of companies. All other trademarks are property of their respective owners.

iii

Contents
Developing a Windows Store business app using C#, XAML, and Prism for the Windows Runtime 2

Download... 2

Prerequisites .. 2

Exploring the guidance .. 3

What's in the box?... 3

Where to start? ... 4

Exploring the documentation .. 4

Community... 5

Release notes ... 5

Learning resources.. 5

Downloads for the previous release ... 6

Getting started using Prism for the Windows Runtime .. 7

Download... 7

Building and running the sample.. 7

Visual Studio solution structure for a Windows Store business app that uses the MVVM pattern .. 8

The AdventureWorks.Shopper project .. 9

The AdventureWorks.UILogic project ... 10

The AdventureWorks.WebServices project ... 10

The Microsoft.Practices.Prism.PubSubEvents project .. 11

The Microsoft.Practices.Prism.StoreApps project .. 11

Where to get more info... 11

Developer guidance summary and checklists for Windows Store business apps using C#, XAML, and

Prism ... 12

Windows Store business apps developer checklists... 14

Designing the user experience.. 14

Using the Model-View-ViewModel (MVVM) pattern.. 15

Creating and navigating between pages.. 15

Using touch... 16

Validating user input ... 17

Managing application data... 17

Handling suspend, resume, and activation .. 18

Communicating between loosely coupled components ... 18

Working with tiles ... 19

iv

Implementing search ... 19

Improving performance ... 20

Testing and deploying apps .. 21

Developer tasks for building a Windows Store business app using C#, XAML, and Prism 22

Windows Store business app developer tasks ... 22

Guidance summary and checklists for Windows Store business apps 22

Using Prism for the Windows Runtime.. 23

Designing the user experience.. 25

Creating pages .. 25

Using touch... 25

Managing application data... 25

Working with tiles ... 26

Implementing search ... 26

Improving performance ... 26

Testing and deploying apps .. 26

Extended splash screen Quickstart ... 27

Incremental loading Quickstart .. 27

Using Prism to create a Windows Store app ... 28

Architecture of a Windows Store business app that uses Prism.. 29

Creating a Windows Store app project using Prism and Unity .. 31

Creating a view ... 33

Creating a view model class ... 33

Creating a model class with validation support ... 34

Adding items to the Settings pane.. 35

Changing the Prism conventions .. 35

Changing the convention for naming and locating views ... 35

Changing the convention for naming, locating, and associating view models with views 36

Registering a view model factory with views instead of using a dependency injection container.. 37

Designing the user experience of a Windows Store business app using C#, XAML, and Prism 38

AdventureWorks Shopper user experiences ... 39

Deciding the user experience goals .. 40

Deciding the app flow ... 40

Deciding what Windows features to use... 42

Deciding how to monetize the app... 43

v

Making a good first impression .. 43

Validating the design... 43

Using the Model-View-ViewModel (MVVM) pattern in a Windows Store business app using C#,

XAML, and Prism .. 44

MVVM in AdventureWorks Shopper .. 48

What is MVVM?.. 49

Using a dependency injection container ... 49

Bootstrapping an MVVM app using Prism's MvvmAppBase class ... 50

Using the ViewModelLocator class to connect view models to views ... 52

Using a convention-based approach to connect view models to views.................................... 53

Other approaches to constructing view models and views... 53

Creating a view model declaratively ... 54

Creating a view model programmatically .. 54

Creating a view defined as a data template... 54

Updating a view in response to changes in the underlying view model or model 55

Additional considerations when implementing property change notification 57

UI interaction using the DelegateCommand class and Blend behaviors 58

Implementing command objects .. 58

Invoking commands from a view .. 59

Implementing behaviors to supplement the functionality of XAML elements 60

Invoking behaviors from a view .. 63

Additional MVVM considerations... 64

Centralize data conversions in the view model or a conversion layer 64

Expose operational modes in the view model ... 64

Keep views and view models independent .. 64

Use asynchronous programming techniques to keep the UI responsive 64

Creating and navigating between pages in Windows Store business app using C#, XAML, and Prism 65

Creating pages and navigating between them in AdventureWorks Shopper 68

Creating pages .. 69

Adding design time data.. 71

Supporting multiple view states ... 71

Creating a custom GridView control that responds to layout changes .. 73

Creating a custom GridView control that displays items at multiple sizes 74

Styling controls ... 76

vi

Enabling page localization ... 76

Separate resources for each locale ... 76

Ensure that each piece of text that appears in the UI is defined by a string resource 76

Add contextual comments to the app resource file.. 77

Define the flow direction for all pages .. 77

Ensure error messages are read from the resource file .. 77

Enabling page accessibility .. 78

Navigating between pages... 79

Handling navigation requests ... 80

Navigating to the hub page when AdventureWorks Shopper is activated 82

Invoking navigation using behaviors ... 84

Using touch in a Windows Store business app using C# and XAML ... 87

Touch in AdventureWorks Shopper.. 89

Tap for primary action... 89

Slide to pan .. 92

Swipe to select, command, and move .. 94

Pinch and stretch to zoom ... 97

Swipe from edge for app commands ...100

Swipe from edge for system commands ..103

Validating user input in a Windows Store business app using C#, XAML, and Prism........................105

Validation in AdventureWorks Shopper using Prism ...106

Specifying validation rules ..108

Triggering validation when properties change ...111

Triggering validation of all properties ..113

Triggering server-side validation ...114

Highlighting validation errors with behaviors ...116

Persisting user input and validation errors when the app suspends and resumes.......................119

Managing application data in a Windows Store business app using C#, XAML, and Prism122

Managing application data in AdventureWorks Shopper ..125

Storing data in the app data stores ...125

Local application data ...126

Roaming application data ...126

Storing and roaming user credentials...127

Temporary application data ..129

vii

Exposing settings through the Settings charm..129

Creating data transfer objects...132

Accessing data through a web service ...133

Consuming data ...134

Exposing data...134

Data formats ..135

Consuming data from a web service using DTOs...135

Caching data from a web service ...139

Authenticating users with a web service ..140

Handling suspend, resume, and activation in Windows Store business app using C#, XAML, Prism .145

Suspend and resume in AdventureWorks Shopper...147

Understanding possible execution states...147

Implementation approaches for suspend and resume ..149

Suspending an app ...150

Saving view model state ...152

Saving view state..152

Saving state from service and repository classes ..153

Resuming an app ...153

Activating an app ...154

Restoring view model state ...156

Restoring view state ...156

Restoring state from service and repository classes ..157

Other ways to close the app ...157

Communicating between loosely coupled components in a Windows Store business app using C#,

XAML, and Prism ...159

Event aggregation in AdventureWorks Shopper ...160

Event aggregation ..161

Defining and publishing pub/sub events ..162

Defining an event ...162

Publishing an event ..162

Subscribing to events ...163

Default subscription ...163

Subscribing on the UI thread ...163

Subscription filtering ..164

viii

Subscribing using strong references...165

Unsubscribing from pub/sub events..166

Working with tiles in a Windows Store business app using C#, XAML, and Prism167

Tiles in AdventureWorks Shopper ...168

Creating app tiles ...169

Using periodic notifications to update tile content ...170

Creating secondary tiles ...171

Launching the app from a secondary tile..174

Implementing search in a Windows Store business app using C#, XAML, and Prism176

Search in AdventureWorks Shopper ..177

Adding search functionality ..178

Providing query suggestions..179

Responding to search queries ...180

Populating the search results page with data ...181

Navigating to the result's detail page ...182

Enabling users to type into the search box ...183

Improving performance in a Windows Store business app using C# and XAML185

Performance considerations ...187

Limit the startup time ...187

Emphasize responsiveness ..188

Trim resource dictionaries ..188

Optimize the element count ...188

Reuse identical brushes ..188

Use independent animations ..188

Minimize the communication between the app and the web service.....................................189

Limit the amount of data downloaded from the web service ..189

Use UI virtualization ...189

Use the IncrementalUpdateBehavior to implement incremental loading190

Avoid unnecessary termination ...192

Keep your app's memory usage low when it's suspended ...192

Reduce battery consumption ..192

Minimize the amount of resources that your app uses..192

Limit the time spent in transition between managed and native code193

Reduce garbage collection time...193

ix

Testing and deploying Windows Store business apps using C#, XAML, and Prism...........................194

Testing AdventureWorks Shopper...195

Unit and integration testing..196

Testing synchronous functionality ...197

Testing asynchronous functionality ...198

Suspend and resume testing...199

Security testing ..199

Localization testing ..199

Accessibility testing..200

Performance testing...200

Device testing ..200

Testing your app with the Windows App Certification Kit ...201

Creating a Windows Store certification checklist..202

Deploying and managing Windows Store apps...202

Meet the AdventureWorks Shopper and Prism team ...203

Quickstarts for Windows Store business apps using C#, XAML, and Prism205

Validation Quickstart for Windows Store apps using C#, XAML, and Prism206

Building and running the Quickstart ..206

Solution structure ..207

Key classes in the Quickstart ...208

Specifying validation rules ..209

Triggering validation explicitly ..210

Triggering validation implicitly on property change ..211

Highlighting validation errors..212

Event aggregation Quickstart for Windows Store apps using C#, XAML, and Prism.........................214

Building and running the Quickstart ..215

Solution structure ..216

Key classes in the Quickstart ...216

Defining the ShoppingCartChangedEvent class ..218

Notifying subscribers of the ShoppingCartChangedEvent ...218

Registering to receive notifications of the ShoppingCartChangedEvent219

Bootstrapping an MVVM Windows Store app Quickstart using C#, XAML, and Prism221

Building and running the Quickstart ..222

Solution structure ..223

x

Key classes in the Quickstart ...223

Bootstrapping an MVVM app using MvvmAppBase class and a dependency injection container.223

Adding app specific startup behavior to the App class ..224

Bootstrapping without a dependency injection container...227

Extended splash screen Quickstart for Windows Store apps using C#, XAML, and Prism.................228

Building and running the Quickstart ..228

Solution structure ..229

Key classes in the Quickstart ...230

Creating the extended splash screen ...230

Responding to resize and image opened events for the extended splash screen231

Displaying the extended splash screen and launching additional loading tasks232

Incremental loading Quickstart for Windows Store apps using C# and XAML.................................234

Building and running the Quickstart ..235

Solution structure ..235

Using the IncrementalUpdateBehavior to add incremental loading...236

Handling the ContainerContentChanging event in code-behind ..238

Prism for the Windows Runtime reference..241

Microsoft.Practices.Prism.StoreApps library ..242

Microsoft.Practices.Prism.PubSubEvents library ..244

2

Developing a Windows Store business app using C#, XAML, and Prism

for the Windows Runtime

This guide helps developers who want to create a Windows Store business app using C#, XAML, the

Windows Runtime, and development patterns such as Model-View-ViewModel and event

aggregation. The guide comes with source code for Prism for the Windows Runtime, source code for

the AdventureWorks Shopper product catalog and shopping cart reference implementation, and

documentation. The documentation provides guidance on how to implement MVVM with navigation

and app lifecycle management, validation, manage application data, implement controls, accessible

and localizable pages, touch, search, tiles, and tile notifications. It also provides guidance on testing

your app and tuning its performance.

Download

Here's what you'll learn:

 How to implement pages, touch, navigation, settings, suspend/resume, search, tiles, and tile

notifications.

 How to implement the Model-View-ViewModel (MVVM) pattern.

 How to validate user input for correctness.

 How to manage application data.

 How to test your app and tune its performance.

Note If you're just getting started with Windows Store apps, read Create your first Windows Store

app using C# or Visual Basic to learn how to create a simple Windows Store app with C# and XAML.

Then download the AdventureWorks Shopper reference implementation to see a complete business

app that demonstrates recommended implementation patterns.

Prerequisites

 Windows 8.1

 Microsoft Visual Studio 2013

 An interest in C# and XAML programming

Go to Windows Store app development to download the latest tools for Windows Store app

development.

http://msdn.microsoft.com/en-us/library/windows/apps/hh974581.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh974581.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211368.aspx
http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=275571

3

The AdventureWorks Shopper Microsoft Visual Studio solution has a number of nuget package

dependencies, which Visual Studio will attempt to download when the solution is first loaded. The

required nuget packages are:

 Unity v3.0

 Microsoft.AspNet.WebApi.Client v4.1.0-alpha-120809

 Newtonsoft.Json v4.5.11 and v5.0.6

 Microsoft.AspNet.Mvc v4.0.20710.0

 Microsoft.AspNet.Razor v2.0.20715.0

 Microsoft.AspNet.WebApi v4.0.20710.0

 Microsoft.AspNet.WebApi.Client v4.1.0-alpha-120809

 Microsoft.AspNet.WebApi.Core v4.0.20710.0

 Microsoft.AspNet.WebApi.WebHost v4.0.20710.0

 Microsoft.AspNet.WebPages v2.0.20710.0

 Microsoft.Net.Http v2.0.20710.0

 Microsoft.Web.Infrastructure v1.0.0.0

Exploring the guidance

What's in the box?

 Documentation. The documentation provides guidance on how to implement MVVM with

navigation and app lifecycle management, manage application data, implement controls,

accessible and localizable pages, touch, validation, search, tiles, and tile notifications. It also

provides guidance on testing your app and tuning its performance.

 Portable Document Format (PDF). A PDF version of the on-line guidance, for printing or

reading offline.

 AdventureWorks Shopper reference implementation source code. A Visual Studio solution

containing all the projects that make up the AdventureWorks Shopper product catalog and

shopping cart reference implementation.

 Quickstarts. The guidance includes a number of Quickstarts that illustrate specific concepts.

Many of the Quickstarts use Prism for the Windows Runtime.

 Prism for the Windows Runtime source code. Source code for the two libraries that help to

accelerate the development of managed Windows Store apps.

 Prism for the Windows Runtime NuGet packages. NuGet packages for the two libraries that

help to accelerate the development of managed Windows Store apps.

http://go.microsoft.com/fwlink/p/?LinkID=275571
http://go.microsoft.com/fwlink/p/?LinkID=275570

4

Where to start?

 Review the AdventureWorks Reference implementation. After you download the code, see

Getting started using Prism for the Windows Runtime for instructions on how to compile and

run the reference implementation, as well as understand the Visual Studio solution

structure.

 Review Quickstarts. The guidance provides five Quickstart samples that focus on specific

tasks—validation, event aggregation, bootstrapping an MVVM app, extended splash screens,

and incremental loading of items in GridView controls.

 Create an app using the Prism for the Windows Runtime. If you want to create your own app

using Prism see Using Prism for the Windows Runtime.

 Explore developer tasks. Learn how the team implemented many of the tasks required to

create a Windows Store app.

 Review the documentation. The associated documentation outlines the key decisions and

lessons learned to create a Windows Store business app.

Exploring the documentation

Here are the major topics in this guide.

 Getting started using Prism for the Windows Runtime

 Developer guidance summary and checklists for Windows Store business apps using C#,

XAML, and Prism

 Developer tasks for building a Windows Store business app using C#, XAML, and Prism

 Using Prism to create a Windows Store app

 Designing the user experience of a Windows Store business app using C#, XAML, and Prism

 Using the Model-View-ViewModel (MVVM) pattern in a Windows Store business app using

C#, XAML, and Prism

 Creating and navigating between pages in a Windows Store business app using C#, XAML,

and Prism

 Using touch in a Windows Store business app using C# and XAML

 Validating user input in a Windows Store business app using C#, XAML, and Prism

 Managing application data in a Windows Store business app using C#, XAML, and Prism

 Handling suspend, resume, and activation in a Windows Store business app using C#, XAML,

and Prism

 Communicating between loosely coupled components in a Windows Store business app

using C#, XAML, and Prism

 Working with tiles in a Windows Store business app using C#, XAML, and Prism

 Implementing search in a Windows Store business app using C#, XAML, and Prism

 Improving performance in a Windows Store business app using C# and XAML

 Testing and deploying Windows Store business apps using C#, XAML, and Prism

 Meet the AdventureWorks Shopper and Prism team

 Quickstarts for Windows Store business apps using C#, XAML, and Prism

 Prism for the Windows Runtime reference

5

Community

Prism for the Windows Runtime, like many patterns & practices deliverables, has a community site.

On the community site you can post questions, provide feedback, connect with other users to share

ideas, and find additional content such as extensions and training material. Community members

can also help Microsoft plan and test future releases of Prism for the Windows Runtime. For more

info see patterns & practices: Prism for the Windows Runtime.

Release notes

The release notes, which include what's new in this release and a change log, can be found on the

community site. For more info see Prism for the Windows Runtime release notes.

Learning resources

If you're new to C# programming for Windows Store apps, read Roadmap for Windows Store app

using C# or Visual Basic. To find out about debugging Windows Store apps see Debugging Windows

Store apps.

If you're familiar with using XAML you'll be able to continue using your skills when you create

Windows Store apps. For more info about XAML as it relates to Windows Store apps, see XAML

overview.

The Windows Runtime is a programming interface that you can use to create Windows Store apps.

The Windows Runtime supports the distinctive visual style and touch-based interaction model of

Windows Store apps as well as access to network, disks, devices, and printing. For more info about

the Windows Runtime API, see Windows API reference for Windows Store apps.

The .NET framework provides a subset of managed types that you can use to create Windows Store

apps using C#. This subset of managed types is called .NET for Windows Store apps and enabl es .NET

framework developers to create Windows Store apps within a familiar programming framework. You

use these managed types with types from the Windows Runtime API to create Windows Store apps.

You won't notice any differences between using the managed types and the Windows Runtime types

except that the managed types reside in namespaces that start with System, and the Windows

Runtime types reside in namespaces that start with Windows. The entire set of assemblies for .NET

for Windows Store apps is automatically referenced in your project when you create a Windows

Store app using C#. For more info see .NET for Windows Store apps overview.

To learn about the components and tools that determine what platform capabilities are available to

your app, and how to access these capabilities see App capability declarations (Windows Store

apps).

The AdventureWorks Shopper reference implementation makes much use of the task-based

asynchronous pattern (TAP). To learn how to use TAP to implement and consume asynchronous

operations see Task-based Asynchronous Pattern.

http://go.microsoft.com/fwlink/?LinkID=288835
http://go.microsoft.com/fwlink/p/?LinkID=386786
http://msdn.microsoft.com/en-us/library/windows/apps/br229583.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br229583.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441472.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh441472.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700354.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700354.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211377.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230302.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://go.microsoft.com/fwlink/p/?LinkID=276827

6

You might also want to read Index of UX guidelines for Windows Store apps and Design Windows

Store apps using Blend for Microsoft Visual Studio 2013 to learn more about how to implement a

great user experience.

Downloads for the previous release

The previous release of Prism, which works with Windows 8 but not with Windows 8.1, can be

downloaded using the links below.

 AdventureWorks Shopper sample

 Quickstarts

 Prism StoreApps library

 Prism PubSubEvents library

 Book (PDF)

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://go.microsoft.com/fwlink/p/?LinkID=389062
https://prismwindowsruntime.codeplex.com/releases/view/106870
http://go.microsoft.com/fwlink/p/?LinkID=389064
http://go.microsoft.com/fwlink/p/?LinkID=389065
http://go.microsoft.com/fwlink/p/?LinkID=389066

7

Getting started using Prism for the Windows Runtime

Learn how to build and run AdventureWorks Shopper, the reference implementation for Prism for

the Windows Runtime, and how the source code is organized in Microsoft Visual Studio. The

AdventureWorks Shopper reference implementation demonstrates how to accelerate the

development of a Windows Store business app by using Prism.

Download

You will learn

 How to structure the Visual Studio solution for a Windows Store business app that uses the

Model-View-ViewModel (MVVM) pattern.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Building and running the sample

Build the AdventureWorks Shopper Visual Studio solution as you would build a standard solution.

1. On the Visual Studio menu bar, choose Build > Build Solution.

2. After you build the solution, you must deploy it. On the menu bar, choose Build > Deploy

Solution. Visual Studio also deploys the project when you run the app from the debugger.

3. After you deploy the project, you should run it. On the menu bar, choose Debug > Start

Debugging. Make sure that AdventureWorks.Shopper is the startup project. When you run

the app, the hub page appears.

http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=275571

8

Visual Studio solution structure for a Windows Store business app that uses

the MVVM pattern

The AdventureWorks Shopper Visual Studio solution organizes the source code and other resources

into projects. All of the projects use Visual Studio solution folders to organize the source code and

other resources into categories. The following table outlines the projects that make up the

AdventureWorks Shopper reference implementation.

Project Description

AdventureWorks.Shopper This project contains the views for the

AdventureWorks Shopper reference

implementation, the package manifest, and the

App class that defines the startup behavior of the

app, along with supporting classes and resources.

For more info see The AdventureWorks.Shopper

project.

AdventureWorks.UILogic This project contains the business logic for the

AdventureWorks Shopper reference

implementation, and comprises view models,

models, repositories, and service classes. For more

info see The AdventureWorks.UILogic project.

9

AdventureWorks.WebServices This project contains the web service for the

AdventureWorks Shopper reference

implementation. For more info see The

AdventureWorks.WebServices project.

Microsoft.Practices.Prism.PubSubEvents This project contains classes that implement the

event aggregator. For more info see The

Microsoft.Practices.Prism.PubSubEvents project.

Microsoft.Practices.Prism.StoreApps This project contains interfaces and classes that

provide MVVM support with lifecycle

management, and core services to the

AdventureWorks Shopper reference

implementation. For more info see The

Microsoft.Practices.Prism.StoreApps project.

AdventureWorks.UILogic.Tests This project contains unit tests for the

AdventureWorks.UILogic project.

AdventureWorks.WebServices.Tests This project contains unit tests for the

AdventureWorks.WebServices project.

Microsoft.Practices.Prism.PubSubEvents.Tests This project contains unit tests for the

Microsoft.Practices.Prism.PubSubEvents project.

Microsoft.Practices.Prism.StoreApps.Tests This project contains unit tests for the

Microsoft.Practices.Prism.StoreApps project.

You can reuse some of the components in the AdventureWorks Shopper reference implementation

in any Windows Store app with little or no modification. For your own app, you can adapt the

organization and ideas that these files provide.

The AdventureWorks.Shopper project

The AdventureWorks.Shopper project contains the following folders:

 The Assets folder contains images for the splash screen, tile, and other Windows Store app

required images.

 The Behaviors folder contains behaviors that are exposed to view classes.

 The Common folder contains the DependencyPropertyChangedHelper class which monitors

a dependency property for changes, and standard styles used by the app.

 The Controls folder contains the AutoRotatingGridView and MultipleSizedGridView

controls.

 The Converters folder contains data converters such as the BooleanToVisibilityConverter

and the NullToVisibleConverter.

 The DesignViewModels folder contains design-time view model classes that are used to

display sample data in the visual designer.

 The Services folder contains the AlertMessageService and SecondaryTileService classes.

10

 The Strings folder contains resource strings used by this project, with subfolders for each

supported locale.

 The Themes folder contains the application styles used by the app.

 The Views folder contains the pages and flyouts for the app. The app uses a default

convention that attempts to locate pages in the "Views" namespace.

The AdventureWorks.UILogic project

The AdventureWorks.UILogic project contains the model, repository, service, and view model

classes. Placing the model and view model classes into a separate assembly provides a simple

mechanism for ensuring that view models are independent from their corresponding views.

The AdventureWorks.UILogic project contains the following folders:

 The Models folder contains the entities that are used by view model classes.

 The Repositories folder contains repository classes that access the web service.

 The Services folder contains interfaces and classes that implement services that are

provided to the app, such as the AccountService and TemporaryFolderCacheService classes.

 The Strings folder contains resource strings used by this project, with subfolders for each

supported locale.

 The ViewModels folder contains the application logic that is exposed to XAML controls.

When a view class is associated with a view model class a default convention is used which

will attempt to locate the view model class in the "ViewModels" namespace.

The AdventureWorks.WebServices project

The AdventureWorks.WebServices project is a sample web service that uses an in-memory database

to provide data to the AdventureWorks Shopper reference implementation. When the reference

implementation is deployed through Visual Studio this web service is deployed locally on the

ASP.NET development server.

The AdventureWorks.WebServices project contains the following folders:

 The App_Start folder contains the configuration logic for the web service.

 The Controllers folder contains the controller classes used by the web service.

 The Images folder contains product images.

 The Models folder contains the entities that are used by the web service. These entities

contain the same properties as the entities in the AdventureWorks.UILogic project, with

some containing additional validation logic.

 The Repositories folder contains the repository classes that implement the in-memory

database used by the web service.

 The Strings folder contains a resource file containing strings used by the web service.

 The Views folder contains the Web.config settings and configuration file for the web service.

It does not contain views because it uses the ASP.NET Web API, which returns data rather

than displays views.

11

Note The AdventureWorks.WebServices project does not provide guidance for building a web

service.

The Microsoft.Practices.Prism.PubSubEvents project

The Microsoft.Practices.Prism.PubSubEvents project is a Portable Class Library that contains classes

that implement event aggregation. You can use this library for communicating between loosely

coupled components in your own app. The project has no dependencies on any other projects. For

more info about this library, see Prism for the Windows Runtime reference.

The Microsoft.Practices.Prism.StoreApps project

This project contains the reusable infrastructure of the AdventureWorks Shopper reference

implementation, which you can use for building your own Windows Store app. It contains classes to

build Windows Store apps that support MVVM, navigation, state management, validation, and

commands.

The Microsoft.Practices.Prism.StoreApps project uses Visual Studio solution folders to organize the

source code and other resources into these categories:

 The Interfaces folder contains the interfaces that are implemented by classes in this project.

 The Strings folder contains resource strings used by this project, with subfolders for each

supported locale.

For more info about this library, see Prism for the Windows Runtime reference.

Where to get more info

For info about the logical architecture of a Windows Store business app that uses Prism, see

Architecture of a Windows Store business app that uses Prism. For more info about using Prism see

Using Prism to create a Windows Store app. For more info about the tasks that this documentation

can help you with, see Developer tasks for building a Windows Store business app.

12

Developer guidance summary and checklists for Windows Store

business apps using C#, XAML, and Prism

Explore checklists that provide a consolidated view of the guidance included with the documentation

and illustrated in the AdventureWorks Shopper reference implementation, a Windows Store

business app that uses C#, XAML, and Prism for the Windows Runtime. We include checklists for the

Model-View-ViewModel (MVVM) pattern, creating and navigating between pages, using touch,

validating user input, managing app data, handling suspend, resume, and activation, communicating

between loosely coupled components, working with tiles, implementing search, improving

performance, and testing and deploying apps.

Download

After you download the code, see Getting started using Prism for the Windows Runtime for

instructions on how to compile and run the reference implementation, as well as understand the

Microsoft Visual Studio solution structure.

You will learn

 About the key decisions that must be made when developing a Windows Store business app.

 About checklists that you can use to accelerate the development of a maintainable and

testable Windows Store business app.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Making key decisions

This guidance provides information to developers who want to create a Windows Store app using

C#, XAML, the Windows Runtime, and modern development practices. When you develop a new

Windows Store app, you need to determine some key factors that will define the architecture of

your app.

http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=275571

13

The following are many of the key decisions that you will need to make:

 Decide on the design of the end user experience . When planning Windows Store apps, you

should think more about what experience you want to provide to your users and less about

what Microsoft Windows features you want to include. For more info see Designing the user

experience.

 Decide whether to use a dependency injection container. Dependency injection containers

reduce the dependency coupling between objects by providing a facility to construct

instances of classes with their dependencies injected, and manage their lifetime based on

the configuration of the container. You will need to decide whether to use a dependency

injection container, which container to use, and how to register the lifetime of components.

For more info see Using the Model-View-ViewModel pattern.

 Decide whether to provide a clean separation of concerns between the user interface

controls and their logic. One of the most important decisions when creating a Windows

Store app is whether to place business logic in code-behind files, or whether to create a

clean separation of concerns between the user interface controls and their logic, in order to

make the app more maintainable and testable. If you decide to provide a clean separation of

concerns, there are then many decisions to be made about how to do this. For more info see

Using the Model-View-ViewModel pattern.

 Decide how to create pages and navigate between them. There are many decisions to be

made about page design including the page layout, what content should be di splayed in

different page views, whether to include design time data on your pages, and whether to

make pages localizable and accessible. In addition, you must also make decisions about page

navigation including how to invoke navigation, and where navigation logic should reside. For

more info see Creating and navigating between pages.

 Choose the touch interactions that the app will support. This includes selecting the

gestures from the Windows touch language that your app requires, and whether to design

and implement your own custom touch interactions. For more info see Using touch.

 Decide how to validate user input for correctness. The decision must include how to

validate user input across physical tiers, and how to notify the user about validation errors.

For more info see Validating user input.

 Decide how to manage application data. This should include deciding upon which of the

app data stores to use, what data to roam, deciding how to manage large data sets, how to

perform authentication between your app and a web service, and how to reliably retrieve

data from a web service. For more info see Managing application data.

 Decide how to manage the lifecycle of the app. The purpose and usage patterns of your app

must be carefully designed to ensure that users have the best possible experience when an

app suspends and resumes. This includes deciding whether your app needs to update the UI

when resuming from suspension, and whether the app should start fresh if a long period of

time has elapsed since the user last accessed it. For more info see Handling suspend,

resume, and activation.

 Choose between platform provided eventing and loosely coupled eventing. Event

aggregation allows communication between loosely coupled components in an app,

removing the need for components to have a reference to each other. If you decide to use

14

event aggregation, you must decide how to subscribe to events and unsubscribe from them.

For more info see Communicating between loosely coupled components.

 Decide how to create tiles that are engaging for users. A tile is an app's representation on

the Start screen and allows you to present rich and engaging content to your users when the

app is not running. In order to create engaging tiles you must decide on their shape and size,

how to update tile content, and how often to update tile content. For more info see Working

with tiles.

 Choose how to participate in search. If your app has content that users might want to

search, you should add a search box to your app canvas. The search box can respond to user

queries and display search results in a page of your own design. However, there are still

decisions to be made that include whether to provide query and result suggestions, filtering,

and what to display on the search results page. For more info see Implementing search.

 Consider how to improve app performance. A well-performing app should respond to user

actions quickly, with no noticeable delay. In order to deliver a well-performing app you will

need to decide which tools to use to measure performance, and where to optimize code. For

more info see Improving performance.

 Decide how to test and deploy the app. Windows Store apps should undergo various modes

of testing in order to ensure that reliable, high quality apps are deployed. Therefore, you will

need to decide how to test your app, how to deploy it, and how to manage it after

deployment. For more info see Testing and deploying Windows Store apps.

Windows Store business apps developer checklists

When developing a Windows Store business app you should consult the following checklists to

accelerate development while ensuring that a maintainable and testable app is produced.

Designing the user experience

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and

compelling user experience. Planning ahead for different form factors, accessibility, monetization,

and selling in the global market can reduce your development time and make it easier to create a

high quality app and get it certified.

Check Description

 Created a "great at" statement to guide user experience planning.

 Decided the user experiences to provide in the app.

 Followed the Index of UX guidelines for Windows Store apps for the experiences the app

provides.

 Storyboarded the different app flows to decide how the app behaves.

 Designed the app for different form factors.

 Designed the app for all users regardless of their abilities, disabilities, or preferences.

For more info see Designing the user experience.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

15

Using the Model-View-ViewModel (MVVM) pattern

MVVM provides a way for developers to cleanly separate the user interface controls from their logic.

This separation makes it easy to test the business logic of the app.

Check Description

 Used a dependency injection container to decouple concrete types from the code that

depends on those types, if appropriate.

 Used view-first composition because the app is conceptually composed of views that

connect to the view models they depend upon.

 Limited view model instantiation to a single class by using a view model locator object.

 Used a convention-based approach for view model construction to remove the need for

some boilerplate code.

 Used an attached property to automatically connect views to view models.

 Promoted the testability of the app by exposing commands from the view models for

ButtonBase-derived controls on the views.

 Promoted the testability of the app by exposing behaviors to views for non-ButtonBase-

derived controls.

 Supported a view model hierarchy in order to eliminate redundant code in the view model

classes.

For more info see Using the MVVM pattern.

Creating and navigating between pages

The app page is the focal point for designing your UI. It holds al l of your content and controls.

Whenever possible, you should integrate your UI elements inline into the app page. Presenting your

UI inline lets users fully immerse themselves in your app and stay in context.

Check Description

 Used Visual Studio to work with the code-focused aspects of the app.

 Used Blend for Microsoft Visual Studio 2013 or the Visual Studio designer to work on the

visual appearance of the app.

 Provided flexible page layouts that support landscape, portrait, and minimal view states.

 Followed a consistent layout pattern for margins, page headers, gutter widths, and other

page elements.

 Maintained state in minimal view and possess feature parity across states.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

16

 Used the Windows simulator to test the app on a variety of screen sizes, orientations, and pixel

densities.

Added sample data to each page to easily view styling results and layout sizes, and to support

the designer-developer workflow.

 Incorporated accessible design principles into the pages, and planned for them to be localized.

 Placed navigation logic in view model classes to promote testability.

 Used commands to implement a navigation action in a view model class, for ButtonBase-

derived controls.

 Used behaviors to implement a navigation action for non-ButtonBase-derived controls.

 Used the navigation bar for navigational elements that move the user to a different page and

used the bottom app bar for commands that act on the current page.

 Implemented common page navigation functionality as a user control that is easily included on

each page.

 Used strings to specify navigation targets.

For more info see Creating and navigating between pages.

Using touch

Touch interactions in Windows use physical interactions to emulate the direct manipulation of UI

elements and provide a more natural, real-world experience when interacting with those elements

on the screen.

Check Description

 Used the Windows touch language to provide a concise set of touch interactions that are

used consistently throughout the system.

 Used data binding to connect standard Windows controls to the view models that

implement the touch interaction behavior.

 Ensured that touch targets are large enough to support direct manipulation.

 Provided immediate visual feedback to touch interactions.

 Ensured that the app is safe to explore by making touch interactions reversible.

 Avoided timed touch interactions.

 Used static gestures to handle single-finger touch interactions.

 Used manipulation gestures to handle dynamic multi-touch interactions.

For more info see Using touch.

17

Validating user input

Any app that accepts input from users should ensure that the data is valid. Validation has many uses

including enforcing business rules, providing responses to user input, and preventing an attacker

from injecting malicious data.

Check Description

 Performed client-side validation to provide immediate feedback to users, and server-side

validation to improve security and enforce business rules on the server.

 Performed synchronous validation to check the range, length, and structure of user input.

 Derived model classes from the ValidatableBindableBase class in order to participate in

client-side validation.

 Specified validation rules for model properties by adding data annotation attributes to the

properties.

 Used dependency properties and data binding to make validation errors visible to the user

when the properties of the model objects change.

 Notified users about validation errors by highlighting the control that contains the invalid

data, and by displaying an error message that informs the user why the data is inval id.

 Saved user input and any validation error messages when the app suspends, so that the app

can resume as the user left it following reactivation.

For more info see Validating user input.

Managing application data

Application data is data that the app itself creates and manages. It is specific to the internal

functions or configuration of an app, and includes runtime state, user preferences, reference

content, and other settings.

Check Description

 Used the application data APIs to work with application data, to make the system

responsible for managing the physical storage of data.

 Stored passwords in the Credential Locker only if the user has successfully signed into the

app, and has opted to save passwords.

 Used ASP.NET Web API to create a resource-oriented web service that can pass different

content types.

 Cached web service data locally when accessing data that rarely changes.

For more info see Managing application data.

18

Handling suspend, resume, and activation

Windows Store apps should be designed to suspend when the user switches away from them and

resume when the user switches back to them.

Check Description

 Saved application data when the app is being suspended.

 Saved the page state to memory when navigating away from a page.

 Allowed views and view models to save and restore state that's relevant to each.

 Updated the UI when the app resumes if the content has changed.

 Used the saved application data to restore the app state, when the app resumes after being

terminated.

For more info see Handling suspend, resume, and activation.

Communicating between loosely coupled components

Event aggregation allows communication between loosely coupled components in an app, removing

the need for components to have a reference to each other.

Check Description

 Used Microsoft .NET events for communication between components that have object

reference relationships.

 Used event aggregation for communication between loosely coupled components.

 Used the Microsoft.Practices.Prism.PubSubEvents library to communicate between loosely

coupled components.

 Defined a pub/sub event by creating an empty class that derives from the

PubSubEvent<TPayload> class.

 Notified subscribers by retrieving the event from the event aggregator and called its Publish

method.

 Registered to receive notifications by using one of the Subscribe method overloads available

in the PubSubEvent<TPayload> class.

 Request that notification of the pub/sub event will occur in the UI thread when needing to

update the UI in response to the event.

 Filtered required pub/sub events by specifying a delegate to be executed once when the

event is published, to determine whether or not to invoke the subscriber callback.

Used strongly referenced delegates when subscribing to a pub/sub event, where

performance problems have been observed.

For more info see Communicating between loosely coupled components.

19

Working with tiles

Tiles represent your app on the Start screen and are used to launch your app. They have the ability

to display a continuously changing set of content that can be used to keep users aware of events

associated with your app when it's not running.

Check Description

 Used live tiles to present engaging new content to users, which invites them to launch the

app.

 Made live tiles compelling by providing fresh, frequently updated content that makes users

feel that the app is active even when it's not running.

 Used a wide tile to display new and interesting content to the user, and periodic

notifications to update the tile content.

 Used peek templates to break tile content into two frames.

 Set an expiration on all periodic tile notifications to ensure that the tile's content does not

persist longer than it's relevant.

 Updated the live tile as information becomes available, for personalized content.

 Updated the live tile no more than every 30 minutes, for non-personalized content.

 Allowed the user to create secondary tiles for any content that they wish to monitor.

 For more info see Working with tiles.

Implementing search

If your app has content that users might want to search, you should add a search box to your app

canvas. The search box should respond to user queries and display search results in an app page of

your own design.

Check Description

 Used the SearchBox control to let users search for content in an app.

 Implemented type to search for the app's hub, browse, and search pages.

 Disabled type to search before showing flyouts, and restored it when flyouts close.

 Showed placeholder text in the search box, to describe what users can search for.

 Provided query suggestions to help the user search the app quickly.

 Navigated to the search results page when the user selects a query suggestion.

 Used a grid layout to display search results.

 Showed the user's query text on the search results page.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

20

 Used hit highlighting to highlight the user's query on the search results page.

 Enabled users to navigate back to the last-viewed page after they look at the details for a

search result.

 Provided app bar navigation on the search results page.

 Provided a suitable message if the search query returns no results.

 Restored page state correctly upon reactivation.

 Saved the search results page for the last query in case the user searches for that query

again.

For more info see Implementing search.

Improving performance

To deliver a well-performing, responsive Windows Store app you must think of performance as a

feature, to be planned for and measured throughout the lifecycle of your project.

Check Description

 Performed app profiling to determine where code optimizations will have the greatest

effect in reducing performance problems.

 Measured app performance once you have code that performs meaningful work.

 Taken performance measurements on hardware that has the lowest anticipated

specification.

 Optimized actual app performance and perceived app performance.

 Limited the startup time of the app.

 Emphasized responsiveness in the UI.

 Trimmed resource dictionaries to reduce the amount of XAML the framework parses when

the app starts.

 Reduced the number of XAML elements on a page to make the app render faster.

Reused brushes in order to reduce memory consumption.

 Used independent animations to avoid blocking the UI thread.

 Minimized the communication between the app and the web service.

 Limited the amount of data downloaded from the web service.

Used UI virtualization to only load into memory those UI elements that are near the

viewport.

 Used the IncrementalUpdateBehavior to implement incremental loading.

 Avoided unnecessary app termination.

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx

21

 Kept the app's memory usage low when it's suspended.

 Reduced the battery consumption of the app.

 Minimized the amount of resources that the app uses.

 Limited the time spent in transition between managed and native code.

 Reduced garbage collection time.

For more info see Improving performance.

Testing and deploying apps

Testing helps to ensure that an app is reliable, correct, and of high quality.

Check Description

 Performed unit testing, integration testing, user interface testing, suspend and resume

testing, security testing, localization testing, accessibility testing, performance testing,

device testing, and Windows certification testing.

 Validated and test a release build of the app by using the Windows App Certification Kit.

For more info see Testing and deploying Windows Store business apps.

22

Developer tasks for building a Windows Store business app using C#,

XAML, and Prism

Learn about the key developer tasks that you will need to perform when developing a Windows

Store business app. Included are tasks for pages, touch, validation, application data, tiles, search,

performance, testing, extended splash screens, incremental loading, and the Prism libraries.

Download

After you download the code, see Getting started using Prism for the Windows Runtime for

instructions on how to compile and run the reference implementation, as well as understand the

Microsoft Visual Studio solution structure.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Windows Store business app developer tasks

This article provides lists to help you accomplish different tasks when developing Windows Store

business apps. The goal is to lessen the time it takes you to perform a developer task. While many of

the tasks link to content that discusses how to use Prism to solve the problem, this is not always the

case. In addition, the task lists are not meant to provide you with detailed steps required to

complete a task. If you require more info, the content that is linked to includes links to other

relevant documentation.

Guidance summary and checklists for Windows Store business apps

When developing a Windows Store business app you will need to make some key decisions that will

define the architecture of your app. The documentation includes guidance on:

 Making the key decisions that will affect the development of a Windows Store business app.

 Using checklists to create a high quality, maintainable, and testable Windows Store business

app.

http://go.microsoft.com/fwlink/p/?LinkID=275570
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=296753
http://go.microsoft.com/fwlink/p/?LinkID=275571

23

Using Prism for the Windows Runtime

Prism for the Windows Runtime provides two libraries that help developers create Windows Store

apps using C#. The libraries accelerate development by providing support for bootstrapping MVVM

apps, state management, validation of user input, navigation, event aggregation, data binding,

commands, and settings. The libraries can be used separately or together.

Using the Model-View-ViewModel (MVVM) pattern

The MVVM pattern lends itself naturally to Windows Store apps that use XAML. The documentation

includes guidance on:

 Creating a Windows Store app project using Prism and Unity.

 Creating a view using Prism.

 Creating a view model class using Prism.

 Creating a model class with validation support using Prism.

 Connecting view models to views.

o Using Prism's ViewModelLocator class to connect view models to views.

o Using a convention-based approach to connect view models to views.

o Creating a view model declaratively.

o Creating a view model programmatically.

o Creating a view defined as a data template.

 Changing the convention for naming and locating views using Prism.

 Changing the convention for naming, locating, and associating view models with views using

Prism.

 Registering a view model factory with views instead of using a dependency injection

container.

 Bootstrapping an MVVM app using Prism's MvvmAppBase class and the Unity dependency

injection container.

 Updating a view in response to changes in the underlying view model or model.

 Creating and invoking commands from views.

 Creating and invoking Blend for Microsoft Visual Studio 2013 behaviors from views.

Navigating between pages

Navigation within a Windows Store app can result from the user's interaction with the UI or from the

app itself as a result of internal logic-driven state changes. The documentation includes guidance on:

 Navigating to the main page or hub page when using Prism.

 Navigating to a page specified by a secondary tile using Prism when an app is activated from

a secondary tile.

24

Validating user input

Any app that accepts input from users should ensure that the data is valid. An app could, for

example, check that the input contains only characters in a particular range, is of a certain length, or

matches a particular format. Validation can be synchronous or asynchronous, and without it a user

can supply data that causes the app to fail. Validation enforces business rules, and prevents an

attacker from injecting malicious data. The documentation includes guidance on:

 Validating data stored in a bound model object.

 Specifying validation rules for model properties by using data annotations.

 Triggering validation when property values change.

 Triggering validation on all properties.

 Highlighting validation errors with a custom Blend behavior.

 Saving validation errors when the app suspends, and restore them when the app is

reactivated after termination.

Managing application data

Application data is data that an app creates and manages. The documentation includes guidance on:

 Storing passwords in the credential locker.

 Adding items to the Settings pane using Prism.

 Using the Settings charm to allow users to change app settings.

Handling suspend, resume, and activation

Windows Store apps should be designed to save their state and suspend when the user switches

away from them. They should restore their state and resume when the user switches back to them.

The documentation includes guidance on:

 Saving state when an suspends.

 Restoring state when an app reactivates.

Communicating between loosely coupled components

Event aggregation is a design pattern that enables communication between classes that are

inconvenient to link by object and type references. This mechanism allows publishers and

subscribers to communicate without having a reference to each other. The documentation includes

guidance on:

 Defining a pub/sub event.

 Publishing a pub/sub event.

 Subscribing to a pub/sub event.

 Subscribing to a pub/sub event on the UI thread.

 Performing event subscription filtering.

25

 Subscribing to a pub/sub event by using strong references.

 Manually unsubscribing from a pub/sub event when using a strong delegate reference.

Designing the user experience

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and

compelling user experience. Planning ahead for different form factors, accessibility, monetization,

and selling in the global market can reduce your development time and make it easier to create a

high quality app and get it certified. The documentation includes guidance on:

 Planning a Windows Store app and design the user experience.

Creating pages

Windows Store app pages need to support a fluid layout such as landscape, portrait, and minimal

view states to be responsive to user resizing requests and support for running on multiple devices.

The user can change the screen size, orientation, and even input method and the app needs to

respond to these requests. The app also needs to provide navigation between pages, accessibility,

and optionally localization. The documentation includes guidance on:

 Creating pages that support design time data.

 Supporting multiple view states.

 Using a custom GridView control that responds to layout changes.

 Using a custom GridView control that displays items at multiple sizes.

 Enabling page localization.

 Ensuring your app is accessible.

 Navigating between pages.

o Passing parameters between pages, and the types of parameters that can be passed.

Using touch

Microsoft Windows provides a concise set of touch interactions that are used throughout the

system. Applying this language consistently makes your app feel familiar to what users already

know, increasing user confidence by making your app easier to learn and use. The documentation

includes guidance on:

 Using pinch and stretch to perform semantic zoom.

 Adding items to the top and bottom app bar.

Managing application data

Application data is data that an app creates and manages. It is specific to the internal functions or

configuration of the app, and includes runtime state, user preferences, reference content, and other

settings. Application data is created, read, updated, deleted, and cached when an app is running.

26

The documentation includes guidance on:

 Performing credentials-based authentication between a Windows Store app and a web

service.

Working with tiles

A tile is an app's representation on the Start screen and allows you to present rich and engaging

content to your users when the app is not running. Tiles should be appealing to users in order to give

them great first-impression of your Windows Store app. The documentation includes guidance on:

 Creating an app tile.

 Using periodic notifications to update tile content.

 Pinning and unpinning secondary tiles to the Start screen from within an app.

 Launching the app to a specific page from a secondary tile.

Implementing search

You should use the SearchBox control to let users search for content in your app, in order to ensure

that they have a consistent and predictable experience when they search. Regardless of where your

app’s content is located, you can use the search box to respond to user’s queries and display search

results in an app page of your own design. The documentation includes guidance on:

 Using the SearchBox control to implement search functionality.

 Providing query suggestions that help the user search quickly.

Improving performance

Users of Windows Store apps expect their apps to remain responsive and feel natural when they use

them. The documentation includes guidance on:

 Performance considerations for Windows Store apps.

Testing and deploying apps

Testing helps to ensure that an app is robust, reliable, and of high quality. The documentation

includes guidance on:

 Testing synchronous functionality.

 Testing asynchronous functionality.

 Testing suspend and resume functionality.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

27

Extended splash screen Quickstart

An extended splash screen is a splash screen that stays on the screen for an extended period of time.

Extended splash screens should be displayed when an app needs more time to prepare its initial UI.

The documentation includes guidance on:

 Creating an extended splash screen using Prism.

 Responding to resize and image opened events for the extended splash screen.

 Displaying an extended splash screen using Prism.

Incremental loading Quickstart

Incremental loading enables an item template in a GridView or ListView to render its controls in

phases, thereby creating a more responsive and useful UI when the user scrolls through large data

sets. The documentation includes guidance on:

 Improving the perceived performance of a GridView control by using the Blend

IncrementalUpdateBehavior.

 Improving the perceived performance of a GridView control by using the

ContainerContentChanging event.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx

28

Using Prism to create a Windows Store app

Summary

 Use Prism to implement the Model-View-ViewModel (MVVM) pattern in your Windows

Store app.

 Use Prism to add validation support to your model classes and add items to the Settings

pane.

 Use Prism to change the conventions for naming and locating views and view models.

Learn how to create a Windows Store business app using C#, Prism for the Windows Runtime, and

Unity, and about the logical architecture of such an app. The article provides instructions on creating

views, view models, model classes with validation support, adding items to the settings pane, and

changing the conventions for naming and locating a view and a view model, and how to register a

view model factory with views instead of using a dependency injection container.

You will learn

 About the logical architecture of a Windows Store business app that uses Prism.

 How to create a Windows Store app project using Prism and Unity.

 How to create a view, view model, and model class with validation support using Prism.

 How to add items to the Settings pane using Prism.

 How to change the conventions used by Prism.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

This article describes the general steps a developer needs to perform to use Prism to accomplish

different tasks. It is not meant to provide you with detailed steps required to complete a task. If you

require more info, each section has links to the relevant documentation.

Many of the topics in this article assume that you are using the Unity dependency injection

container, and that you are using conventions defined by Prism. This guidance is provided to make it

easier for you to understand how to get started with Prism. However, you are not required to use

Unity, or any other dependency injection container, and you do not have to use the default

conventions to associate views and view models. To understand how to use Prism without a

dependency injection container, or change the default conventions, see Changing the convention for

naming and locating views, Changing the convention for naming, locating, and associating view

models with views, Registering a view model factory with views instead of using a dependency

injection container.

http://go.microsoft.com/fwlink/p/?LinkID=290899

29

For more info about the conventions defined by Prism, see Using a convention-based approach to

connect view models to views. For more info about Prism, see Prism for the Windows Runtime

reference.

Architecture of a Windows Store business app that uses Prism

Developers of Windows Store business apps face several challenges. App requirements can change

over time. New business opportunities and challenges may present themselves. Ongoing customer

feedback during development may significantly affect the requirements of the app. Therefore it's

important to build an app that it is flexible and can be easily modified or extended over time.

Prism for the Windows Runtime provides an architecture that helps to do just that. It is designed to

help developers create apps that need to accomplish the following:

 Address the common Windows Store app development scenarios.

 Separate the concerns of presentation, presentation logic, and model through support for

Model-View-ViewModel (MVVM).

 Use an architectural infrastructure to produce a consistent and high quality app.

The logical architecture of a typical Windows Store business app that uses Prism is shown in the

following diagram.

30

This architecture is used by the AdventureWorks Shopper reference implementation. However,

there are also alternative architectures that are equally valid.

31

The architecture provided by Prism helps to produce flexible, maintainable, and testable apps. It

includes components that help to accelerate development of your app by providing support for

MVVM, loosely coupled communication, and the core services required in Windows Store apps,

allowing you to focus on developing the user experiences for your app. For more info see Prism for

the Windows Runtime reference.

Creating a Windows Store app project using Prism and Unity

The following procedure shows how to update a Windows Store app to use the services provided by

Prism.

1. Add a reference to the Microsoft.Practices.Prism.StoreApps library to your project to use the

services provided by the library.

2. Derive the App class from the MvvmAppBase class, provided by the

Microsoft.Practices.Prism.StoreApps library, in order to gain support for MVVM and the core

services required by Windows Store apps.

3. Delete the OnLaunched and OnSuspending methods from the App class, as these methods

are provided by the MvvmAppBase class.

4. Override the OnLaunchApplication abstract method of the MvvmAppBase class, in the App

class, and add code to navigate to the first page of the app.

C#

protected override Task OnLaunchApplication(LaunchActivatedEventArgs args)

{

 NavigationService.Navigate("PageName", null);

 return Task.FromResult<object>(null);

}

The OnLaunchApplication method returns a Task, allowing it to launch a long running

operation. If you don't have a long running operation to launch you should return an empty

Task.

Note PageName should be without the "Page" suffix. For example, use Home for

HomePage.

5. Add a reference to the Unity library to your project to use the Unity dependency injection

container.

Note The Microsoft.Practices.Prism.StoreApps library is not dependent on the Unity library.

To avoid using a dependency injection container see Registering a view model factory with

views instead of using a dependency injection container.

6. Create an instance of the UnityContainer class in the App class, so that you can use the

Unity dependency injection container to register and resolve types and instances.

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899
http://go.microsoft.com/fwlink/p/?LinkID=290899

32

C#

private readonly IUnityContainer _container = new UnityContainer();

7. Override the OnRegisterKnownTypesForSerialization method in the App class to register

any non-primitive types that need to be saved and restored to survive app termination.

C#

SessionStateService.RegisterKnownType(typeof(Address));

8. Override the OnInitialize method in the App class in order to register types for the Unity

container and perform any other initialization. Examples of app specific initialization

behavior include:

o Registering infrastructure services.

o Registering types and instances that you use in constructors.

o Providing a delegate that returns a view model type for a given view type.

C#

protected override void OnInitialize(IActivatedEventArgs args)

{

 _container.RegisterInstance(NavigationService);

 _container.RegisterType<IAccountService, AccountService>

 (new ContainerControlledLifetimeManager());

 _container.RegisterType<IShippingAddressUserControlViewModel,

 ShippingAddressUserControlViewModel>();

 ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver((viewType)

 =>

 {

 ...

 return viewModelType;

 });

}

Note For a detailed example of an OnInitialize method see the App class in the

AdventureWorks Shopper reference implementation.

9. Override the Resolve method in the App class to return a constructed view model instance.

C#

protected override object Resolve(Type type)

{

 return _container.Resolve(type);

}

33

For more info see Using the MVVM pattern, Registering a view model factory with views instead of

using a dependency injection container, Bootstrapping an MVVM Windows Store app Quickstart,

Creating and navigating between pages and Prism for the Windows Runtime reference.

Creating a view

The following procedure shows how to create a view class that has support for layout changes,

navigation, and state management.

1. Complete the Creating a Windows Store app project using Prism and Unity procedure.

2. Add a folder named Views to the root folder of your project.

3. Create a new page in the Views folder whose name ends with "Page," in order to use the

FrameNavigationService's default convention to navigate to pages in the Views folder.

4. Modify the page class to derive from the VisualStateAwarePage class, which provides

support for layout changes, navigation, and state management.

5. Add the ViewModelLocator.AutoWireViewModel attached property to your view XAML in

order to use the ViewModelLocator class to instantiate the view model class and associate it

with the view class.

XAML

prism:ViewModelLocator.AutoWireViewModel="true"

6. Override the OnNavigatedTo and OnNavigatedFrom methods if your page class needs to

perform additional logic, such as subscribing to an event or unsubscribing from an event,

when page navigation occurs. Ensure that the OnNavigatedTo and OnNavigatedFrom

overrides call base.OnNavigatedTo and base.OnNavigatedFrom, respectively.

7. Override the SaveState and LoadState methods if you have view state, such as scroll

position, that needs to survive termination and be restored when the app is reactivated.

For more info see Creating and navigating between pages, Using the MVVM pattern, and Handling

suspend, resume, and activation.

Creating a view model class

The following procedure shows how to create a view model class that has support for property

change notification, navigation, and state management.

1. Complete the Creating a Windows Store app project using Prism and Unity procedure.

2. Add a folder named ViewModels to the root folder of your project.

3. Create a new class in the ViewModels folder whose name corresponds with the name of a

view and ends with "ViewModel," in order to use the ViewModelLocator's default

convention to instantiate and associate view model classes with view classes.

34

4. Derive the view model class from the ViewModel base class, provided by the

Microsoft.Practices.Prism.StoreApps library, so that you can use the base class's

implementation of the INotifyPropertyChanged interface and gain support for navigation

and state management.

5. Modify the view model constructor so that it accepts the services required by the view

model, such as an INavigationService instance.

6. Annotate properties with the [RestorableState] custom attribute if you want their values to

survive termination.

For more info see Using the MVVM pattern.

Creating a model class with validation support

The following procedure shows how to create a model class that has support for validation.

1. Complete the Creating a Windows Store app project using Prism and Unity procedure.

2. Add a reference to the Behaviors SDK (XAML) library to your project to use Blend for

Microsoft Visual Studio 2013 behaviors.

3. Add a model class to your project and derive the model class from the

ValidatableBindableBase class, which provides validation support.

4. Add a property to the model class and add the appropriate attributes that derive from the

ValidationAttribute attribute, in order to specify the client side validation.

C#

[Required(ErrorMessage = "First name is required.")]

public string FirstName

{

 get { return _firstName; }

 set { SetProperty(ref _firstName, value); }

}

5. Update the view XAML that binds to the property created in the previous step to show

validation error messages.

XAML

<TextBox Text="{Binding UserInfo.FirstName, Mode=TwoWay}">

 <interactivity:Interaction.Behaviors>

 <awbehaviors:HighlightFormFieldOnErrors PropertyErrors=

 "{Binding UserInfo.Errors[FirstName]}" />

 </interactivity:Interaction.Behaviors>

</TextBox>

Note The HighlightFormFieldOnErrors behavior can be found in the AdventureWorks

Shopper reference implementation.

For more info Validating user input and Validation Quickstart.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx

35

Adding items to the Settings pane

The following procedure shows how to add an item to the Settings pane that can invoke an action.

1. Complete the Creating a Windows Store app project using Prism and Unity procedure.

2. Override the GetSettingsCommands method in the App class and add code to add items to

the Settings pane.

C#

protected override IList<SettingsCommand> GetSettingsCommand()

{

 var settingsCommands = new List<SettingsCommand>();

 settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),

 "Text to show in Settings pane", ActionToBePerformed));

 settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),

 "Custom setting", () => new CustomSettingFlyout().Show()));

 return settingsCommands;

}

For more info see Managing application data.

Changing the Prism conventions

This section describes how to change the conventions for naming and locating views, naming,

locating and associating view models with views, and registering a view model factory with views

instead of using a dependency injection container.

Changing the convention for naming and locating views

The following procedure shows how to configure the FrameNavigationService class to look for views

in a location other than the Views folder.

1. Complete the Creating a Windows Store app project using Prism and Unity procedure.

2. Override the GetPageType method in the App class and add code to define the page

location and naming convention appropriate to your app.

C#

protected override Type GetPageType(string pageToken)

{

 var assemblyQualifiedAppType = this.GetType().GetTypeInfo()

 .AssemblyQualifiedName;

 var pageNameWithParameter =

assemblyQualifiedAppType.Replace(this.GetType().FullName, this

 .GetType().Namespace + ".Pages.{0}View");

 var viewFullName = string.Format(CultureInfo.InvariantCulture,

 pageNameWithParameter, pageToken);

36

 var viewType = Type.GetType(viewFullName);

 return viewType;

}

For more info see Using the MVVM pattern.

Changing the convention for naming, locating, and associating view models

with views

The following procedure shows how to configure the ViewModelLocator class to look for view

models in a location other than the ViewModels folder in the same assembly.

1. Complete the Creating a Windows Store app project using Prism and Unity procedure.

2. Override the OnInitialize method in the App class and invoke the static

ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver method, passing in a

delegate that specifies a view type and returns a corresponding view model type.

C#

protected override void OnInitialize(IActivatedEventArgs args)

{

 ...

 ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver((viewType)

 =>

 {

 var viewModelTypeName = string.Format(

 CultureInfo.InvariantCulture, "MyProject.VMs.{0}ViewModel,

 MyProject, Version=1.0.0.0, Culture=neutral,

 PublicKeyToken=public_Key_Token", viewType.Name);

 var viewModelType = Type.GetType(viewModelTypeName);

 return viewModelType;

 });

 ...

}

For more info see Using the MVVM pattern.

37

Registering a view model factory with views instead of using a dependency

injection container

The following procedure shows how to configure the ViewModelLocator class to explicitly specify

how to construct a view model for a given view type, instead of using a container for dependency

resolution and construction.

1. Complete the Creating a Windows Store app project using Prism and Unity procedure.

2. Override the OnInitialize method in the App class and register a factory with the

ViewModelLocator class that will create a view model instance that will be associated with a

view.

C#

protected override void OnInitialize(IActivatedEventArgs args)

{

 ...

 ViewModelLocator.Register(typeof(MyPage).ToString(), () =>

 new MyPageViewModel(NavigationService));

 ...

}

For more info see Using the MVVM pattern and Bootstrapping an MVVM Windows Store app

Quickstart.

38

Designing the user experience of a Windows Store business app using

C#, XAML, and Prism

Summary

 Focus on the user experience and not on the features the app will have.

 Use storyboards to iterate quickly on the user experience.

 Use standard Windows features to provide a user experience that is consistent with other

apps. In addition, validate the user experience with the Index of UX guidelines for Windows

Store apps.

Learn how to design the user experiences and app flow for a Windows Store business app, prior to

storyboarding and prototyping the app.

You will learn

 How to plan a Windows Store app.

 How you can tie your "great at" statement to the app flow.

 How storyboards and prototypes drive user experience design.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Making key decisions

Good Windows Store apps share an important set of traits that provide a consistent, elegant, and

compelling user experience. Planning ahead for different form factors, accessibility, monetization,

and selling in the global market can reduce your development time and make it easier to create a

high quality app and get it certified. The following list summarizes the decisions to make when

planning your app:

 How should I plan a Windows Store app?

 What guidelines should I follow to ensure a good overall user experience?

 What experience do you want to provide to your users?

 Should the app run on different form factors?

 How do I make the app accessible to users regardless of their abilities, disabilities, or

preferences?

 Should the app be available in the global market?

When planning a Windows Store app you should think more about what experience you want to

provide to your users and less about what Microsoft Windows features you want to include. We

recommend that you follow these steps:

http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

39

1. Decide the user experience goals.

2. Decide the app flow.

3. Decide what Windows features to include.

4. Decide how to monetize your app.

5. Make a good first impression.

6. Validate the design.

For more info see Planning Windows Store apps and AdventureWorks Shopper user experiences.

There are many user experience guidelines that can help you create a good Windows Store app.

However, the exact guidelines that you will follow will be dependent on the experiences present in

your app. For more info see Index of UX guidelines for Windows Store apps.

In order to decide what experience you want to provide to your users we recommend that create a

"great at" statement to guide your user experience planning. Following this, you should design your

app flow. An app flow is a set of related interactions that your users have with the app to achieve

their goals. To validate the design you should follow these steps:

1. Outline the flow of the app. What interaction comes first? What interaction follows the

previous interaction?

2. Storyboard the flow of the app. How should users move through the UI to complete the

flow?

3. Prototype the app. Try out the app flow with a quick prototype.

For more info see "Deciding the user experience goals" and "Deciding the app flow" below.

Apps should be designed for different form factors, letting users manipulate the content to fit their

needs and preferences. Think of landscape view first so that your app will run on all form factors, but

remember that some screens rotate, so plan the layout of your content for different resolutions and

screen sizes. In addition, because Windows is used worldwide, you need to design your app so that

resources, such as strings and images, are separated from their code to help make localization

easier. Also, your app should be available to all users regardless of their abilities, disabilities, or

preferences. If you use the built-in UI controls, you can get accessibility support with little extra

effort. For more info see Deciding what Windows features to use.

AdventureWorks Shopper user experiences

The AdventureWorks Shopper reference implementation is a shopping app, and so we wanted to

design experiences that would enable users to shop easily and efficiently.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465427.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

40

Deciding the user experience goals

Our first step was to create a "great at" statement to guide our user experience planning. Here's the

"great at" statement for the AdventureWorks Shopper reference implementation:

AdventureWorks Shopper is great at letting users easily and efficiently order products from

AdventureWorks.

The goal of the AdventureWorks Shopper reference implementation is not to provide a complete

shopping app, but to demonstrate how to architect a Windows Store business app. We used our

"great at" statement to guide the design tradeoffs as we built the app, making the focus on what our

users want to do, rather than what the app can do.

Deciding the app flow

We then brainstormed which aspects of a shopping app are the most crucial for a good user

experience, to let these features guide us through the design process. The features that we came up

with are:

 Display and navigate products.

 Search for products.

 Authenticate user credentials.

 Validate user input.

 Order products.

 Pay for orders.

 Enable roaming data for user credentials.

 Pin products to the Start screen.

There is plenty of other functionality that we could provide in the AdventureWorks Shopper

reference implementation. But we felt that the ability to browse, search, and order products best

demonstrate the functionality for creating a shopping app.

The app flow is connected to our "great at" statement. A flow defines how the user interacts with

the app to perform tasks. Windows Store apps should be intuitive and require as few interactions as

possible. We used two techniques to help meet these goals: creating storyboards and mock-ups.

A storyboard defines the flow of an app. Storyboards focus on how we intend the app to behave,

and not the specific details of what it will look like. Storyboards help bridge the gap between the

idea of the app and its implementation, but are typically faster and cheaper to produce than

prototyping the app. For the AdventureWorks Shopper reference implementation, storyboards were

critical to helping us to define the app flow. This technique is commonly used in the film industry and

is now becoming standard in user experience design. The following storyboard shows the main app

flow for the AdventureWorks Shopper reference implementation.

41

A mockup demonstrates the flow of the user experience, but more closely resembles what the end

product will look like. We created mock-ups based on our storyboards and iterated over their design

as a team. These mockups also helped each team member get a feel for what the app should look

like. The following mockup shows the hub page.

42

During the planning phase of the app, we also created small prototypes to validate feasibility. A

prototype is a small app that demonstrates the flow of the UI or some minimal functionality. For

example, a prototype could be created that only contains page navigation and commands, but

doesn't implement any other functionality. By making the experience real through software,

prototyping enables you to test and validate the flow of your design on devices such as tablets. You

can also create prototypes that demonstrate core aspects of the app. For example, we created a

prototype that performs validation of user input and notifies the user of any invalid input.

Prototypes enable you to safely explore design approaches before deciding on the approach for the

app. Although you can prototype during the planning phase of your app, try not to focus too much

on writing code. Design the user experience that you want and then implement that design when it's

ready.

For more info see Laying out your UI, Laying out an app page, and Guidelines for window sizes and

scaling to screens.

Deciding what Windows features to use

When planning a new app it's important to provide an experience that's consistent with other

Windows Store apps. Doing so will make your app intuitive to use. We researched the features that

the Windows platform provides by looking at the Index of UX guidelines for Windows Store apps, by

prototyping and team discussion, and by brainstorming which platform features would best support

our app flow.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465330.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

43

Deciding how to monetize the app

Although AdventureWorks Shopper is a free app, its purpose is to drive sales for AdventureWorks

through customers placing and paying for orders. In order to significantly increase the number of

users who could use the app we decided to make it world-ready. Being world-ready not only means

supporting localized strings and images, it also means being aware of how users from different

cultures will use the app. For more info see Guidelines for globalization and Guidelines for app

resources.

For more info about monetizing your app see Plan for monetization and Advertising Guidelines.

Making a good first impression

Windows Store apps should convey their "great at" statement to users when they first launch the

app. After referring back to our "great at" statement (AdventureWorks Shopper is great at letting

users easily and efficiently order products from AdventureWorks) we realized that product

promotion was key to allowing users to easily and efficiently order products from AdventureWorks.

This could be enabled by:

 Having a live tile, that uses tile notifications to promote products. When a user leaves the

app, we wanted to maintain a good impression by regularly updating the live tile with

product offers.

 Using the splash screen to express the app's personality. We chose a splash screen image

that fits the AdventureWorks branding and that reinforces the whole user experience.

 Having a home page that clearly shows the primary purpose of the app. Users will be more

likely to explore the rest of the app if their initial impression is favorable.

Validating the design

Before beginning development, we presented our mockups and prototypes to stakeholders in order

to gain feedback to validate and polish our design. We also cross-checked the design against the

Index of UX guidelines for Windows Store apps to ensure that we complied with the Windows Store

user experience guidelines. This prevented us from having to make core design changes later in the

development cycle.

http://msdn.microsoft.com/en-us/library/windows/apps/hh969152.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465433.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj649139.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465424.aspx

44

Using the Model-View-ViewModel (MVVM) pattern in a Windows Store

business app using C#, XAML, and Prism

Summary

 Use the Microsoft.Practices.Prism.StoreApps library to accelerate the development of

managed Windows Store apps that use the MVVM pattern.

 Use commands to implement actions in view model classes for controls that derive from

ButtonBase.

 Use Blend for Microsoft Visual Studio 2013 behaviors to encapsulate interaction logic and

behavior that can be declaratively associated with controls.

Learn how to implement the Model-View-ViewModel (MVVM) pattern in a Windows Store business

app by using Prism for the Windows Runtime. This includes bootstrapping an MVVM app that uses

Prism, using a view model locator to connect view models to views, and UI interaction using

delegate commands and Blend behaviors.

You will learn

 How to use dependency injection to decouple concrete types from the code that depends on

the types.

 How to bootstrap a Windows Store app that uses the MVVM pattern, by using a dependency

injection container.

 How to connect view models to views.

 How a view is updated in response to changes in the underlying view model.

 How to invoke commands and behaviors from views.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Making key decisions

The MVVM pattern is well documented, and it brings benefits to many categories of apps. However,

it is not always suited to every app. For example, using code-behind may be the best choice for small

apps that have a limited life span. Nonetheless, if you choose to use the MVVM pattern to construct

your app, you will have to make certain design decisions that will be difficult to change later on.

Generally, these decisions are app-wide and their consistent use throughout the app will improve

developer and designer productivity.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

45

The following list summarizes the decisions to make when implementing the MVVM pattern:

 Should I use Prism to provide support for MVVM?

 Should I use a dependency injection container?

o Which dependency injection container should I use?

o When is it appropriate to register and resolve components with a dependency

injection container?

o Should a component's lifetime be managed by the container?

 Should the app construct views or view models first?

 How should I connect view models to views?

o Should I use XAML or code-behind to set the view's DataContext property?

o Should I use a view model locator object?

o Should I use an attached property to automatically connect view models to views?

o Should I use a convention-based approach?

 Should I expose commands from my view models?

 Should I use behaviors in my views?

 Should I include design time data support in my views?

 Do I need to support a view model hierarchy?

Prism includes components to help accelerate the development of a managed Windows Store app

that uses the MVVM pattern. It helps to accelerate development by providing core services

commonly required by a Windows Store app, allowing you to focus on developing the user

experiences for your app. Alternatively, you could choose to develop the core services yourself. For

more info see Prism for the Windows Runtime reference.

There are several advantages to using a dependency injection container. First, a container removes

the need for a component to locate its dependencies and manage their lifetime. Second, a container

allows mapping of implemented dependencies without affecting the component. Third, a container

facilitates testability by allowing dependencies to be mocked. Forth, a container increases

maintainability by allowing new components to be easily added to the system.

In the context of a Windows Store app that uses the MVVM pattern, there are specific advantages to

a dependency injection container. A container can be used for registering and resolving view models

and views. In addition, a container can be used for registering services, and injecting them into view

models. Also, a container can create the view models and inject the views.

There are several dependency injection containers available, with two common choices being Unity

and MEF. Both Unity and MEF provide the same basic functionality for dependency injection, even

though they work very differently. When considering which container to use, keep in mind the

capabilities shown in the following table and determine which fits your scenario better.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

46

Both containers Unity only MEF only

Register types and instances with

the container.

Resolves concrete types without

registration.

Recomposes properties and

collections as new types

are discovered.

Imperatively create instances of

registered types.

Resolves open generics. Automatically exports

derived types.

Inject instances of registered

types into constructors and

properties.

Uses interception to capture calls

to objects and add additional

functionality to the target object.

Have declarative attributes for

marking types and dependencies

that need to be managed.

Resolve dependencies in an

object graph.

If you decide to use a dependency injection container, you should also consider whether it is

appropriate to register and resolve components using the container. Registering and resolving

instances from a container has a performance cost because of the container's use of reflection for

creating each type, especially if components are being reconstructed for each page navigation in the

app. If there are many or deep dependencies, the cost of creation can increase significantly. In

addition, if the component does not have any dependencies or is not a dependency for other types,

it may not make sense to put it in the container. Also, if the component has a single set of

dependencies that are integral to the type and will never change, it may not make sense to put it in

the container.

You should also consider whether a component's lifetime should be managed by the container.

When you register a type the default behavior for the Unity container is to create a new instance of

the registered type each time the type is resolved or when the dependency mechanism injects

instances into other classes. When you register an instance the default behavior for the Unity

container is to manage the lifetime of the object as a singleton. This means that the instance

remains in scope as long as the container is in scope, and it is disposed when the container goes out

of scope and is garbage-collected or when code explicitly disposes the container. If you want this

singleton behavior for an object that Unity creates when you register types, you must explicitly

specify the ContainerControlledLifetimeManager class when registering the type. For more info see

Bootstrapping an MVVM Windows Store app Quickstart.

If you decide not to use a dependency injection container you can use the ViewModelLocator class,

provided by the Microsoft.Practices.Prism.StoreApps library, to register view model factories for

views, or infer the view model using a convention-based approach. For more info see Using the

ViewModelLocator class to connect view models to views and Bootstrapping an MVVM Windows

Store app Quickstart.

47

Deciding whether your app will construct views or the view models first is an issue of preference and

complexity. With view first composition the app is conceptually composed of views which connect to

the view models they depend upon. The primary benefit of this approach is that it makes it easy to

construct loosely coupled, unit testable apps because the view models have no dependence on the

views themselves. It's also easy to understand the structure of an app by following its visual

structure, rather than having to track code execution in order to understand how classes are created

and connected together. Finally, view first construction aligns better with the Windows Runtime

navigation system because it is responsible for constructing the pages when navigation occurs,

which makes a view model first composition complex and misaligned with the platform. View model

first composition feels more natural to some developers, since the view creation can be abstracted

away allowing them to focus on the logical non-UI structure of the app. However, this approach is

often complex, and it can become difficult to understand how the various parts of the app are

created and connected together. It can be difficult to understand the structure of an app

constructed this way, as it often involves time spent in the debugger examining what classes gets

created, when, and by whom.

The decision on how to connect view models to views is based on complexity, performance, and

resilience:

 If code-behind is used to connect view models to views it can cause problems for visual

designers such as Blend and Visual Studio.

 Using a view model locator object has the advantage that the app has a single class that is

responsible for the instantiation of view models. The view model locator can also be used as

a point of substitution for alternate implementations of dependencies, such as for unit

testing or design time data.

 A convention-based connection approach removes the need for much boilerplate code.

 An attached property can be used to perform the connection automatically. This offers the

advantage of simplicity, with the view having no explicit knowledge of the view model.

Note The view will implicitly depend on specific properties, commands, and methods on the view

model because of the data bindings it defines.

In Windows Store apps, you typically invoke some action in response to a user action, such as a

button click that can be implemented by creating an event handler in the code-behind file. However,

MVVM discourages placing code in the code-behind file as it's not easily testable because it doesn't

maintain a good separation of concerns. If you wish to promote the testability of your app, by

reducing the number of event handlers in your code-behind files, you should expose commands

from your view models for ButtonBase-derived controls, and use behaviors in your views for

controls that don't derive from ButtonBase, in order to connect them to view model exposed

commands and actions.

If you will be using a visual designer to design and maintain your UI you'll need to include design

time data support in your app so that you can view layouts accurately and see realistic results for

sizing and styling decisions.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx

48

You should support a view model hierarchy if it will help to eliminate redundant code in your view

model classes. If you find identical functionality in multiple view model classes, such as code to

handle navigation, it should be refactored into a base view model class from which all view models

classes will derive.

MVVM in AdventureWorks Shopper

The AdventureWorks Shopper reference implementation uses the Unity dependency injection

container. The Unity container reduces the dependency coupling between objects by providing a

facility to instantiate instances of classes and manage their lifetime. During an object's creation, the

container injects any dependencies that the object requires into it. If those dependencies have not

yet been created, the container creates and resolves them first. For more info see Using a

dependency injection container, Bootstrapping an MVVM Windows Store app Quickstart and Unity

Container.

In the AdventureWorks Shopper reference implementation, views are constructed before view

models. There is one view class per page of the UI (a page is an instance of the

Windows.UI.Xaml.Controls.Page class), with design time data being supported on each view in

order to promote the designer-developer workflow. For more info see Creating and navigating

between pages.

Each view model is declaratively connected to a corresponding view using an attached property on a

view model locator object to automatically perform the connection. View model dependencies are

registered with the Unity dependency injection container, and resolved when the view model is

created. A base view model class implements common functionality such as navigation and

suspend/resume support for view model state. View model classes then derive from this base class

in order to inherit the common functionality. For more info see Using the ViewModelLocator class

to connect view models to views.

In order for a view model to participate in two-way data binding with the view, its properties must

raise the PropertyChanged event. View models satisfy this requirement by implementing the

INotifyPropertyChanged interface and raising the PropertyChanged event when a property is

changed. Listeners can respond appropriately to the property changes when they occur. For more

info see Updating a view in response to changes in the underlying view model or model .

The AdventureWorks Shopper reference implementation uses two options for executing code on a

view model in response to interactions on a view, such as a button click or item selection. If the

control is a command source, the control’s Command property is data-bound to an ICommand

property on the view model. When the control’s command is invoked, the code in the view model

will be executed. In addition to commands, behaviors can be attached to an object in the view and

can listen for an event to be raised. In response, the behavior can then invoke an Action or an

ICommand on the view model. For more info see UI interaction using the DelegateCommand class

and Blend behaviors.

http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/dd203101.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/018hxwa8.aspx

49

All of the view models in the AdventureWorks Shopper reference implementation share the app’s

domain model, which is often just called the model. The model consists of classes that the view

models use to implement the app’s functionality. View models are connected to the model classes

through model properties on the view model. However, if you want a strong separation between the

model and the view models, you can package model classes in a separate library.

In the AdventureWorks Shopper Visual Studio solution there are two projects that contain the view,

view model, and model classes:

 The view classes are located in the AdventureWorks.Shopper project.

 The view model and model classes are located in the AdventureWorks.UILogic project.

What is MVVM?

MVVM is an architectural pattern that's a specialization of the presentation model pattern. It can be

used on many different platforms and its intent is to provide a clean separation of concerns between

the user interface controls and their logic. For more info about MVVM see MVVM Quickstart,

Implementing the MVVM Pattern, Advanced MVVM Scenarios, and Developing a Windows Phone

Application using the MVVM Pattern.

Using a dependency injection container

Dependency injection enables decoupling of concrete types from the code that depends on these

types. It uses a container that holds a list of registrations and mappings between interfaces and

abstract types and the concrete types that implement or extend these types. The AdventureWorks

Shopper reference implementation uses the Unity dependency injection container to manage the

instantiation of the view model and service classes in the app.

Before you can inject dependencies into an object, the types of the dependencies need to be

registered with the container. After a type is registered, it can be resolved or injected as a

dependency. For more info see Unity.

http://msdn.microsoft.com/en-us/library/windows/apps/gg430869.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg405484.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg405494.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh848247.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh848247.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899

50

In the AdventureWorks Shopper reference implementation, the App class instantiates the

UnityContainer object and is the only class in the app that holds a reference to a UnityContainer

object. Types are registered in the OnInitialize method in the App class.

Bootstrapping an MVVM app using Prism's MvvmAppBase class

When you create a Windows Store app from a Visual Studio template, the App class derives from the

Application class. In the AdventureWorks Shopper reference implementation, the App class derives

from the MvvmAppBase class. The MvvmAppBase class provides support for suspension,

navigation, settings, and resolving view types from view names. The App class derives from the

MvvmAppBase class and provides app specific startup behavior.

The MvvmAppBase class, provided by the Microsoft.Practices.Prism.StoreApps library, is responsible

for providing core startup behavior for an MVVM app, and derives from the Application class. The

MvvmAppBase class constructor is the entry point for the app. The following diagram shows a

conceptual view of how app startup occurs.

When deriving from the MvvmAppBase class, a required override is the OnLaunchApplication

method from where you will typically perform your initial navigation to a launch page, or to the

appropriate page based on a secondary tile launch of the app. The following code example shows

how to override the OnLaunchApplication method in the App class, in order to respond to app

activation from a tile or secondary tile.

C#: AdventureWorks.Shopper\App.xaml.cs

protected override Task OnLaunchApplication(LaunchActivatedEventArgs args)

{

 if (args != null && !string.IsNullOrEmpty(args.Arguments))

 {

 // The app was launched from a Secondary Tile

 // Navigate to the item's page

 NavigationService.Navigate("ItemDetail", args.Arguments);

 }

 else

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx

51

 {

 // Navigate to the initial page

 NavigationService.Navigate("Hub", null);

 }

 Window.Current.Activate();

 return Task.FromResult<object>(null);

}

This method navigates to the HubPage in the app, when the app launches normally, or the

ItemDetailPage if the app is launched from a secondary tile. "Hub" and "ItemDetail" are specified as

the logical names of the views that will be navigated to. The default convention specified in the

MvvmAppBase class is to append "Page" to the name and look for that page in a .Views child

namespace in the project. Alternatively, another convention can be specified by overriding the

GetPageType method in the MvvmAppBase class. For more info see Handling navigation requests.

Note The OnLaunchApplication method returns a Task, allowing it to launch a long running

operation. If you don't have a long running operation to launch you should return an empty Task.

The app uses the Unity dependency injection container to reduce the dependency coupling between

objects by providing a facility to instantiate instances of classes and manage their lifetime based on

the configuration of the container. An instance of the container is created as a singleton in the App

class, as shown in the following code example.

C#: AdventureWorks.Shopper\App.xaml.cs

private readonly IUnityContainer _container = new UnityContainer();

The OnInitialize method in the MvvmAppBase class is overridden in the App class with app specific

initialization behavior. For instance, this method should be overridden if you need to initialize

services, or set a default factory or default view model resolver for the ViewModelLocator object.

The following code example shows some of the OnInitialize method in the App class.

C#: AdventureWorks.Shopper\App.xaml.cs

_container.RegisterInstance<INavigationService>(NavigationService);

_container.RegisterInstance<ISessionStateService>(SessionStateService);

_container.RegisterInstance<IEventAggregator>(EventAggregator);

_container.RegisterInstance<IResourceLoader>(new ResourceLoaderAdapter(

 new ResourceLoader()));

This code registers service instances with the container as singletons, based on their respective

interfaces, so that the view model classes can take dependencies on them. This means that the

container will cache the instances on behalf of the app, with the lifetime of the instances then being

tied to the lifetime of the container.

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx

52

A view model locator object is responsible for managing the instantiation of view models and their

association to views. For more info see Using the ViewModelLocator class to connect view models

to views. When the view model classes are instantiated the container will inject the dependencies

that are required. If the dependencies have not yet been created, the container creates and resolves

them first. This approach removes the need for an object to locate its dependencies or manage their

lifetimes, allows swapping of implemented dependencies without affecting the object, and

facilitating testability by allowing dependencies to be mocked.

Using the ViewModelLocator class to connect view models to views

The AdventureWorks Shopper reference implementation uses a view model locator object to

manage the instantiation of view models and their association to views. This has the advantage that

the app has a single class that is responsible for the instantiation.

The ViewModelLocator class, in the Microsoft.Practices.Prism.StoreApps library, has an attached

property, AutoWireViewModel that is used to associate view models with views. In the view's XAML

this attached property is set to true to indicate that the view model should be automatically

connected to the view, as shown in the following code example.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

prism:ViewModelLocator.AutoWireViewModel="true"

The AutoWireViewModel property is a dependency property that is initialized to false, and when its

value changes the AutoWireViewModelChanged event handler is called. This method resolves the

view model for the view. The following code example shows how this is achieved.

C#: Microsoft.Practices.Prism.StoreApps\ViewModelLocator.cs

private static void AutoWireViewModelChanged(DependencyObject d,

 DependencyPropertyChangedEventArgs e)

{

 FrameworkElement view = d as FrameworkElement;

 if (view == null) return; // Incorrect hookup, do no harm

 // Try mappings first

 object viewModel = GetViewModelForView(view);

 // Fallback to convention based

 if (viewModel == null)

 {

 var viewModelType = defaultViewTypeToViewModelTypeResolver(

 view.GetType());

 if (viewModelType == null) return;

 // Really need Container or Factories here to deal with injecting

 // dependencies on construction

 viewModel = defaultViewModelFactory(viewModelType);

 }

 view.DataContext = viewModel;

}

53

The AutoWireViewModelChanged method first attempts to resolve the view model from any

mappings that may have been registered by the Register method of the ViewModelLocator class. If

the view model cannot be resolved using this approach, for instance if the mapping wasn't created,

the method falls back to using a convention-based approach to resolve the correct view model type.

This convention assumes that view models are in the same assembly as the view types, that view

models are in a .ViewModels child namespace, that views are in a .Views child namespace, and that

view model names correspond with view names and end with "ViewModel." For more info see the

next section, "Using a convention-based approach to connect view models to views." Finally, the

method sets the DataContext property of the view type to the registered view model type.

Using a convention-based approach to connect view models to views

The AdventureWorks Shopper reference implementation redefines the convention for resolving

view model types from view types in order to allow views and view models to reside in separate

assemblies. This enables the business logic for the app to reside in a separate assembly that can be

easily targeted for testing.

A convention-based approach to connecting view models to views removes the need for much

boilerplate code. The convention used in AdventureWorks Shopper assumes that:

1. View model types are located in a separate assembly from the view types.

2. View model types are located in the AdventureWorks.UILogic assembly.

3. View model type names append "ViewModel" to the view type names.

Using this convention, a view named HubPage will have a view model named HubPageViewModel.

The following code example shows how the App class overrides the

SetDefaultViewTypeToViewModelTypeResolver delegate in the ViewModelLocator class, to define

how to resolve view model type names from view type names.

C#: AdventureWorks.Shopper\App.xaml.cs

ViewModelLocator.SetDefaultViewTypeToViewModelTypeResolver((viewType) =>

 {

 var viewModelTypeName = string.Format(CultureInfo.InvariantCulture,

 "AdventureWorks.UILogic.ViewModels.{0}ViewModel,

 AdventureWorks.UILogic, Version=1.0.0.0, Culture=neutral,

 PublicKeyToken=634ac3171ee5190a", viewType.Name);

 var viewModelType = Type.GetType(viewModelTypeName);

 return viewModelType;

 });

Other approaches to constructing view models and views

There are many approaches that can be used to construct views and view models and associate

them at runtime. The following sections describe three of these approaches.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

54

Creating a view model declaratively

The simplest approach is for the view to declaratively instantiate its corresponding view model in

XAML. When the view is constructed, the corresponding view model object will also be constructed.

This approach can be demonstrated in the following code.

XAML

<Page.DataContext>

 <HubPageViewModel />

</Page.DataContext>

When the Page is created, an instance of the HubPageViewModel is automatically constructed and

set as the view's data context. This approach requires your view model to have a default (parameter-

less) constructor.

This declarative construction and assignment of the view model by the view has the advantage that

it is simple and works well in design-time tools such as Blend and Visual Studio. The main

disadvantage of this approach is that the view model requires a default constructor.

Creating a view model programmatically

A view can have code in the code-behind file that results in the view model being assigned to its

DataContext property. This is often accomplished in the view's constructor, as shown in the

following code example.

C#

public HubPage()

{

 InitializeComponent();

 this.DataContext = new HubPageViewModel(NavigationService);

}

The programmatic construction and assignment of the view model within the view's code -behind

has the advantage that it is simple and works well in design-time tools such as Blend and Visual

Studio. The main disadvantage of this approach is that the view needs to provide the view model

with any required dependencies.

Creating a view defined as a data template

A view can be defined as a data template and associated with a view model type. Data templates can

be defined as resources, or they can be defined inline within the control that will display the view

model. The content of the control is the view model instance, and the data template is used to

visually represent it. This technique is an example of a situation in which the view model is

instantiated first, followed by the creation of the view.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx

55

Data templates are flexible and lightweight. The UI designer can use them to easily define the visual

representation of a view model without requiring any complex code. Data templates are restricted

to views that do not require any UI logic (code-behind). Blend can be used to visually design and edit

data templates.

The following example shows the AutoRotatingGridView custom control that is bound to a

collection of ShoppingCartItemViewModels. Each object in the ShoppingCartItemViewModels

collection is a view model instance. The view for each ShoppingCartItemViewModel is defined by

the ItemTemplate property. The ShoppingCartItemTemplate specifies that the view for each

ShoppingCartItemViewModel consists of a Grid containing multiple child elements, including an

Image and several TextBlocks.

XAML: AdventureWorks.Shopper\Views\ShoppingCartPage.xaml

<awcontrols:AutoRotatingGridView x:Name="ShoppingCartItemsGridView"

 x:Uid="ShoppingCartItemsGridView"

AutomationProperties.AutomationId="ShoppingCartItemsGridView"

 SelectionMode="Single"

 Width="Auto"

 Grid.Row="2"

 Grid.Column="1"

 Grid.RowSpan="2"

 VerticalAlignment="Top"

 ItemsSource="{Binding ShoppingCartItemViewModels}"

 SelectedItem="{Binding SelectedItem, Mode=TwoWay}"

 ItemTemplate="{StaticResource

 ShoppingCartItemTemplate}"

 MinimalItemTemplate="{StaticResource

 ShoppingCartItemTemplateMinimal}"

 Margin="0,0,0,0">

For more info about the AutoRotatingGridView custom control see Creating a custom GridView

control that responds to layout changes.

Updating a view in response to changes in the underlying view model or

model

All view model and model classes that are accessible to the view should implement the

INotifyPropertyChanged interface. Implementing the INotifyPropertyChanged interface in your

view model or model classes allows them to provide change notifications to any data-bound controls

in the view when the underlying property value changes. However, this can be repetitive and error-

prone. Therefore, the Microsoft.Practices.Prism.StoreApps library provides the BindableBase class

that implements the INotifyPropertyChanged interface. The following code example shows this

class.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.grid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx

56

C#: Microsoft.Practices.Prism.StoreApps\BindableBase.cs

public abstract class BindableBase : INotifyPropertyChanged

{

 public event PropertyChangedEventHandler PropertyChanged;

 protected virtual bool SetProperty<T>(ref T storage, T value,

 [CallerMemberName] string propertyName = null)

 {

 if (object.Equals(storage, value)) return false;

 storage = value;

 this.OnPropertyChanged(propertyName);

 return true;

 }

 protected void OnPropertyChanged(string propertyName)

 {

 var eventHandler = this.PropertyChanged;

 if (eventHandler != null)

 {

 eventHandler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

}

Each view model class in the AdventureWorks Shopper reference implementation derives from the

ViewModel base class that in turn derives from the BindableBase base class. Therefore, each view

model class uses the SetProperty method in the BindableBase class to provide property change

notification. The following code example shows how property change notification is implemented in

a view model class in the AdventureWorks Shopper reference implementation.

C#: AdventureWorks.UILogic\ViewModels\HubPageViewModel.cs

public IReadOnlyCollection<CategoryViewModel> RootCategories

{

 get { return _rootCategories; }

 private set { SetProperty(ref _rootCategories, value); }

}

For more info about data binding in the Windows Runtime, see Data binding overview.

http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx

57

Additional considerations when implementing property change notification

You should design your app for the correct use of property change notification. Here are some

points to remember:

 Never raise the PropertyChanged event during your object's constructor if you are

initializing a property. Data-bound controls in the view cannot have subscribed to receive

change notifications at this point.

 Always implement the INotifyPropertyChanged interface on any view model or model

classes that are accessible to the view.

 Always raise a PropertyChanged event if a public property's value changes. Do not assume

that you can ignore raising the PropertyChanged event because of knowledge of how XAML

binding occurs. Such assumptions lead to brittle code.

 Never use a public property's get method to modify fields or raise the PropertyChanged

event.

 Always raise the PropertyChanged event for any calculated properties whose values are

used by other properties in the view model or model.

 Never raise a PropertyChanged event if the property does not change. This means that you

must compare the old and new values before raising the PropertyChanged event.

 Never raise more than one PropertyChanged event with the same property name argument

within a single synchronous invocation of a public method of your class. For example,

suppose you have a Count property whose backing store is the _count field. If a method

increments _count a hundred times during the execution of a loop, it should only raise

property change notification on the Count property once after all the work is complete. For

asynchronous methods you can raise the PropertyChanged event for a given property name

in each synchronous segment of an asynchronous continuation chain.

 Always raise the PropertyChanged event at the end of the method that makes a property

change, or when your object is known to be in a safe state. Raising the event interrupts your

operation by invoking the event's handlers synchronously. If this happens in the middle of

your operation, you may expose your object to callback functions when it is in an unsafe,

partially updated state. It is also possible for cascading changes to be triggered by

PropertyChanged events. Cascading changes generally require updates to be complete

before the cascading change is safe to execute.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx

58

UI interaction using the DelegateCommand class and Blend behaviors

In Windows Store apps, you typically invoke some action in response to a user action (such as a

button click) that can be implemented by creating an event handler in the code-behind file.

However, in the MVVM pattern, the responsibility for implementing the action lies with the view

model, and you should try to avoid placing code in the code-behind file.

Commands provide a convenient way to represent actions that can be easily bound to controls in the

UI. They encapsulate the actual code that implements the action or operation and help to keep it

decoupled from its actual visual representation in the view. The Windows Runtime includes controls

that can be declaratively connected to a command. These controls will invoke the specified

command when the user interacts with the control in a specific way.

Behaviors also allow you to connect a control to a command declaratively. However, behaviors can

be used to invoke an action that is associated with a range of events raised by a control. Therefore,

behaviors address many of the same scenarios as command-enabled controls, while providing a

greater degree of flexibility and control. In addition, behaviors can also be used to associate

command objects or methods with controls that were not specifically designed to interact with

commands. For more info see Implementing behaviors to supplement the functionality of XAML

elements.

Implementing command objects

View models typically expose command properties, for binding from the view, that are object

instances that implement the ICommand interface. XAML inherently supports commands and

ButtonBase-derived controls provide a Command property that can be data bound to an ICommand

object provided by the view model. The ICommand interface defines an Execute method, which

encapsulates the operation itself, and a CanExecute method, which indicates whether the command

can be invoked at a particular time. The Microsoft.Practices.Prism.StoreApps library provides the

DelegateCommand class to implement commands.

The AdventureWorks Shopper reference implementation uses the DelegateCommand class that

encapsulates two delegates that each reference a method implemented within your view model

class. It inherits from the DelegateCommandBase class that implements the ICommand interface’s

Execute and CanExecute methods by invoking these delegates. You specify the delegates to your

view model methods in the DelegateCommand class constructor, which is defined as follows.

C#: Microsoft.Practices.Prism.StoreApps\DelegateCommand.cs

public DelegateCommand(Action<T> executeMethod, Func<T, bool> canExecuteMethod)

 : base((o) => executeMethod((T)o), (o) => canExecuteMethod((T)o))

{

 if (executeMethod == null || canExecuteMethod == null)

 throw new ArgumentNullException("executeMethod");

}

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx

59

For example, the following code shows how a DelegateCommand instance, which represents a sign

in command, is constructed by specifying delegates to the SignInAsync and CanSignIn view model

methods. The command is then exposed to the view through a read-only property that returns a

reference to an ICommand.

C#: AdventureWorks.UILogic\ViewModels\SignInFlyoutViewModel.cs

public DelegateCommand SignInCommand { get; private set; }

SignInCommand = DelegateCommand.FromAsyncHandler(SignInAsync, CanSignIn);

The DelegateCommand class is a generic type. The type argument specifies the type of the

command parameter passed to the Execute and CanExecute methods. A non-generic version of the

DelegateCommand class is also provided for use when a command parameter is not required.

When the Execute method is called on the DelegateCommand object, it simply forwards the call to

the method in the view model class via the delegate that you specified in the constructor. Similarly,

when the CanExecute method is called, the corresponding method in the view model class is called.

The delegate to the CanExecute method in the constructor is optional. If a delegate is not specif ied,

the DelegateCommand will always return true for CanExecute.

The view model can indicate a change in the command’s CanExecute status by calling the

RaiseCanExecuteChanged method on the DelegateCommand object. This causes the

CanExecuteChanged event to be raised. Any controls in the UI that are bound to the command will

update their enabled status to reflect the availability of the bound command.

Invoking commands from a view

Any controls that derive from ButtonBase, such as Button or HyperlinkButton, can be easily data

bound to a command through the Command property. The following code example shows how the

SubmitButton in the SignInFlyout binds to the SignInCommand in the SignInFlyoutViewModel class.

XAML: AdventureWorks.Shopper\Views\SignInFlyout.xaml

<Button x:Uid="SubmitButton"

 x:Name="SubmitButton"

 Background="{StaticResource AWShopperAccentBrush}"

 Content="Submit"

 HorizontalAlignment="Stretch"

 Foreground="{StaticResource AWShopperButtonForegroundBrush}"

 Margin="0,25,0,0"

 Command="{Binding SignInCommand}"

 AutomationProperties.AutomationId="SignInSubmitButton"/>

A command parameter can also be optionally defined using the CommandParameter property. The

type of the expected argument is specified in the Execute and CanExecute target methods. The

control will automatically invoke the target command when the user interacts with that control, and

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecutechanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.hyperlinkbutton.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.command.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.commandparameter.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.canexecute.aspx

60

the command parameter, if provided, will be passed as the argument to the command’s Execute

method.

Implementing behaviors to supplement the functionality of XAML elements

A behavior allows you to add functionality to a XAML element by writing that functionality in a

behavior class and attaching it to the element as if it was part of the element itself. Behaviors enable

you to implement code that you would normally have to write as code-behind because it directly

interacts with the API of XAML elements, in such a way that it can be concisely attached to a XAML

element and packaged for reuse across more than one view or app. In the context of MVVM,

behaviors are a useful approach for connecting items that are occurring in the view due to user

interaction, with the execution in a view model.

A behavior that is attached to a XAML element through attached properties is known as an attached

behavior. The behavior can then use the exposed API of the element to which it is attached to add

functionality to that element or other elements in the visual tree of the view. For more info see

Dependency properties overview, Attached properties overview, and Custom attached properties.

The AdventureWorks Shopper reference implementation does not contain any attached behaviors.

Blend includes a variety of built-in behaviors, which are known as Blend behaviors. These behaviors

can be reused in Windows Store apps through the Behaviors SDK. The SDK supports adding existing

behaviors and actions to Windows Store apps, and creating new ones. A Blend behavior adds some

behavior to a XAML element, with an action adding functionality that’s invoked when a condition is

met, such as an event being raised. Collectively, behaviors and actions are known as interactions.

The AdventureWorks Shopper reference implementation uses a number of interactions from the

Behaviors SDK and also includes custom behaviors. To create a new behavior you should create a

class that derives from the DependencyObject class, and implements the IBehavior interface. In the

AdventureWorks Shopper reference implementation this functionality is provided by the

Behavior<T> class. This class provides an AssociatedObject property that gives a reference to the

element to which the behavior is attached, and Attach and Detach methods. Each custom behavior

then derives from the Behavior<T> class, overriding the OnAttached and OnDetached abstract

methods to provide logic that will be executed when the behavior is attached and detached from

XAML elements. The following code example shows the ComboBoxKeyboardSelection behavior

used by the AdventureWorks Shopper reference implementation to select the ComboBoxItem that

starts with the key pressed by the user.

http://msdn.microsoft.com/en-us/library/windows/apps/hh700353.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758282.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965327.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn457340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.dependencyobject.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.associatedobject.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.attach.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.ibehavior.detach.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.comboboxitem.aspx

61

C#: AdventureWorks.Shopper\Behaviors\ComboBoxKeyboardSelection.cs

public class ComboBoxKeyboardSelection : Behavior<ComboBox>

{

 protected override void OnAttached()

 {

 ComboBox comboBox = this.AssociatedObject;

 if (comboBox != null)

 {

 comboBox.KeyUp += comboBox_KeyUp;

 }

 }

 private void comboBox_KeyUp(object sender, KeyRoutedEventArgs e)

 {

 var comboBox = (ComboBox)sender;

 foreach (var item in comboBox.Items)

 {

 var comboBoxItemValue = item as ComboBoxItemValue;

 if (comboBoxItemValue != null &&

 comboBoxItemValue.Value.StartsWith(e.Key.ToString(),

 StringComparison.OrdinalIgnoreCase))

 {

 comboBox.SelectedItem = comboBoxItemValue;

 return;

 }

 }

 }

 protected override void OnDetached()

 {

 ComboBox comboBox = this.AssociatedObject;

 if (comboBox != null)

 {

 comboBox.KeyUp -= comboBox_KeyUp;

 }

 }

}

The OnAttached and OnDetached methods are simply used to register and deregister a method for

the KeyUp event. The event handler method selects the ComboBoxItem that starts with the key

pressed by the user.

One of the interactions from the Behaviors SDK that is used by the AdventureWorks Shopper

reference implementation is the NavigateToPageAction interaction, which invokes navigation to a

specific page in the app. For instance, when the shopping cart icon is selected in the top app bar the

NavigateToPageAction interaction is used to navigate to the ShoppingCartPage, as shown in the

following code example.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.keyup.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.comboboxitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.aspx

62

XAML: AdventureWorks.Shopper\Views\TopAppBarUserControl.xaml

<Button x:Uid="ShoppingCartAppBarButton"

 x:Name="ShoppingCartAppBarButton"

 AutomationProperties.AutomationId="ShoppingCartAppBarButton"

 Margin="0,0,5,0"

 Height="125"

 Style="{StaticResource CartStyle}"

 Content="Shopping Cart">

 <Interactivity:Interaction.Behaviors>

 <Core:EventTriggerBehavior EventName="Click">

 <Core:NavigateToPageAction

 TargetPage="AdventureWorks.Shopper.Views.ShoppingCartPage"/>

 </Core:EventTriggerBehavior>

 </Interactivity:Interaction.Behaviors>

</Button>

The EventTriggerBehavior binds the Click event of the Button to the NavigateToPageAction. So

when the Button is selected the NavigateToPageAction is executed, which navigates to the

ShoppingCartPage. The NavigateToPageAction interaction also allows a Parameter to be specified.

However, it is not currently possible to specify the event arguments that are associated with the

Click event in the Parameter property. To solve this problem we created the

NavigateWithEventArgsToPageAction that invokes navigation to a specified page, and allows the

event arguments to be passed as a parameter to the page being navigated to.

C#: AdventureWorks.Shopper\Behaviors\NavigateWithEventArgsToPageAction.cs

public class NavigateWithEventArgsToPageAction : DependencyObject, IAction

{

 public string TargetPage { get; set; }

 public string EventArgsParameterPath { get; set; }

 object IAction.Execute(object sender, object parameter)

 {

 // Walk the ParameterPath for nested properties.

 var propertyPathParts = EventArgsParameterPath.Split('.');

 object propertyValue = parameter;

 foreach (var propertyPathPart in propertyPathParts)

 {

 var propInfo = propertyValue.GetType().GetTypeInfo()

 .GetDeclaredProperty(propertyPathPart);

 propertyValue = propInfo.GetValue(propertyValue);

 }

 var pageType = Type.GetType(TargetPage);

 var frame = GetFrame(sender as DependencyObject);

 return frame.Navigate(pageType, propertyValue);

 }

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.click.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.parameter.aspx

63

 private Frame GetFrame(DependencyObject dependencyObject)

 {

 var parent = VisualTreeHelper.GetParent(dependencyObject);

 var parentFrame = parent as Frame;

 if (parentFrame != null) return parentFrame;

 return GetFrame(parent);

 }

}

To create a new action you must create a class that derives from the DependencyObject class, and

implements the IAction interface. The IAction interface has only one method that needs to be

implemented, named Execute. Here, the Execute method traverses the visual tree to obtain the

Frame control used by the current page, and then calls its Navigate method to navigate to the target

page, passing in the specified parameter.

Invoking behaviors from a view

Behaviors are particularly useful if you want to attach a method to a control that does not derive

from ButtonBase. For example, the AdventureWorks Shopper reference implementation uses the

NavigateWithEventArgsToPageAction interaction to enable the ItemClick event of the

MultipleSizedGridView control to invoke page navigation.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<awcontrols:MultipleSizedGridView x:Name="itemsGridView"

AutomationProperties.AutomationId="HubPageItemGridView"

 AutomationProperties.Name="Grouped Items"

 Margin="0,0,0,0"

 Padding="120,0,40,46"

 ItemsSource="{Binding Source={StaticResource

 groupedItemsViewSource}}"

 ItemTemplate="{StaticResource

 AWShopperItemTemplate}"

 MinimalItemTemplate="{StaticResource

 ProductTemplateMinimal}"

 SelectionMode="None"

ScrollViewer.IsHorizontalScrollChainingEnabled="False"

 IsItemClickEnabled="True"

 Loaded="itemsGridView_Loaded">

 <interactivity:Interaction.Behaviors>

 <core:EventTriggerBehavior EventName="ItemClick">

 <awbehaviors:NavigateWithEventArgsToPageAction

 TargetPage="AdventureWorks.Shopper.Views.ItemDetailPage"

 EventArgsParameterPath="ClickedItem.ProductNumber" />

 </core:EventTriggerBehavior>

 </interactivity:Interaction.Behaviors>

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.dependencyobject.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.iaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.input.icommand.execute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.navigate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx

64

The EventTriggerBehavior binds the ItemClick event of the MultipleSizedGridView to the

NavigateWithEventArgsToPageAction. So when a GridViewItem is selected the

NavigateWithEventArgsToPageAction is executed, which navigates from the HubPage to the

ItemDetailPage, passing in the ProductNumber of the ClickedItem to the ItemDetailPage.

Additional MVVM considerations

Here are some additional considerations when applying the MVVM pattern to Windows Store apps

in C#.

Centralize data conversions in the view model or a conversion layer

The view model provides data from the model in a form that the view can easily use. To do this the

view model sometimes has to perform data conversion. Placing this data conversion in the view

model is a good idea because it provides properties in a form that the UI can bind to. It is also

possible to have a separate data conversion layer that sits between the view model and the view.

This might occur, for example, when data types need special formatting that the view model doesn’t

provide.

Expose operational modes in the view model

The view model may also be responsible for defining logical state changes that affect some aspect of

the display in the view, such as an indication that some operation is pending or whether a particular

command is available. You don't need code-behind to enable and disable UI elements—you can

achieve this by binding to a view model property, or with visual states.

Keep views and view models independent

The binding of views to a particular property in its data source should be a view's principal

dependency on its corresponding view model. In particular, do not reference view types or the

Windows.Current object from view models. If you follow the principles we outlined here, you will

have the ability to test view models in isolation, and reduce the likelihood of software defects by

limiting scope.

Use asynchronous programming techniques to keep the UI responsive

Windows Store apps are about a fast and fluid user experience. For that reason the AdventureWorks

Shopper reference implementation keeps the UI thread unblocked. AdventureWorks Shopper uses

asynchronous library methods for I/O operations and raises events to asynchronously notify the

view of a property change.

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.window.current.aspx

65

Creating and navigating between pages in a Windows Store business

app using C#, XAML, and Prism

Summary

 Create pages using the MVVM pattern if appropriate to your requirements. When using

MVVM, use XAML data binding to link each page to a view model object.

 Design your pages for landscape, portrait, and minimal layout. In addition, use the

VisualStateAwarePage class, provided by the Microsoft.Practices.Prism.StoreApps library, to

provide view management.

 Implement the INavigationAware interface, provided by the

Microsoft.Practices.Prism.StoreApps library, to enable a class to participate in a navigation

operation. Use the FrameNavigationService class, provided by the

Microsoft.Practices.Prism.StoreApps library, to provide navigation support to a class.

Learn how to implement accessible pages that support a fluid layout, are localizable, include design-

time data, and that can be easily navigated between, using Prism for the Windows Runtime.

You will learn

 How pages were designed in AdventureWorks Shopper.

 How AdventureWorks Shopper creates pages.

 How to create design time data to support designers.

 How AdventureWorks Shopper pages support different layouts.

 How AdventureWorks Shopper pages support localization and accessibility.

 How AdventureWorks Shopper performs navigation between pages.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Making key decisions

The app page is the focal point for designing your UI. It holds all of your content and controls for a

single point of interaction with the user within your app. Whenever possible, you should integrate

your UI elements inline into the app page. Presenting your UI inline lets users fully immerse

themselves in your app and stay in context, as opposed to using pop-ups, dialogs, or overlapping

windows that were common in previous Windows desktop application platforms. You can create as

many app pages as you need to support your user scenarios.

66

The following list summarizes the decisions to make when creating pages in your app:

 What tool should I use to create page content?

 What minimum resolution should I design my pages for?

 Should my page content fill the screen, regardless of resolution?

 Should my pages adapt to different orientations and layouts?

 How should I lay out UI elements on each page?

 What should I display in minimal view?

 How should I test my page layout on different screen sizes?

 Should I add design time data to my pages?

 Should I make my pages easily localizable?

 Should I make my pages accessible?

 Should I cache pages in my app?

 Where should navigation logic reside?

 How should I invoke navigation from a view?

 What commands belong on the navigation bar and the bottom app bar?

 Should common page navigation functionality be implemented on each page, or can it be

encapsulated into a single control for reuse on each page?

 Should the page being navigated to reside in the same assembly that the navigation request

originates from?

 How should I specify a navigation target?

We recommend that you use Visual Studio to work with the code-focused aspects of your app.

Visual Studio is best suited for writing code, running, and debugging your app. We recommend that

you use Blend for Microsoft Visual Studio 2013 to work on the visual appearance of your app. You

can use Blend to create pages and custom controls, change templates and styles, and create

animations. Blend comes with minimal code-behind support. For more info about XAML editing

tools, see Design Windows Store apps using Blend and Creating a UI by using the XAML Designer.

There are two primary screen resolutions that your app should support. The minimum resolution at

which Windows Store apps will run is 1024x768. However, the minimum optimal resolution required

is 1366x768. When designing pages for a minimum resolution of 1024x768 you should ensure that

all of your UI fits on the screen without clipping. When designing pages for an optimal resolution of

1366x768 you should ensure that all of your UI fits on the screen without blank regions. Page

content should fill the screen to the best of its ability and should appear to be thoughtfully designed

for varying screen sizes. Users who buy larger monitors expect that their apps will continue to look

good on these large screens and fill the screen with more content, where possible. For more info see

Guidelines for window sizes and scaling to screens.

Users can rotate and flip their tablets, slates, and monitors, so you should ensure that you app can

handle both landscape and portrait orientations. In addition, because users can work with up to two

apps at once, you should provide a minimal layout. The default minimum width of an app is 500

pixels. If you keep this width you do not have to make any special considerations for your app at

narrow widths. You simply design your app so that it adapts fluidly when the user resizes it. You can

choose to change the minimum width to 320 pixels. If you choose to do this you should make some

http://msdn.microsoft.com/en-us/library/windows/apps/jj129478.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh921077.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx

67

design changes so that the app is still functional and usable at this narrow width.

For more info see Guidelines for layouts, Guidelines for window sizes and scaling to screens, and

Guidelines for resizing windows to tall and narrow layouts.

The user interface in Microsoft Windows strives to maintain a consistent silhouette across its apps.

The signature characteristic of the silhouette is a wide margin on the top, bottom, and left edges.

This wide margin helps users understand the horizontal panning direction of the content. You should

follow a consistent layout pattern for margins, page headers, gutter widths, and other such elements

on your pages. For more info see Laying out an app page.

When you plan for full screen and minimal views, your app's UI should reflow smoothly and

gracefully to accommodate screen size, orientation, and user interactions. You should maintain state

in minimal view, even if it means showing less content or reducing functionality. In addition, you

should have feature parity across states. The user still expects to be able to interact with your app

when it is in minimal view. For more info see Guidelines for resizing windows to tall and narrow

layouts.

Most people don't have many devices at their disposal for testing page layout on different screen

sizes. However, you can use the Windows Simulator to run your app on a variety of screen sizes,

orientations, and pixel densities. In addition, Blend offers a platform menu that enabl es you to

design your app on different screen sizes and pixel densities on the fly. The Blend canvas then

updates dynamically based upon the chosen screen option.

Sample data should be added to each page if you want to easily view styling results and layout sizes

at design time. This has the additional advantage of supporting the designer-developer workflow.

Preparing your pages for localization can help your app reach more users in international markets.

It's important to consider localization early on in the development process, as there are some issues

that will affect UI elements across various locales. As you design your pages, keep in mind that users

have a wide range of abilities, disabilities, and preferences. If you incorporate accessible design

principles into your pages you will help to ensure that your app is accessible to the widest possible

audience, thus attracting more customers to your app. For more info see Globalizing your app and

Design for accessibility.

Deciding whether to cache pages will be dependent upon how well-performing and responsive the

app is. Page caching results in memory consumption for views that are not currently displayed,

which would increase the chance of termination when the app is suspended. However, without page

caching it does mean that XAML parsing and construction of the page and its view model will occur

every time you navigate to a new page, which could have a performance impact for a complicated

page. For a well-designed page that does not use too many controls, the performance should be

sufficient. However, if you encounter slow page load times you should test to see if enabling page

caching alleviates the problem. For more info see Quickstart: Navigating between pages.

Navigation within a Windows Store app can result from the user's interaction with the UI or from the

app itself as a result of internal logic-driven state changes. Page navigation requests are usually

http://msdn.microsoft.com/en-us/library/windows/apps/hh465349.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780612.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965328.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh771188.aspx

68

triggered from a view, with the navigation logic either being in the view's code-behind, or in the data

bound view model. While placing navigation logic in the view may be the simplest approach, it is not

easily testable through automated tests. Placing navigation logic in the view model classes means

that the navigation logic can be exercised through automated tests. In addition, the view model can

then implement logic to control navigation to ensure that certain business rules are enforced. For

instance, an app may not allow the user to navigate away from a page without first ensuring that the

entered data is correct.

Users will trigger navigation from a view by selecting a UI control, with the navigation logic residing

in the appropriate view model class. For controls derived from ButtonBase, such as Button, you

should use commands to implement a navigation action in the view model class. For controls that do

not derive from ButtonBase, you should use a Blend behavior to implement a navigation action. For

more info see Using the Model-View-ViewModel (MVVM) pattern.

In general, you should use the navigation bar for navigational elements that move the user to a

different page and use the bottom app bar for commands that act on the current page. If every page

of your app is going to include a navigation bar that allows the user to move to different pages, it

does not make sense to implement this functionality individually on each page. Rather, the

functionality should be implemented as a user control that can be easily be included on each page.

In addition, you should follow placement conventions for commands on the bottom app bar. You

should place New/Add/Create buttons on the far right, with view switching buttons being placed on

the far left. Also, you should place Accept, Yes, and OK buttons to the left of Reject, No, and Cancel

buttons. For more info see Guidelines for app bars.

The view classes that define your pages and the view model classes that implement the business

logic for those pages can reside in the same assembly or different assemblies. That is a design

decision to be made when architecting your app. A page type resolution strategy should be used to

navigate to a page in any assembly, regardless of the assembly from which the navigation request

originates.

One approach for specifying a navigation target is to use a navigation service, which would require

the type of the view to navigate to. Because a navigation service is usually invoked from view models

in order to promote testability, this approach would require view models to reference views (and

particularly views that the view model isn't associated with), which is not recommended. The

recommended approach is to use a string to specify the navigation target that can be easily passed

to a navigation service, and which is easily testable.

Creating pages and navigating between them in AdventureWorks Shopper

We used Blend and the Visual Studio XAML Designer to work with XAML because these tools make it

straightforward to quickly add and modify page layout. Blend was useful to initially define pages and

controls; we used Visual Studio to optimize their appearances. These tools also enabled us to iterate

quickly through design choices because they give immediate visual feedback. In many cases, our user

experience designer was able to work in parallel with the developers because changing the visual

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.buttonbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465302.aspx

69

appearance of a page does not affect its behavior. For more info see the next section, "Creating

pages."

Pages were designed for a minimum resolution of 1024x768, and an optimal minimum resolution of

1366x768. In addition, pages were designed to fill the screen for varying screen sizes. Each page is

able to adapt to landscape and portrait orientations, and a minimal layout. A consistent silhouette is

maintained across all pages, with some pages including design time data. Page layout was tested on

a variety of devices, and in the Windows simulator. Pages maintain state when switching between

different view states, and possess feature parity across states. For more info see Adding design time

data, Supporting multiple view states and Laying out an app page.

Page caching is not used in the app. This prevents views that are not currently displayed from

consuming memory, which would increase the chance of termination when the app is suspended. All

pages are accessible, and support easy localization. For more info see Enabling page localization and

Enabling page accessibility.

In the app, the view classes that define pages are in a different assembly to the view model classes

that implement the business logic for those pages. Therefore, a page type resolution strategy

implemented as a delegate is used to navigate to the pages in the AdventureWorks.Shopper

assembly when the navigation request originates from view model classes in the

AdventureWorks.UILogic assembly. In addition, common page navigation functionality is

implemented as a user control that is embedded in the navigation bar for each page. Both

commands and Blend behaviors are used to implement navigation actions, depending on the control

type. Navigation targets are specified by strings that represent the page to navigate to. For more

info see Navigating between pages, Handling navigation requests, and Invoking navigation using

behaviors.

Creating pages

Pages in Windows Store apps are user controls that support navigation and contain other controls.

All page classes are subtypes of the Windows.UI.Xaml.Page class, and represent content that can be

navigated to by the user.

In apps that use Prism for the Windows Runtime, each page should derive from the

VisualStateAwarePage class in the Microsoft.Practices.Prism.StoreApps library. The

VisualStateAwarePage class provides view management and navigation support. The following code

example shows how the HubPage derives from the VisualStateAwarePage class.

http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xx130655.aspx

70

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<prism:VisualStateAwarePage

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:awbehaviors="using:AdventureWorks.Shopper.Behaviors"

 xmlns:interactivity="using:Microsoft.Xaml.Interactivity"

 xmlns:core="using:Microsoft.Xaml.Interactions.Core"

 xmlns:views="using:AdventureWorks.Shopper.Views"

 xmlns:awcontrols="using:AdventureWorks.Shopper.Controls"

 xmlns:designViewModels="using:AdventureWorks.Shopper.DesignViewModels"

 xmlns:prism="using:Microsoft.Practices.Prism.StoreApps"

 x:Name="pageRoot"

 x:Class="AdventureWorks.Shopper.Views.HubPage"

 IsTabStop="false"

 x:Uid="Page"

 mc:Ignorable="d"

 prism:ViewModelLocator.AutoWireViewModel="true"

 d:DataContext="{d:DesignInstance designViewModels:HubPageDesignViewModel,

 IsDesignTimeCreatable=True}">

Note All Flyout classes derive from the SettingsFlyout class.

There are twelve pages in the AdventureWorks Shopper reference implementation, with the pages

being the views of the MVVM pattern.

Page View model

BillingAddressPage BillingAddressPageViewModel

CategoryPage CategoryPageViewModel

CheckoutHubPage CheckoutHubPageViewModel

CheckoutSummaryPage CheckoutSummaryPageViewModel

GroupDetailPage GroupDetailPageViewModel

HubPage HubPageViewModel

ItemDetailPage ItemDetailPageViewModel

OrderConfirmationPage OrderConfirmationPageViewModel

PaymentMethodPage PaymentMethodPageViewModel

SearchResultsPage SearchResultsPageViewModel

ShippingAddressPage ShippingAddressPageViewModel

ShoppingCartPage ShoppingCartPageViewModel

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.settingsflyout.aspx

71

Data binding links each page to its view model class in the AdventureWorks Shopper reference

implementation. The view model class gives the page access to the underlying app logic by using the

conventions of the MVVM pattern. For more info see Using the MVVM pattern.

Tip AdventureWorks Shopper uses the MVVM pattern that abstracts the user interface for the app.

With MVVM you rarely need to customize the code-behind files. Instead, the controls of the user

interface are bound to properties of a view model object. If page-related code is required, it should

be limited to conveying data to and from the page's view model object.

If you are interested in AdventureWorks Shopper's interaction model and how we designed the user

experience, see Designing the user experience of a Windows Store business app.

Adding design time data

When you create a data bound user interface, you can display sample data in the visual designer to

view styling results and layout sizes. To display data in the designer you must declare it in XAML. This

is necessary because the designer parses the XAML for a page but does not run its code -behind. In

the AdventureWorks Shopper reference implementation, we wanted to display design time data in

order to support the designer-developer workflow.

Sample data can be displayed at design time by declaring it in XAML by using the various data

attributes from the designer namespace. This namespace is typically declared with a d: prefix, as

shown in the following code example.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

Attributes with d: prefixes are then interpreted only at design time and are ignored at run time.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

d:DataContext="{d:DesignInstance designViewModels:HubPageDesignViewModel,

 IsDesignTimeCreatable=True}"

The d:DesignInstance attribute indicates that the design time source is a designer created instance

based on the HubPageDesignViewModel type. The IsDesignTimeCreateable setting indicates that

the designer will instantiate that type directly, which is necessary to display the sample data

generated by the type constructor.

For more info see Data binding overview.

Supporting multiple view states

The AdventureWorks Shopper reference implementation was designed to be viewed full-screen in

landscape orientation. Windows Store apps must adapt to different application view states,

http://msdn.microsoft.com/en-us/library/windows/apps/xx130641.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx

72

including both landscape and portrait orientations. AdventureWorks Shopper supports

DefaultLayout (landscape full screen), PortraitLayout, and MinimalLayout view states.

AdventureWorks Shopper uses the VisualState class to specify changes to the visual display to

support each layout. The VisualStateManager class, used by the VisualStateAwarePage class,

manages state and the logic for transitioning between states for controls. For example, here is the

XAML specification of the layout changes for the PortraitLayout view state on the hub page.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<VisualState x:Name="PortraitLayout">

 <Storyboard>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="itemsGridView"

 Storyboard.TargetProperty="Padding">

 <DiscreteObjectKeyFrame KeyTime="0"

 Value="40,0,0,30" />

 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="semanticZoom"

 Storyboard.TargetProperty="CanChangeViews">

 <DiscreteObjectKeyFrame KeyTime="0"

 Value="false" />

 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="semanticZoom"

 Storyboard.TargetProperty="IsZoomOutButtonEnabled">

 <DiscreteObjectKeyFrame KeyTime="0"

 Value="false" />

 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetProperty=

 "Grid.ColumnDefinitions[0].Width"

 Storyboard.TargetName="titleGrid">

 <DiscreteObjectKeyFrame KeyTime="0" Value="40" />

 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetProperty=

 "(views:SearchUserControl.IsCompact)"

 Storyboard.TargetName="searchUserControl">

 <DiscreteObjectKeyFrame KeyTime="0">

 <DiscreteObjectKeyFrame.Value>

 <x:Boolean>True</x:Boolean>

 </DiscreteObjectKeyFrame.Value>

 </DiscreteObjectKeyFrame>

 </ObjectAnimationUsingKeyFrames>

 </Storyboard>

</VisualState>

We directly update individual properties for XAML elements, in order to specify changes to the visual

display. For instance, here the Storyboard specifies that the Padding property of the GridView

control named itemsGridView will change to a value of "40,0,0,30" when the view state changes to

portrait. However, you could update the Style property when you need to update multiple

properties or when there is a defined style that does what you want. Although styles enable you to

control multiple properties and also provide a consistent appearance throughout your app,

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.visualstatemanager.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.media.animation.storyboard.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.control.padding.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.style.aspx

73

providing too many can make your app difficult to maintain. Therefore, only use styles when it

makes sense to do so. For more info about styling controls, see Quickstart: styling controls.

Tip When you develop an app in Visual Studio, you can use the Windows Simulator debugger to test

layouts. To do this, press F5 and use the debugger tool bar to debug with the Windows Simulator.

You can also use Blend to define and test layouts.

For more info see Part 7: Adapting to different layouts.

Creating a custom GridView control that responds to layout changes

Many of the pages in the AdventureWorks Shopper reference implementation use the

AutoRotatingGridView custom control, which is a view state detecting GridView control created for

the app. When, for example, the view state changes from DefaultLayout to PortraitLayout the items

displayed by the control will be automatically rearranged to use an appropriate layout for the view

state. The advantage of this approach is that only one control is required to handle all the view

states, rather than having to define multiple controls to handle the different view states.

In order to take advantage of the functionality provided by this control you must specify additional

properties on your AutoRotatingGridView instance, such as the PortraitItemsPanel and

MinimalItemTemplate properties. These additional properties are defined in the

AutoRotatingGridView class, and an example of their use is shown in the following code example.

XAML

<awcontrols:AutoRotatingGridView x:Name="ShoppingCartItemsGridView"

 x:Uid="ShoppingCartItemsGridView"

 AutomationProperties.AutomationId=

 "ShoppingCartItemsGridView"

 SelectionMode="Single"

 Width="Auto"

 Grid.Row="2"

 Grid.Column="1"

 Grid.RowSpan="2"

 VerticalAlignment="Top"

 ItemsSource="{Binding ShoppingCartItemViewModels}"

 SelectedItem="{Binding SelectedItem, Mode=TwoWay}"

 ItemTemplate="{StaticResource

 ShoppingCartItemTemplate}"

 MinimalItemTemplate=

 "{StaticResource

 ShoppingCartItemTemplateMinimal}"

 Margin="0,0,0,0">

 <awcontrols:AutoRotatingGridView.ItemsPanel>

 <ItemsPanelTemplate>

 <WrapGrid Orientation="Vertical"

 ItemWidth="400" />

 </ItemsPanelTemplate>

 </awcontrols:AutoRotatingGridView.ItemsPanel>

http://msdn.microsoft.com/en-us/library/windows/apps/hh465381.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465045.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx

74

 <awcontrols:AutoRotatingGridView.PortraitItemsPanel>

 <ItemsPanelTemplate>

 <WrapGrid Orientation="Horizontal"

 ItemWidth="400" />

 </ItemsPanelTemplate>

 </awcontrols:AutoRotatingGridView.PortraitItemsPanel>

 <awcontrols:AutoRotatingGridView.MinimalItemsPanel>

 <ItemsPanelTemplate>

 <StackPanel HorizontalAlignment="Left" />

 </ItemsPanelTemplate>

 </awcontrols:AutoRotatingGridView.MinimalItemsPanel>

 <Style TargetType="Control">

 <Setter Property="HorizontalAlignment"

 Value="Stretch" />

 <Setter Property="HorizontalContentAlignment"

 Value="Left" />

 </Style>

</awcontrols:AutoRotatingGridView>

Creating a custom GridView control that displays items at multiple sizes

On the hub page we wanted the first product to be displayed at twice the dimensions of the other

products, and the category page to also display the first product in each category at this larger size.

75

To do this we created a new class named MultipleSizedGridView that derives from the

AutoRotatingGridView custom control. We then overrode the PrepareContainerForItemOverride

method from the GridView class to enable the first product to span multiple rows and columns of

the MultipleSizedGridView, as shown in the following code example.

C#: AdventureWorks.Shopper\Controls\MultipleSizedGridView.cs

protected override void PrepareContainerForItemOverride(DependencyObject element,

 object item)

{

 base.PrepareContainerForItemOverride(element, item);

 var dataItem = item as ProductViewModel;

 if (dataItem != null && dataItem.ItemPosition == 0)

 {

 _colVal = (int)LayoutSizes.PrimaryItem.Width;

 _rowVal = (int)LayoutSizes.PrimaryItem.Height;

 }

 else

 {

 _colVal = (int)LayoutSizes.SecondaryItem.Width;

 _rowVal = (int)LayoutSizes.SecondaryItem.Height;

 }

 var uiElement = element as UIElement;

 VariableSizedWrapGrid.SetRowSpan(uiElement, _rowVal);

 VariableSizedWrapGrid.SetColumnSpan(uiElement, _colVal);

}

The PrepareContainerForItemOverride method gets the first item in the MultipleSizedGridView and

sets it to span two rows and two columns, with subsequent items occupying one row and one

column. The static LayoutSizes class simply defines two Size objects that specify the number of rows

and columns to span for the first item, and subsequent items in the MultipleSizedGridView,

respectively.

C#: AdventureWorks.Shopper\Controls\MultipleSizedGridView.cs

public static class LayoutSizes

{

 public static Size PrimaryItem

 {

 get { return new Size(2, 2); }

 }

 public static Size SecondaryItem

 {

 get{return new Size(1, 1); }

 }

}

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.preparecontainerforitemoverride.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.preparecontainerforitemoverride.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.size.aspx

76

Styling controls

AdventureWorks Shopper's appearance was customized by styling and templating the controls used

in the app. Styles enable you to set control properties and reuse those settings for a consistent

appearance across multiple controls. Styles are defined in XAML either inline for a control, or as a

reusable resource. Resources can be defined at the page level, app level, or in a separate resource

dictionary. A resource dictionary can be shared across apps, and an app can use multiple resource

dictionaries. For more info see Quickstart: Styling controls.

The structure and appearance of a control can be customized by defining a new ControlTemplate for

the control. Templating a control can be used to avoid having to write a custom control. For more

information, see Quickstart: Control templates.

Enabling page localization

Preparing for international markets can help you reach more users. Globalizing your app provides

guidelines, checklists, and tasks to help you create a user experience that reaches more users by

helping you to globalize and localize each page of your app. It's important to consider localization

early on in the development process, as there are some issues that will effect user interface

elements across various locales. Here's the tasks that we carried out to support page localization in

the AdventureWorks Shopper reference implementation.

 Separate resources for each locale.

 Ensure that each piece of text that appears in the UI is defined by a string resource.

 Add contextual comments to the app resource file.

 Define the flow direction for all pages.

 Ensure error messages are read from the resource file.

Separate resources for each locale

We maintain separate solution folders for each locale. For example, Strings -> en-US ->

Resources.resw defines the strings for the en-US locale. For more info see Quickstart: Using string

resources, and How to name resources using qualifiers.

Ensure that each piece of text that appears in the UI is defined by a string resource

We used the x:Uid directive to provide a unique name for the localization process to associate

localized strings with text that appears on screen. The following example shows the XAML that

defines the app title that appears on the hub page.

XAML: AdventureWorks.Shopper\Views\ShoppingCartPage.xaml

<TextBlock x:Uid="ShoppingCartTitle"

 x:Name="pageTitle"

 Text="Shopping Cart"

 Grid.Column="1"

http://msdn.microsoft.com/en-us/library/windows/apps/hh465381.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.controltemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465374.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965328.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965324.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh758297.aspx

77

 TextTrimming="WordEllipsis"

 Style="{StaticResource PageHeaderTextStyle}" />

For the en-US locale, we define ShoppingCartTitle.Text in the resource file as "Shopping Cart." We

specify the .Text part so that the XAML runtime will override the Text property of the TextBlock

control with the value from the resource file. We also use this technique to set Button content

(ContentControl.Content).

Add contextual comments to the app resource file

Comments in the resource file provide contextual information that helps localizers more accurately

translate strings. For more info see How to prepare for localization.

Define the flow direction for all pages

We define the Page.FlowDirection property in the string resources file to set the flow direction for

all pages. For languages that use left-to-right reading order, such as English or German, we define

"LeftToRight" as its value. For languages that read right-to-left, such as Arabic and Hebrew, you

define this value as "RightToLeft". We also defined the flow direction for all app bars by defining

TopAppBar.FlowDirection and BottomAppBar.FlowDirection in the resource file.

Ensure error messages are read from the resource file

It's important to localize error messages strings, including exception message strings, because these

strings will appear to the user. The AdventureWorks Shopper reference implementation uses an

instance of the ResourceLoaderAdapter class to retrieve error messages from the resource file for

your locale. This class uses an instance of the ResourceLoader class to load strings from the resource

file. When we provide an error message when an exception is thrown, we use the

ResourceLoaderAdapter instance to read the message text. The following code example shows how

the SubmitOrderTransactionAsync method in the CheckoutSummaryPageViewModel class uses the

ResourceLoaderAdapter instance to retrieve error message strings from the resource file.

C#: AdventureWorks.UILogic\ViewModels\CheckoutSummaryPageViewModel.cs

catch (ModelValidationException mvex)

{

 errorMessage = string.Format(CultureInfo.CurrentCulture,

 _resourceLoader.GetString("GeneralServiceErrorMessage"),

 Environment.NewLine, mvex.Message);

}

if (!string.IsNullOrWhiteSpace(errorMessage))

{

 await _alertMessageService.ShowAsync(errorMessage,

 _resourceLoader.GetString("ErrorProcessingOrder"));

}

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.text.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.contentcontrol.content.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh967762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.flowdirection.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.resources.resourceloader.aspx

78

This code displays an exception error message to the user, if a ModelValidationException occurs

when submitting an order. For the en-US locale, the "GeneralServiceErrorMessage" string is defined

as "The following error messages were received from the service: {0} {1}," and the

"ErrorProcessingOrder" string is defined as "There was an error processing your order." Other

locales would have messages that convey the same error message.

Note When creating an instance of the ResourceLoader class that uses strings that are defined in a

class library and not in the executable project, the ResourceLoader class has to be passed a path to

the resources in the library. The path must be specified as /project name/Resources/ (for example,

/Microsoft.Practices.Prism.StoreApps/Strings/).

You can test your app's localization by configuring the list of preferred languages in Control Panel.

For more info about localizing your app and making it accessible, see How to prepare for localization,

Guidelines for app resources, and Quickstart: Translating UI resources.

Enabling page accessibility

Accessibility is about making your app usable by people who have limitations that impede or prevent

the use of conventional user interfaces. This typically means providing support for screen readers,

implementing keyboard accessibility, and supporting high-contrast themes.

Accessibility support for Windows Store apps written in C# comes from the integrated support for

the Microsoft UI Automation framework that is present in the base classes and the built-in behavior

of the class implementation for XAML control types. Each control class uses automation peers and

automation patterns that report the control's role and content to UI automation clients. If you use

non-standard controls you will be responsible for making the controls accessible.

Here are the tasks that we carried out to support page accessibility in the AdventureWorks Shopper

reference implementation:

 Set the accessible name for each UI element. An accessible name is a short, descriptive text

string that a screen reader uses to announce a UI element. For example, in AdventureWorks

Shopper XAML controls specify AutomationProperties.AutomationId and

AutomationProperties.Name attached properties to make the control accessible to screen

readers.

XAML: AdventureWorks.Shopper\Views\ItemDetailPage.xaml

<FlipView x:Name="flipView"

 AutomationProperties.AutomationId="ItemsFlipView"

 AutomationProperties.Name="Item Details"

 TabIndex="1"

 Grid.Row="1"

 ItemsSource="{Binding Items}"

 SelectedIndex="{Binding SelectedIndex, Mode=TwoWay}"

 SelectedItem="{Binding SelectedProduct, Mode=TwoWay}">

http://msdn.microsoft.com/en-us/library/windows/apps/hh967762.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh967766.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965329.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.automation.automationproperties.automationid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.automation.automationproperties.name.aspx

79

For more info see Exposing basic information about UI elements.

 Overridden the ToString method of the ShippingMethod, ProductViewModel,

CheckoutDataViewModel, and ShoppingCartItemViewModel classes in order to support

Windows Narrator. When instances of these classes are bound to the view they are styled

using data templates, but Windows Narrator uses the result of the ToString overrides.

 Implemented keyboard accessibility. Ensure that the tab order of controls corresponds to

the visual order of controls, and that UI elements that can be clicked can also be invoked by

using the keyboard. For more info see Implementing keyboard accessibility.

 Visually verified the UI to ensure that the text contrast is appropriate, and that elements

render correctly in high-contrast themes. For more info see Meeting requirements for

accessible text and Supporting high contrast themes.

 Ran accessibility tools to verify the screen reading experience. For more info see Testing

your app for accessibility.

 Ensured that the app manifest follows accessibility guidelines. For more info see Meeting

requirements for accessible text.

For more info see Accessibility for Windows Store apps using C#/VB/C++ and XAML.

Navigating between pages

Navigation within a Windows Store app can result from the user's interaction with the UI or from the

app itself as a result of internal logic-driven state changes. Navigation usually involves moving from

one page to another page in the app. In some cases, the app may implement complex logic to

programmatically control navigation to ensure that certain business requirements are enforced. For

example, the app may not allow the user to navigate away from a page without first ensuring that

the entered data is correct.

The AdventureWorks Shopper reference implementation typically triggers navigation requests from

user interaction in the views. These requests could be to navigate to a particular view or navigate

back to the previous view. In some scenarios, for example if the app needs to navigate to a new view

when a command completes, the view model will need to send a message to the view. In other

scenarios, you might want to trigger the navigation request directly from the view without involving

the view model directly. When you're using the MVVM pattern, you want to be able to navigate

without using any code-behind in the view, and without introducing any dependency on the view

implementation in the view model classes.

The INavigationAware interface, provided by the Microsoft.Practices.Prism.StoreApps library, allows

an implementing class to participate in a navigation operation. The interface defines two methods,

as shown in the following code example.

http://msdn.microsoft.com/en-us/library/windows/apps/hh868160.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/aa939428.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868161.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868163.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh452680.aspx

80

C#: Microsoft.Practices.Prism.StoreApps\INavigationAware.cs

public interface InavigationAware

{

 void OnNavigatedTo(object navigationParameter, NavigationMode navigationMode,

 Dictionary<string, object> viewModelState);

 void OnNavigatedFrom(Dictionary<string, object> viewModelState,

 bool suspending);

}

The OnNavigatedFrom and OnNavigatedTo methods are called during a navigation operation. In the

view model class for the page being navigated from, its OnNavigatedFrom method is called before

navigation takes place. The OnNavigatedFrom method allows the page to save any state before it is

disposed of. In the view model class for the page being navigated to, its OnNavigatedTo method is

called after navigation is complete. The OnNavigatedTo method allows the newly displayed page to

initialize itself by loading any page state, and by using any navigation parameters passed to it. For

example, the OnNavigatedTo method in the ItemDetailPageViewModel class accepts a product

number as a parameter that is used to load the product information for display on the

ItemDetailPage.

The ViewModel base class implements the INavigationAware interface, providing virtual

OnNavigatedFrom and OnNavigatedTo methods that save and load view model state, respectively.

This avoids each view model class having to implement this functionality to support the suspend and

resume process. The view model classes for each page derive from the ViewModel class. The

OnNavigatedFrom and OnNavigatedTo methods can then be overridden in the view model class for

the page if any additional navigation logic is required, such as processing a navigation parameter

that has been passed to the page.

Note The OnNavigatedFrom and OnNavigatedTo methods in the ViewModel base class control

loading and saving page state during navigation operations. For more info see Handling suspend,

resume, and activation.

Handling navigation requests

The XAML UI framework provides a built-in navigation model that uses Frame and Page elements

and works much like the navigation in a web browser. The Frame control hosts Pages, and has a

navigation history that you can use to go back and forward through pages you've visited.

Prism provides the FrameNavigationService class that allows view models to perform navigation

operations without taking a dependency on UI types such as the Frame class. This class, which

implements the INavigationService interface, uses the Frame instance created in the

InitializeFrameAsync method in the MvvmAppBase class to perform the navigation request for the

app. The MvvmAppBase class creates an instance of the FrameNavigationService class by calling the

CreateNavigationService method, which is shown in the following code example.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx

81

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

private INavigationService CreateNavigationService(IFrameFacade rootFrame,

 ISessionStateService sessionStateService)

{

 var navigationService = new FrameNavigationService(rootFrame, GetPageType,

 sessionStateService);

 return navigationService;

}

The CreateNavigationService method creates an instance of the FrameNavigationService class,

which takes the GetPageType delegate to implement a page type resolution strategy. This strategy

assumes that the views that define pages are in the AdventureWorks.Shopper assembly and that the

view names end with "Page".

After creating the instance of the FrameNavigationService class the MvvmAppBase class calls the

OnInitialize override in the App class to register service instances with the Unity dependency

injection container. When view model classes are instantiated, the container will inject the

dependencies that are required including the FrameNavigationService instance. View models can

then invoke the Navigate method on the FrameNavigationService instance to cause the app to

navigate to a particular view in the app or the GoBack method to return to the previous view. The

following code example shows the Navigate method in the FrameNavigationService class.

C#: Microsoft.Practices.Prism.StoreApps\FrameNavigationService.cs

public bool Navigate(string pageToken, object parameter)

{

 Type pageType = _navigationResolver(pageToken);

 if (pageType == null)

 {

 var resourceLoader = ResourceLoader.GetForCurrentView

 (Constants.StoreAppsInfrastructureResourceMapId);

 var error = string.Format(CultureInfo.CurrentCulture,

 resourceLoader.GetString

 ("FrameNavigationServiceUnableResolveMessage"),

 pageToken);

 throw new ArgumentException(error, "pageToken");

 }

 // Get the page type and parameter of the last navigation to check if we

 // are trying to navigate to the exact same page that we are currently on

 var lastNavigationParameter =

 _sessionStateService.SessionState.ContainsKey(LastNavigationParameterKey)

 ? _sessionStateService.SessionState[LastNavigationParameterKey] : null;

 var lastPageTypeFullName =

 _sessionStateService.SessionState.ContainsKey(LastNavigationPageKey) ?

 _sessionStateService.SessionState[LastNavigationPageKey] as string :

 string.Empty;

82

 if (lastPageTypeFullName != pageType.FullName ||

 !AreEquals(lastNavigationParameter, parameter))

 {

 return _frame.Navigate(pageType, parameter);

 }

 return false;

}

The Navigate method accepts a string parameter that represents the page to be navigated to, and a

navigation parameter that represents the data to pass to the page being navigated to. Any data

being passed to the page being navigated to will be received by the OnNavigatedTo method of the

view model class for the page type. A null value is used as the navigation parameter if no data needs

to be passed to the page being navigated to.

Note The FrameNavigationService class uses the Frame class to perform the navigation process.

This includes managing the navigation history, the parameters passed in each navigation request,

and serializing the navigation state in order to save and restore the app state when it resumes

following termination. Therefore, any parameter passed during navigation must be supported for

serialization by the Frame class, which limits the parameter to basic types such as string, char,

numeric and GUID types.

Placing the navigation logic in view model classes means that the navigation logic can be exercised

through automated tests. In addition, the view model can then implement logic to control navigation

to ensure that certain business rules are enforced. For instance, an app may not allow the user to

navigate away from a page without first ensuring that the entered data is correct.

Navigating to the hub page when AdventureWorks Shopper is activated

When the AdventureWorks Shopper reference implementation starts up, and after the

bootstrapping process has completed, the OnLaunchApplication method in the App class navigates

to the app's hub page, provided that the app hasn't been launched from a secondary tile.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx

83

The App class derives from the MvvmAppBase class in the Microsoft.Practices.Prism.StoreApps

library that in turn derives from the Windows.UI.Xaml.Application class and overrides the

OnLaunched method. The OnLaunched method override calls the OnLaunchApplication method in

the App class, which is shown in the following code example.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx

84

C#: AdventureWorks.Shopper\App.xaml.cs

protected override Task OnLaunchApplication(LaunchActivatedEventArgs args)

{

 if (args != null && !string.IsNullOrEmpty(args.Arguments))

 {

 // The app was launched from a Secondary Tile

 // Navigate to the item's page

 NavigationService.Navigate("ItemDetail", args.Arguments);

 }

 else

 {

 // Navigate to the initial page

 NavigationService.Navigate("Hub", null);

 }

 Window.Current.Activate();

 return Task.FromResult<object>(null);

}

This code example shows how AdventureWorks Shopper calls the Navigate method of the

NavigationService object to load content that is specified by the page type.

Note The OnLaunchApplication method returns a Task, allowing it to launch a long running

operation. If you don't have a long running operation to launch you should return an empty Task.

Invoking navigation using behaviors

Navigation is usually triggered from a view by a user action. For instance, each page in the app has a

navigation bar which contains Button controls that allow the user to navigate to the hub page and

the shopping cart page. Rather than implement this functionality separately on each page, it is

implemented as a user control named TopAppBarUserControl that is added to each page. The

following code example shows the Button controls from the TopAppBarUserControl that allow the

user to navigate to the hub page and the shopping cart page.

XAML: AdventureWorks.Shopper\Views\TopAppBarUserControl.xaml

<StackPanel Orientation="Horizontal" HorizontalAlignment="Left" Height="125"

 Margin="0,15,0,0">

 <Button x:Name="HomeAppBarButton" x:Uid="HomeAppBarButton"

 AutomationProperties.AutomationId="HomeAppBarButton"

 Margin="5,0"

 Style="{StaticResource HouseStyle}"

 Content="Home"

 Height="125">

 <Interactivity:Interaction.Behaviors>

 <Core:EventTriggerBehavior EventName="Click">

 <Core:NavigateToPageAction

 TargetPage="AdventureWorks.Shopper.Views.HubPage"/>

 </Core:EventTriggerBehavior>

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx

85

 </Interactivity:Interaction.Behaviors>

 </Button>

 <Button x:Uid="ShoppingCartAppBarButton" x:Name="ShoppingCartAppBarButton"

 AutomationProperties.AutomationId="ShoppingCartAppBarButton"

 Margin="0,0,5,0"

 Height="125"

 Style="{StaticResource CartStyle}"

 Content="Shopping Cart">

 <Interactivity:Interaction.Behaviors>

 <Core:EventTriggerBehavior EventName="Click">

 <Core:NavigateToPageAction

 TargetPage="AdventureWorks.Shopper.Views.ShoppingCartPage"/>

 </Core:EventTriggerBehavior>

 </Interactivity:Interaction.Behaviors>

 </Button>

</StackPanel>

Note Button controls are used in the TopAppBarUserControl rather than AppBarButton controls,

because their default appearance is rectangular. The AppBarButton control's default appearance is

circular instead of rectangular.

In this scenario, navigation is triggered from the Button controls by using the EventTriggerBehavior

and NavigateToPageAction interactions provided by the Behaviors SDK. The NavigateToPageAction

interaction's TargetPage property specifies the page that will be navigated to.

When you want to pass event arguments to a navigation interaction you should use the custom

NavigateWithEventArgsToPageAction interaction, which enables the ItemClick event of the

MultipleSizedGridView to invoke navigation to a new page, and passes a property value as a

parameter that's specified by the action's EventArgsParameterPath property.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<awcontrols:MultipleSizedGridView x:Name="itemsGridView"

 AutomationProperties.AutomationId=

 "HubPageItemGridView"

 AutomationProperties.Name="Grouped Items"

 Margin="0,0,0,0"

 Padding="120,0,40,46"

 ItemsSource="{Binding Source=

 {StaticResource groupedItemsViewSource}}"

 ItemTemplate="{StaticResource

 AWShopperItemTemplate}"

 MinimalItemTemplate="{StaticResource

 ProductTemplateMinimal}"

 SelectionMode="None"

 ScrollViewer.IsHorizontalScrollChainingEnabled=

 "False"

 IsItemClickEnabled="True"

 Loaded="itemsGridView_Loaded">

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbarbutton.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn457340.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.navigatetopageaction.targetpage.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx

86

 <interactivity:Interaction.Behaviors>

 <core:EventTriggerBehavior EventName="ItemClick">

 <awbehaviors:NavigateWithEventArgsToPageAction

 TargetPage="AdventureWorks.Shopper.Views.ItemDetailPage"

 EventArgsParameterPath="ClickedItem.ProductNumber" />

 </core:EventTriggerBehavior>

 </interactivity:Interaction.Behaviors>

The EventTriggerBehavior binds the ItemClick event of the MultipleSizedGridView to the

NavigateWithEventArgsToPageAction. Therefore, when a GridViewItem is selected the

NavigateWithEventArgsToPageAction is executed, which navigates from the HubPage to the

ItemDetailPage, passing in the ProductNumber of the ClickedItem to the ItemDetailPage.

For more info see Implementing behaviors to supplement the functionality of XAML elements.

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx

87

Using touch in a Windows Store business app using C# and XAML

Summary

 When possible, use the standard touch gestures and controls that Microsoft Windows

provides.

 Provide visual feedback when a touch interaction occurs.

 Use data binding to connect standard Windows controls to the view models that implement

the touch interaction behavior.

Learn how to implement the tap, slide, swipe, pinch, and stretch touch interactions in a Windows

Store business app. Data binding is used to connect standard Windows controls that use touch

gestures to the view models that implement those gestures.

You will learn

 How the Windows touch language was used in AdventureWorks Shopper.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Making key decisions

Touch interactions in Windows use physical interactions to emulate the direct manipulation of UI

elements and provide a more natural, real-world experience when interacting with those elements

on the screen. The following list summarizes the decisions to make when implementing touch

interactions in your app:

 Does the Windows touch language provide the experience your app requires?

 What size should your touch targets be?

 When displaying a list of items, do the touch targets for each item need to be identically

sized?

 Should you provide feedback to touch interactions?

 Should touch interactions be reversible?

 How long should a touch interaction last?

 When should you use static gestures versus manipulation gestures?

 Do you need to design and implement a custom interaction?

o Does the custom interaction require specific hardware support such as a minimum

number of touch points?

o How will the custom interaction be provided on a non-touch device?

88

Windows provides a concise set of touch interactions that are used throughout the system. Applying

this language consistently makes your app feel familiar to what users already know, increasing user

confidence by making your app easier to learn and use. Most apps will not require touch interactions

that are not part of the Windows touch language. For more info see Touch interaction design.

There are no definitive recommendations for how large a touch target should be or where it should

be placed within your app. However, there are some guidelines that should be followed. The size

and target area of an object depend on various factors, including the user experience scenarios and

interaction context. They should be large enough to support direct manipulation and provide rich

touch interaction data. It is acceptable in some user experience scenarios for touch targets in a

collection of items to be different sizes. For instance, when displaying a collection of products you

could choose to display some products at a larger size than the majority of the collection, in order to

draw attention to specific products. Touch targets should react by changing color, changing size, or

by moving. Non-moving elements should return to their default state when the user slides or lifts

their finger off the element. In addition, touch interactions should be reversible. You can make your

app safe to explore using touch by providing visual feedback to indicate what will happen when the

user lifts their finger. For more info see Guidelines for targeting and Guidelines for visual feedback.

Touch interactions that require compound or custom gestures need to be performed within a

certain amount of time. Try to avoid timed interactions like these because they can often be

triggered accidentally and can be difficult to time correctly. For more info see Responding to user

interaction.

Static gestures events are triggered after an interaction is complete and are used to handle single-

finger interactions such as tapping. Manipulation gesture events indicate an ongoing interaction and

are used for dynamic multi-touch interactions such as pinching and stretching, and interactions that

use inertia and velocity data such as panning. This data is then used to determine the manipulation

and perform the interaction. Manipulation gesture events start firing when the user touches the

element and continue until the user lifts their finger or the manipulation is cancelled. For more info

see Gestures, manipulations, and interactions.

Only create a custom interaction and if there is a clear, well -defined requirement and no interaction

from the Windows touch language can support your scenario. If an existing interaction provides the

experience your app requires, adapt your app to support that interaction. If you do need to design

and implement a custom interaction you will need to consider your interaction experience. If the

interaction depends on items such as the number of touch points, velocity, and inertia, ensure that

these constraints and dependencies are consistent and discoverable. For example, how users

interpret speed can directly affect the functionality of your app and the users satisfaction with the

experience. In addition, you will also have to design and implement an equivalent version of the

interaction for non-touch devices. For more info see Responding to user interaction.

Important To avoid confusing users, do not create custom interactions that duplicate or redefine

existing, standard interactions.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465326.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465342.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj883700.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465397.aspx

89

Touch in AdventureWorks Shopper

As previously described in Designing the UX, touch is more than simply an alternative to using a

mouse. We wanted to make touch an integrated part of the app because touch can add a personal

connection between the user and the app. Touch is also a natural way to enable users to browse and

select products. In addition, we use Semantic Zoom to highlight how levels of related complexity can

easily be navigated. With Semantic Zoom users can easily visualize high level content such as

categories, and then zoom into those categories to view category items.

The AdventureWorks Shopper reference implementation uses the Windows touch language. We use

the standard touch interactions that Windows provides for these reasons:

 The Windows Runtime provides an easy way to work with them.

 We don't want to confuse users by creating custom interactions.

 We want users to use the interactions that they already know to explore the app, and not

need to learn new interactions.

We also wanted AdventureWorks Shopper to be intuitive for users who use a mouse or similar

pointing device. The built-in controls work as well with a mouse or other pointing device as they do

with touch. So when you design for touch, you also get mouse and pen functionality. For example,

you can use the left mouse button to invoke commands. In addition, mouse and keyboard

equivalents are provided for many commands. For example, you can use the right mouse button to

activate the app bar, and holding the Ctrl key down while scrolling the mouse wheel controls

Semantic Zoom interaction. For more info see Guidelines for common user interactions.

The document Touch interaction design explains the Windows touch language. The following

sections describe how we applied the Windows touch language in AdventureWorks Shopper.

Tap for primary action

Tapping an element invokes its primary action. For example, on the GroupDetailPage, you tap on a

product to navigate to the ItemDetailPage. The following diagram shows an example of the tap for

primary action gesture in the AdventureWorks Shopper reference implementation.

http://msdn.microsoft.com/en-us/library/windows/apps/jj883702.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465415.aspx

90

Products are displayed on the GroupDetailPage in the AutoRotatingGridView custom control. This

control displays a collection of items in a view state aware grid. This control is an ItemsControl, so it

can contain a collection of items of any type. A benefit of using this control is that it derives from the

GridView control that has touch capabilities built in.

To populate the AutoRotatingGridView custom control you can add objects directly to its Items

collection or bind its ItemsSource property to a collection of data items. When you add items to a

GridView-derived control they are automatically placed in a GridViewItem container that can be

styled to change how an item is displayed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.items.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemssource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx

91

XAML: AdventureWorks.Shopper\Views\GroupDetailPage.xaml

<awcontrols:AutoRotatingGridView

 Grid.Row="1"

 x:Name="itemsGridView"

 AutomationProperties.AutomationId="ItemsGridView"

 AutomationProperties.Name="Items In Category"

 TabIndex="1"

 Margin="0,0,0,0"

 Padding="120,0,30,50"

 ItemsSource="{Binding Items}"

 ItemTemplate="{StaticResource ProductTemplate}"

 MinimalItemTemplate="{StaticResource ProductTemplateMinimal}"

 SelectionMode="None"

 IsItemClickEnabled="True"

 Loaded="itemsGridView_Loaded">

 <interactivity:Interaction.Behaviors>

 <core:EventTriggerBehavior EventName="ItemClick">

 <awbehaviors:NavigateWithEventArgsToPageAction

 TargetPage="AdventureWorks.Shopper.Views.ItemDetailPage"

 EventArgsParameterPath="ClickedItem.ProductNumber"/>

 </core:EventTriggerBehavior>

 </interactivity:Interaction.Behaviors>

 <awcontrols:AutoRotatingGridView.ItemsPanel>

 <ItemsPanelTemplate>

 <WrapGrid Orientation="Vertical" />

 </ItemsPanelTemplate>

 </awcontrols:AutoRotatingGridView.ItemsPanel>

 <awcontrols:AutoRotatingGridView.PortraitItemsPanel>

 <ItemsPanelTemplate>

 <WrapGrid Orientation="Horizontal"/>

 </ItemsPanelTemplate>

 </awcontrols:AutoRotatingGridView.PortraitItemsPanel>

 <awcontrols:AutoRotatingGridView.MinimalItemsPanel>

 <ItemsPanelTemplate>

 <StackPanel HorizontalAlignment="Stretch" Margin="0,0,5,0"/>

 </ItemsPanelTemplate>

 </awcontrols:AutoRotatingGridView.MinimalItemsPanel>

 <awcontrols:AutoRotatingGridView.ItemContainerStyle>

 <Style TargetType="Control">

 <Setter Property="HorizontalContentAlignment" Value="Stretch" />

 <Setter Property="Padding" Value="5,5,5,5"/>

 </Style>

 </awcontrols:AutoRotatingGridView.ItemContainerStyle>

</awcontrols:AutoRotatingGridView>

The ItemsSource property specifies that the AutoRotatingGridView will bind to the Items property

of the GroupDetailPageViewModel class. The Items property is initialized to a collection of type

ProductViewModel when the GroupDetailPage is navigated to.

92

The appearance of individual items in the AutoRotatingGridView is defined by the ItemTemplate

property. A DataTemplate is assigned to the ItemTemplate property that specifies that each item in

the AutoRotatingGridView will display the product subtitle, image, and description.

When a user clicks an item in the AutoRotatingGridView the app navigates to the ItemDetailPage.

This behavior is enabled by setting the SelectionMode property to None, setting the

IsItemClickEnabled property to true, and handling the ItemClick event. The EventTriggerBehavior

binds the ItemClick event of the AutoRotatingGridView to the

NavigateWithEventArgsToPageAction. So when a GridViewItem is selected the

NavigateWithEventArgsToPageAction is executed, which navigates from the GroupDetailPage to

the ItemDetailPage, passing in the ProductNumber of the ClickedItem to the ItemDetailPage. For

more info about behaviors see Implementing behaviors to supplement the functionality of XAML

elements.

For more info see Adding ListView and GridView controls. For more info about the

AutoRotatingGridView custom control see Creating a custom GridView control that responds to

layout changes.

Slide to pan

The slide gesture is primarily used for panning interactions. Panning is a technique for navigating

short distances over small sets of content within a single view. Panning is only necessary when the

amount of content in the view causes the content area to overflow the viewable area. For more info

see Guidelines for panning. One of the uses of the slide gesture in the AdventureWorks Shopper

reference implementation is to pan among products in a category. For example, when you browse to

a product, you can use the slide gesture to navigate to the previous or next product in the

subcategory. The following diagram shows an example of the slide to pan gesture in

AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.datatemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.selectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewselectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isitemclickenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780618.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465310.aspx

93

In AdventureWorks Shopper this gesture is implemented by the FlipView control. The FlipView

control displays a collection of items, and lets you flip through them one at a time. The FlipView

control is derived from the ItemsControl class, like the GridView control, and so it shares many of

the same features. A benefit of using the FlipView control is that it has touch capabilities built in,

removing the need for additional code.

To populate a FlipView you can add objects directly to its Items collection or bind its ItemsSource

property to a collection of data items. When you add items to a FlipView they are automatically

placed in a FlipViewItem container that can be styled to change how an item is displayed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.flipview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.items.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemssource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.flipviewitem.aspx

94

XAML: AdventureWorks.Shopper\Views\ItemDetailPage.xaml

<FlipView x:Name="flipView"

 AutomationProperties.AutomationId="ItemsFlipView"

 AutomationProperties.Name="Item Details"

 TabIndex="1"

 Grid.Row="1"

 ItemsSource="{Binding Items}"

 SelectedIndex="{Binding SelectedIndex, Mode=TwoWay}"

 SelectedItem="{Binding SelectedProduct, Mode=TwoWay}">

The ItemsSource property specifies that the FlipView binds to the Items property of the

ItemDetailPageViewModel class, which is a collection of type ProductViewModel.

For more info see Quickstart: Adding FlipView controls, How to add a flip view, Guidelines for

FlipView controls.

Swipe to select, command, and move

With the swipe gesture, you slide your finger perpendicular to the panning direction to select

objects. The ability to use the swipe gesture depends upon the value of the SelectionMode property

on the ListViewBase-derived control. A value of None indicates that item selection is disabled, while

a value of Single indicates that single items can be selected using this gesture.

In the AdventureWorks Shopper reference implementation, the swipe gesture can be used to select

items on the ChangeDefaultsFlyout, the CheckoutSummaryPage, and the ShoppingCartPage. When

an item is selected on the ShoppingCartPage the bottom app bar appears with the app bar

commands applying to the selected item. The following diagram shows an example of the swipe to

select, command, and move gesture in AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/hh781233.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj150601.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780630.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780630.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.selectionmode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewselectionmode.aspx

95

The IsSwipeEnabled property of the GridView control indicates whether a swipe gesture is enabled

for the control. Setting IsSwipeEnabled to false disables some default touch interactions, so it

should be set to true when these interactions are required. For example, when IsSwipeEnabled is

false:

 If item selection is enabled, a user can deselect items by right-clicking with the mouse, but

cannot deselect an item with touch by using the swipe gesture.

 If CanDragItems is true, a user can drag items with the mouse, but not with touch.

 If CanReorderItems is true, a user can reorder items with the mouse, but not with touch.

The AdventureWorks Shopper reference implementation does not explicitly set the IsSwipeEnabled

property, as its default value is true. The following code example shows how an item on the

ShoppingCartPage can be selected with the swipe gesture.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isswipeenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.candragitems.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.canreorderitems.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.isswipeenabled.aspx

96

XAML: AdventureWorks.Shopper\Views\ShoppingCartPage.xaml

<awcontrols:AutoRotatingGridView x:Name="ShoppingCartItemsGridView"

 x:Uid="ShoppingCartItemsGridView"

 AutomationProperties.AutomationId=

 "ShoppingCartItemsGridView"

 SelectionMode="Single"

 Width="Auto"

 Grid.Row="2"

 Grid.Column="1"

 Grid.RowSpan="2"

 VerticalAlignment="Top"

 ItemsSource=

 "{Binding ShoppingCartItemViewModels}"

 SelectedItem=

 "{Binding SelectedItem, Mode=TwoWay}"

 ItemTemplate=

 "{StaticResource ShoppingCartItemTemplate}"

 MinimalItemTemplate=

 "{StaticResource

 ShoppingCartItemTemplateMinimal}"

 Margin="0,0,0,0">

 <awcontrols:AutoRotatingGridView.ItemsPanel>

 <ItemsPanelTemplate>

 <WrapGrid Orientation="Vertical"

 ItemWidth="400" />

 </ItemsPanelTemplate>

 </awcontrols:AutoRotatingGridView.ItemsPanel>

 <awcontrols:AutoRotatingGridView.PortraitItemsPanel>

 <ItemsPanelTemplate>

 <WrapGrid Orientation="Horizontal"

 ItemWidth="400" />

 </ItemsPanelTemplate>

 </awcontrols:AutoRotatingGridView.PortraitItemsPanel>

 <awcontrols:AutoRotatingGridView.MinimalItemsPanel>

 <ItemsPanelTemplate>

 <StackPanel HorizontalAlignment="Left" />

 </ItemsPanelTemplate>

 </awcontrols:AutoRotatingGridView.MinimalItemsPanel>

 <Style TargetType="Control">

 <Setter Property="HorizontalAlignment"

 Value="Stretch" />

 <Setter Property="HorizontalContentAlignment"

 Value="Left" />

 </Style>

</awcontrols:AutoRotatingGridView>

The SelectedItem property of the AutoRotatingGridView custom control can be used to retrieve the

item selected by the swipe gesture. Here the SelectedItem property performs a two-way binding to

the SelectedItem property of the ShoppingCartPageViewModel class, which is shown in the

following code example.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.primitives.selector.selecteditem.aspx

97

C#: AdventureWorks.UILogic\ViewModels\ShoppingCartPageViewModel.cs

public ShoppingCartItemViewModel SelectedItem

{

 get { return _selectedItem; }

 set

 {

 if (SetProperty(ref _selectedItem, value))

 {

 if (_selectedItem != null)

 {

 // Display the AppBar

 IsBottomAppBarOpened = true;

 IncrementCountCommand.RaiseCanExecuteChanged();

 DecrementCountCommand.RaiseCanExecuteChanged();

 }

 else

 {

 IsBottomAppBarOpened = false;

 }

 OnPropertyChanged("IsItemSelected");

 }

 }

}

When the SelectedItem property is set the IsBottomAppBarOpened property will be set to control

whether or not to display the bottom app bar.

For more info about the AutoRotatingGridView custom control see Creating a custom GridView

control that responds to layout changes.

Pinch and stretch to zoom

Pinch and stretch gestures are not just for magnification, or performing optical zoom. The

AdventureWorks Shopper reference implementation uses Semantic Zoom to help users navigate

between large sets of data. Semantic Zoom enables you to switch between two different views of

the same content. You typically have a main view of your content and a second view that allows

users to quickly navigate through it. Users can pan or scroll through categories of content, and then

zoom into those categories to view detailed information. The following diagram shows an example

of the pinch and stretch to zoom gesture in AdventureWorks Shopper.

98

To provide this zooming functionality, the SemanticZoom control uses two other controls—one to

provide the zoomed-in view and one to provide the zoomed-out view. These controls can be any two

controls that implement the ISemanticZoomInformation interface. XAML provides the ListView and

GridView controls that meet this criteria.

Tip When you use a GridView in a SemanticZoom control, always set the

ScrollViewer.IsHorizontalScrollChainingEnabled attached property to false on the ScrollViewer

that's in the GridView's control template.

For the zoomed-in view, we display a MultipleSizedGridView custom control that binds to products

that are grouped by sub-category. The MultipleSizedGridView also shows a title (the category) for

each group.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.semanticzoom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.isemanticzoominformation.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.semanticzoom.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.scrollviewer.ishorizontalscrollchainingenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.scrollviewer.aspx

99

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<awcontrols:MultipleSizedGridView x:Name="itemsGridView"

 AutomationProperties.AutomationId=

 "HubPageItemGridView"

 AutomationProperties.Name="Grouped Items"

 Margin="0,0,0,0"

 Padding="120,0,40,46"

 ItemsSource="{Binding Source=

 {StaticResource groupedItemsViewSource}}"

 ItemTemplate=

 "{StaticResource AWShopperItemTemplate}"

 MinimalItemTemplate=

 "{StaticResource ProductTemplateMinimal}"

 SelectionMode="None"

 ScrollViewer.IsHorizontalScrollChainingEnabled=

 "False"

 IsItemClickEnabled="True"

 Loaded="itemsGridView_Loaded">

The ItemsSource property specifies the items to be displayed by the MultipleSizedGridView. The

groupedItemsViewSource static resource is a CollectionViewSource that provides the source data

for the control.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<CollectionViewSource x:Name="groupedItemsViewSource"

 Source="{Binding RootCategories}"

 IsSourceGrouped="true"

 ItemsPath="Products" />

The RootCategories property on the HubPageViewModel specifies the data that is bound to the

MultipleSizedGridView for the zoomed-in view. RootCategories is a collection of

CategoryViewModel objects. The ItemsPath property refers to the Products property of the

CategoryViewModel class. Therefore, the MultipleSizedGridView will show each product grouped

by the category it belongs to.

For the zoomed-out view, we display a GridView that binds to filled rectangles for each category.

Within each category the category title and number of products is displayed.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<GridView x:Name="zoomedOutGrid"

 Padding="120,0,0,0"

 Foreground="White"

 AutomationProperties.AutomationId="HubPageGridView"

 ScrollViewer.IsHorizontalScrollChainingEnabled="False"

 ItemTemplate="{StaticResource AWShopperItemTemplateSemanticZoom}">

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.collectionviewsource.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.collectionviewsource.itemspath.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx

100

For more info about Semantic Zoom, see Adding SemanticZoom controls, and Guidelines for

Semantic Zoom. For more info about the MultipleSizedGridView custom control see Creating a

custom GridView control that displays items at multiple sizes. For more info about the

AutoRotatingGridView custom control see Creating a custom GridView control that responds to

layout changes.

Swipe from edge for app commands

When there are relevant commands to display, the Adventure Works Shopper reference

implementation displays the app bar when the user swipes from the bottom or top edge of the

screen. Every page can define a navigation bar, a bottom app bar, or both. For instance,

AdventureWorks Shopper displays both when you activate the app bars on the ShoppingCartPage.

The following diagram shows an example of the swipe from edge for app commands gesture in

AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/hh780622.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465319.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465319.aspx

101

The AppBar and CommandBar controls are toolbars for displaying app-specific commands.

AdventureWorks Shopper displays app bars on each page. The Page.TopAppBar property can be

used to define the navigation bar, with the Page.BottomAppBar property being used to define the

bottom app bar. Each of these properties will contain either an AppBar or CommandBar control that

holds the app bar's UI components. In general, you should use the bottom app bar for contextual

commands that act on the currently selected item on the page. Use the navigation bar for

navigational elements that move the user to a different page.

AdventureWorks Shopper uses both AppBar and CommandBar controls. Bottom app bars are

implemented by the CommandBar control, using AppBarButtons that define the commands that will

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.commandbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.topappbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.bottomappbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.commandbar.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbarbutton.aspx

102

appear on the app bar. A CommandBar must use AppBarButtons to display commands, and the

default appearance of an AppBarButton is circular. Using a CommandBar control ensures that the

commands will be laid out automatically, and resized when the app size changes.

AdventureWorks Shopper implements the navigation bar for each page as a user control named

TopAppBarUserControl. This user control defines the Button controls that will appear in the

navigation bar. Buttons are used to easily display non-circular commands, and must be placed inside

an AppBar control.

XAML: AdventureWorks.Shopper\Views\TopAppBarUserControl.xaml

<StackPanel Orientation="Horizontal" HorizontalAlignment="Left" Height="125"

Margin="0,15,0,0">

 <Button x:Name="HomeAppBarButton" x:Uid="HomeAppBarButton"

 AutomationProperties.AutomationId="HomeAppBarButton"

 Margin="5,0"

 Style="{StaticResource HouseStyle}"

 Content="Home"

 Height="125">

 <Interactivity:Interaction.Behaviors>

 <Core:EventTriggerBehavior EventName="Click">

 <Core:NavigateToPageAction

 TargetPage="AdventureWorks.Shopper.Views.HubPage"/>

 </Core:EventTriggerBehavior>

 </Interactivity:Interaction.Behaviors>

 </Button>

 <Button x:Uid="ShoppingCartAppBarButton" x:Name="ShoppingCartAppBarButton"

 AutomationProperties.AutomationId="ShoppingCartAppBarButton"

 Margin="0,0,5,0"

 Height="125"

 Style="{StaticResource CartStyle}"

 Content="Shopping Cart">

 <Interactivity:Interaction.Behaviors>

 <Core:EventTriggerBehavior EventName="Click">

 <Core:NavigateToPageAction

 TargetPage="AdventureWorks.Shopper.Views.ShoppingCartPage"/>

 </Core:EventTriggerBehavior>

 </Interactivity:Interaction.Behaviors>

 </Button>

</StackPanel>

The VisualStateAwarePage.TopAppBar property on each page then uses the

TopAppBarUserControl to define the navigation bar.

XAML: AdventureWorks.Shopper\Views\HubPage.xaml

<prism:VisualStateAwarePage.TopAppBar>

 <AppBar Style="{StaticResource AppBarStyle}"

 x:Uid="TopAppBar">

 <views:TopAppBarUserControl />

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.aspx

103

 </AppBar>

</prism:VisualStateAwarePage.TopAppBar>

The following diagram shows the navigation bar buttons for each page.

When an item on a page is selected, the app bar is shown in order to display contextual commands,

by setting the IsOpen property on the CommandBar control. If you have contextual commands on

an app bar, the mode should be set to sticky while the context exists so that the bar doesn't

automatically hide when the user interacts with the app. When the context is no longer present,

sticky mode can be turned off. This can be achieved by setting the IsSticky property on the

CommandBar control.

For more information see Adding app bars, How to use an app bar in different views, Controls, and

Guidelines for app bars.

Swipe from edge for system commands

Users can swipe from the edge of the screen to reveal app bars and charms, or to display previously

used apps. Therefore, it is important to maintain a sufficient distance between app controls and the

screen edges. The following diagram shows an example of the swipe from edge for system

commands gesture in AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.isopen.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.appbar.issticky.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781230.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj662742.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/bg182878.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781231.aspx

104

For more info see Laying out an app page.

http://msdn.microsoft.com/en-us/library/windows/apps/hh872191.aspx

105

Validating user input in a Windows Store business app using C#,

XAML, and Prism

Summary

 Derive model classes from the ValidatableBindableBase class, provided by the

Microsoft.Practices.Prism.StoreApps library, in order to participate in client-side validation.

 Specify validation rules for model properties by adding data annotation attributes to the

properties.

 Call the ValidatableBindableBase.ValidateProperties method to validate all the properties

in a model object that possess an attribute that derives from the ValidationAttribute

attribute.

Learn how to validate form-based user input, both synchronously and asynchronously, in a Windows

Store business app that uses Prism for the Windows Runtime. Prism demonstrates the ability to

validate model data on the client or on the server, and pass the errors back to the client so that the

AdventureWorks Shopper reference implementation can display them for user correction.

You will learn

 How to validate data stored in a bound model object.

 How to specify validation rules for model properties by using data annotations.

 How to trigger validation when property values change.

 How to manually trigger validation.

 How to trigger server side validation.

 How to highlight validation errors with behaviors.

 How to save validation errors when the app suspends, and restore them when the app is

reactivated after termination.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Making key decisions

Any app that accepts input from users should ensure that the data is valid. An app could, for

example, check that the input contains only characters in a particular range, is of a certain length, or

matches a particular format. Without validation, a user can supply data that causes the app to fail.

Validation enforces business rules, and prevents an attacker from injecting malicious data.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx

106

The following list summarizes the decisions to make when implementing validation in your app:

 Should I validate user input on the client, on the server, or on both?

 Should I validate user input synchronously or asynchronously?

 Should I validate user input in view model objects or in model objects?

 How should I specify validation rules?

 How should I notify the user about validation errors?

 What approach should I use for saving validation errors when the app suspends?

Validation can be performed client-side, server-side, or both. Validation on the client provides a

convenient way for the user to correct input mistakes without round trips to the server. Validation

on the server should be used when server-side resources are required, such as a list of valid values

stored in a database, against which the input can be compared. Although client-side validation is

necessary, you should not rely solely on it because it can easily be bypassed. Therefore, you should

provide client-side and server-side validation. This approach provides a security barrier that stops

malicious users who bypass the client-side validation.

Synchronous validation can check the range, length, or structure of user input. User input should be

validated synchronously when it is captured.

User input could be validated in view model objects or in model objects. However, validating data in

view models often means duplicating model properties. Instead, view models can delegate

validation to the model objects they contain, with validation then being performed on the model

objects. Validation rules can be specified on the model properties by using data annotations that

derive from the ValidationAttribute class.

Users should be notified about validation errors by highlighting the control that contains the invalid

data, and by displaying an error message that informs the user why the data is invalid. There are

guidelines and requirements for the placement of error messages in Windows Store apps. For more

info see Guidelines for text input.

When a suspended app is terminated and later reactivated by the operating system, the app should

return to its previous operational and visual state. If your app is on a data entry page when it

suspends, user input and any validation error messages should be saved to disk, and restored if the

app is terminated and subsequently reactivated. For more info see Guidelines for app suspend and

resume.

Validation in AdventureWorks Shopper using Prism

The AdventureWorks Shopper reference implementation uses the

Microsoft.Practices.Prism.StoreApps library to perform client-side and server-side validation.

Synchronous validation of data stored in model objects is performed client-side in order to check the

range, length, and structure of user input. Validation that involves server-side business rules, such as

ensuring that entered zip codes are valid for the entered state, and checking if a credit card has

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh738358.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx

107

sufficient funds to allow the purchase, occurs on the server. In addition, AdventureWorks Shopper

shows how the results of server-side validation can be returned to the client.

Model classes must derive from the ValidatableBindableBase class, provided by the

Microsoft.Practices.Prism.StoreApps library, in order to participate in validation. This class provides

an error container (an instance of the BindableValidator class that is the type of the Errors property)

whose contents are updated whenever a model class property value changes. The BindableValidator

class and ValidatableBindableBase class derive from the BindableBase class, which raises property

change notification events. For more info see Triggering validation when properties change.

The SetProperty method in the ValidatableBindableBase class performs validation when a model

property is set to a new value. The validation rules come from data annotation attributes that derive

from the ValidationAttribute class. The attributes are taken from the declaration of the model

property being validated. For more info see Specifying validation rules and Triggering validation

when properties change.

In the AdventureWorks Shopper reference implementation, users are notified about validation

errors by highlighting the controls that contain the invalid data with red borders, and by displaying

error messages that inform the user why the data is invalid below the controls containing invalid

data.

If the app suspends while a data entry page is active, user input and any validation error messages

are saved to disk, and restored when the app resumes following reactivation. Therefore, when the

app suspends it will later resume as the user left it. For more info see Highlighting validation errors

with behaviors and Persisting user input and validation errors when the app suspends and resumes.

The following diagram shows the classes involved in performing validation in AdventureWorks

Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx

108

Specifying validation rules

Validation rules are specified by adding data annotation attributes to properties in model classes

that will require validation. To participate in validation a model class must derive from the

ValidatableBindableBase class.

The data annotation attributes added to a model property whose data requires validation derive

from the ValidationAttribute class. The following code example shows the FirstName property from

the Address class.

C#: AdventureWorks.UILogic\Models\Address.cs

[Required(ErrorMessageResourceType = typeof(ErrorMessagesHelper),

 ErrorMessageResourceName = "RequiredErrorMessage")]

[RegularExpression(NAMES_REGEX_PATTERN, ErrorMessageResourceType =

 typeof(ErrorMessagesHelper), ErrorMessageResourceName = "RegexErrorMessage")]

public string FirstName

{

 get { return _firstName; }

 set { SetProperty(ref _firstName, value); }

}

The Required attribute of the FirstName property specifies that a validation failure occurs if the field

is null, contains an empty string, or contains only white-space characters. The RegularExpression

attribute specifies that the FirstName property must match the regular expression given by the

NAMES_REGEX_PATTERN constant. This regular expression allows user input to consist of all

unicode name characters as well as spaces and hyphens, as long as the spaces and hyphens don't

occur in sequences and are not leading or trailing characters.

The static ErrorMessagesHelper class is used to retrieve validation error messages from the resource

dictionary for the current locale, and is used by the Required and RegularExpression validation

attributes. For example, the Required attribute on the FirstName property specifies that if the

property doesn't contain a value, the validation error message will be that returned by the

RequiredErrorMessage property of the ErrorMessagesHelper class.

In the AdventureWorks Shopper reference implementation, all of the validation rules that are

specified on the client also appear on the server. Performing validation on the client helps users

correct input mistakes without round trips to the server. Performing validation on the server

prevents attackers from bypassing validation code in the client. Client validation occurs when each

property changes. Server validation happens less frequently, usually when the user has finished

entering all of the data on a page.

In AdventureWorks Shopper, additional validation rules exist on the server side, for example to

validate zip codes and authorize credit card purchases. The following example shows how the

AdventureWorks Shopper web service performs server-side validation of the zip code data entered

by the user.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx

109

C#: AdventureWorks.WebServices\Models\Address.cs

[Required(ErrorMessageResourceType = typeof(Resources), ErrorMessageResourceName =

 "ErrorRequired")]

[RegularExpression(NUMBERS_REGEX_PATTERN, ErrorMessageResourceType =

 typeof(Resources), ErrorMessageResourceName = "ErrorRegex")]

[CustomValidation(typeof(Address), "ValidateZipCodeState")]

public string ZipCode { get; set; }

The CustomValidation attribute specifies an application-provided method that will be invoked to

validate the property whenever a value is assigned to it. The validation method must be public and

static, and its first parameter must be the object to validate. The following code example shows the

ValidateZipCodeState method that is used to validate the value of the ZipCode property on the

server.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.customvalidationattribute.aspx

110

C#: AdventureWorks.WebServices\Models\Address.cs

public static ValidationResult ValidateZipCodeState(object value,

 ValidationContext validationContext)

{

 bool isValid = false;

 try

 {

 if (value == null)

 {

 throw new ArgumentNullException("value");

 }

 if (validationContext == null)

 {

 throw new ArgumentNullException("validationContext");

 }

 var address = (Address)validationContext.ObjectInstance;

 if (address.ZipCode.Length < 3)

 {

 return new ValidationResult(Resources.ErrorZipCodeInvalidLength);

 }

 string stateName = address.State;

 State state = new StateRepository().GetAll().FirstOrDefault(

 c => c.Name == stateName);

 int zipCode = Convert.ToInt32(address.ZipCode.Substring(0, 3),

 CultureInfo.InvariantCulture);

 foreach (var range in state.ValidZipCodeRanges)

 {

 // If the first 3 digits of the Zip Code falls within the given range,

 // it is valid.

 int minValue = Convert.ToInt32(range.Split('-')[0],

 CultureInfo.InvariantCulture);

 int maxValue = Convert.ToInt32(range.Split('-')[1],

 CultureInfo.InvariantCulture);

 isValid = zipCode >= minValue && zipCode <= maxValue;

 if (isValid) break;

 }

 }

 catch (ArgumentNullException)

 {

 isValid = false;

 }

 if (isValid)

 {

 return ValidationResult.Success;

111

 }

 else

 {

 return new ValidationResult(Resources.ErrorInvalidZipCodeInState);

 }

}

The method checks that the zip code value is within the allowable range for a given state. The

ValidationContext method parameter provides additional contextual information that is used to

determine the context in which the validation is performed. This parameter enables access to the

Address object instance, from which the value of the State and ZipCode properties can be retrieved.

The server's StateRepository class returns the zip code ranges for each state, and the value of the

ZipCode property is then checked against the zip code range for the state. Finally, the validation

result is returned as a ValidationResult object, in order to enable the method to return an error

message if required. For more info about custom validation methods, see

CustomValidationAttribute.Method property.

Note Although it does not occur in the AdventureWorks Shopper reference implementation,

property validation can sometimes involve dependent properties. An example of dependent

properties occurs when the set of valid values for property A depends on the particular value that

has been set in property B. If you want to check that the value of property A is one of the allowed

values, you would first need to retrieve the value of property B. In addition, when the value of

property B changes you would need to revalidate property A.

Validating dependent properties can be achieved by specifying a CustomValidation attribute and

passing the value of property B in the ValidationContext method parameter. Custom validation logic

in the model class could then validate the value of property A while taking the current value of

property B into consideration.

Triggering validation when properties change

Validation is automatically triggered on the client whenever a bound property changes. For example,

when a two way binding in a view sets a bound property in a model class, that class should invoke

the SetProperty method. This method, provided by the BindableBase class, sets the property value

and raises the PropertyChanged event. However, the SetProperty method is also overridden by the

ValidatableBindableBase class. The ValidatableBindableBase.SetProperty method calls the

BindableBase.SetProperty method, and performs validation if the property has changed. The

following code example shows how validation happens after a property change.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationcontext.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationresult.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.customvalidationattribute.method.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.customvalidationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationcontext.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

112

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

public bool ValidateProperty(string propertyName)

{

 if (string.IsNullOrEmpty(propertyName))

 {

 throw new ArgumentNullException("propertyName");

 }

 var propertyInfo =

 _entityToValidate.GetType().GetRuntimeProperty(propertyName);

 if (propertyInfo == null)

 {

 var errorString =

 _getResourceDelegate(Constants.StoreAppsInfrastructureResourceMapId,

 "InvalidPropertyNameException");

 throw new ArgumentException(errorString, propertyName);

 }

 var propertyErrors = new List<string>();

 bool isValid = TryValidateProperty(propertyInfo, propertyErrors);

 bool errorsChanged = SetPropertyErrors(propertyInfo.Name, propertyErrors);

 if (errorsChanged)

 {

 OnErrorsChanged(propertyName);

 OnPropertyChanged(string.Format(CultureInfo.CurrentCulture, "Item[{0}]",

 propertyName));

 }

 return isValid;

}

This method retrieves the property that is to be validated, and attempts to validate it by calling the

TryValidateProperty method. If the validation results change, for example, when new validation

errors are found or when previous errors have been corrected, then the ErrorsChanged and

PropertyChanged events are raised for the property. The following code example shows the

TryValidateProperty method.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

113

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

private bool TryValidateProperty(PropertyInfo propertyInfo,

 List<string> propertyErrors)

{

 var results = new List<ValidationResult>();

 var context = new ValidationContext(_entityToValidate) { MemberName =

 propertyInfo.Name };

 var propertyValue = propertyInfo.GetValue(_entityToValidate);

 // Validate the property

 bool isValid = Validator.TryValidateProperty(propertyValue, context, results);

 if (results.Any())

 {

 propertyErrors.AddRange(results.Select(c => c.ErrorMessage));

 }

 return isValid;

}

This method calls the TryValidateProperty method from the Validator class to validate the property

value against the validation rules for the property. Any validation errors are added to a new l ist.

Triggering validation of all properties

Validation can also be triggered manually for all properties of a model object. For example, this

occurs in AdventureWorks Shopper when the user selects the Submit button on the

CheckoutHubPage. The button's command delegate calls the ValidateForm methods on the

ShippingAddressUserControlViewModel, BillingAddressUserControlViewModel, and

PaymentMethodUserControlViewModel classes. These methods call the ValidateProperties

method of the BindableValidator class. The following code example shows the implementation of

the BindableValidator class's ValidateProperties method.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validator.aspx

114

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

public bool ValidateProperties()

{

 var propertiesWithChangedErrors = new List<string>();

 // Get all the properties decorated with the ValidationAttribute attribute.

 var propertiesToValidate = _entityToValidate.GetType()

 .GetRuntimeProperties()

 .Where(c =>

 c.GetCustomAttributes(typeof(ValidationAttribute)).Any());

 foreach (PropertyInfo propertyInfo in propertiesToValidate)

 {

 var propertyErrors = new List<string>();

 TryValidateProperty(propertyInfo, propertyErrors);

 // If the errors have changed, save the property name to notify the update

 // at the end of this method.

 bool errorsChanged = SetPropertyErrors(propertyInfo.Name, propertyErrors);

 if (errorsChanged &&

 !propertiesWithChangedErrors.Contains(propertyInfo.Name))

 {

 propertiesWithChangedErrors.Add(propertyInfo.Name);

 }

 }

 // Notify each property whose set of errors has changed since the last

 // validation.

 foreach (string propertyName in propertiesWithChangedErrors)

 {

 OnErrorsChanged(propertyName);

 OnPropertyChanged(string.Format(CultureInfo.CurrentCulture, "Item[{0}]",

 propertyName));

 }

 return _errors.Values.Count == 0;

}

This method retrieves any properties that have attributes that derive from the ValidationAttribute

attribute, and attempts to validate them by calling the TryValidateProperty method for each

property. If the validation state changes, the ErrorsChanged and PropertyChanged events are raised

for each property whose errors have changed. Changes occur when new errors are seen or when

previously detected errors are no longer present.

Triggering server-side validation

Server-side validation uses web service calls. For example, when the user selects the Submit button

on the CheckoutHubPage, server-side validation is triggered by the GoNext method calling the

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

115

ProcessFormAsync method, once client-side validation has succeeded. The following code example

shows part of the ProcessFormAsync method.

C#: AdventureWorks.UILogic\ViewModels\CheckoutHubPageViewModel.cs

try

{

 // Create an order with the values entered in the form

 await _orderRepository.CreateBasicOrderAsync(user.UserName, shoppingCart,

 ShippingAddressViewModel.Address, BillingAddressViewModel.Address,

 PaymentMethodViewModel.PaymentMethod);

 _navigationService.Navigate("CheckoutSummary", null);

}

catch (ModelValidationException mvex)

{

 DisplayOrderErrorMessages(mvex.ValidationResult);

 if (_shippingAddressViewModel.Address.Errors.Errors.Count > 0)

 IsShippingAddressInvalid = true;

 if (_billingAddressViewModel.Address.Errors.Errors.Count > 0 &&

 !UseSameAddressAsShipping) IsBillingAddressInvalid = true;

 if (_paymentMethodViewModel.PaymentMethod.Errors.Errors.Count > 0)

 IsPaymentMethodInvalid = true;

}

This method calls the CreateBasicOrderAsync method on the OrderRepository instance to submit

the created order to the web service. If the CreateBasicOrderAsync method successfully completes,

then the data has been validated on the server.

The CreateBasicOrderAsync method uses the HttpClient class to send the order to the web service,

and then calls the EnsureSuccessWithValidationSupport extension method to process the response

from the web service. The following code example shows the EnsureSuccessWithValidationSupport

method.

C#: AdventureWorks.UILogic\Services\HttpResponseMessageExtensions.cs

public static async Task EnsureSuccessWithValidationSupportAsync(this

 HttpResponseMessage response)

{

 // If BadRequest, see if it contains a validation payload

 if (response.StatusCode == HttpStatusCode.BadRequest)

 {

 ModelValidationResult result = null;

 try

 {

 var responseContent = await response.Content.ReadAsStringAsync();

 result =

 JsonConvert.DeserializeObject<ModelValidationResult>(responseContent);

 }

 catch { } // Fall through logic will take care of it

 if (result != null) throw new ModelValidationException(result);

http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx

116

 }

 if (response.StatusCode == HttpStatusCode.Unauthorized)

 throw new SecurityException();

 // Will throw for any other service call errors

 response.EnsureSuccessStatusCode();

}

If the response contains a BadRequest status code the ModelValidationResult is read from the

response, and if the response isn't null a ModelValidationException is thrown, which indicates that

server-side validation failed. This exception is caught by the ProcessFormAsync method, which will

then call the DisplayOrderErrorMessages method to highlight the controls containing invalid data

and display the validation error messages.

Highlighting validation errors with behaviors

In the AdventureWorks Shopper reference implementation, client-side validation errors are shown

to the user by highlighting the control that contains invalid data, and by displaying an error message

beneath the control, as shown in the following diagram.

The HighlightFormFieldOnErrors custom behavior is used to highlight TextBox and ComboBox

controls when validation errors occur. The following code example shows how the

HighlightFormFieldOnErrors behavior is attached to a TextBox control.

XAML: AdventureWorks.Shopper\Views\ShippingAddressUserControl.xaml

<TextBox x:Name="FirstName" Header="First Name*"

 x:Uid="FirstName"

 AutomationProperties.AutomationId="FirstNameTextBox"

 Margin="5,0"

 Grid.Row="0"

 Grid.Column="0"

 AutomationProperties.IsRequiredForForm="True"

 Text="{Binding Address.FirstName, Mode=TwoWay}">

 <interactivity:Interaction.Behaviors>

 <awbehaviors:HighlightFormFieldOnErrors PropertyErrors="{Binding

 Address.Errors[FirstName]}" />

 </interactivity:Interaction.Behaviors>

</TextBox>

http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpstatuscode.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.combobox.aspx

117

The HighlightFormFieldOnErrors behavior gets and sets the PropertyErrors dependency property.

The following code example shows how the PropertyErrors dependency property is defined in the

HighlightFormFieldOnErrors class.

C#: AdventureWorks.Shopper\Behaviors\HighlightFormFieldOnErrors.cs

public static DependencyProperty PropertyErrorsProperty =

 DependencyProperty.RegisterAttached("PropertyErrors",

 typeof(ReadOnlyCollection<string>), typeof(HighlightFormFieldOnErrors),

 new PropertyMetadata(BindableValidator.EmptyErrorsCollection,

 OnPropertyErrorsChanged));

The PropertyErrors dependency property is registered as a ReadOnlyCollection of strings, by the

RegisterAttached method. When the value of the PropertyErrors dependency property changes, the

OnPropertyErrorsChanged method is invoked to change the highlighting style of the input control.

Note The HighlightFormFieldOnErrors behavior also defines a dependency property named

HighlightStyleName. By default this property is set to HighlightTextBoxStyle, but can be set to

HighlightComboBoxStyle when declaring the behavior instance.

The following code example shows the OnPropertyErrorsChanged method.

C#: AdventureWorks.Shopper\Behaviors\HighlightFormFieldOnErrors.cs

private static void OnPropertyErrorsChanged(DependencyObject d,

 DependencyPropertyChangedEventArgs args)

{

 if (args == null || args.NewValue == null)

 {

 return;

 }

 var control = ((Behavior<FrameworkElement>)d).AssociatedObject;

 var propertyErrors = (ReadOnlyCollection<string>)args.NewValue;

 Style style = (propertyErrors.Any()) ?

 (Style)Application.Current.Resources[

 ((HighlightFormFieldOnErrors)d).HighlightStyleName] :

 (Style)Application.Current.Resources[

 ((HighlightFormFieldOnErrors)d).OriginalStyleName];

 control.Style = style;

}

The OnPropertyErrorsChanged method parameters give the instance of the control that the

PropertyErrors dependency property is attached to, and any validation errors for the control. Then,

if validation errors are present the value of the HighlightStyleName dependency property is applied

to the control, so that it is highlighted with a red BorderBrush.

http://msdn.microsoft.com/en-us/library/windows/apps/ms132474.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701833.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.border.borderbrush.aspx

118

Note The functionality provided by HighlightFormFieldOnErrors behavior could also be

implemented through a combination of DataTriggerBehavior and ChangePropertyAction instances,

as shown in the following code example.

XAML

<core:DataTriggerBehavior Binding="{Binding Address.Errors[FirstName].Count,

 Mode=OneWay}"

 ComparisonCondition="NotEqual" Value="0">

 <core:ChangePropertyAction PropertyName="Style" Value="{StaticResource

 HighlightTextBoxStyle}"/>

</core:DataTriggerBehavior>

<core:DataTriggerBehavior Binding="{Binding Address.Errors[FirstName].Count,

 Mode=OneWay}"

 ComparisonCondition="Equal" Value="0">

 <core:ChangePropertyAction PropertyName="Style" Value="{x:Null}"/>

</core:DataTriggerBehavior>

This code sets the HighlightTextBoxStyle when validation errors occur, and clears the style when the

validation errors are fixed. The problem with this approach is that it requires 6 lines of XAML to be

added to every control that requires validation, as opposed to the more concise syntax provid ed by

using the HighlightFormFieldOnErrors custom behavior.

Similarly, the functionality could also be provided by a custom action, rather than a custom

behavior. However, this approach would still need to use two DataTriggerBehavior instances, and

therefore 6 lines of XAML would still have to be added to every control that requires validation.

The UI also displays validation error messages in TextBlocks below each control whose data failed

validation. The following code example shows the TextBlock that displays a validation error message

if the user has entered an invalid first name for their shipping details.

XAML: AdventureWorks.Shopper\Views\ShippingAddressUserControl.xaml

<TextBlock x:Name="ErrorsFirstName"

 Style="{StaticResource ErrorMessageStyle}"

 Grid.Row="1"

 Grid.Column="0"

 Text="{Binding Address.Errors[FirstName],

 Converter={StaticResource FirstErrorConverter}}"

 TextWrapping="Wrap" />

Each TextBlock binds to the Errors property of the model object whose properties are being

validated. The Errors property is provided by the ValidateableBindableBase class, and is an instance

of the BindableValidator class. The indexer of the BindableValidator class returns a

ReadOnlyCollection of error strings, with the FirstErrorConverter retrieving the first error from the

collection, for display.

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.datatriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.changepropertyaction.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.datatriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textblock.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ms132474.aspx

119

Persisting user input and validation errors when the app suspends and

resumes

Windows Store apps should be designed to suspend when the user switches away from them and

resume when the user switches back to them. Suspended apps that are terminated by the operating

system and subsequently reactivated should resume in the state that the user left them rather than

starting afresh. This has an impact on validation in that if an app suspends on a data entry page, any

user input and validation error messages should be saved. Then, on reactivation the user input and

validation error messages should be restored to the page. For more info see Guidelines for app

suspend and resume.

AdventureWorks Shopper accomplishes this task by using overridden OnNavigatedFrom and

OnNavigatedTo methods in the view model class for the page. The OnNavigatedFrom method

allows the view model to save any state before it is disposed of prior to suspension. The

OnNavigatedTo method allows a newly displayed page to initialize itself by loading any view model

state when the app resumes.

All of the view model classes derive from the ViewModel base class, which implements

OnNavigatedFrom and OnNavigatedTo methods that save and restore view model state,

respectively. This avoids each view model class having to implement this functionality to support the

suspend and resume process. However, the OnNavigatedFrom and OnNavigatedTo methods can be

overridden in the view model class for the page if any additional navigation logic is required, such as

adding the validation errors collection to the view state dictionary. The following code example

shows how the OnNavigatedFrom method in the BillingAddressUserControlViewModel class adds

any billing address validation errors to the session state dictionary that will be serialized to disk by

the SessionStateService class when the app suspends.

C#: AdventureWorks.UILogic\ViewModels\BillingAddressUserControlViewModel.cs

public override void OnNavigatedFrom(Dictionary<string, object> viewState, bool

suspending)

{

 base.OnNavigatedFrom(viewState, suspending);

 // Store the errors collection manually

 if (viewState != null)

 {

 AddEntityStateValue("errorsCollection", _address.GetAllErrors(),

 viewState);

 }

}

This method ensures that when the app suspends, the BillingAddressUserControlViewModel state

and any billing address validation error messages will be serialized to disk. View model properties

that have the RestorableState attribute will be added to the session state dictionary by the

ViewModel.OnNavigatedFrom method before the ViewModel.AddEntityStateValue method adds

http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx

120

the validation error message collection to the session state dictionary. The GetAllErrors method is

implemented by the ValidatableBindableBase class, which in turn calls the GetAllErrors method of

the BindableValidator class to return the validation error messages for the Address model instance.

When the app is reactivated after termination and page navigation is complete, the OnNavigatedTo

method in the active view model class will be called. The following code example shows how the

OnNavigatedTo method in the BillingAddressUserControlViewModel restores any billing address

validation errors from the session state dictionary.

C#: AdventureWorks.UILogic\ViewModels\BillingAddressUserControlViewModel.cs

public override async void OnNavigatedTo(object navigationParameter,

 NavigationMode navigationMode, Dictionary<string, object> viewState)

{

 // The States collection needs to be populated before setting the State

 // property

 await PopulateStatesAsync();

 if (viewState != null)

 {

 base.OnNavigatedTo(navigationParameter, navigationMode, viewState);

 if (navigationMode == NavigationMode.Refresh)

 {

 // Restore the errors collection manually

 var errorsCollection = RetrieveEntityStateValue<IDictionary<string,

 ReadOnlyCollection<string>>>("errorsCollection", viewState);

 if (errorsCollection != null)

 {

 _address.SetAllErrors(errorsCollection);

 }

 }

 }

 if (navigationMode == NavigationMode.New)

 {

 _addressId = navigationParameter as string;

 if (_addressId != null)

 {

 Address =

 await _checkoutDataRepository.GetBillingAddressAsync(_addressId);

 return;

 }

 if (_loadDefault)

 {

 var defaultAddress =

 await _checkoutDataRepository.GetDefaultBillingAddressAsync();

 if (defaultAddress != null)

 {

121

 // Update the information and validate the values

 Address.FirstName = defaultAddress.FirstName;

 Address.MiddleInitial = defaultAddress.MiddleInitial;

 Address.LastName = defaultAddress.LastName;

 Address.StreetAddress = defaultAddress.StreetAddress;

 Address.OptionalAddress = defaultAddress.OptionalAddress;

 Address.City = defaultAddress.City;

 Address.State = defaultAddress.State;

 Address.ZipCode = defaultAddress.ZipCode;

 Address.Phone = defaultAddress.Phone;

 }

 }

 }

}

This method ensures that when the app is reactivated following termination, the

BillingAddressUserControlViewModel state and any billing address validation error messages will be

restored from disk. View model properties that have the RestorableState attribute will be restored

from the session state dictionary by the ViewModel.OnNavigatedTo method, before the

ViewModel.RetrieveEntityStateValue method retrieves any validation error messages. The

SetAllErrors method is implemented by the ValidatableBindableBase class, which in turn calls the

SetAllErrors method of the BindableValidator class to set the validation error messages for the

Address model instance. Then, provided that the navigation is to a new instance of a page, the

billing address is retrieved.

For more info see Creating and navigating between pages and Handling suspend, resume, and

activation.

122

Managing application data in a Windows Store business app using C#,

XAML, and Prism

Summary

 Use the application data APIs to work with application data, making the system responsible

for managing the physical storage of data.

 Only store passwords in the credential locker if the user has successfully signed into the app

and has opted to save passwords.

 Use ASP.NET Web API to create a resource-oriented web service that can pass different

content types.

Learn how to manage application data including storing data, caching data, authenticating users, and

retrieving data from a web service while minimizing the network traffic and battery life of the device

the app is running on. The AdventureWorks Shopper reference implementation uses Prism for the

Windows Runtime to customize the default Settings pane shown in the Settings charm.

You will learn

 How to store data in the app data stores.

 How to store passwords in the credential locker.

 How to use the Settings charm to allow users to change app settings.

 How to create data transfer objects to transfer data across a network boundary.

 How to reliably retrieve data from a web service using data transfer objects.

 How to cache data from a web service on disk.

 How to perform credentials-based authentication between a Windows Store app and a web

service.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Making key decisions

Application data is data that the app itself creates and manages. It is specific to the internal

functions or configuration of an app, and includes runtime state, user preferences, reference

content, and other settings. App data is tied to the existence of the app and is only meaningful to

that app. The following list summarizes the decisions to make when managing application data in

your app:

 Where and how should I store application data?

 What type of data should I store as application data?

123

 Do I need to provide a privacy policy for my app, and if so, where should it be displayed to

users?

 How many entries should I include in the Settings charm?

 What data should be allowed to roam?

 How should I implement a web service that a Windows Store app will connect to?

 How should I authenticate users with a web service in a Windows Store app?

 Should I cache data from the web service locally?

Windows Store apps should use app data stores for settings and files that are specific to each app

and user. The system manages the data stores for an app, ensuring that they are kept isolated from

other apps and users. In addition, the system preserves the contents of these data stores when the

user installs an update to your app and removes the contents of these data stores completely and

cleanly when your app is uninstalled.

Application data should not be used to store user data or anything that users might perceive as

valuable and irreplaceable. The user's libraries and Microsoft SkyDrive should be used to store this

sort of information. Application data is ideal for storing app-specific user preferences, settings,

reference data, and favorites. For more info see App data.

If your app uses or enables access to any Internet-based services, or collects or transmits any user's

personal information, you must maintain a privacy policy. You are responsible for informing users of

your privacy policy. The policy must comply with applicable laws and regulations, inform users of the

information collected by your app and how that information is used, stored, secured, and disclosed,

describe the controls that users have over the use and sharing of their information, and how they

may access their information. You must provide access to your privacy policy in the app's settings as

displayed in the Settings charm. If you submit your app to the Windows Store you must also provide

access to your privacy policy in the Description page of your app on the Windows Store. For more

info see App certification requirements for the Windows Store.

The top part of the Settings pane lists entry points for your app settings, with each entry point

performing an action such as opening a flyout, or opening an external link. Similar or related options

should be grouped together under one entry point in order to avoid adding more than four entry

points. For more info see Guidelines for app settings.

Utilizing roaming application data in app is easy and does not require significant code changes. It is

best to utilize roaming application data for all size-bound data and settings that are used to preserve

a user's settings preferences. For more info see Guidelines for roaming application data.

There are a number of approaches for implementing a web service that a Windows Store app can

connect to:

 Windows Azure Mobile Services allow you to add a cloud-based service to your Windows

Store app. For more info see Windows Azure Mobile Services Dev Center.

 Windows Communication Foundation (WCF) enables you to develop web services based on

SOAP. These services focus on separating the service from the transport protocol. Therefore,

http://msdn.microsoft.com/en-us/library/windows/apps/jj553522.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770544.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465094.aspx
http://go.microsoft.com/fwlink/p/?LinkID=298977

124

you can expose the same service using different endpoints and different protocols such as

TCP, User Datagram Protocol (UDP), HTTP, Secure Hypertext Transfer Protocol (HTTPS), and

Message Queuing. However, this flexibility comes at the expense of the extensive use of

configuration and attributes, and the resulting infrastructure is not always easily testable. In

addition, new client proxies need to be generated whenever the input or output model for

the service changes.

 The ASP.NET Web API allows you to develop web services that are exposed directly over

HTTP, thus enabling you to fully harness HTTP as an application layer protocol. Web services

can then communicate with a broad set of clients whether they are apps, browsers, or back-

end services. The ASP.NET Web API is designed to support apps built with REST, but it does

not force apps to use a RESTful architecture. Therefore, if the input or output model for the

service changes, the client simply has to change the query string that is sent to the web

service, or parse the data received from the web service differently.

The primary difference between WCF and the ASP.NET Web API is that while WCF is based on SOAP,

the ASP.NET Web API is based on HTTP. HTTP offers the following advantages:

 It supports verbs that define actions. For example, you query information using GET, and

create information using POST.

 It contains message headers that are meaningful and descriptive. For example, the headers

suggest the content type of the message's body.

 It contains a body that can be used for any type of content, not just XML content as SOAP

enforces. The body of HTTP messages can be anything you want including HTML, XML,

JavaScript Object Notation (JSON), and binary files.

 It uses Uniform Resource Identifiers (URIs) to identify both resources and actions.

The decision of whether to use WCF or the ASP.NET Web API in your app can be made by answering

the following the following questions:

 Do you want to create a service that supports special scenarios such as one -way messaging,

message queues, and duplex communication? If so you should use WCF.

 Do you want to a create service that uses fast transport channels when available, such as

TCP, named pipes, or UDP? If so you should use WCF.

 Do you want to create a service that uses fast transport channels when available, but uses

HTTP when all other transport channels are unavailable? If so you should use WCF.

 Do you want to simply serialize objects and deserialize them as the same strongly-typed

objects at the other side of the transmission? If so you should use WCF.

 Do you need to use a protocol other than HTTP? If so you should use WCF.

 Do you want to create a resource-oriented service that is activated through simple action-

oriented verbs such as GET, and that responds by sending content as HTML, XML, a JSON

string, or binary data? If so you should use the ASP.NET Web API.

 Do you have bandwidth constraints? If so you should use the ASP.NET Web API with JSON, as

it sends a smaller payload than SOAP.

 Do you need to support clients that don't have a SOAP stack? If so you should use the

ASP.NET Web API.

125

There are a number of approaches that could be taken to authenticate users of a Windows Store app

with a web service. For instance, credentials-based authentication or single sign-on with a Microsoft

account could be used. A user can link a local Microsoft Windows account with his or her Microsoft

account. Then, when the user signs in to a device using that Microsoft account, any Windows Store

app that supports Microsoft account sign-in can automatically detect that the user is already

authenticated and the app doesn't require the user to sign in app. The advantage of this approach

over credential roaming is that the Microsoft account works for websites and apps, meaning that

app developers don't have to create their own authentication system. Alternatively, apps could use

the web authentication broker instead. This allows apps to use internet authentication and

authorization protocols like Open Identification (OpenID) or Open Authentication (OAuth) to connect

to online identity providers. This isolate's the user's credentials from the app, as the broker is the

facilitator that communicates with the app. For more info see Managing user info.

Local caching of web service data should be used if you repeatedly access static data or data that

rarely changes, or when data access is expensive in terms of creation, access, or transportation. This

brings many benefits including improving app performance by storing relevant data as close as

possible to the data consumer, and saving network and battery resources.

Managing application data in AdventureWorks Shopper

The AdventureWorks Shopper reference implementation uses app data stores to store the user's

credentials and cached data from the web service. The user's credentials are roamed. For more info

see Storing data in the app data stores and Roaming application data.

AdventureWorks Shopper provides access to its privacy policy in the app's settings as displayed in

the Settings charm. The privacy policy is one of several entry points in the Settings charm, and

informs users of the personal information that is transmitted, how that information is used, stored,

secured, and disclosed. It describes the controls that users have over the use and sharing of their

information and how they may access their information. For more info see Local application data.

AdventureWorks Shopper uses the ASP.NET Web API to implement its web service, and performs

credentials-based authentication with this web service. This approach creates a web service that can

communicate with a broad set of clients including apps, browsers, or back-end services. Product

data from the web service is cached locally in the temporary app data store. For more info see

Accessing data through a web service and Caching data from a web service.

Storing data in the app data stores

When an app is installed, the system gives it its own per-user data stores for application data such as

settings and files. The lifetime of application data is tied to the lifetime of the app. If the app is

removed, all of the application data will be lost.

http://msdn.microsoft.com/en-us/library/windows/apps/br229572.aspx

126

There are three data stores for application data:

 The local data store is used for persistent data that exists only on the device.

 The roaming data store is used for data that exists on all trusted devices on which the user

has installed the app.

 The temporary data store is used for data that could be removed by the system at any time.

You use the application data API to work with application data with the system being responsible for

managing its physical storage.

Settings in the app data store are stored in the registry. When you use the application data API,

registry access is transparent. Within its app data store each app has a root container for settings.

Your app can add settings and new containers to the root container.

Files in the app data store are stored in the file system. Within its app data store, each app has

system-defined root directories—one for local files, one for roaming files, and one for temporary

files. Your app can add new files and new directories to the root directory.

App settings and files can be local or roaming. The settings and files that your app adds to the local

data store are only present on the local device. The system automatically synchronizes settings and

files that your app adds to the roaming data store on all trusted devices on which the user has

installed the app.

For more info see Accessing app data with the Windows Runtime.

Local application data

Local application data should be used to store data that needs to be preserved between application

sessions, and it is not suitable type or size wise for roaming data. There is no size restriction on local

data.

In the AdventureWorks Shopper reference implementation only the SessionStateService class stores

data in the local application data store. For more info see Handling suspend, resume, and activation.

For more info see Quickstart: Local application data.

Roaming application data

If you use roaming data in your app, and a user installs your app on multiple devices, Windows keeps

the application data in sync. Windows replicates roaming data to the cloud when it is updated and

synchronizes the data to the other trusted devices on which the app is installed. This provides a

desirable user experience, since the app on different devices is automatically configured according

to the user preferences on the first device. Any future changes to the settings and preferences will

also transition automatically. Windows can also transition session or state information. This enables

users to continue to use an app session that was abandoned on one device when they transfer to a

second device.

http://msdn.microsoft.com/en-us/library/windows/apps/hh464917.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700361.aspx

127

Roaming data should be used for all size-bound data and settings that are used to preserve a user's

settings preferences as well as app session state. Any data that is only meaningful on a specific

device, such as the path to a local file, should not be roamed.

Each app has a quota for roaming application data that is defined by the

ApplicationData.RoamingStorageQuota property. If your roaming data exceeds the quota it won't

roam until its size is less than the quota again. In AdventureWorks Shopper, we wanted to use

roaming data to transfer partially completed shopping cart data to other devices when the initial

device is abandoned. However, this was not feasible due to the enforced quota. Instead, this

functionality is provided by the web service that the AdventureWorks Shopper reference

implementation connects to. The data that roams in AdventureWorks Shopper are the user's

credentials.

Note Roaming data for an app is available in the cloud as long as it is accessed by the user from

some device within 30 days. If the user does not run an app for longer than 30 days, its roaming data

is removed from the cloud. If the user uninstalls an app, its roaming data isn't automatically

removed from the cloud. If the user reinstalls the app within 30 days, the roaming data is

synchronized from the cloud.

Windows roams app data opportunistically and so an instant sync is not guaranteed. For time critical

settings a special high priority settings unit is available that provides more frequent updates. It is

limited to one specific setting that must be named "HighPriority." It can be a composite setting, but

the total size is limited to 8KB. This limit is not enforced and the setting will be treated as a regular

setting, meaning that it will be roamed under regular priority, in case the limit is exceeded. However,

if you are using a high latency network, roaming could still be significantly delayed.

For more info see Guidelines for roaming application data.

Storing and roaming user credentials

Apps can store the user's password in the credential locker by using the

Windows.Security.Credentials namespace. The credential locker provides a common approach for

storing and managing passwords in a protected store. However, passwords should only be saved in

the credential locker if the user has successfully signed in and opted to save passwords.

Note The credential locker should only be used for storing passwords and not for other items of

data.

A credential in the credential locker is associated with a specific app or service. Apps and services do

not have access to credentials associated with other apps or services. The credential l ocker from one

trusted device is automatically transferred to any other trusted device for that user. This means that

credential roaming is enabled by default for credentials stored in the credential locker on non -

domain joined devices. Credentials from local connected accounts on domain-joined computers can

roam. However, domain-connected accounts are subject to roaming restrictions if the credentials

have only been saved on the domain-joined device.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.storage.applicationdata.roamingstoragequota.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465094.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.credentials.aspx

128

You can enable credential roaming by connecting your device to the cloud by using your Microsoft

account. This allows your credentials to roam to all of your trusted devices whenever you sign in

with a Microsoft account.

Note Data stored in the credential locker will only roam if a user has made a device trusted.

The ICredentialStore interface, provided by the Microsoft.Practices.Prism.StoreApps library, defines

method signatures for loading and saving credentials. The following code example shows this

interface.

C#: Microsoft.Practices.Prism.StoreApps\ICredentialStore.cs

public interface ICredentialStore

{

 void SaveCredentials(string resource, string userName, string password);

 PasswordCredential GetSavedCredentials(string resource);

 void RemoveSavedCredentials(string resource);

}

This interface is implemented by the RoamingCredentialStore class in the AdventureWorks.UILogic

project.

The user is invited to enter their credentials on the sign in flyout, which can be invoked from the

Settings charm, or on the sign in dialog. When the user selects the Submit button on the

SignInFlyOut view, the SignInCommand in the SignInFlyOutViewModel class is executed, which in

turns calls the SignInAsync method. This method then calls the SignInUserAsync method on the

AccountService instance, which in turn calls the LogOnAsync method on the IdentityServiceProxy

instance. The instance of the AccountService class is created by the Unity dependency injection

container. Then, provided that the credentials are valid and the user has opted to save the

credentials, they are stored in the credential locker by calling the SaveCredentials method in the

RoamingCredentialStore instance. The following code example shows how the

RoamingCredentialStore class implements the SaveCredentials method to save the credentials in

the credential locker.

C#: AdventureWorks.UILogic\Services\RoamingCredentialStore.cs

public void SaveCredentials(string resource, string userName, string password)

{

 var vault = new PasswordVault();

 RemoveAllCredentialsByResource(resource, vault);

 // Add the new credential

 var passwordCredential = new PasswordCredential(resource, userName, password);

 vault.Add(passwordCredential);

}

http://go.microsoft.com/fwlink/p/?LinkID=290899

129

The SaveCredentials method creates a new instance of the PasswordVault class that represents a

credential locker of credentials. The old stored credentials for the app are retrieved and removed

before the new credentials are added to the credential locker.

For more info see Credential Locker Overview and How to store user credentials.

Temporary application data

Temporary application data should be used for storing temporary information during an application

session. The temporary data store works like a cache and its files do not roam. The System

Maintenance task can automatically delete data at this location at any time, and the user could also

clear files from the temporary data store using Disk Cleanup.

For more info about how AdventureWorks Shopper uses the temporary app data store see Caching

data from a web service.

Exposing settings through the Settings charm

The Settings charm is a fundamental part of any Windows Store app, and is used to expose app

settings. It is invoked by making a horizontal edge gesture, swiping left with a finger or stylus from

the right of the screen. This displays the charms and you can then select the Settings charm to

display the Settings pane. The Settings pane includes both app and system settings.

The top part of the Settings pane lists entry points for your app settings. Each entry point opens a

Settings flyout that displays the settings themselves. Entry points let you create categories of

settings, grouping related controls together. Windows provides the Permissions and Rate and

review entry points for apps that have been installed through the Windows Store. Side-loaded apps

do not have the Rate and review entry point. The following diagram shows the top part of the

default Settings pane for AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj554668.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465069.aspx

130

Additional app settings are shown when a user is logged into the app. The bottom part of the

Settings pane includes device settings provided by the system, such as volume, brightness, and

power.

In order to customize the default Settings pane you can add a SettingsCommand that represents a

settings entry. In the AdventureWorks Shopper reference implementation this is performed by the

MvvmAppBase class in the Microsoft.Practices.Prism.StoreApps library. The InitializeFrameAsync

method in the MvvmAppBase class subscribes to the CommandsRequested event of the

SettingsPane class that is raised when the user opens the Settings pane. This is shown in the

following code example.

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

SettingsPane.GetForCurrentView().CommandsRequested += OnCommandsRequested;

When the event is raised the OnCommandsRequested event handler in the MvvmAppBase class

creates a SettingsCommand collection, as shown in the following code example.

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

private void OnCommandsRequested(SettingsPane sender,

 SettingsPaneCommandsRequestedEventArgs args)

{

 if (args == null || args.Request == null ||

 args.Request.ApplicationCommands == null)

 {

 return;

 }

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingspane.commandsrequested.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingspane.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx

131

 var applicationCommands = args.Request.ApplicationCommands;

 var settingsCommands = GetSettingsCommands();

 foreach (var settingsCommand in settingsCommands)

 {

 applicationCommands.Add(settingsCommand);

 }

}

This method retrieves the SettingsCommand collection and adds each SettingsCommand to the

ApplicationCommands. All the SettingsCommands will be shown on the Settings pane before the

Permissions entry point.

The SettingsCommands for the app are defined by the GetSettingsCommands override in the App

class, as shown in the following code example.

C#: AdventureWorks.Shopper\App.xaml.cs

protected override IList<SettingsCommand> GetSettingsCommands()

{

 var settingsCommands = new List<SettingsCommand>();

 var accountService = _container.Resolve<IAccountService>();

 var resourceLoader = _container.Resolve<IResourceLoader>();

 var eventAggregator = _container.Resolve<IEventAggregator>();

 if (accountService.SignedInUser == null)

 {

 settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),

 resourceLoader.GetString("LoginText"), (c) =>

 new SignInFlyout(eventAggregator).Show()));

 }

 else

 {

 settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),

 resourceLoader.GetString("LogoutText"), (c) =>

 new SignOutFlyout().Show()));

 settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),

 resourceLoader.GetString("AddShippingAddressTitle"), (c) =>

 NavigationService.Navigate("ShippingAddress", null)));

 settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),

 resourceLoader.GetString("AddBillingAddressTitle"), (c) =>

 NavigationService.Navigate("BillingAddress", null)));

 settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),

 resourceLoader.GetString("AddPaymentMethodTitle"), (c) =>

 NavigationService.Navigate("PaymentMethod", null)));

 settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),

 resourceLoader.GetString("ChangeDefaults"), (c) =>

 new ChangeDefaultsFlyout().Show()));

 }

 settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingspanecommandsrequest.applicationcommands.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx

132

 resourceLoader.GetString("PrivacyPolicy"), async (c) => await

 Launcher.LaunchUriAsync(new

 Uri(resourceLoader.GetString("PrivacyPolicyUrl")))));

 settingsCommands.Add(new SettingsCommand(Guid.NewGuid().ToString(),

 resourceLoader.GetString("Help"), async (c) => await

 Launcher.LaunchUriAsync(new Uri(resourceLoader.GetString("HelpUrl")))));

 return settingsCommands;

}

Each SettingsCommand defines an item that is used to populate the Settings pane. In the

AdventureWorks Shopper reference implementation they allow one of three possible actions to

occur—a flyout to be shown, in-app navigation to take place, or an external hyperlink to be

launched.

When a user selects the Login entry point, the SignInFlyout must be displayed. This flyout class

derives from the SettingsFlyout class, which provides in-context access to settings that affect the

current app. The SettingsFlyout class provides the light dismiss behavior that's seen throughout

Windows. Therefore, when the user selects a UI element that is not part of the flyout, the flyout

automatically dismisses itself.

For more info see Guidelines for app settings.

Creating data transfer objects

A data transfer object (DTO) is a container for a set of aggregated data that needs to be transferred

across a network boundary. DTOs should contain no business logic and limit their behavior to

activities such as validation.

Using the Model-View-ViewModel pattern describes the Model-View-ViewModel (MVVM) pattern

used in AdventureWorks Shopper. The model elements of the pattern are contained in the

AdventureWorks.UILogic and AdventureWorks.WebServices projects, which represent the domain

entities used in the app. The following diagram shows the key model classes in the

AdventureWorks.UILogic project, and the relationships between them.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.settingsflyout.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh770544.aspx

133

The repository and controller classes in the AdventureWorks.WebServices project accept and return

the majority of these model objects. Therefore, they are used as DTOs that hold all the data that is

passed between the app and the web service. The benefits of using DTOs to pass data to and receive

data from a web service are that:

 By transmitting more data in a single remote call, the app can reduce the number of remote

calls. In most scenarios, a remote call carrying a larger amount of data takes virtually the

same time as a call that carries only a small amount of data.

 Passing more data in a single remote call more effectively hides the internals of the web

service behind a coarse-grained interface.

 Defining a DTO can help in the discovery of meaningful business objects. When creating

DTOs, you often notice groupings of elements that are presented to a user as a cohesive set

of information. Often these groups serve as useful prototypes for objects that describe the

business domain that the app deals with.

 Encapsulating data into a serializable object can improve testability.

For more info about how the model classes are used as DTOs see Consuming data from a web

service using DTOs.

Accessing data through a web service

Web services extend the World Wide Web infrastructure to provide the means for software to

connect to other software apps. Apps access web services via ubiquitous web protocols and data

formats such as HTTP, XML, SOAP, with no need to worry about how the web service is

implemented.

Connecting to a web service from a Windows Store app introduces a set of development challenges:

134

 The app must minimize the use of network bandwidth.

 The app must minimize its impact on the device's battery life.

 The web service must offer an appropriate level of security.

 The web service must be easy to develop against.

 The web service should potentially support a range of client platforms.

These challenges will be addressed in the following sections.

Note Windows 8.1 introduces the Windows.Web.Http namespace, which should be used for

Windows Store apps that connect to HTTP and REST-based web services.

Consuming data

The AdventureWorks Shopper reference implementation stores data in an in-memory database

that's accessed through a web service. The app must be able to send data to and receive data from

the web service. For example, it must be able to retrieve product data in order to display it to the

user, and it must be able to retrieve and send billing data and shopping cart data.

Users may be using AdventureWorks Shopper in a limited bandwidth environment, and so the

developers wanted to limit the amount of bandwidth used to transfer data between the app and the

web service. In addition to this, the developers wanted to ensure that the data transfer is reliable.

Ensuring that data reliably downloads from the web service is important in e nsuring a good user

experience and hence maximizing the number of potential orders that will be made. Ensuring that

shopping cart data reliably uploads to the web service is important in order to maximize actual

orders, and their correctness.

The developers also wanted a solution that was simple to implement, and that could be easily

customized in the future if, for example, authentication requirements were to change. In addition,

the developers wanted a solution that could potentially work with platforms other than Windows.

With these requirements in mind, the AdventureWorks Shopper team had to consider three

separate aspects of the solution: how to expose data from the web service, the format of the data

that moves between the web service and the app, and how to consume web service data in the app.

Exposing data

The AdventureWorks Shopper reference implementation uses the ASP.NET Web API to implement

its web service, and performs credentials-based authentication with this web service. This approach

creates a resource-oriented web service that is activated through simple action-oriented verbs such

as GET, and that can respond by sending content in a variety of formats such as HTML, XML, a JSON

string, or binary data. The web service can communicate with a broad set of clients including apps,

browsers, or back-end services. In addition, it offers the advantage that if the input or output model

for the service changes in future, the app simply has to change the query string that is sent to the

web service, or parse the data received from the web service differently.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.aspx

135

Data formats

The AdventureWorks Shopper reference implementation uses the JSON format to transfer order

data to the web service, and to cache web service data locally on disk, because it produces a

compact payload that reduces bandwidth requirements and is relatively easy to use.

The AdventureWorks developers considered compressing data before transferring it to the web

service in order to reduce bandwidth utilization, but decided that the additional CPU and battery

usage on devices would outweigh the benefits. You should evaluate this tradeoff between the cost

of bandwidth and battery consumption in your app before you decide whether to compress data you

need to move over the network.

Note Additional CPU usage affects both the responsiveness of the device and its battery life.

For more info about caching see Caching data from a web service.

Consuming data from a web service using DTOs

Analysis of the data transfer requirements revealed only limited interactions with the web service,

so AdventureWorks Shopper implements a set of custom DTO classes to handle the data transfer

with the web service. For more info see Creating data transfer objects. In order to further reduce the

interaction with the web service, as much data as possible is retrieved in a single call to it. For

example, instead of retrieving product categories in one web service call, and then retrieving

products for a category in a second web service call, AdventureWorks Shopper retrieves a category

and its products in a single web service call.

In the future, AdventureWorks may decide to use the OData protocol in order to use features such

as batching and conflict resolution.

Note AdventureWorks Shopper does not secure the web service with Secure Sockets Layer (SSL), so

a malicious client could impersonate the app and send malicious data. In your own app, you should

protect any sensitive data that you need to transfer between the app and a web service by using SSL.

The following diagram shows the interaction of the classes that implement reading product category

data for the hub page in AdventureWorks Shopper.

136

The ProductCatalogRepository is used to manage the data retrieval process, either from the web

service or from a temporary cache stored on disk. The ProductCatalogServiceProxy class is used to

retrieve product category data from the web service, with the TemporaryFolderCacheService class

being used to retrieve product category data from the temporary cache.

In the OnInitialize method in the App class, the ProductCatalogRepository class is registered as a

type mapping against the IProductCatalogRepository type with the Unity dependency injection

container. Similarly, the ProductCatalogServiceProxy class is registered as a type mapping against

the IProductCatalogService type. Then, when a view model class such as the HubPageViewModel

class accepts an IProductCatalogRepository type, the Unity container will resolve the type and

return an instance of the ProductCatalogRepository class.

When the HubPage is navigated to, the OnNavigatedTo method in the HubPageViewModel class is

called. The following example shows code from the OnNavigatedTo method, which uses the

ProductCatalogRepository instance to retrieve category data for display on the HubPage.

C#: AdventureWorks.UILogic\ViewModels\HubPageViewModel.cs

rootCategories = await _productCatalogRepository.GetRootCategoriesAsync(5);

The call to the GetRootCategoriesAsync method specifies the maximum amount of products to be

returned for each category. This parameter can be used to optimize the amount of data returned by

the web service, by avoiding returning an indeterminate number of products for each category.

137

The ProductCatalogRepository class, which implements the IProductCatalogRepository interface,

uses instances of the ProductCatalogServiceProxy and TemporaryFolderCacheService classes to

retrieve data for display on the UI. The following code example shows the GetSubCategoriesAsync

method, which is called by the GetRootCategoriesAsync method, to asynchronously retrieve data

from either the temporary cache on disk, or from the web service.

C#: AdventureWorks.UILogic\Repositories\ProductCatalogRepository.cs

public async Task<ReadOnlyCollection<Category>> GetSubcategoriesAsync(

 int parentId, int maxAmountOfProducts)

{

 string cacheFileName = String.Format("Categories-{0}-{1}", parentId,

 maxAmountOfProducts);

 try

 {

 // Case 1: Retrieve the items from the cache

 return await _cacheService

 .GetDataAsync<ReadOnlyCollection<Category>>(cacheFileName);

 }

 catch (FileNotFoundException)

 { }

 // Retrieve the items from the service

 var categories = await _productCatalogService

 .GetCategoriesAsync(parentId, maxAmountOfProducts);

 // Save the items in the cache

 await _cacheService.SaveDataAsync(cacheFileName, categories);

 return categories;

}

The method first calls the GetDataAsync method in the TemporaryFolderCacheService class to

check if the requested data exists in the cache, and if it does, whether it has expired or not.

Expiration is judged to have occurred if the data is present in the cache, but it is more than 5

minutes old. If the data exists in the cache and hasn't expired it is returned, otherwise a

FileNotFoundException is thrown. If the data does not exist in the cache, or if it exists and has

expired, a call to the GetCategoriesAsync method in the ProductCatalogServiceProxy class retrieves

the data from the web service before it is cached.

The ProductCatalogServiceProxy class, which implements the IProductCatalogService interface, is

used to retrieve product data from the web service if the data is not cached, or the cached data has

expired. The following code example shows the GetCategoriesAsync method that is invoked by the

GetSubCategoriesAsync method in the ProductCatalogRepository class.

http://msdn.microsoft.com/en-us/library/windows/apps/system.io.filenotfoundexception.aspx

138

C#: AdventureWorks.UILogic\Services\ProductCatalogServiceProxy.cs

public async Task<ReadOnlyCollection<Category>> GetCategoriesAsync(

 int parentId, int maxAmountOfProducts)

{

 using (var httpClient = new HttpClient())

 {

 var response = await httpClient.GetAsync(new Uri

 (string.Format("{0}?parentId={1}&maxAmountOfProducts={2}",

 _categoriesBaseUrl, parentId, maxAmountOfProducts)));

 response.EnsureSuccessStatusCode();

 var responseContent = await response.Content.ReadAsStringAsync();

 var result =

JsonConvert.DeserializeObject<ReadOnlyCollection<Category>>(responseContent);

 return result;

 }

}

This method asynchronously retrieves the product categories from the web service by using the

HttpClient class to send HTTP requests and receive HTTP responses from a URI. The call to

HttpClient.GetAsync sends a GET request to the specified URI as an asynchronous operation, and

returns a Task of type HttpResponseMessage that represents the asynchronous operation. The

returned Task will complete after the content from the response is read. For more info about the

HttpClient class see Connecting to an HTTP server using Windows.Web.Http.HttpClient.

When the GetCategoriesAsync method calls HttpClient.GetAsync this calls the GetCategories

method in the CategoryController class in the AdventureWorks.WebServices project, which is shown

in the following code example.

C#: AdventureWorks.WebServices\Controllers\CategoryController.cs

public IEnumerable<Category> GetCategories(int parentId, int maxAmountOfProducts)

{

 var categories = _categoryRepository.GetAll()

 .Where(c => c.ParentId == parentId);

 var trimmedCategories = categories.Select(NewCategory).ToList();

 FillProducts(trimmedCategories);

 foreach (var trimmedCategory in trimmedCategories)

 {

 var products = trimmedCategory.Products.ToList();

 if (maxAmountOfProducts > 0)

 {

 products = products.Take(maxAmountOfProducts).ToList();

 }

 trimmedCategory.Products = products;

 }

 return trimmedCategories;

}

http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.getasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpresponsemessage.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn440594.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.getasync.aspx

139

This method uses an instance of the CategoryRepository class to return a static collection of

Category objects that contain the category data returned by the web service.

Caching data from a web service

The AdventureWorks Shopper TemporaryFolderCacheService class is used to cache data from the

web service to the temporary app data store used by the app. This helps to reduce communication

with the web service, which minimizes the impact on the device's battery life. This service is used by

the ProductCatalogRepository class to decide whether to retrieve products from the web service, or

from the cache in the temporary app data store.

As previously mentioned, the GetSubCategoriesAsync method in the ProductCatalogRepository

class is used to asynchronously retrieve data from the product catalog. When it does this it first

attempts to retrieve cached data from the temporary app data store by calling the GetDataAsync

method, which is shown in the following code example.

C#: AdventureWorks.UILogic\Services\TemporaryFolderCacheService.cs

public async Task<T> GetDataAsync<T>(string cacheKey)

{

 await CacheKeyPreviousTask(cacheKey);

 var result = GetDataAsyncInternal<T>(cacheKey);

 SetCacheKeyPreviousTask(cacheKey, result);

 return await result;

}

private async Task<T> GetDataAsyncInternal<T>(string cacheKey)

{

 StorageFile file = await _cacheFolder.GetFileAsync(cacheKey);

 if (file == null) throw new FileNotFoundException("File does not exist");

 // Check if the file has expired

 var fileBasicProperties = await file.GetBasicPropertiesAsync();

 var expirationDate = fileBasicProperties.DateModified

 .Add(_expirationPolicy).DateTime;

 bool fileIsValid = DateTime.Now.CompareTo(expirationDate) < 0;

 if (!fileIsValid) throw new FileNotFoundException("Cache entry has expired.");

 string text = await FileIO.ReadTextAsync(file);

 var toReturn = Deserialize<T>(text);

 return toReturn;

}

140

The CacheKeyPreviousTask method ensures that since only one I/O operation at a time may access

a cache key, cache read operations always wait for the prior task of the current cache key to

complete before they start. The GetDataAsyncInternal method is called to see if the requested data

exists in the cache, and if it does, whether it has expired or not.

The SaveDataAsync method in the TemporaryFolderCacheService class saves data retrieved from

the web service to the cache, and is shown in the following code example.

C#: AdventureWorks.UILogic\Services\TemporaryFolderCacheService.cs

public async Task SaveDataAsync<T>(string cacheKey, T content)

{

 await CacheKeyPreviousTask(cacheKey);

 var result = SaveDataAsyncInternal<T>(cacheKey, content);

 SetCacheKeyPreviousTask(cacheKey, result);

 await result;

}

private async Task SaveDataAsyncInternal<T>(string cacheKey, T content)

{

 StorageFile file = await _cacheFolder.CreateFileAsync(cacheKey,

 CreationCollisionOption.ReplaceExisting);

 var textContent = Serialize<T>(content);

 await FileIO.WriteTextAsync(file, textContent);

}

As with the read operations, since only one I/O operation at a time may access a cache key, cache

write operations always wait for the prior task of the current cache key to complete before they

start. The SaveDataAsyncInternal method is called to serialize the data from the web service to the

cache.

Note AdventureWorks Shopper does not directly cache images from the web service. Instead, we

rely on the Image control’s ability to cache images and display them if the server responds with an

image.

Authenticating users with a web service

The AdventureWorks Shopper web service needs to know the identity of the user who places an

order. The app externalizes as much of the authentication functionality as possible. This provides the

flexibility to make changes to the approach used to handle authentication in the future without

affecting the app. For example, the approach could be changed to enable users to identify

themselves by using a Microsoft account. It's also important to ensure that the mechanism that the

app uses to authenticate users is easy to implement on other platforms.

Ideally the web service should use a flexible, standards-based approach to authentication. However,

such an approach is beyond the scope of this project. The approach adopted here is that the app

requests a password challenge string from the web service that it then hashes using the user's

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.aspx

141

password as the key. This hashed data is then sent to the web service where it's compared against a

newly computed hashed version of the password challenge string, using the user's password stored

in the web service as the key. Authentication only succeeds if the app and the web service have

computed the same hash for the password challenge string. This approach avoids sending the user's

password to the web service.

Note In the future, the app could replace the simple credentials authentication system with a

claims-based approach. One option is to use the Simple Web Token and OAuth 2.0 protocol. This

approach offers the following benefits:

 The authentication process is managed externally from the app.

 The authentication process uses established standards.

 The app can use a claims-based approach to handle any future authorization requirements.

The following illustration shows the interaction of the classes that implement credentials -based

authentication in the AdventureWorks Shopper reference implementation.

Credentials-based user authentication is performed by the AccountService and IdentityServiceProxy

classes in the app, and by the IdentityController class in the web service. In the OnInitialize method

in the App class the AccountService class is registered as a type mapping against the

IAccountService type with the Unity dependency injection container. Then, when a view model class

such as the SignInFlyoutViewModel class accepts an IAccountService type, the Unity container will

resolve the type and return an instance of the AccountService class.

When the user selects the Submit button on the SignInFlyout, the SignInCommand in the

SignInFlyOutViewModel class is executed, which in turn calls the SignInAsync method. This method

142

then calls the SignInUserAsync method on the AccountService instance. If the sign in is successful,

the SignInFlyOut view is closed. The following code example shows part of the SignInUserAsync

method in the AccountService class.

C#: AdventureWorks.UILogic\Services\AccountService.cs

var result = await _identityService.LogOnAsync(userName, password);

The SignInUserAsync method calls the LogOnAsync method in the instance of the

IdentityServiceProxy class that's injected into the AccountService constructor from the Unity

dependency injection container. The IdentityServiceProxy class, which implements the

IIdentityService interface, uses the LogOnAsync method to authenticate user credentials with the

web service. The following code example shows this method.

C#: AdventureWorks.UILogic\Services\IdentityServiceProxy.cs

public async Task<LogOnResult> LogOnAsync(string userId, string password)

{

 using (var client = new HttpClient())

 {

 // Ask the server for a password challenge string

 var requestId = CryptographicBuffer

 .EncodeToHexString(CryptographicBuffer.GenerateRandom(4));

 var challengeResponse = await client.GetAsync(new Uri(_clientBaseUrl +

 "GetPasswordChallenge?requestId=" + requestId));

 challengeResponse.EnsureSuccessStatusCode();

 var challengeEncoded = await challengeResponse.Content

 .ReadAsStringAsync();

 challengeEncoded = challengeEncoded.Replace(@"""", string.Empty);

 var challengeBuffer = CryptographicBuffer

 .DecodeFromHexString(challengeEncoded);

 // Use HMAC_SHA512 hash to encode the challenge string using the password

 // being authenticated as the key.

 var provider = MacAlgorithmProvider

 .OpenAlgorithm(MacAlgorithmNames.HmacSha512);

 var passwordBuffer = CryptographicBuffer

 .ConvertStringToBinary(password, BinaryStringEncoding.Utf8);

 var hmacKey = provider.CreateKey(passwordBuffer);

 var buffHmac = CryptographicEngine.Sign(hmacKey, challengeBuffer);

 var hmacString = CryptographicBuffer.EncodeToHexString(buffHmac);

 // Send the encoded challenge to the server for authentication (to avoid

 // sending the password itself)

 var response = await client.GetAsync(new Uri(_clientBaseUrl + userId +

 "?requestID=" + requestId +"&passwordHash=" + hmacString));

 // Raise exception if sign in failed

 response.EnsureSuccessStatusCode();

143

 // On success, return sign in results from the server response packet

 var responseContent = await response.Content.ReadAsStringAsync();

 var result = JsonConvert.DeserializeObject<UserInfo>(responseContent);

 var serverUri = new Uri(Constants.ServerAddress);

 return new LogOnResult { UserInfo = result };

 }

}

This method generates a random request identifier that is encoded as a hex string and sent to the

web service. The GetPasswordChallenge method in the IdentityController class in the

AdventureWorks.WebServices project receives the request identifier and responds with a

hexadecimal encoded password challenge string that the app reads and decodes. The app then

hashes the password challenge with the HMACSHA512 hash function, using the user's password as

the key. The hashed password challenge is then sent to the web service for authentication by the

GetIsValid method in the IdentityController class in the AdventureWorks.WebServices project. If

authentication succeeds, a new instance of the LogOnResult class is returned by the method.

The LogOnAsync method communicates with the web service through calls to HttpClient.GetAsync,

which sends a GET request to the specified URI as an asynchronous operation, and returns a Task of

type HttpResponseMessage that represents the asynchronous operation. The returned Task will

complete after the content from the response is read. For more info about the HttpClient class see

Connecting to an HTTP server using Windows.Web.Http.HttpClient.

The IdentityController class, in the AdventureWorks.WebServices project, is responsible for sending

hexadecimal encoded password challenge strings to the app, and for performing authentication of

the hashed password challenges it receives from the app. The class contains a static Dictionary

named Identities that contains the valid credentials for the web service. The following code example

shows the GetIsValid method in the IdentityController class.

C#: AdventureWorks.WebServices\Controllers\IdentityController.cs

public UserInfo GetIsValid(string id, string requestId, string passwordHash)

{

 byte[] challenge = null;

 if (requestId != null && ChallengeCache.Contains(requestId))

 {

 // Retrieve the saved challenge bytes

 challenge = (byte[])ChallengeCache[requestId];

 // Delete saved challenge (each challenge is used just one time).

 ChallengeCache.Remove(requestId);

 }

 lock (Identities)

 {

 // Check that credentials are valid.

 if (challenge != null && id != null && passwordHash != null &&

 Identities.ContainsKey(id))

 {

http://msdn.microsoft.com/en-us/library/windows/apps/system.security.cryptography.hmacsha512.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.getasync.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpresponsemessage.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.web.http.httpclient.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn440594.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xfhwa508.aspx

144

 // Compute hash for the previously issued challenge string using the

 // password from the server's credentials store as the key.

 var serverPassword = Encoding.UTF8.GetBytes(Identities[id]);

 using (var provider = new HMACSHA512(serverPassword))

 {

 var serverHashBytes = provider.ComputeHash(challenge);

 // Authentication succeeds only if client and server have computed

 // the same hash for the challenge string.

 var clientHashBytes = DecodeFromHexString(passwordHash);

 if (!serverHashBytes.SequenceEqual(clientHashBytes))

 throw new HttpResponseException(HttpStatusCode.Unauthorized);

 }

 if (HttpContext.Current != null)

 FormsAuthentication.SetAuthCookie(id, false);

 return new UserInfo { UserName = id };

 }

 else

 {

 throw new HttpResponseException(HttpStatusCode.Unauthorized);

 }

 }

}

This method is called in response to the LogOnAsync method sending a hashed password challenge

string to the web service. The method retrieves the previously issued password challenge string that

was sent to the app, and then removes it from the cache as each password challenge string is used

only once. The retrieved password challenge is then hashed with the HMACSHA512 hash function,

using the user's password stored in the web service as the key. The newly computed hashed

password challenge string is then compared against the hashed challenge string received from the

app. Authentication only succeeds if the app and the web service have computed the same hash for

the password challenge string, in which case a new UserInfo instance containing the user name is

returned to the LogOnAsync method.

Note The Windows Runtime includes APIs that provide authentication, authorization and data

security. For example, the AdventureWorks Shopper reference implementation uses the

MacAlgorithmProvider class to securely authenticate user credentials over an unsecured channel.

However, this is only one choice among many. For more info see Introduction to Windows Store app

security.

http://msdn.microsoft.com/en-us/library/windows/apps/system.security.cryptography.hmacsha512.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.cryptography.core.macalgorithmprovider.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464989.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464989.aspx

145

Handling suspend, resume, and activation in a Windows Store

business app using C#, XAML, and Prism

Summary

 Save application data when the app is being suspended.

 Use the saved application data to restore the app when needed.

 Allow views and view models to save and restore state that's relevant to each by using the

MvvmAppBase class, the VisualStateAwarePage class, and the RestorableState custom

attribute, provided by the Microsoft.Practices.Prism.StoreApps library.

Learn how to use Prism for the Windows Runtime to manage the execution states of Windows Store

business apps that use the Model-View-ViewModel (MVVM) pattern. The AdventureWorks Shopper

reference implementation saves view and view model state when the app is suspended, and

restores that state when the app is reactivated from termination.

You will learn

 How Windows determines an app's execution state.

 How to implement support for suspend, resume, and activation by using the

Microsoft.Practices.Prism.StoreApps library.

 How to save and restore view model state.

 How to save and restore view state.

 How to save and restore state from service and repository classes.

 How to close a Windows Store app.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Making key decisions

Windows Store apps should be designed to save their state and suspend when the user switches

away from them. They could restore their state and resume when the user switches back to them.

The following list summarizes the decisions to make when implementing suspend and resume in

your app:

 Should your app be activated through any contracts or extensions or will it only be activated

by the user launching it?

 Does your app need to behave differently when it's closed by the user rather than when it's

closed by Windows?

146

 Does your app need to resume as the user left it, rather than starting it fresh, following

suspension?

 Does your app need to start fresh if a long period of time has elapsed since the user last

accessed it?

 Should your app update the UI when resuming from suspension?

 Does your app need to request data from a network or retrieve large amounts of data from

disk when launched?

Your app must register to receive the Activated event in order to participate in activation. If your

app needs to be activated through any contracts or extensions other than just normal launch by the

user, you can use your app's Activated event handler to test to see how the app was activated.

Examples of activation other than normal user launch include another app launching a file whose file

type your app is registered to handle, and your app being chosen as the target for a share operation.

For more info see Activating an app.

If your app needs to behave differently when it is closed by the user, rather than when it is closed by

Windows, the Activated event handler can be used to determine whether the app was terminated

by the user or by Windows. For more info see Activating an app.

Following suspension, most Windows Store apps should resume as the user left them rather than

starting fresh. Explicitly saving your application data helps ensure that the user can resume your app

even if Windows terminates it. It's a best practice to have your app save its state when it's

suspended and restore its state when it's launched after termination. However, if your app was

unexpectedly closed, assume that stored application data is possibly corrupt. The app should not try

to resume but rather start fresh. Otherwise, restoring corrupt application data could lead to an

endless cycle of activation, crash, and being closed. For more info see Guidelines for app suspend

and resume (Windows Store apps), Suspending an app, Resuming an app, and Activating an app.

If there's a good chance that users won't remember or care about what was happening when they

last saw your app, launch it from its default launch state. You must determine an appropriate period

after which your app should start fresh. For example, a news reader app should start afresh if the

downloaded news articles are stale. However, if there is any doubt about whether to resume or start

fresh, you should resume the app right where the user left off. For more info see Resuming an app

and Activating an app.

When resuming your app after it was suspended, update the UI if the content has changed since it

was last visible to the user. This ensures that to the user the app appears as though it was running in

the background. For more info see Resuming an app.

If your app needs to request data from a network or retrieve large amounts of data from disk, when

the app is launched, these activities should be completed outside of activation. Use a custom loading

UI or an extended splash screen while the app waits for these long running operations to finish. For

more info see How to activate an app.

http://msdn.microsoft.com/en-us/library/windows/apps/hh438373.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh438373.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465093.aspx

147

Suspend and resume in AdventureWorks Shopper

The AdventureWorks Shopper reference implementation was designed to suspend correctly when

the user moves away from it, or when Windows enters a low power state. It was also designed to

resume correctly when the user moves back to it, or when Windows leaves the low power state.

AdventureWorks Shopper uses the Microsoft.Practices.Prism.StoreApps library to provide both view

and view model support for suspend and resume. This was achieved by:

 Saving application data when the app is being suspended.

 Resuming the app in the state that the user left it in.

 Saving the page state to minimize the time required to suspend the app when navigating

away from a page.

 Allowing views and view models to save and restore state that's relevant to each. For

example, AdventureWorks Shopper saves the scroll position of certain GridView controls as

view state. This is achieved by overriding the SaveState and LoadState methods of the

VisualStateAwarePage class in a view's class.

 Using the saved application data to restore the app state, when the app resumes after being

terminated.

For more info, see Guidelines for app suspend and resume (Windows Store apps) .

Understanding possible execution states

Which events occur when you activate an app depends on the app's execution history. There are five

cases to consider. The cases correspond to the values of the

Windows.ActivationModel.Activation.ApplicationExecutionState enumeration.

 NotRunning

 Terminated

 ClosedByUser

 Suspended

 Running

The following diagram shows how Windows determines an app's execution state. In the diagram,

the white rectangles indicate that the app isn't loaded into system memory. The blue rectangles

indicate that the app is in memory. The dashed arcs are changes that occur without any notification

to the running app. The solid arcs are actions that include app notification.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx

148

The execution state depends on the app's history. For example, when the user starts the app for the

first time after installing it or after restarting Windows, the previous execution state is NotRunning,

and the state after activation is Running. When activation occurs, the activation event arguments

include a PreviousExecutionState property that indicates the state the app was in before it was

activated.

If the user switches to a different app or if the system enters a low power mode of operation,

Windows notifies the app that it's being suspended. At this time, you must save the navigation state

and all user data that represents the user's session. You should also free exclusive system resources,

like open files and network connections.

Windows allows 5 seconds for an app to handle the Suspending event. If the Suspending event

handler doesn't complete within that amount of time, Windows behaves as though the app has

stopped responding and terminates it. After the app responds to the Suspending event, its state is

Suspended. If the user switches back to the app, Windows resumes it and allows it to run again.

Note In Windows 8.1 if the user closes an app and then immediately restarts it, the closed app is

given up to five seconds to complete its termination before it restarts.

Windows might terminate an app, without notification, after it has been suspended. For example, if

the device is low on resources it might reclaim resources that are held by suspended apps. If the

user launches your app after Windows has terminated it, the app's previous execution state at the

time of activation is Terminated.

You can use the previous execution state to determine whether your app needs to restore the data

that it saved when it was last suspended, or whether you must load your app's default data. In

general, if the app stops responding or the user closes it, restarting the app should take the user to

the app's default initial navigation state. When an app is activated after being terminated, it should

load the application data that it saved during suspension so that the app appears as it did when it

was suspended.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.previousexecutionstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.suspending.aspx

149

When an app is suspended but hasn't yet been terminated, you can resume the app without

additional work as it will still be in memory.

For a description of the suspend and resume process, see Application lifecycle (Windows Store

apps). For more info about each of the possible previous execution states, see the

ApplicationExecutionState enumeration. You might also want to consult Guidelines for app suspend

and resume (Windows Store apps) for info about the recommended user experience for suspend

and resume.

Implementation approaches for suspend and resume

For Windows Store apps such as the AdventureWorks Shopper reference implementation that use

the Microsoft.Practices.Prism.StoreApps library, implementing suspend and resume involves four

components:

 Windows Core. The CoreApplicationView class's Activated event allows an app to receive

activation-related notifications.

 XAML. The Application class provides the OnLaunched method that your app's class should

override to perform application initialization and to display the initial content. The

Application class invokes the OnLaunched method when the user starts the app. When you

create a new project for a Windows Store app using one of the Visual Studio project

templates for C# apps, Visual Studio creates an App class that derives from Application and

overrides the OnLaunched method. In MVVM apps such as AdventureWorks Shopper, much

of the Visual Studio created code in the App class has been moved to the MvvmAppBase

class that the App class then derives from.

 Microsoft.Practices.Prism.StoreApps classes. If you base your MVVM app on the reusable

classes of the Microsoft.Practices.Prism.StoreApps library, many aspects of suspend/resume

will be provided for you. For example, the SessionStateService class will provide a way to

save and restore state. If you annotate properties of your view models with the

RestorableState custom attribute, they will automatically be saved and restored at the

correct time. The SessionStateService also interacts with the Frame class to save and restore

the app's navigation stack for you.

 Your app's classes. View classes can save view state with each invocation of the

OnNavigatedFrom method. For example, some view classes in AdventureWorks Shopper

save user interface state such as scroll bar position. Model state is saved by view model

classes, through the base ViewModel class.

Note A user can activate an app through a variety of contracts and extensions. The Application class

only calls the OnLaunched method in the case of a normal launch. For more info about how to

detect other activation events see the Application class.

AdventureWorks Shopper does not directly interact with the CoreApplicationView class's activation-

related events. We mention them here in case your app needs access to these lower-level

notifications.

http://msdn.microsoft.com/en-us/library/windows/apps/hh464925.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh464925.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.core.coreapplicationview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh438373.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.core.coreapplicationview.aspx

150

Suspending an app

Suspension support is provided by the Microsoft.Practices.Prism.StoreApps library. In order to add

suspension support to an app that derives from the MvvmAppBase class in this library, you only

need to annotate properties of view models that you wish to save during suspension with the

RestorableState custom attribute. In addition, if additional suspension logic is required you should

override the OnNavigatedFrom method of the base ViewModel class. The following diagram shows

the interaction of the classes that implement the suspend operation in AdventureWorks Shopper.

Here, the MvvmAppBase class registers a handler for the Suspending event that is provided by the

Application base class.

Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

C#

this.Suspending += OnSuspending;

Windows invokes the OnSuspending event handler before it suspends the app. The MvvmAppBase

class uses the event handler to save relevant app and user data to persistent storage.

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

private async void OnSuspending(object sender, SuspendingEventArgs e)

{

 IsSuspending = true;

 try

 {

 var deferral = e.SuspendingOperation.GetDeferral();

 //Bootstrap inform navigation service that app is suspending.

 NavigationService.Suspending();

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.suspending.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx

151

 // Save application state

 await SessionStateService.SaveAsync();

 deferral.Complete();

 }

 finally

 {

 IsSuspending = false;

 }

}

The OnSuspending event handler is asynchronous. If a Suspending event's handler is asynchronous,

it must notify its caller when its work has finished. To do this, the handler invokes the GetDeferral

method that returns a SuspendingDeferral object. The Suspending method of the

FrameNavigationService class is then called. The SessionStateService class's SaveAsync method

then persists the app's navigation and user data to disk. After the save operation has finished, the

Complete method of the SuspendingDeferral object is called to notify the operating system that the

app is ready to be suspended. The following code example shows the Suspending method of the

FrameNavigationService class.

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

public void Suspending()

{

 NavigateFromCurrentViewModel(true);

}

The Suspending method of the FrameNavigationService class calls the

NavigateFromCurrentViewModel method that handles the suspension. The following code example

shows the NavigateFromCurrentViewModel method of the FrameNavigationService class.

C#: Microsoft.Practices.Prism.StoreApps\FrameNavigationService.cs

private void NavigateFromCurrentViewModel(bool suspending)

{

 var departingView = _frame.Content as FrameworkElement;

 if (departingView == null) return;

 var frameState = _sessionStateService.GetSessionStateForFrame(_frame);

 var departingViewModel = departingView.DataContext as INavigationAware;

 var viewModelKey = "ViewModel-" + _frame.BackStackDepth;

 if (departingViewModel != null)

 {

 var viewModelState = frameState.ContainsKey(viewModelKey) ?

 frameState[viewModelKey] as Dictionary<string, object> : null;

 departingViewModel.OnNavigatedFrom(viewModelState, suspending);

 }

}

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.suspending.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.webui.suspendingoperation.getdeferral.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.suspendingdeferral.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.suspendingdeferral.complete.aspx

152

The NavigateFromCurrentViewModel method gets the session state for the current view and calls

the OnNavigatedFrom method on the current view model. All OnNavigatedFrom methods feature a

suspending parameter that tells the view model whether it is being suspended. If the parameter is

true it means that no change should be made to state that would invalidate the page and that a

subsequent OnNavigatedTo method might not be called, for instance if the app resumes without

being terminated. This allows you to implement additional functionality in view model classes that

may be required when the OnNavigatedFrom method is called when the app isn't being suspended.

In the NavigateFromCurrentViewModel method the frameState dictionary is the dictionary for the

frame. Each item in the dictionary is a view model that is at a specific depth in the frame back stack.

Each view model also has its own state dictionary, viewModelState, that is passed to the view

model's OnNavigatedFrom method. This approach is preferable to each view model creating entries

in the frameState dictionary using the view models type as the key.

Saving view model state

All of the view model classes in the AdventureWorks Shopper reference implementation derive from

the ViewModel class, provided by the Microsoft.Practices.Prism.StoreApps library, that implements

the OnNavigatedFrom method. This method calls the FillStateDictionary method to add any view

model state to the frame state, as shown in the following code example.

C#: Microsoft.Practices.Prism.StoreApps\ViewModel.cs

public virtual void OnNavigatedFrom(Dictionary<string, object> viewModelState,

 bool suspending)

{

 if (viewModelState != null)

 {

 FillStateDictionary(viewModelState, this);

 }

}

The FillStateDictionary method iterates through any properties in the view model and stores the

value of any properties that possess the [RestorableState] custom attribute. The SaveAsync method

of the SessionStateService class then writes the current session state to disk.

Saving view state

The SaveAsync method calls the GetNavigationState method of each registered Frame object in

order to persist the serialized navigation history (the frame stack). In AdventureWorks Shopper there

is only one registered frame, and it corresponds to the rootFrame in the InitializeFrameAsync

method in the MvvmAppBase class.

When the SaveAsync method calls the GetNavigationState method, it in turn invokes the

OnNavigatedFrom method of each of the frame's associated page objects. The OnNavigatedFrom

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.getnavigationstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.getnavigationstate.aspx

153

method in the VisualStateAwarePage class then invokes the SaveState method of any page that

derives from it, allowing pages to save view state such as the current scroll position of a control.

C#: AdventureWorks.Shopper\Views\HubPage.xaml.cs

protected override void SaveState(System.Collections.Generic.Dictionary<string,

 object> pageState)

{

 if (pageState == null) return;

 base.SaveState(pageState);

 pageState["scrollViewerOffsetProportion"] = ScrollViewerUtilities

 .GetScrollViewerOffsetProportion(_itemsGridViewScrollViewer);

}

Here, the SaveState method preserves state associated with the HubPage, in this case being a value

that reflects the proportion of scrolling that has occurred either horizontally or vertically, depending

on view state, within the ScrollViewer in the AutoRotatingGridView custom control. This value is

retrieved by the GetScrollViewerOffsetProportion method in the ScrollViewerUtilities class. The

value can then be restored when reactivation occurs.

Saving state from service and repository classes

Some service and repository classes also persist state to survive termination. In order to do this they

use an instance of the SessionStateService class that implements the ISessionStateService interface.

The following code example shows how the AccountService class persists the user's credentials.

C#: AdventureWorks.UILogic\Services\AccountService.cs

_sessionStateService.SessionState[UserNameKey] = userName;

_sessionStateService.SessionState[PasswordKey] = password;

Resuming an app

When an app resumes from the Suspended state, it enters the Running state and continues from

where it was when it was suspended. No application data is lost, because it has not been removed

from memory. Most apps don't need to do anything if they are resumed before they are terminated

by the operating system.

The AdventureWorks Shopper reference implementation does not register an event handler for the

Resuming event. In the rare case when an app does register an event handler for the Resuming

event, the handler is called when the app resumes from the Suspended state.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.scrollviewer.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.resuming.aspx

154

Activating an app

Activation support is provided by the Microsoft.Practices.Prism.StoreApps library. If Windows has

terminated a suspended app, the Application base class calls the OnLaunched method when the app

becomes active again. The following diagram shows the interaction of classes in AdventureWorks

Shopper that restore the app after it has been terminated.

The MvvmAppBase class overrides the OnLaunched method of the Windows.UI.Xaml.Application

base class. When the OnLaunched method runs, its argument is a LaunchActivatedEventArgs object.

This object contains an ApplicationExecutionState enumeration that tells you the app's previous

execution state. The OnLaunched method calls the InitializeFrameAsync method to initialize the

app's Frame object. The following code example shows the relevant code from the

InitializeFrameAsync method.

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

if (args.PreviousExecutionState == ApplicationExecutionState.Terminated)

{

 await SessionStateService.RestoreSessionStateAsync();

}

OnInitialize(args);

if (args.PreviousExecutionState == ApplicationExecutionState.Terminated)

{

 // Restore the saved session state and navigate to the last page visited

 try

 {

 SessionStateService.RestoreFrameState();

 NavigationService.RestoreSavedNavigation();

 _isRestoringFromTermination = true;

 }

 catch (SessionStateServiceException)

 {

 // Something went wrong restoring state.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.onlaunched.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx

155

 // Assume there is no state and continue

 }

}

The code checks its argument to see whether the previous state was Terminated. If so, the method

calls the SessionStateService class's RestoreSessionStateAsync method to recover saved settings.

The RestoreSessionStateAsync method reads the saved state info, and then the OnInitialize method

is called which is overridden in the App class. This method registers instances and types with the

Unity dependency injection container. Then, if the previous execution state of the app was

Terminated, the saved session state is restored and the app navigates to the last page was that

visited prior to termination. This is achieved by calling the RestoreSavedNavigation method of the

FrameNavigationService class that in turn simply calls the NavigateToCurrentViewModel method,

which gets the session state for the current view, and calls the OnNavigatedTo method on the

current view model.

C#: Microsoft.Practices.Prism.StoreApps\FrameNavigationService.cs

private void NavigateToCurrentViewModel(NavigationMode navigationMode,

 object parameter)

{

 var frameState = _sessionStateService.GetSessionStateForFrame(_frame);

 var viewModelKey = "ViewModel-" + _frame.BackStackDepth;

 if (navigationMode == NavigationMode.New)

 {

 // Clear existing state for forward navigation when adding a new

 // page/view model to the navigation stack

 var nextViewModelKey = viewModelKey;

 int nextViewModelIndex = _frame.BackStackDepth;

 while (frameState.Remove(nextViewModelKey))

 {

 nextViewModelIndex++;

 nextViewModelKey = "ViewModel-" + nextViewModelIndex;

 }

 }

 var newView = _frame.Content as FrameworkElement;

 if (newView == null) return;

 var newViewModel = newView.DataContext as INavigationAware;

 if (newViewModel != null)

 {

 Dictionary<string, object> viewModelState;

 if (frameState.ContainsKey(viewModelKey))

 {

 viewModelState = frameState[viewModelKey] as

 Dictionary<string, object>;

 }

 else

 {

 viewModelState = new Dictionary<string, object>();

156

 }

 newViewModel.OnNavigatedTo(parameter, navigationMode, viewModelState);

 frameState[viewModelKey] = viewModelState;

 }

}

Restoring view model state

All of the view model classes in the AdventureWorks Shopper reference implementation derive from

the ViewModel base class, provided by the Microsoft.Practices.Prism.StoreApps library, which

implements the OnNavigatedTo method. This method simply calls the RestoreViewModel method

to restore any view model state from the frame state, as shown in the following code example.

C#: Microsoft.Practices.Prism.StoreApps\ViewModel.cs

public virtual void OnNavigatedTo(object navigationParameter,

 NavigationMode navigationMode, Dictionary<string, object> viewModelState)

{

 if (viewModelState != null)

 {

 RestoreViewModel(viewModelState, this);

 }

}

The RestoreViewModel method iterates through any properties in the view model and restores the

values of any properties that possess the [RestorableState] attribute, from the frame state.

Restoring view state

Saved session state is restored by the RestoreFrameState method in the SessionStateService class.

This method calls the SetNavigationState method of each registered Frame object in order to

restore the serialized navigation history (the frame stack). In AdventureWorks Shopper there is only

one registered frame, and it corresponds to the rootFrame in the InitializeFrameAsync method in

the MvvmAppBase class.

When the RestoreFrameState method calls the SetNavigationState method, it in turn invokes the

OnNavigatedTo method of each of the frame’s associated page objects. The OnNavigatedTo

method in the VisualStateAwarePage class then invokes the LoadState method of any page that

derives from it, allowing pages to restore view state such as the current scroll position of a control.

C#: Microsoft.Practices.Prism.StoreApps\ViewModel.cs

protected override void LoadState(object navigationParameter,

System.Collections.Generic.Dictionary<string, object> pageState)

{

 if (pageState == null) return;

 base.LoadState(navigationParameter, pageState);

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.setnavigationstate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.setnavigationstate.aspx

157

 if (pageState.ContainsKey("scrollViewerOffsetProportion"))

 {

 _scrollViewerOffsetProportion = double

 .Parse(pageState["scrollViewerOffsetProportion"].ToString(),

 CultureInfo.InvariantCulture.NumberFormat);

 }

}

Here, the LoadState method restores state associated with the HubPage, in this case a value that

reflects the proportion of horizontal or vertical scrolling that had occurred, depending on view state,

within the ScrollViewer in the AutoRotatingGridView custom control. The ScrollViewer is set with

the restored value by the ScrollToProportion method in the ScrollViewerUtilites class once the

window has rendered or changed its rendering size. Therefore, the user will see the page content

scrolled to the exact location it was at prior to termination or navigation, regardless of whether the

page orientation has changed in between termination and reactivation.

Restoring state from service and repository classes

Some service and repository classes also restore state that was previously persisted to survive

termination. In order to do this they use an instance of the SessionStateService class that

implements the ISessionStateService interface. The following code example shows how the

AccountService class restores the user's credentials.

C#: AdventureWorks.UILogic\Services\AccountService.cs

if (_sessionStateService.SessionState.ContainsKey(UserNameKey))

{

 _userName = _sessionStateService.SessionState[UserNameKey].ToString();

}

if (_sessionStateService.SessionState.ContainsKey(PasswordKey))

{

 _password = _sessionStateService.SessionState[PasswordKey].ToString();

}

Other ways to close the app

Apps don't contain UI for closing the app, but users can choose to close an app by pressing Alt+F4,

dragging the app to the bottom of the screen, or selecting the Close context menu for the app when

it's in the sidebar. When an app is closed by any of these methods, it enters the NotRunning state

for approximately 10 seconds and then transitions to the ClosedByUser state.

Apps shouldn't close themselves programmatically as part of normal execution. When you close an

app programmatically, Windows treats this as an app crash. The app enters the NotRunning state

and remains there until the user activates it again.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.scrollviewer.aspx

158

The following diagram shows how Windows determines an app's execution state. Windows takes

app crashes and user close actions into account, as well as the suspend or resume state. In the

diagram, the white rectangles indicate that the app isn't loaded into system memory. The blue

rectangles indicate that the app is in memory. The dashed lines are changes that occur without any

modification to the running app. The solid lines are actions that include app notification.

159

Communicating between loosely coupled components in a Windows

Store business app using C#, XAML, and Prism

Summary

 Use the Microsoft.Practices.Prism.PubSubEvents library to communicate between loosely

coupled components in your app.

 Notify subscribers by retrieving the pub/sub event from the event aggregator and calling its

Publish method of the PubSubEvent<TPayload> class.

 Register to receive notifications by using one of the Subscribe method overloads available in

the PubSubEvent<TPayload> class.

Learn about event aggregation, provided by Prism for the Windows Runtime, which allows for

communication between loosely coupled components. Event aggregation can reduce dependencie s

between assemblies in a solution, while also allowing components to be independently developed

and tested.

You will learn

 How event aggregation enables communication between loosely coupled components in an

app.

 How to define a pub/sub event, publish it, and subscribe to it using a default subscription.

 How to subscribe to an event on the UI thread, perform event subscription filtering, and

subscribe to an event by using strong references.

 How to manually unsubscribe from a pub/sub event when using a strong delegate reference.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Making key decisions

Event aggregation allows communication between loosely coupled components in an app, removing

the need for components to have a reference to each other. The following list summarizes the

decisions to make when using event aggregation in your app:

 When should I use event aggregation over Microsoft .NET events?

 How should I subscribe to pub/sub events?

 How can a subscriber update the UI if the event is published from a background thread?

 Does the subscriber need to handle every instance of a published event?

 Do I need to unsubscribe from subscribed events?

160

Events in .NET implement the publish-subscribe pattern. The publisher and subscriber lifetimes are

coupled by object references to each other, and the subscriber type must have a reference to the

publisher type.

Event aggregation is a design pattern that enables communication between classes that are

inconvenient to link by object and type references. This mechanism allows publishers and

subscribers to communicate without having a reference to each other. Therefore, .NET events

should be used for communication between components that already have object reference

relationships (such as a control and the page that contains it), with event aggregation being used for

communication between loosely coupled components (such as two separate page view models in an

app). For more info see Event aggregation.

There are several ways to subscribe to events when using event aggregation. The simplest is to

register a delegate reference of the event handler method that will be called on the publisher's

thread. For more info see Subscribing to events.

If you need to be able to update UI elements when an event is received, you can subscribe to receive

the event on the UI thread.

When subscribing to a pub/sub event, you can request that notification of the event will occur in the

UI thread. This is useful, for example, when you need to update the UI in response to the event. For

more info see Subscribing on the UI thread.

Subscribers do not need to handle every instance of a published event, as they can specify a

delegate that is executed when the event is published to determine if the payload of the published

event matches a set of criteria required to have the subscriber callback invoked. For more info see

Subscription filtering.

By default, event aggregation maintains a weak delegate reference to a subscriber's handler. This

means that the reference will not prevent garbage collection of the subscriber, and it relieves the

subscriber from the need to unsubscribe. If you have observed performance problems with events,

you can use strongly referenced delegates when subscribing to an event, and then unsubscribe from

the event when it's no longer required. For more info see Subscribing using strong references.

Event aggregation in AdventureWorks Shopper

The AdventureWorks Shopper reference implementation uses the

Microsoft.Practices.Prism.PubSubEvents library to communicate between loosely coupled

components. This is a Portable Class Library that contains classes that implement event aggregation.

For more info see Prism for the Windows Runtime reference.

The AdventureWorks Shopper reference implementation defines the ShoppingCartUpdatedEvent

class and ShoppingCartItemUpdatedEvent class for use with event aggregation. You invoke the

ShoppingCartUpdatedEvent singleton instance's Publish method when the signed in user has

changed, to notify the ShoppingCartTabUserControl of the change. The

161

ShoppingCartTabUserControl is included on the HubPage, GroupDetailPage, and ItemDetailPage

views, with there being no type or object references between the ShoppingCartTabUserControl and

its parent pages.

The ShoppingCartItemUpdated event is published whenever a product is added to the shopping

cart, so that the ShoppingCartTabUserControlViewModel class can be updated. For more info see

Event aggregation.

Pub/sub events in the AdventureWorks Shopper reference implementation are published on the UI

thread, with the subscribers receiving the event on the same thread. Weak reference delegates are

used for both events, and so the events do not need to be unsubscribed from. For more info see

Subscribing to events.

Note Lambda expressions that capture the this reference cannot be used as weak references. You

should use instance methods as the Subscribe method's action and filter parameters if you want to

take advantage of the PubSubEvent class's weak reference feature.

Event aggregation

.NET events are the most simple and straightforward approach for a communication layer between

components if loose coupling is not required. Event aggregation should be used for communication

when it's inconvenient to link objects with type and object references.

Note If you use .NET events, you have to consider memory management, especially if you have a

short lived object that subscribes to an event of a static or long lived object. If you do not remove

the event handler, the subscriber will be kept alive by the reference to it in the publisher, and this

will prevent or delay the garbage collection of the subscriber.

The event aggregator provides multicast publish/subscribe functionality. This means that there can

be multiple publishers that invoke the Publish method of a given PubSubEvent<TPayload> instance

and there can be multiple subscribers listening to the same PubSubEvent<TPayload> instance. A

subscriber can have more than one subscription to a single PubSubEvent<TPayload> instance. The

following diagram shows this relationship.

162

The EventAggregator class is responsible for locating or building singleton instances of pub/sub

event classes. The class implements the IEventAggregator interface, shown in the following code

example.

C#: Microsoft.Practices.Prism.PubSubEvents\IEventAggregator.cs

public interface IEventAggregator

{

 TEventType GetEvent<TEventType>() where TEventType : EventBase, new();

}

In the AdventureWorks Shopper reference implementation, an instance of the EventAggregator

class is created in the OnLaunched method in the App class. This instance is then passed as an

argument to the constructors of view model classes that need it.

Defining and publishing pub/sub events

In apps such as the AdventureWorks Shopper reference implementation that use event aggregation,

event publishers and subscribers are connected by the PubSubEvent<TPayload> class, which is the

base class for an app's specific events. TPayload is the type of the event's payload. The

PubSubEvent<TPayload> class maintains the list of subscribers and handles event dispatching to the

subscribers. The class contains Subscribe method overloads, and Publish, Unsubscribe, and Contains

methods.

Defining an event

A pub/sub event can be defined by creating an empty class that derives from the

PubSubEvent<TPayload> class. The events in the AdventureWorks Shopper reference

implementation do not all pass a payload because in some circumstances the event handling only

needs to know that the event occurred and then retrieve the updated state related to the event

through a service. In such cases, they declare the TPayload type as an Object and pass a null

reference when publishing. The following code example shows how the ShoppingCartUpdatedEvent

from AdventureWorks Shopper is defined.

C#: AdventureWorks.UILogic\Events\ShoppingCartUpdatedEvent.cs

public class ShoppingCartUpdatedEvent : PubSubEvent<object>

{

}

Publishing an event

Publishers notify subscribers of a pub/sub event by retrieving a singleton instance that represents

the event from the EventAggregator class and calling the Publish method of that instance. The

EventAggregator class constructs the instance on first access. The following code demonstrates

publishing the ShoppingCartUpdatedEvent.

163

C#: AdventureWorks.UILogic\Repositories\ShoppingCartRepository.cs

private void RaiseShoppingCartUpdated()

{

 // Documentation on loosely coupled communication is at

 // http://go.microsoft.com/fwlink/?LinkID=288820&clcid=0x409

 _eventAggregator.GetEvent<ShoppingCartUpdatedEvent>().Publish(null);

}

Subscribing to events

Subscribers can enlist with an event using one of the Subscribe method overloads available in the

PubSubEvent<TPayload> class. There are several approaches to event subscription.

Default subscription

In the simplest case, the subscriber must provide a handler to be invoked whenever the pub/sub

event is published. This is shown in the following code example.

C#: AdventureWorks.UILogic\ViewModels\ShoppingCartPageViewModel.cs

public ShoppingCartPageViewModel(...)

{

 ...

 eventAggregator.GetEvent<ShoppingCartUpdatedEvent>()

 .Subscribe(UpdateShoppingCartAsync);

 ...

}

public async void UpdateShoppingCartAsync(object notUsed)

{

 ...

}

In the code, the ShoppingCartPageViewModel class subscribes to the ShoppingCartUpdatedEvent

using the UpdateShoppingCartAsync method as the handler.

Subscribing on the UI thread

A subscriber will sometimes need to update UI elements in response to events. In Windows Store

apps, only the app's main thread can update UI elements.

By default, each subscribed handler action is invoked synchronously from the Publish method, in no

defined order. If your handler action needs to be called from the UI thread, for example, in order to

update UI elements, you can specify a ThreadOption when you subscribe. This is shown in the

following code example.

164

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

public SubscriberViewModel(IEventAggregator eventAggregator)

{

 ...

 _eventAggregator.GetEvent<ShoppingCartChangedEvent>()

 .Subscribe(HandleShoppingCartUpdate, ThreadOption.UIThread);

 ...

}

The ThreadOption enumeration allows three possible values:

 PublisherThread. This value should be used to receive the event on the publishers' thread,

and is the default setting. The invocation of the handler action is synchronous.

 BackgroundThread. This value should be used to asynchronously receive the event on a

thread-pool thread. The handler action is queued using a new task.

 UIThread. This value should be used to receive the event on the UI thread. The handler

action is posted to the synchronization context that was used to instantiate the event

aggregator.

Note For UI thread dispatching to work, the EventAggregator class must be created on the UI

thread. This allows it to capture and store the SynchronizationContext that is used to dispatch to the

UI thread for subscribers that use the ThreadOption.UIThread value.

In addition, it is not recommended that you modify the payload object from within a callback

delegate because several threads could be accessing the payload object simultaneously. In this

scenario you should have the payload be immutable to avoid concurrency errors.

Subscription filtering

A subscriber may not need to handle every instance of a published event. In this case, the subscriber

can use a Subscribe method overload that accepts a filter parameter. The filter parameter is of type

System.Predicate<TPayload> and is executed when the event is published. If the payload does

satisfy the predicate, the subscriber callback is not executed. The filter parameter is shown in the

following code example.

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

public SubscriberViewModel(IEventAggregator eventAggregator)

{

 ...

 _eventAggregator.GetEvent<ShoppingCartChangedEvent>()

 .Subscribe(HandleShoppingCartUpdateFiltered, ThreadOption.UIThread,

 false, IsCartCountPossiblyTooHigh);

 ...

}

http://msdn.microsoft.com/en-us/library/windows/apps/system.threading.synchronizationcontext.aspx

165

The Subscribe method returns a subscription token of type

Microsoft.Practices.Prism.PubSubEvents.SubscriptionToken that can later be used to remove a

subscription to the event. This token is useful if you are using anonymous delegates as the callback

delegate or when you are subscribing to the same event handler with different filters.

Note The filter action is executed synchronously from the context of the Publish method regardless

of the ThreadOption value of the current subscription.

Subscribing using strong references

The PubSubEvent<TPayload> class, by default, maintains a weak delegate reference to the

subscriber's handler and any filter, on subscription. This means that the reference that the

PubSubEvent<TPayload> class holds onto will not prevent garbage collection of the subscriber.

Therefore, using a weak delegate reference relieves the subscriber from the need to unsubscribe

from the event, and allows for garbage collection.

Maintaining a weak delegate reference has a slightly higher performance impact than using a

corresponding strong delegate reference. If your app publishes many events in a very short period of

time, you may notice a performance cost when using weak delegate references. However, for most

apps the performance will not be noticeable. In the event of noticing a performance cost, you may

need to subscribe to events by using strong delegate references instead. If you do use strong

delegate references, your subscriber will need to unsubscribe from events when the subscription is

no longer needed.

To subscribe with a strong delegate reference, use an overload of the Subscribe method that has the

keepSubscriberReferenceAlive parameter, as shown in the following code example.

C#

public SubscriberViewModel(IEventAggregator eventAggregator)

{

 ...

 bool keepSubscriberReferenceAlive = true;

 _eventAggregator.GetEvent<ShoppingCartChangedEvent>().Subscribe

 (HandleShoppingCartUpdateFiltered, ThreadOption.UIThread,

 keepSubscriberReferenceAlive);

 ...

}

The keepSubscriberReferenceAlive parameter is of type bool. When set to true, the event instance

keeps a strong reference to the subscriber instance, thereby not allowing it to be garbage collected.

For info about how to unsubscribe see Unsubscribing from pub/sub events. When set to false, which

is the default value when the parameter is omitted, the event maintains a weak reference to the

subscriber instance, thereby allowing the garbage collector to dispose the subscriber instance when

there are no other references to it. When the subscriber instance is garbage collected, the event is

automatically unsubscribed.

166

Unsubscribing from pub/sub events

If your subscriber no longer want to receive events, you can unsubscribe by using your subscriber's

handler or by using a subscription token. The following code example shows how to unsubscribe by

using your subscriber's handler.

C#

ShoppingCartChangedEvent shoppingCartChangedEvent =

 _eventAggregator.GetEvent<ShoppingCartChangedEvent>();

shoppingCartChangedEvent.Subscribe(HandleShoppingCartUpdate,

 ThreadOption.PublisherThread);

...

shoppingCartChangedEvent.Unsubscribe(HandleShoppingCartUpdate);

The following code example shows how to unsubscribe by using a subscription token. The token is

supplied as a return value from the Subscribe method.

C#

ShoppingCartChangedEvent shoppingCartChangedEvent =

 _eventAggregator.GetEvent<ShoppingCartChangedEvent>();

subscriptionToken = shoppingCartChangedEvent.Subscribe(HandleShoppingCartUpdate,

 ThreadOption.UIThread, false, IsCartCountPossiblyTooHigh);

...

shoppingCartChangedEvent.Unsubscribe(subscriptionToken);

167

Working with tiles in a Windows Store business app using C#, XAML,

and Prism

Summary

 Use live tiles to present engaging new content to users that invites them to launch the app.

 Use secondary tiles and deep links to promote specific content in your app.

 Use periodic notifications to update tiles on a fixed schedule.

Learn how to create an app tile that is updated by periodic notifications, and how to create

secondary tiles and deep links to promote specific content from an app onto the Start screen. The

AdventureWorks Shopper reference implementation demonstrates this, and how to launch the app

from a secondary tile using Prism for the Windows Runtime.

You will learn

 How to create and update an app tile with periodic notifications.

 How to pin and unpin secondary tiles to the Start screen from within an app.

 How to launch the app to a specific page from a secondary tile.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Making key decisions

A tile is an app's representation on the Start screen and allows you to present rich and engaging

content to your users when the app is not running. Tiles should be appealing to users in order to give

them great first-impression of your Windows Store app. The following list summarizes the decis ions

to make when creating tiles for your app:

 Why should I invest in a live tile?

 How do I make a live tile compelling to users?

 What shape should my tile be?

 What size should my tile image be?

 Which tile templates should I use?

 What mechanism should I use to deliver tile notifications?

 How often should my live tile content change?

 Should my app include the ability to pin secondary tiles to Start?

Tiles can be live, meaning they are updated through notifications, or static. For info about tiles,

including why you should invest in a live tile, how to make a live tile compelling to users, what shape

and size a tile should be, which tile templates you should use, how often your live tile content should

168

change, and secondary tiles, see Guidelines for tiles and badges, Tile and toast image sizes, The tile

template catalog, Sending notifications, and Secondary tiles overview.

The choice of which mechanism to use to deliver a tile notification depends on the content you want

to show and how frequently that content should be updated. Local notifications are a good way to

keep the app tile current, even if you also use other notification mechanisms. Many apps will use

local notifications to update the tile when the app is launched or when state changes within the app.

This ensures that the tile is up-to-date when the app launches and exits. Scheduled notifications are

ideal for situations where the content to be updated is known in advance, such as a meeting

invitation. Periodic notifications provide tile updates with minimal web or cloud service and client

investment, and are an excellent method of distributing the same content to a wide audience. Push

notifications are ideal for situations where your app has real -time data or data that is personalized

for your user. Push notifications are also useful in situations where the data is time-sensitive, and

where the content is generated at unpredictable times. Periodic notifications offer the most suitable

notification solution for side-loaded apps, but don't provide notifications on demand. In addition,

with periodic notifications, after the initial poll to the web or cloud service Windows will continue to

poll for tile updates even if your app is never launched again. For more info see Choosing a

notification delivery method.

Note Push notifications use the Windows Push Notification Services (WNS) to deliver updates to

users. Before you can send notifications using WNS, your app must be registered with the Windows

Store Dashboard. For more info see Push notification overview.

Tiles in AdventureWorks Shopper

The AdventureWorks Shopper reference implementation includes medium and wide default tiles,

which were created according to the pixel requirements for each. Choosing a small logo that

represents your app is important so that users can identify it when the tile displays custom content.

For more info see Creating app tiles.

The default tiles are made live by updating them with periodic notifications, at 30 minute intervals,

to advertise specific products to users on their Start screen. The periodic notifications use peek

templates so that the live tile will animate between two frames. The first frame shows an image of

the advertised product, with the second frame showing product details. Both wide and medium

peek tile templates are used. While AdventureWorks Shopper will default to the wide tile, it can be

changed to the medium tile by the user. For more info see Using periodic notifications to update tile

content.

AdventureWorks Shopper includes the ability to create secondary tiles by pinning specific products

to the Start screen from the ItemDetailPage. The following diagram shows the two frames of a

secondary tile created from one of the products sold in AdventureWorks Shopper.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465403.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781198.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh779722.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465372.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh779721.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh779721.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx

169

Selecting a secondary tile launches the app and displays the previously pinned product on the

ItemDetailPage. For more info see Creating secondary tiles.

Creating app tiles

Tiles begin as a default tile defined in the app's manifest. A static tile will always display the default

content, which is generally a full-tile logo image. A live tile can update the default tile to show new

content, but can return to the default if the notification expires or is removed. The following

diagrams show the default small, medium, and wide logo images that can be found in the Assets

folder in the AdventureWorks Shopper Visual Studio solution. Each logo has a transparent

background. This is particularly important for the small logo so that it will bl end in with tile

notification content.

30 x 30 pixels

150 x 150 pixels

310 x 150 pixels

170

Note Image assets, including the logos, are placeholders and meant for training purposes only. They

cannot be used as a trademark or for other commercial purposes.

The Visual Studio manifest editor makes the process of adding the default tiles easy. For more info

see Quickstart: Creating a default tile using the Visual Studio manifest editor. For more info about

working with image resources, see Quickstart: Using file or image resources and How to name

resources using qualifiers.

If only a medium logo is provided in the app's manifest file, the app's tile will always be square. If

both a medium and a wide logo are provided in the manifest, the app's tile will defau lt to a wide tile

when it is installed. You must decide whether you want to allow a wide tile as well. This choice is

made by providing a wide logo image when you define your default tile in your app manifest.

Using periodic notifications to update tile content

Periodic notifications, which are sometimes called polled notifications, update tiles at a fixed interval

by downloading content directly from a web or cloud service. To use periodic notifications your app

must specify the Uniform Resource Identifier (URI) of a web location that Windows polls for tile

updates, and how often that URI should be polled.

Periodic notifications require that your app hosts a web or cloud service. Any valid HTTP or Secure

Hypertext Transfer Protocol (HTTPS) web address can be used as the URI to be polled by Windows.

The following code example shows the GetTileNotification method in the TileNotificationController

class in the AdventureWorks.WebServices project, which is used to send tile content to the

AdventureWorks Shopper reference implementation.

C#: AdventureWorks.WebServices\Controllers\TileNotificationController.cs

public HttpResponseMessage GetTileNotification()

{

 var tileXml =

 GetDefaultTileXml("http://localhost:2112/Images/hotrodbike_red_large.jpg",

 "Mountain-400-W Red, 42");

 tileXml = string.Format(CultureInfo.InvariantCulture, tileXml,

 DateTime.Now.ToShortDateString(), DateTime.Now.ToShortTimeString());

 // create HTTP response

 var response = new HttpResponseMessage();

 // format response

 response.StatusCode = System.Net.HttpStatusCode.OK;

 response.Content = new StringContent(tileXml);

 //Need to return xml format to TileUpdater.StartPeriodicUpdate

 response.Content.Headers.ContentType =

 new System.Net.Http.Headers.MediaTypeHeaderValue("text/xml");

 return response;

}

http://msdn.microsoft.com/en-us/library/windows/apps/hh868247.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965325.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965324.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh965324.aspx

171

This method generates the XML tile content, formats it, and returns it as a HTTP response. The tile

content must conform to the Tile schema and be 8-bit Unicode Transformation Format (UTF-8)

encoded. The tile content is specified using the TileWidePeekImage01 and

TileSquarePeekImageAndText02 templates. This is necessary because while the app will use the

wide tile by default, it can be changed to the square tile by the user. For more info see The tile

template catalog.

At a polling interval of 30 minutes, Windows sends an HTTP GET request to the URI, downloads the

requested tile content as XML, and displays the content on the app's tile. This is accomplished by the

OnInitialize method in the App class, as shown in the following code example.

C#: AdventureWorks.Shopper\App.xaml.cs

_tileUpdater = TileUpdateManager.CreateTileUpdaterForApplication();

_tileUpdater.StartPeriodicUpdate(new Uri(Constants.ServerAddress +

 "/api/TileNotification"), PeriodicUpdateRecurrence.HalfHour);

A new TileUpdater instance is created by the CreateTileUpdaterForApplication method in the

TileUpdateManager class, in order to update the app tile. By default, a tile on the Start screen shows

the content of a single notification until it is replaced by a new notification. However, you can e nable

notification cycling so that up to five notifications are maintained in a queue and the tile cycles

through them. This is accomplished by calling the EnableNotificationQueue method with a

parameter of true, on the TileUpdater instance. Finally, a call to StartPeriodicUpdate is made to poll

the specified URI in order to update the tile with the received content. After this initial poll,

Windows will continue to provide updates every 30 minutes, as specified. Polling then continues

until you explicitly stop it, or your app is uninstalled. Otherwise Windows will continue to poll for

updates to your tile even if your app is never launched again.

Note While Windows makes a best effort to poll as requested, the interval is not precise. The

requested poll interval can be delayed by up to 15 minutes.

By default, periodic tile notifications expire three days from the time they are downloaded.

Therefore, it is recommended that you set an expiration on all periodic tile notifications, using a time

that makes sense for your app, to ensure that your tile's content does not persist longer than it's

relevant. This also ensures the removal of stale content if your web or cloud service becomes

unreachable, or if the user disconnects from the network for an extended period of time. This is

accomplished by returning the X-WNS-Expires HTTP header to specify the expiration date and time.

For more info see Periodic notification overview, Using the notification queue, and Guidelines for

periodic notifications.

Creating secondary tiles

A secondary tile allows a user to launch to a specific location in an app directly from the Start screen.

Apps cannot pin secondary tiles programmatically without user approval. Users also have explicit

http://msdn.microsoft.com/en-us/library/windows/apps/br212859.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdater.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdatemanager.createtileupdaterforapplication.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdatemanager.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdater.enablenotificationqueue.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.notifications.tileupdater.startperiodicupdate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj150587.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh781199.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761461.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761461.aspx

172

control over secondary tile removal. This allows users to personalize their Start screen with the

experiences that they use the most.

Secondary tiles are independent of the main app tile and can receive tile notifications

independently. When a secondary tile is activated, an activation context is presented to the parent

app so that it can launch in the context of the secondary tile.

The option to create a secondary tile is seen on the bottom app bar of the ItemDetailPage as the Pin

to Start app bar button. This enables you to create a secondary ti le for the product being displayed.

Selecting the secondary tile launches the app and displays the previously pinned product on the

ItemDetailPage. The following diagram shows an example of the flyout that is displayed when you

select the Pin to Start button. The flyout shows a preview of the secondary tile, and asks you to

confirm its creation.

Pinning and unpinning secondary tile functionality is provided by the SecondaryTileService class,

which implements the ISecondaryTileService interface. In the OnInitialize method in the App class,

the SecondaryTileService class is registered as a type mapping against the ISecondaryTileService

type with the Unity dependency injection container. Then, when the ItemDetailPageViewModel

class is instantiated, which accepts an ISecondaryTileService type, the Unity container will resolve

the type and return an instance of the SecondaryTileService class.

The workflow AdventureWorks Shopper uses to pin a secondary tile to Start is as follows:

1. You invoke the PinProductCommand through the Pin to Start app bar button on the

ItemDetailPage.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

PinProductCommand = DelegateCommand.FromAsyncHandler(PinProduct,

 () => SelectedProduct != null);

173

2. AdventureWorks Shopper checks to ensure that the tile hasn't already been pinned by

calling the SecondaryTileExists predicate in the SecondaryTileService instance.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

bool isPinned = _secondaryTileService.SecondaryTileExists(tileId);

3. AdventureWorks Shopper calls the PinWideSecondaryTile method in the

SecondaryTileService instance to create a secondary tile. The

SelectedProduct.ProductNumber property is used as a unique ID.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

isPinned = await _secondaryTileService.PinWideSecondaryTile(tileId,

 SelectedProduct.Title, SelectedProduct.ProductNumber);

The PinWideSecondaryTile method creates a new instance of the SecondaryTile class,

providing information such as the short name, the display name, the logo, and more.

C#: AdventureWorks.UILogic\Services\SecondaryTileService.cs

var secondaryTile = new SecondaryTile(tileId, displayName, arguments,

 _squareLogoUri, TileSize.Wide310x150);

secondaryTile.VisualElements.ShowNameOnWide310x150Logo = true;

secondaryTile.VisualElements.Wide310x150Logo = _wideLogoUri;

4. The RequestCreateAsync method is called on the SecondaryTile instance to display a flyout

that shows a preview of the tile, asking you to confirm its creation.

C#: AdventureWorks.UILogic\Services\SecondaryTileService.cs

bool isPinned = await secondaryTile.RequestCreateAsync();

5. You confirm and the secondary tile is added to the Start screen.

The workflow AdventureWorks Shopper uses to unpin a secondary tile from Start is as follows:

1. AdventureWorks Shopper invokes the UnpinProductCommand through the Unpin from

Start app bar button on the ItemDetailPage.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

UnpinProductCommand = DelegateCommand.FromAsyncHandler(UnpinProduct,

 () => SelectedProduct != null);

2. AdventureWorks Shopper checks to ensure that the tile hasn't already been unpinned by

calling the SecondaryTileExists predicate in the SecondaryTileService instance.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.startscreen.secondarytile.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.startscreen.secondarytile.aspx

174

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

bool isPinned = _secondaryTileService.SecondaryTileExists(tileId);

3. AdventureWorks Shopper calls the UnpinTile method on the SecondaryTileService instance

to remove the secondary tile. The tile can be identified by the

SelectedProduct.ProductNumber property as the unique ID.

C#: AdventureWorks.UILogic\ViewModels\ItemDetailPageViewModel.cs

isPinned = (await _secondaryTileService.UnpinTile(tileId)) == false;

The UnpinTile method creates a new instance of the SecondaryTile class, using the

SelectedProduct.ProductNumber property as the unique ID. By providing an ID for an

existing secondary tile, the existing secondary tile will be overwritten.

C#: AdventureWorks.UILogic\Services\SecondaryTileService.cs

var secondaryTile = new SecondaryTile(tileId);

4. The RequestDeleteAsync method is called on the SecondaryTile instance to display a flyout

that shows a preview of the tile to be removed asking you to confirm its removal.

C#: AdventureWorks.UILogic\Services\SecondaryTileService.cs

bool isUnpinned = await secondaryTile.RequestDeleteAsync();

5. You confirm and the secondary tile is removed from the Start screen.

Note Secondary tiles can also be removed through the Start screen app bar. When this occurs the

app is not contacted for removal information, the user is not asked for a confirmation, and the app is

not notified that the tile is no longer present. Any additional cleanup action that the app would have

taken in unpinning the tile must be performed by the app at its next launch.

For more info see Secondary tiles overview and Guidelines for secondary tiles.

Launching the app from a secondary tile

Whenever the app is launched the OnLaunched method in the MvvmAppBase class is called (the

MvvmAppBase class is provided by the Microsoft.Practices.Prism.StoreApps library). The

LaunchActivatedEventArgs parameter in the OnLaunched method will contain the previous state of

the app and the activation arguments. If the app is launched by its primary tile, the TileId property of

the LaunchActivatedEventArgs parameter will have the same value as the application Id in the

package manifest. If the app is launched by a secondary tile, the TileId property will have an ID that

was specified when the secondary tile was created. The OnLaunched method in the MvvmAppBase

class will call the OnLaunchApplication method in the App class only if the app is not resuming

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.startscreen.secondarytile.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.startscreen.secondarytile.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465372.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465398.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.tileid.aspx

175

following suspension, or if the app was launched through a secondary tile. The OnLaunchApplication

method, which is shown in the following code example, provides app specific launch behavior.

C#: AdventureWorks.Shopper\App.xaml.cs

protected override Task OnLaunchApplication(LaunchActivatedEventArgs args)

{

 if (args != null && !string.IsNullOrEmpty(args.Arguments))

 {

 // The app was launched from a Secondary Tile

 // Navigate to the item's page

 NavigationService.Navigate("ItemDetail", args.Arguments);

 }

 else

 {

 // Navigate to the initial page

 NavigationService.Navigate("Hub", null);

 }

 Window.Current.Activate();

 return Task.FromResult<object>(null);

}

In this method the LaunchActivatedEventArgs parameter contains the previous state of the app and

the activation arguments. If the app is being launched from the app tile then the activation

Arguments property will not contain any data and so the HubPage will be navigated to. If the app is

being launched from a secondary tile then the activation Arguments property will contain the

product number of the product to be displayed. The ItemDetailPage will then be navigated to, with

the product number being passed to the OnNavigatedTo override in the ItemDetailPageViewModel

instance, so that the specified product is displayed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.launchactivatedeventargs.arguments.aspx

176

Implementing search in a Windows Store business app using C#,

XAML, and Prism

Summary

 Provide query suggestions as the user types to speed up searching.

 Implement type to search for your app's hub, browse, and search pages.

 Save the search results page for the last query in case the user searches for that query again.

Learn how to search app content and provide query suggestions by adding a search box to your app

canvas. The AdventureWorks Shopper reference implementation uses Prism for the Windows

Runtime to implement the search functionality as a single user control and accompanying view

model class that can be reused throughout the app.

You will learn

 How to use the SearchBox control to implement search functionality in a Windows Store

app.

 How to provide query suggestions that help the user to search quickly.

 How to populate the search results page with results.

 How to navigate to the result's detail page.

 How to search for content in the app by typing directly into the search box, without selecting

it first.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Making key decisions

When you add a search box to your app, users can search your app’s content from within the app.

The following list summarizes the decisions to make when implementing search in your app:

 How should I include search functionality in my app?

 Should I provide query and result suggestions?

 Should I add a search icon to the app canvas?

 What should I display on my search results page?

You should use the SearchBox control to let users search for content in your app, in order to ensure

that they have a consistent and predictable experience when they search. Regardless of where your

app’s content is located, you can use the search box to respond to user’s queries and display se arch

results in an app page of your own design.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

177

When users start typing a query into a search box, apps can provide search suggestions beneath the

search box. An app can provide two types of search suggestions: query suggestions and result

suggestions. Query suggestions can be used as a way to auto complete query text that users can

search for in your app, helping them search quickly by reducing the amount of typing needed to

complete a search. Result suggestions can be used to directly take the user to the details of a result

without first taking them to a search results page.

A search box is a great way for users to know where to start searching. However, if space is a

concern for your layout, you should use an icon that expands to reveal a search box.

When users submit a search query to your app, they see a page that shows search results for the

query. You design the search results page for your app, and so must ensure that the presented

results are useful and have an appropriate layout. You should use a grid layout to display search

results, and let users see their query text on the page. Also, you should indicate why a search result

matches the query by highlighting the user's query in each result, which is known as hit highlighting.

In addition, you should let users navigate back to the last-viewed page after they look at the details

for a search result. This can be accomplished by including a back button in the app's UI. This back

button should be used to go to the page that the user was interacting with before they submitted

their search. Your app could also provide a mechanism to exit the search results page, such as a top

app bar button that performs navigation.

For more info see Guidelines for search.

Search in AdventureWorks Shopper

The AdventureWorks Shopper reference implementation uses the SearchBox control to respond to

user's queries and display search results in an app page. When a user starts typing on a page that

contains a search box the keyboard input is automatically captured by the search box. As the user

enters a query, a maximum of 5 query suggestions are provided as a way to auto complete the query

text that the user is searching for.

Search results are displayed using the AutoRotatingGridView custom control. The search results

page includes the user's query text, hit highlighting to indicate why a search result matches the

query, and lets users navigate back to the last-viewed page and to the HubPage and the

ShoppingCartPage. For more info see "Adding search functionality" in the following section.

AdventureWorks Shopper includes a search box on the app canvas for the HubPage, CategoryPage,

GroupDetailPage, ItemDetailPage, and SearchResultsPage. When the app is in the portrait or

minimal view state the search box is shown in a compact state. The search box is prominently

located next to the shopping cart icon, as shown in the following diagram. For more info see "Adding

search functionality" below.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

178

Adding search functionality

The SearchUserControl class defines the SearchBox control that’s added to the app canvas on the

HubPage, CategoryPage, GroupDetailPage, ItemDetailPage, and SearchResultsPage. This approach

allows the search functionality to reside in a single user control and accompanying view model class,

rather than having to be repeated across the classes for each page.

XAML: AdventureWorks.Shopper\Views\SearchUserControl.xaml

<SearchBox x:Name="searchBox"

 Height="40"

 x:Uid="SearchBoxUserControl"

 PlaceholderText="Search for a Product"

 VerticalAlignment="Center"

 SearchHistoryEnabled="False"

 Padding="10,10,0,0" >

 <interactivity:Interaction.Behaviors>

 <core:EventTriggerBehavior EventName="QuerySubmitted">

 <core:InvokeCommandAction Command="{Binding SearchCommand}" />

 </core:EventTriggerBehavior>

 <core:EventTriggerBehavior EventName="SuggestionsRequested">

 <core:InvokeCommandAction Command=

 "{Binding SearchSuggestionsCommand}" />

 </core:EventTriggerBehavior>

 </interactivity:Interaction.Behaviors>

</SearchBox>

The SearchBox control is used to enable search in an app by letting the user enter queries and by

displaying suggestions. Placeholder text is shown in the search box, to describe what users can

search for in AdventureWorks Shopper. The text is only shown when the search box is empty, and is

cleared if the user starts typing into the box. This is accomplished by setting the PlaceholderText

property of the SearchBox class. In addition, the SearchHistoryEnabled property has been set to

false in order to disable search history suggestions for queries. This helps to reduce confusion over

whether a result is a search history suggestion or a query suggestion.

Blend for Microsoft Visual Studio 2013 behaviors are used to invoke view model commands in

response to events being raised on the SearchBox. When the user submits a search query the

QuerySubmitted event is raised by the SearchBox, and the SearchCommand in the

SearchUserControlViewModel is executed. For more info see "Responding to search queries" below.

When the user’s query text changes and the app needs to provide new query suggestions the

SuggestionsRequested event is raised by the SearchBox, and the SearchSuggestionsCommand in

the SearchUserControlViewModel is executed.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.placeholdertext.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.searchhistoryenabled.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.querysubmitted.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.suggestionsrequested.aspx

179

The SearchSuggestionRepository class, in the AdventureWorks.WebServices project, provides query

suggestions to help the user quickly search the app. This class is called by the ProductRepository

class to retrieve the query suggestions that are used to populate the search suggestions in the

search pane. For more info see "Providing query suggestions" in the following section.

The SearchResultsPage includes a back button and a top app bar that allows users to navigate to the

HubPage and the ShoppingCartPage. If AdventureWorks Shopper is suspended while the

SearchResultsPage is active, the app will correctly restore page state upon reactivation by using the

Microsoft.Practices.Prism.StoreApps library. This includes the AutoRotatingGridView scroll position,

the user's query text, and the search results. This avoids the need to requery the data using the

query text. For more info see Populating the search results page with data.

For more info see Adding search to an app and Quickstart: Adding search to an app.

Providing query suggestions

When the user’s query text changes and the app needs to provide new query suggestions the

SuggestionsRequested event is raised by the SearchBox, and the SearchSuggestionsCommand in

the SearchUserControlViewModel is executed. This in turn executes the

SearchBoxSuggestionsRequested method, which retrieves query suggestions from the

AdventureWorks Shopper web service, and is shown in the following code example.

C#: AdventureWorks.UILogic\ViewModels\SearchUserControlViewModel.cs

private async Task

SearchBoxSuggestionsRequested(SearchBoxSuggestionsRequestedEventArgs args)

{

 var queryText = args.QueryText != null ? args.QueryText.Trim() : null;

 if (string.IsNullOrEmpty(queryText)) return;

 var deferral = args.Request.GetDeferral();

 try

 {

 var suggestionCollection = args.Request.SearchSuggestionCollection;

 var querySuggestions = await _productCatalogRepository

 .GetSearchSuggestionsAsync(queryText);

 if (querySuggestions != null && querySuggestions.Count > 0)

 {

 var querySuggestionCount = 0;

 foreach (string suggestion in querySuggestions)

 {

 querySuggestionCount++;

 suggestionCollection.AppendQuerySuggestion(suggestion);

 if (querySuggestionCount >= MaxNumberOfSuggestions)

 {

 break;

http://msdn.microsoft.com/en-us/library/windows/apps/jj130767.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868180.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.suggestionsrequested.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

180

 }

 }

 }

 }

 catch (Exception)

 {

 // Ignore any exceptions that occur trying to find search suggestions.

 }

 deferral.Complete();

}

The SearchUserControlViewModel class provides the suggestionCollection variable that’s used to

populate the query suggestions. This variable is populated with a list of query suggestions by the

ProductCatalogRepository instance, which gets the query suggestions from the

SearchSuggestionRepository class in the AdventureWorks.WebServices project. The

AppendQuerySuggestion method then appends any query suggestions from the

suggestionCollection variable that match the user’s query to the list of search suggestions shown

below the SearchBox. The MaxNumberOfSuggestions constant is used to limit the number of query

suggestions that is shown to 5.

For more info see Quickstart: Adding search to an app.

Responding to search queries

When the user submits a search query the QuerySubmitted event is raised by the SearchBox, and

the SearchCommand in the SearchUserControlViewModel is executed. This in turn executes the

SearchBoxQuerySubmitted method, which is shown in the following code example.

C#: AdventureWorks.UILogic\ViewModels\SearchUserControlViewModel.cs

private void SearchBoxQuerySubmitted(SearchBoxQuerySubmittedEventArgs eventArgs)

{

 var searchTerm =

 eventArgs.QueryText != null ? eventArgs.QueryText.Trim() : null;

 if (!string.IsNullOrEmpty(searchTerm))

 {

 _navigationService.Navigate("SearchResults", searchTerm);

 }

}

This method responds to the QuerySubmitted event by navigating to the SearchResultsPage with

the user’s query provided that the query contains data.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.search.searchsuggestioncollection.appendquerysuggestion.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh868180.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.querysubmitted.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx

181

Populating the search results page with data

When users search AdventureWorks Shopper the SearchResultsPage is used to display search

results. The OnNavigatedTo method in the SearchResultsPageViewModel class is used to populate

the page with the search results, as shown in the following code example.

C#: AdventureWorks.UILogic\ViewModels\SearchResultsPageViewModel.cs

public async override void OnNavigatedTo(object navigationParameter,

NavigationMode navigationMode, Dictionary<string, object> viewModelState)

{

 base.OnNavigatedTo(navigationParameter, navigationMode, viewModelState);

 var queryText = navigationParameter as String;

 string errorMessage = string.Empty;

 this.SearchTerm = queryText;

 this.QueryText = '\u201c' + queryText + '\u201d';

 try

 {

 ReadOnlyCollection<Product> products;

 if (queryText == PreviousSearchTerm)

 {

 products = PreviousResults;

 }

 else

 {

 var searchResults = await

_productCatalogRepository.GetFilteredProductsAsync(queryText, 0);

 products = searchResults.Products;

 TotalCount = searchResults.TotalCount;

 PreviousResults = products;

 }

 var productViewModels = new List<ProductViewModel>();

 foreach (var product in products)

 {

 productViewModels.Add(new ProductViewModel(product));

 }

 // Communicate results through the view model

 this.Results = new

ReadOnlyCollection<ProductViewModel>(productViewModels);

 this.NoResults = !this.Results.Any();

 // Update VM status

 PreviousSearchTerm = SearchTerm;

 }

 catch (Exception ex)

 {

 errorMessage = string.Format(CultureInfo.CurrentCulture, _resourceLoader

 .GetString("GeneralServiceErrorMessage"), Environment.NewLine,

 ex.Message);

182

 }

 if (!string.IsNullOrWhiteSpace(errorMessage))

 {

 await _alertMessageService.ShowAsync(errorMessage, _resourceLoader

 .GetString("ErrorServiceUnreachable"));

 }

}

This method uses the ProductCatalogRepository instance to retrieve products from the web service

if they match the queryText parameter, and store them in the Results property for display by the

SearchResultsPage. If no results are returned by the ProductCatalogRepository, the NoResults

property is set to true and the SearchResultsPage displays a message indicating that no products

match your search. The method also saves the search results for the last query in case the user

searches for that query again. This handles the scenario whereby the user might submit a search

query to AdventureWorks Shopper, select an item from the search results, and then navigate back to

the search results. This approach avoids retrieving a new set of search results, instead loading the

previous search results.

For more info see Guidelines for search.

Navigating to the result's detail page

The ItemClick event of the AutoRotatingGridView custom control in the SearchResultsPage is used

to invoke page navigation to the ItemDetailPage, in order to display detailed information about a

user selected result.

XAML: AdventureWorks.Shopper\Views\SearchResultsPage.xaml

<awcontrols:AutoRotatingGridView x:Name="itemsGridView"

 AutomationProperties.AutomationId="ResultsGridView"

 AutomationProperties.Name="Search Results"

 TabIndex="1"

 Grid.Row="1"

 Padding="100,0,80,50"

 SelectionMode="None"

 IsItemClickEnabled="True"

 ItemsSource="{Binding Results}"

 ItemTemplate="{StaticResource SearchResultsTemplate}"

 MinimalItemTemplate="{StaticResource SearchResultsTemplateMinimal}"

 Loaded="itemsGridView_Loaded">

 <interactivity:Interaction.Behaviors>

 <core:EventTriggerBehavior EventName="ItemClick">

 <awbehaviors:NavigateWithEventArgsToPageAction

 TargetPage= "AdventureWorks.Shopper.Views.ItemDetailPage"

 EventArgsParameterPath="ClickedItem.ProductNumber"/>

 </core:EventTriggerBehavior>

 </interactivity:Interaction.Behaviors>

http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx

183

The EventTriggerBehavior binds the ItemClick event of the AutoRotatingGridView custom control

to the NavigateWithEventArgsToPageAction. So when a GridViewItem is selected the

NavigateWithEventArgsToPageAction is executed, which navigates from the SearchResultsPage to

the ItemDetailPage, passing in the ProductNumber of the ClickedItem to the ItemDetailPage.

For more info about using Blend behaviors to invoke page navigation, see Implementing behaviors to

supplement the functionality of XAML elements.

Enabling users to type into the search box

The AdventureWorks Shopper reference implementation provides the ability to search for content in

the app by typing without selecting the search box first. This feature is known as type to search.

Enabling type to search makes efficient use of keyboard interaction and makes the app's search

experience consistent with the Start screen.

Type to search is enabled in AdventureWorks Shopper for the pages on which the

SearchUserControl is displayed, and is controlled through the FocusOnKeyboardInput property of

the SearchBox control. However, type to search will be disabled when the SignInFlyout is displayed

in order to allow the user to enter their login credentials.

The SearchBox control in the SearchUserControl class uses the EnableFocusOnKeyboardInput,

DisableFocusOnKeyboardInput, and FocusOnKeyboardInputToggle methods to set the

FocusOnKeyboardInput property, in order to control whether the SearchBox receives input when

users type.

C#: AdventureWorks.Shopper\Views\SearchUserControl.xaml.cs

public void EnableFocusOnKeyboardInput()

{

 this.searchBox.FocusOnKeyboardInput = true;

 if (_eventAggregator != null)

 {

 _eventAggregator.GetEvent<FocusOnKeyboardInputChangedEvent>()

 .Subscribe(FocusOnKeyboardInputToggle);

 }

}

public void DisableFocusOnKeyboardInput()

{

 this.searchBox.FocusOnKeyboardInput = false;

 if (_eventAggregator != null)

 {

 _eventAggregator.GetEvent<FocusOnKeyboardInputChangedEvent>()

 .Unsubscribe(FocusOnKeyboardInputToggle);

 }

}

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.eventtriggerbehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.itemclick.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridviewitem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemclickeventargs.clickeditem.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.focusonkeyboardinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.focusonkeyboardinput.aspx

184

private void FocusOnKeyboardInputToggle(bool value)

{

 this.searchBox.FocusOnKeyboardInput = value;

}

There can only be one SearchBox control with FocusOnKeyboardInput behavior enabled per thread.

Because there are multiple instances of the SearchBox control in AdventureWorks Shopper, all with

FocusOnKeyboardInput behavior enabled, then the last control to be enabled will gain keyboard

focus while the other controls will no longer receive FocusOnKeyboardInput behavior. In order to

ensure consistent behavior across all SearchBox controls in an app it is necessary to disable the

FocusOnKeyboardInput behavior for a page’s SearchBox before navigating away from the page, and

enable it while navigating to a page. Therefore, the EnableFocusOnKeyboardInput method is

invoked from the OnNavigatedTo method of any page that uses the SearchUserControl, with the

DisableFocusOnKeyboardInput method being invoked from the OnNavigatedFrom method of any

page that uses the SearchUserControl.

The EnableFocusOnKeyboardInput and DisableFocusOnKeyboardInput methods also use event

aggregation to subscribe to the FocusOnKeyboardInputEvent, providing a handler that will be

invoked when the event is published. The purpose of this event is to allow AdventureWorks Shopper

to disable type to search when showing the SignInFlyout, and restore it when the SignInFlyout

closes.

C#: AdventureWorks.Shopper\Views\SignInFlyout.xaml.cs

public SignInFlyout(IEventAggregator eventAggregator)

{

 ...

 _eventAggregator.GetEvent<FocusOnKeyboardInputChangedEvent>().Publish(false);

 ...

}

void SignInFlyout_Unloaded(object sender, Windows.UI.Xaml.RoutedEventArgs e)

{

 _eventAggregator.GetEvent<FocusOnKeyboardInputChangedEvent>().Publish(true);

}

When the SignInFlyout is shown, its constructor publishes the

FocusOnKeyboardInputChangedEvent with a payload of false. The FocusOnKeyboardInputToggle

method in the SearchUserControl class receives the payload for the event, and changes the

FocusOnKeyboardInput property to false which disables type to search. When the SignInFlyout

closes, the control is unloaded and the FocusOnKeyboardInputChangedEvent is published with a

payload of true, to restore type to search functionality.

For more info about event aggregation see Communicating between loosely coupled components.

For more info about type to search see Guidelines for search.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.searchbox.focusonkeyboardinput.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465233.aspx

185

Improving performance in a Windows Store business app using C#

and XAML

Summary

 Plan for performance and measure it early and throughout the lifecycle of your project.

 Use asynchronous APIs that execute in the background and inform the app when they've

completed.

 Use performance tools to measure, evaluate, and target performance-related issues in your

app.

Learn about general performance practices, such as the differences between actual and perceived

performance, using UI virtualization to only load into memory those UI elements that are near the

viewport, and how to perform incremental loading of data. These were used when developing the

AdventureWorks Shopper reference implementation.

You will learn

 The differences between performance and perceived performance.

 Guidelines that help to create a well-performing, responsive Windows Store app.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Making key decisions

Users have a number of expectations for apps. They want immediate responses to touch, clicks, and

key presses. They expect animations to be smooth. They expect that they'll never have to wait for

the app to catch up with them. Performance problems show up in various ways. They can reduce

battery life, cause panning and scrolling to lag behind the user's finger, or make the app appear

unresponsive for a period of time. The following list summarizes the decisions to make when

planning a well-performing, responsive app:

 Should I optimize actual app performance or perceived app performance?

 What performance tools should I use to discover performance-related issues?

 When should I take performance measurements?

 What devices should I take performance measurements on?

 Do I need to completely understand the platform to determine where to improve app

performance?

186

Optimizing performance is more than just implementing efficient algorithms. Another way to think

about performance is to consider the user's perception of app performance. The user's app

experience can be separated into three categories—perception, tolerance, and responsiveness.

 Perception. User perception of performance can be defined as how favorably they recall the

time it took to perform their tasks within the app. This perception doesn't always match

reality. Perceived performance can be improved by reducing the amount of time between

activities that the user needs to perform to accomplish a task, and by allowing

computationally intensive operations to execute without blocking the user from performing

other activities.

 Tolerance. A user's tolerance for delay depends on how long the user expects an operation

to take. For example, a user might find sending data to a web service intolerable if the app

becomes unresponsive during this process, even for a few seconds. You can increase a user's

tolerance for delay by identifying tasks in your app that require substantial processing time

and limiting or eliminating user uncertainty during those tasks by providing a visual

indication of progress. And you can use async APIs to avoid making the app appear frozen.

 Responsiveness. Responsiveness of an app is relative to the activity being performed. To

measure and rate the performance of an activity, you must have a time interval to compare

it against. We used the guideline that if an activity takes longer than 500 milliseconds, the

app might need to provide feedback to the user in the form of a visual indication of

progress.

Therefore, both actual app performance and perceived app performance should be optimized in

order to deliver a well-performing, responsive app.

One technique for determining where code optimizations have the greatest effect in reducing

performance problems is to perform app profiling. The profiling tools for Windows Store apps

enable you to measure, evaluate, and find performance-related issues in your code. The profiler

collects timing information for apps by using a sampling method that collects CPU call stack

information at regular intervals. Profiling reports display information about the performance of your

app and help you navigate through the execution paths of your code and the execution cost of your

functions so that you can find the best opportunities for optimization. For more info see How to

profile Visual C++, Visual C#, and Visual Basic code in Windows Store apps on a local machine . To

learn how to analyze the data returned from the profiler see Analyzing performance data for Visual

C++, Visual C#, and Visual Basic code in Windows Store apps. In addition to using profiling tools to

measure app performance, we also used PerfView and Windows Performance Analyzer (WPA).

PerfView is a performance analysis tool that helps isolate CPU and memory-related performance

issues. WPA is a set of performance monitoring tools used to produce performance profiles of apps.

We used both of these tools for a general diagnosis of the app’s performance. For more info about

PerfView see PerfView Tutorial. For more info about WPA see Windows Performance Analyzer.

Measuring your app's performance during the early stages of development can add enormous value

to your project. We recommend that you measure performance as soon as you have code that

performs meaningful work. Early measurements give you a good idea of where the high costs in your

app are, and can inform design decisions. It can be very costly to change design decisions later on in

http://msdn.microsoft.com/en-us/library/windows/apps/hh696631.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh696631.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780914.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh780914.aspx
http://go.microsoft.com/fwlink/p/?LinkID=278825
http://msdn.microsoft.com/en-us/library/windows/apps/ff191077.aspx

187

the project. Measuring performance late in the product cycle can result in last minute changes and

poor performance. For more info see General best practices for performance.

At a minimum, take performance measurements on hardware that has the lowest anticipated

specifications. Microsoft Windows runs on a wide variety of devices, and taking performance

measurements on one type of device won't always show the performance characteristics of other

form factors.

You don't need to completely understand the platform to determine where you might need to

improve performance. By knowing what parts of your code execute most frequently, you can

determine the best places to optimize your app.

Performance considerations

A well-performing app responds to user actions quickly, and with no noticeable delay. We spent

much time learning what works and what doesn't work when creating a responsive Windows Store

app. Here are some things to remember:

 Limit the startup time.

 Emphasize responsiveness.

 Trim resource dictionaries

 Optimize the element count.

 Reuse identical brushes.

 Use independent animations.

 Minimize the communication between the app and the web service.

 Limit the amount of data downloaded from the web service.

 Use UI virtualization.

 Use the IncrementalUpdateBehavior to implement incremental loading.

 Avoid unnecessary termination.

 Keep your app's memory usage low when it's suspended.

 Reduce battery consumption.

 Minimize the amount of resources that your app uses.

 Limit the time spent in transition between managed and native code.

 Reduce garbage collection time.

Limit the startup time

It's important to limit how much time the user spends waiting while your app starts. There are a

number of techniques you can use to do this:

 You can dramatically improve the loading time of an app by packing its contents locally,

including XAML, images, and any other important resources. If an app needs a particular file

at initialization, you can reduce the overall startup time by loading it f rom disk instead of

retrieving it remotely.

http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx

188

 You should only reference assemblies that are necessary to the launch of your app in startup

code so that the common language runtime (CLR) doesn't load unnecessary modules.

 Defer loading large in-memory objects while the app is activating. If you have large tasks to

complete, provide a custom splash screen so that your app can accomplish these tasks in the

background.

In addition, apps have different startup performance at first install and at steady state. When your

app is first installed on a user's machine, it is executed using the CLR's just-in-time (JIT) compiler.

This means that the first time a method is executed it has to wait to be compiled. Later, a pre -

compilation service pre-compiles all of the modules that have been loaded on a user's machine,

typically within 24 hours. After this service has run most methods no longer need to be JIT compiled,

and your app benefits from an improved startup performance. For more info see Minimize startup

time.

Emphasize responsiveness

Don't block your app with synchronous APIs, because if you do the app can't respond to new events

while the API is executing. Instead, use asynchronous APIs that execute in the background and

inform the app when they've completed by raising an event. For more info see Keep the UI thread

responsive.

Trim resource dictionaries

App-wide resources should be stored in the Application object to avoid duplication, but if you use a

resource in a single page that is not the initial page, put the resource in the resource dictionary of

that page. This reduces the amount of XAML the framework parses when the app starts. For more

info see Optimize loading XAML.

Optimize the element count

The XAML framework is designed to display thousands of objects, but reducing the number of

elements on a page will make your app render faster. You can reduce a page’s element count by

avoiding unnecessary elements, and collapsing elements that aren't visible. For more info see

Optimize loading XAML.

Reuse identical brushes

Create commonly used brushes as root elements in a resource dictionary, and then refer to those

objects in templates as needed. XAML will be able to use the same objects across the different

templates and memory consumption will be less than if the brushes were duplicated in templates.

For more info see Optimize loading XAML.

Use independent animations

An independent animation runs independently from the UI thread. Many of the animation types

used in XAML are composed by a composition engine that runs on a separate thread, with the

http://msdn.microsoft.com/en-us/library/windows/apps/hh994639.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994639.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994635.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994635.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994641.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994641.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994641.aspx

189

engine’s work being offloaded from the CPU to the graphics processing unit (GPU). Moving

animation composition to a non-UI thread means that the animation won’t jitter or be blocked by

the app working on the UI thread. Composing the animation on the GPU greatly improves

performance, allowing animations to run at a smooth and consistent frame rate.

You don’t need additional markup to make your animations independent. The system determines

when it's possible to compose the animation independently, but there are some limitations for

independent animations. For more info see Make animations smooth.

Minimize the communication between the app and the web service

In order to reduce the interaction between the AdventureWorks Shopper reference implementation

and its web service as much data as possible is retrieved in a single call. For example, instead of

retrieving product categories in one web service call, and then retrieving products for a category in a

second web service call, AdventureWorks Shopper retrieves a category and its products in a single

web service call.

In addition, the AdventureWorks Shopper reference implementation uses the

TemporaryFolderCacheService class to cache data from the web service to the temporary app data

store. This helps to minimize the communication between the app and the web service, provided

that the cached data isn't stale. For more info see Caching data from a web service.

Limit the amount of data downloaded from the web service

The GetRootCategoriesAsync method in ProductCatalotRepository class retrieves data for display

on the HubPage, as shown in the following code example.

C#: AdventureWorks.UILogic\ViewModels\HubPageViewModel.cs

rootCategories = await _productCatalogRepository.GetRootCategoriesAsync(5);

The call to the GetRootCategoriesAsync method specifies the maximum amount of products to be

returned by each category. This parameter can be used to limit the amount of data downloaded

from the web service, by avoiding returning an indeterminate number of products for each category.

For more info see Consuming data from a web service using DTOs.

Use UI virtualization

UI virtualization enables controls that derive from ItemsControl (that is, controls that can be used to

present a collection of items) to only load into memory those UI elements that are near the

viewport, or visible region of the control. As the user pans through the collection, elements that

were previously near the viewport are unloaded from memory and new elements are loaded.

Controls that derive from ItemsControl, such as ListView and GridView, perform UI virtualization by

default. XAML generates the UI for the item and holds it in memory when the item is close to being

http://msdn.microsoft.com/en-us/library/windows/apps/hh994638.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx

190

visible on screen. When the item is no longer being displayed, the control reuses that memory for

another item that is close to being displayed.

If you restyle an ItemsControl to use a panel other than its default panel, the control continues to

support UI virtualization as long as it uses a virtualizing panel. Standard virtualizing panels include

ItemsStackPanel and ItemsWrapGrid. Using standard non-virtualizing panels, which include

VariableSizedWrapGrid and StackPanel, disables UI virtualization for that control.

In addition, make sure that the UI objects that are created are not overly complex. As items come

into view, the framework must update the elements in cached item templates with the data of the

items coming onto the screen. Reducing the complexity of those XAML trees can pay off both in the

amount of memory needed to store the elements and the time it takes to data bind and propagate

the individual properties within the template. This reduces the amount of work that the UI thread

must perform, which helps to ensure that items appear immediately in a collection that a user pans

through. For more info see Load, store, and display large sets of data efficiently.

Use the IncrementalUpdateBehavior to implement incremental loading

Often GridView and ListView controls display a large number of data items, which can have a

performance impact on an app. UI virtualization can reduce some of the performance impact, but

there may still be problems displaying the data items smoothly when scrolling through the dataset,

particularly if the data items are complex.

The AdventureWorks Shopper reference implementation solves this problem by using the

IncrementalUpdateBehavior that allows incremental updating of data items displayed by

ListViewBase-derived controls, to support faster updating. It promotes a smoother scroll experience

by deferring updates to some of the elements in the ItemTemplate until there is render time

available.

The behavior is triggered when the data being displayed by the ListViewBase-derived control

changes. The order in which to update elements in the ItemTemplate can be specified by adding the

IncrementalUpdateBehavior to each element in the DataTemplate to be displayed, and setting its

Phase property accordingly. The Phase property is used to set the priority of the incremental

update, in relation to other items in the DataTemplate. The following code example shows how the

IncrementalUpdateBehavior is used in the ProductTemplate.

XAML: AdventureWorks.Shopper\Themes\DataTemplates.xaml

<DataTemplate x:Key="ProductTemplate">

 <Grid MinWidth="420">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Border Background="{StaticResource

 ListViewItemPlaceholderBackgroundThemeBrush}"

 BorderBrush="White"

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemsstackpanel.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemswrapgrid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.variablesizedwrapgrid.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.stackpanel.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994637.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.datatemplate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.phase.aspx

191

 BorderThickness="2"

 Width="150"

 Height="100">

 <Image Source="{Binding Image}"

 Stretch="UniformToFill">

 <Interactivity:Interaction.Behaviors>

 <Core:IncrementalUpdateBehavior Phase="2"/>

 </Interactivity:Interaction.Behaviors>

 </Image>

 </Border>

 <StackPanel Grid.Column="1"

 Margin="10,-10,0,0" HorizontalAlignment="Stretch">

 <TextBlock Text="{Binding Title}"

 Margin="5"

 FontSize="25"

 Height="Auto"

 MaxHeight="80"

 TextWrapping="Wrap"

 TextTrimming="WordEllipsis">

 <Interactivity:Interaction.Behaviors>

 <Core:IncrementalUpdateBehavior Phase="1"/>

 </Interactivity:Interaction.Behaviors>

 </TextBlock>

 <TextBlock Text="{Binding SalePrice}"

 Style="{StaticResource BodyTextStyle}"

 Margin="5"

 FontSize="32"

 FontWeight="ExtraBold">

 <Interactivity:Interaction.Behaviors>

 <Core:IncrementalUpdateBehavior Phase="2"/>

 </Interactivity:Interaction.Behaviors>

 </TextBlock>

 </StackPanel>

 </Grid>

</DataTemplate>

The DataTemplate specifies that the Title for each data item will be displayed in the first rendering

phase, with the Image and SalePrice for each data item being displayed in the second rendering

phase. This helps to promote a smoother experience when scrolling through a data set that contains

a large amount of data.

Note The Phase property value starts from 1 rather than 0.

If your app requires better performance than that provided by the IncrementalUpdateBehavior you

should instead consider handling the ContainerContentChanging event in code. For more info see

Incremental loading Quickstart.

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.phase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.containercontentchanging.aspx

192

Avoid unnecessary termination

An app can be suspended when the user moves it to the background or when the system enters a

low power state. When the app is being suspended, it raises the Suspending event and has up to 5

seconds to save its data. If the app's Suspending event handler doesn't complete within 5 seconds,

the system assumes that the app has stopped responding and terminates it. A terminated app has to

go through the startup process again instead of being immediately loaded into memory when a user

switches to it.

The AdventureWorks Shopper reference implementation saves page state while navigating away

from a page, rather than saving all page state on suspension. This reduces the amount of time that it

takes to suspend the app, and hence reduces the chance of the system terminating the app during

suspension. In addition, AdventureWorks Shopper does not use page caching. This prevents views

that are not currently active from consuming memory, which would increase the chance of

termination when suspended. For more info see Minimize suspend/resume time and Handling

suspend, resume and activation.

Keep your app's memory usage low when it's suspended

When your app resumes from suspension, it reappears nearly instantly. But when your app restarts

after being closed, it might take longer to appear. So preventing your app from being closed when

it's suspended can help to manage the user's perception and tolerance of app responsiveness.

When your app begins the suspension process, it should free any large objects that can be easily

rebuilt when it resumes. Doing so helps to keep your app's memory footprint low, and reduces the

likelihood that Windows will terminate your app after suspension. For more info see Minimize

suspend/resume time and Handling suspend, resume and activation.

Reduce battery consumption

The CPU is a major consumer of battery power on devices, even at low utilization. Windows tries to

keep the CPU in a low power state when it is idle, but activates it as required. While most of the

performance tuning that you undertake will naturally reduce the amount of power that your app

consumes, you can further reduce your app's consumption of battery power by ensuring that it

doesn't unnecessarily poll for data from web services and sensors. For more info see General best

practices for performance.

Minimize the amount of resources that your app uses

Windows has to accommodate the resource needs of all Windows Store apps by using the Process

Lifetime Management (PLM) system to determine which apps to close in order to allow other apps

to run. A side effect of this is that if your app requests a large amount of memory, other apps might

be closed, even if your app then frees that memory soon after requesting it. Minimize the amount of

resources that your app uses so that the user doesn't begin to attribute any perceived slowness in

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.suspending.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994640.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994640.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994640.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx

193

the system to your app. For more info see Improve garbage collection performance and Garbage

Collection and Performance.

Limit the time spent in transition between managed and native code

Most of the Windows Runtime APIs are implemented in native code. This has an implication for

Windows Store apps written in managed code, because any Windows Runtime invocation requires

that the CLR transitions from a managed stack frame to a native stack frame and marshals function

parameters to representations accessible by native code. While this overhead is negligible for most

apps, if you make many calls to Windows Runtime APIs in the critical path of an app, this cost can

become noticeable. Therefore, you should try to ensure that the time spent in transition between

languages is small relative to the execution of the rest of your code.

The .NET for Windows Store apps types don't incur this interop cost. You can assume that types in

namespace which begin with "Windows." are part of the Windows Runtime, and types in namespace

which begin with "System." are .NET types.

If your app is slow because of interop overheard, you can improve its performance by reducing calls

to Windows Runtime APIs on critical code paths. For example, if a collection is frequently accessed,

then it is more efficient to use a collection from the System.Collections namespace, rather than a

collection from the Windows.Foundation.Collections namespace. For more info see Keep your app

fast when you use interop.

Reduce garbage collection time

Windows Store apps written in managed code get automatic memory management from the .NET

garbage collector. The garbage collector determines when to run by balancing the memory

consumption of the managed heap with the amount of work a garbage collection needs to do.

Frequent garbage collections can contribute to increased CPU consumption, and therefore increased

power consumption, longer loading times, and decreased frame rates in your app.

If you have an app with a managed heap size that's substantially larger than 100MB, you should

attempt to reduce the amount of memory you allocate directly in order to reduce the frequency of

garbage collections. For more info see Improve garbage collection performance.

http://msdn.microsoft.com/en-us/library/windows/apps/hh994643.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ee851764.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ee851764.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230232.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.collections.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.foundation.collections.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994636.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994636.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994643.aspx

194

Testing and deploying Windows Store business apps using C#, XAML,

and Prism

Summary

 Use multiple modes of testing for best results.

 Use unit tests and integration tests to identify bugs at their source.

 Test asynchronous functionality by creating a mock version of the instance that the class to

be tested depends on, and specify an asynchronous delegate in the unit test that w ill be

executed by the asynchronous method in the mock object.

Learn how to perform various modes of testing in order to ensure that reliable, high quality apps

result. We provide guidance for unit testing, integration testing, user interface testing, suspend and

resume testing, security testing, localization testing, accessibility testing, performance testing,

device testing, and validation of the app user experience against the user experience guidelines on

the Windows Developer Center.

You will learn

 How the various modes of testing contribute to the reliability and correctness of an app.

 How to test synchronous and asynchronous functionality in automated tests.

 How to perform different types of testing, including suspend and resume testing, localization

testing, and accessibility testing.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Making key decisions

Testing helps to ensure that an app is reliable, correct, and of high quality. The following list

summarizes the decisions to make when testing a Windows Store app:

 How should I test the app?

 How should I deploy the app?

 How can I test the app for compliance with the Windows Store certification requirements?

 How should I manage the app after deployment?

You can test your app in many ways including unit testing, integration testing, user interface testing,

suspend and resume testing, security testing, localization testing, accessibility testing, performance

testing, device testing, and validation of the app user experience against the user experience

guidelines on the Windows Dev Center. For more info see "Testing AdventureWorks Shopper" in the

following section.

195

While you can use the Windows Store to market and distribute apps, business apps wi ll often be

distributed directly to the end-user by the IT organization within a company. For more info see

Deploying and managing Windows Store apps.

Regardless of how your app will be deployed, you should validate and test it by using the Windows

App Certification Kit. The kit performs a number of tests to verify that your app meets certification

requirements for the Windows Store. In addition, as you plan your app, you should create a

publishing-requirements checklist to use when you test your app. For more info see Testing your app

with the Windows App Certification Kit and Creating a Windows Store certification checklist.

Tools such as Windows Intune and System Center Configuration Manager can be used to manage

access to business apps. In addition, IT staff can control the availability and functionality of the

Windows Store to client computers based on the business policies of their environment. For more

info see Deploying and managing Windows Store apps.

Testing AdventureWorks Shopper

The AdventureWorks Shopper reference implementation was designed for testability, with the

following modes of testing being performed:

 Unit testing tests individual methods in isolation. The goal of unit testing is to check that

each unit of functionality performs as expected so that errors don't propagate throughout

the app. Detecting a bug where it occurs is more efficient than observing the effect of a bug

indirectly at a secondary point of failure. For more info see the next section, "Unit and

integration testing."

 Integration testing verifies that the components of an app work together correctly.

Integration tests examine app functionality in a manner that simulates the way the app is

intended to be used. Normally, an integration test will drive the layer just below the user

interface. In the AdventureWorks Shopper reference implementation, you can recognize this

kind of test because it invokes methods of the view model. The separation of views from the

view model makes integration testing possible. For more info see the next section, "Unit and

integration testing."

 User interface (UI) testing involves direct interaction with the user interface. This type of

testing often needs to performed manually. Automated integration tests can be substituted

for some UI testing but can't eliminate it completely.

 Suspend and resume testing ensures that your app behaves as expected when Windows

suspends or resumes it, or activates it after a suspend and shutdown sequence. For more

info see Suspend and resume testing.

 Security testing focus on potential security issues. It's based on a threat model that

identifies possible classes of attack. For more info see Security testing.

 Localization testing makes sure that an app works in all language environments. For more

info see Localization testing.

 Accessibility testing makes sure than an app supports touch, pointer, and keyboard

navigation. It also makes sure that different screen configurations and contrasts are

196

supported, and that the contents of the screen can be read with Windows Narrator. For

more info see Accessibility testing.

 Performance testing identifies how an app spends its time when it's running. In many cases,

performance testing can locate bottlenecks or methods that take a large percentage of an

app's CPU time. For more info see Performance testing.

 Device testing ensures than app works properly on the range of hardware that it supports.

For example, it's important to test that an app works with various screen resolutions and

touch-input capabilities. For more info see Device testing.

For more info on test automation, see Testing for Continuous Delivery with Microsoft Visual

Studio 2012.

Unit and integration testing

You should expect to spend about the same amount of time writing unit and integration tests as you

do writing the app's code. The effort is worth the work because it results in much more stable code

that has fewer bugs and requires less revision.

In the AdventureWorks Shopper reference implementation we used the Model -View-ViewModel

(MVVM) pattern to separate the concerns of presentation, presentation logic, and model. The

MVVM pattern makes it easier to maintain and test your Windows Store app, especially as it grows.

For more info see Using the MVVM pattern.

The AdventureWorks.UILogic.Tests, AdventureWorks.WebServices.Tests,

Microsoft.Practices.Prism.PubSubEvents.Tests, and Microsoft.Practices.Prism.StoreApps.Tests

projects of the AdventureWorks Shopper Visual Studio solution contain all the code that supports

testing the Microsoft.Practices.Prism.PubSubEvents and Microsoft.Practices.Prism.StoreApps

libraries, and the AdventureWorks Shopper reference implementation. The

AdventureWorks.WebServices.Tests project uses the

Microsoft.VisualStudio.QualityTools.UnitTestFramework, with the remaining test projects using the

MsTestFramework for Windows Store apps. Test methods can be identified by the TestMethod

attribute above the method name.

You can examine the unit tests by opening the AdventureWorks Shopper Visual Studio solution. On

the menu bar, choose Test > Windows > Test Explorer. The Test Explorer window lists all of the

AdventureWorks Shopper unit tests, as shown in the following diagram.

http://msdn.microsoft.com/en-us/library/windows/apps/jj159345.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj159345.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.visualstudio.testtools.unittesting.testmethodattribute.aspx

197

Unit tests should focus on how the code under test functions in response to values returned by

dependent objects. A good approach to increase software testability is to isolate dependent objects

and have them passed into your business logic using an abstraction such as an interface. This

approach allows the dependent object to be passed into the business logic at run time. In addition,

in the interests of testability, it allows a mock version of the dependent object to be passed in at test

time. By using mocks, the return values or exceptions to be thrown by mock instances of dependent

objects can easily be controlled.

Testing synchronous functionality

Synchronous functionality can easily be tested by unit tests. The following code example shows the

Validation_Of_Field_When_Valid_Should_Succeed test method that demonstrates testing

synchronous functionality. The unit test verifies that the BindableValidator class can successfully

validate the value of the Title property in the MockModelWithValidation class.

C#: Microsoft.Practices.Prism.StoreApps.Tests\BindableValidatorFixture.cs

[TestMethod]

public void Validation_Of_Field_When_Valid_Should_Succeeed()

{

 var model = new MockModelWithValidation() { Title = "A valid Title" };

 var target = new BindableValidator(model);

 bool isValid = target.ValidateProperty("Title");

 Assert.IsTrue(isValid);

 Assert.IsTrue(target.GetAllErrors().Values.Count == 0);

}

198

This method creates instances of the MockModelWithValidation and the BindableValidator classes.

The BindableValidator instance is used to validate the contents of the Title property in the

MockModelWithValidation instance by calling the ValidateProperty method on the

BindableValidator instance. The unit test passes if the ValidateProperty method returns true, and

the BindableValidator instance has no errors.

For more info about validation, see Validating user input.

Testing asynchronous functionality

Asynchronous functionality can be tested by creating a mock version of the dependent service that

has an asynchronous method, and specifying an asynchronous delegate in the unit test that will be

executed by the asynchronous method in the mock object. The following code example shows the

OnNavigatedTo_Fill_Root_Categories test method, which demonstrates testing asynchronous

functionality. The unit test verifies that when the hub page is navigated to the RootCategories

property of the HubPageViewModel class will contain three categories.

C#: AdventureWorks.UILogic.Tests\ViewModels\HubPageViewModelFixture.cs

[TestMethod]

public void OnNavigatedTo_Fill_RootCategories()

{

 var repository = new MockProductCatalogRepository();

 var navigationService = new MockNavigationService();

 repository.GetRootCategoriesAsyncDelegate = (maxAmmountOfProducts) =>

 {

 var categories = new ReadOnlyCollection<Category>(new List<Category>{

 new Category(),

 new Category(),

 new Category()

 });

 return Task.FromResult(categories);

 };

 var viewModel = new HubPageViewModel(repository, navigationService, null,

 null);
 viewModel.OnNavigatedTo(null, NavigationMode.New, null);

 Assert.IsNotNull(viewModel.RootCategories);

 Assert.AreEqual(((ICollection<CategoryViewModel>)viewModel.RootCategories)

 .Count, 3);

}

The method creates instances of the mock classes that are required to create an instance of the

HubPageViewModel class. The GetRootCategoriesAsyncDelegate, when executed, returns a Task of

type ReadOnlyCollection with three Category objects. An instance of the HubPageViewModel class

is then created, with its OnNavigatedTo method being called. The OnNavigatedTo method calls the

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ms132474.aspx

199

GetRootCategoriesAsync method, in this case on the MockProductCatalogRepository instance,

which in turn executes the GetRootCategoriesAsyncDelegate. The result of this is that the

RootCategories property of the HubPageViewModel instance is populated with the data returned

by the GetRootCategoriesAsyncDelegate. The unit test passes if the RootCategories property

contains three items of data.

Note If you use the await operator in a test method, the test method must return a Task and use

the async modifier in its method signature.

For more info about the unit testing tools in Visual Studio, see Verifying Code by Using Unit Tests.

Suspend and resume testing

When you debug a Windows Store app, the Debug Location toolbar contains a drop-down menu

that enables you to suspend, resume, or suspend and shut down (terminate) the running app. You

can use this feature to ensure that your app behaves as expected when Windows suspends or

resumes it, or activates it after a suspend and shutdown sequence. The following diagram shows the

drop-down menu that enables you to suspend the running app.

If you want to demonstrate suspending from the debugger, run AdventureWorks Shopper in the

Visual Studio debugger and set breakpoints in the MvvmAppBase.OnSuspending and

MvvmAppBase.InitializeFrameAsync methods. Then select Suspend and shutdown from the Debug

Location toolbar. The app will exit. Restart the app in the debugger, and the app will follow the code

path for resuming from the Terminated state. In AdventureWorks Shopper, this logic is in the

MvvmAppBase.InitializeFrameAsync method. For more info see Guidelines for app suspend and

resume and Handling suspend, resume, and activation.

Security testing

We used the STRIDE methodology for threat modeling as a basis for security testing in

AdventureWorks Shopper. For more info see Uncover Security Design Flaws Using The STRIDE

Approach and Windows security features test.

Localization testing

We used the Multilingual App Toolkit to provide pseudo-localized versions of AdventureWorks

Shopper for localization testing. For more info see How to use the Multilingual App Toolkit,

Guidelines for app resources, and Guidelines for globalization .

http://msdn.microsoft.com/en-us/library/windows/apps/hh156528.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh156513.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd264975.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465088.aspx
http://go.microsoft.com/fwlink/p/?linkid=260913
http://go.microsoft.com/fwlink/p/?linkid=260913
http://msdn.microsoft.com/en-us/library/windows/apps/hh920280.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj572370.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465241.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh969152.aspx

200

Accessibility testing

We used a number of testing tools to verify the accessibility of AdventureWorks Shopper, including

Windows Narrator, Inspect, UI Accessibility Checker, UI Automation Verify, and Accessible Event

Watcher. For more info see Testing your app for accessibility and Design for accessibility.

Performance testing

In addition to using profiling tools to measure app performance, we also used the Windows

Performance Toolkit (WPT). WPT can be used to examine app performance, both in real time and by

collecting log data for later analysis. We used this tool for a general diagnosis of the app's

performance. For more info see Windows Performance Toolkit Technical Reference, General best

practices for performance, and Performance best practices for Windows Store apps using C++, C#,

and Visual Basic.

Device testing

Visual Studio includes a simulator that you can use to run your Windows Store app in various device

environments. For example, you can use the simulator to check whether your app works correctly

with a variety of screen resolutions and with a variety of input hardware. You can simulate touch

gestures even if you're developing the app on a computer that doesn't support touch. The following

diagram shows AdventureWorks Shopper running in the simulator.

http://msdn.microsoft.com/en-us/library/windows/apps/aa939428.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd318521.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh920985.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh920986.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd317979.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd317979.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994937.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh700407.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh162945.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994633.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh750313.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh750313.aspx

201

To start the simulator, click Simulator in the drop-down menu on the Debug toolbar in Visual Studio.

The other choices in this drop-down menu are Local Machine and Remote Machine.

In addition to using the simulator, we also tested AdventureWorks Shopper on a variety of

hardware. You can use remote debugging to test your app on a device that doesn't have Visual

Studio installed on it. For more info see Running Windows Store apps on a remote machine, Testing

Windows Store apps Running on a Device Using the Exploratory Test Window, and Testing Windows

Store apps Running on a Device Using Microsoft Test Runner.

Testing your app with the Windows App Certification Kit

Regardless of how your app will be deployed, you should validate and test it by using the Windows

App Certification Kit. The kit performs a number of tests to verify that your app meets certain

certification requirements for the Windows Store. These tests include:

 Examining the app manifest to verify that its contents are correct.

 Inspecting the resources defined in the app manifest to ensure that they are present and

valid.

 Testing the app's resilience and stability.

 Determining how quickly the app starts and how fast it suspends.

 Inspecting the app to verify that it calls only APIs for Windows Store apps.

 Verifying that the app uses Windows security features.

http://msdn.microsoft.com/en-us/library/windows/apps/hh441469.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh873101.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh873101.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh405417.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh405417.aspx

202

You must run the Windows App Certification Kit on a release build of your app; otherwise, validation

fails. For more info, see How to: Set Debug and Release Configurations.

In addition, it's possible to validate your app whenever you build it. If you're running Team

Foundation Build, you can modify settings on your build machine so that the Windows App

Certification Kit runs automatically every time your app is built. For more info, see Validating a

package in automated builds.

For more info, see Using the Windows App Certification Kit.

Creating a Windows Store certification checklist

You may choose to use the Windows Store as the primary method to make your app available. For

info about how to prepare and submit your app, see Overview of publishing an app to the Windows

Store.

As you plan your app, we recommend that you create a publishing-requirements checklist to use

later when you test your app. This checklist can vary depending on how you've configured your

business operations and the kind of app you're building. For more info and standard checklists, see

Publishing your app to the Store.

Before creating your app package for upload to the Windows Store, be sure to do the following:

 Review the app-submission checklist. This checklist indicates the information that you must

provide when you upload your app. For more info, see App submission checklist.

 Ensure that you have validated a release build of your app with the Windows App

Certification Kit. For more info, see Testing your app with the Windows App Certification Kit

in the previous section.

 Take some screen shots that show off the key features of your app.

 Have other developers test your app. For more info, see Sharing an app package locally.

In addition, if your app collects personal data or uses software that is provided by others, you must

also include a privacy statement or additional license terms.

Deploying and managing Windows Store apps

While you can use the Windows Store to market and distribute apps, business apps will often be

distributed directly to the end-user by the IT organization within a company. The process of installing

apps on Microsoft Windows devices without going through the Windows Store is called side-loading.

For info about some best practices to help ensure that users have a good experience installing and

running side-loaded apps for the first time, see Deployment.

IT managers have several options for managing side-loaded apps and apps distributed from the

Windows Store. For more info see Management of Windows Store apps.

http://msdn.microsoft.com/en-us/library/windows/apps/wx0123s5.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994667.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh994667.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694081.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj657972.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj657972.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj657972.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694062.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh975356.aspx
http://go.microsoft.com/fwlink/p/?LinkID=296263
http://go.microsoft.com/fwlink/p/?LinkID=296264

203

Meet the AdventureWorks Shopper and Prism team

Meet the AdventureWorks Shopper reference implementation and Prism for the Windows Runtime

team. Learn how the team works to create "proven practices for predictable results."

Meet the team

The goal of patterns & practices is to enhance developer success through guidance on designing and

implementing software solutions. We develop content, reference implementations, samples, and

frameworks that explain how to build scalable, secure, robust, maintainable software solutions. We

work with community and industry experts on every project to ensure that some of the best minds

in the industry have contributed to and reviewed the guidance as it develops. Visit the patterns &

practices Developer Center to learn more about patterns & practices and what we do.

This guide was produced by:

 Program Management: Blaine Wastell

 Development: Francis Cheung, Brian Noyes (Solliance), Diego Poza (Southworks SRL),

Mariano Vazquez (Southworks SRL)

 Written guidance: Michael Blome, David Britch (Content Master Ltd)

 Test: Colin Campbell (Modeled Computation LLC), Carlos Farre, Mitesh Neema (Infosys Ltd),

Hardik Patel (Infosys Ltd), Rohit Sharma, Veerapat Sriarunrungrueang (Adecco)

http://www.microsoft.com/practices
http://www.microsoft.com/practices

204

 Graphic design: Chris Burns (Linda Werner & Associates Inc.)

 Editorial support: RoAnn Corbisier

 Bicycle Photography: Lincoln Potter (Samaya LLC) and Mike Rabas (Woodinville Bicycle)

 PDF Production: Nelly Delgado

We want to thank the customers, partners, and community members who have patiently reviewed

our early content and drafts. We especially want to recognize Damir Arh, Christopher Bennage, Iñigo

Bosque (Independent Consultant), Alon Fliess (Chief Architect, CodeValue), Ariel Ben Horesh

(CodeValue), Ohad Israeli (Director of business development, NServiceBus), Brian Lagunas

(Infragistics), Thomas Lebrun, Jeremy Likness (Principal Consultant, Wintellect), Chan Ming Man

(Section Manager, AMD), Paulo Morgado, Oleg Nesterov (Senior Developer, Sberbank CIB), Jason De

Oliveira (CTO at Cellenza, MVP C#), Caio Proiete (Senior Trainer, CICLO.pt), Jenner Maciejewsky

Rocha (Consultor e Desenvolvedor, MVP Visual Basic), Mitchel Sellers (CEO/Director of

Development, IowaComputerGurus Inc.), Tomer Shamam (Software Architect, CodeValue), Bruno

Sonnino (Revolution Software), Perez Jones Tsisah (Freelance Software Developer), Daniel Vaughan,

and Davide Zordan (Microsoft MVP) for their technical insights and support throughout this project.

We hope that you enjoy working with Prism for the Windows Runtime, the AdventureWorks

Shopper reference implementation source files, and this guide as much as we enjoyed creating it.

Happy coding!

http://www.lincolnpotter.com/
http://www.woodinvillebicycle.com/

205

Quickstarts for Windows Store business apps using C#, XAML, and

Prism

The Quickstarts for Windows Store business apps demonstrate validation of user input, event

aggregation between loosely coupled components, bootstrapping a Windows Store business app

that uses Prism for the Windows Runtime, displaying an extended spl ash screen, and incremental

loading of data items.

Download

Quickstarts are small, focused apps that illustrate specific concepts. The following Quickstarts are

included in this guidance:

 Validation Quickstart for Windows Store apps using C#, XAML, and Prism

 Event aggregation Quickstart for Windows Store apps using C#, XAML, and Prism

 Bootstrapping an MVVM Windows Store app Quickstart using C#, XAML, and Prism

 Extended splash screen Quickstart for Windows Store apps using C#, XAML, and Prism

 Incremental loading Quickstart for Windows Store apps using C# and XAML

http://go.microsoft.com/fwlink/p/?LinkID=296755
http://go.microsoft.com/fwlink/p/?LinkID=296754

206

Validation Quickstart for Windows Store apps using C#, XAML, and

Prism

Summary

 Specify validation rules for model properties by adding data annotation attributes to the

properties.

 Call the ValidatableBindableBase.ValidateProperties method to validate all the properties

in a model object that possesses an attribute that derives from the ValidationAttribute

attribute.

 Implement the ValidatableBindableBase.ErrorsChanged event in your view model class, in

order to be notified when the validation errors change.

Learn how to validate user input for correctness in a Windows Store business app by using Prism for

the Windows Runtime. The Quickstart uses the Model-View-ViewModel (MVVM) pattern, and

demonstrates how to synchronously validate data, and how to highlight validation errors on the UI

by using a Blend behavior.

Download

You will learn

 How to synchronously validate data stored in a bound model object.

 How to specify validation rules for model properties by using data annotations.

 How to manually trigger validation.

 How to trigger validation through PropertyChanged events.

 How to highlight validation errors on the UI with a behavior.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Building and running the Quickstart

Build the Quickstart as you would a standard project:

1. On the Microsoft Visual Studio menu bar, choose Build > Build Solution.

2. After you build the project, you must deploy it. On the menu bar, choose Build > Deploy

Solution. Visual Studio also deploys the project when you run the app from the debugger.

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://go.microsoft.com/fwlink/p/?LinkID=296755
http://go.microsoft.com/fwlink/p/?LinkID=296754

207

3. After you deploy the project, pick the Quickstart tile to run the app. Alternatively, from

Visual Studio, on the menu bar, choose Debug > Start Debugging.

When the app runs you will see a page similar to the one shown in the following diagram.

This Quickstart performs synchronous validation of data stored in a model object. The page contains

three text boxes that enable you to enter your name. When you enter data into a text box and the

text box loses focus, the entered data is validated. In addition, when you select the Submit button,

the content of each text box is validated. To pass validation each text box must contain data

consisting of letters, spaces, and hyphens. If a validation error occurs, the text box containing the

invalid data is highlighted with a red border and the validation error details are displayed in red text

below the Submit button.

For more info about validation, see Validating user input.

Solution structure

The ValidationQuickstart Visual Studio solution contains two projects: ValidationQuickstart, and

Microsoft.Practices.Prism.StoreApps. The ValidationQuickstart project uses Visual Studio solution

folders to organize the source code into these logical categories:

 The Assets folder contains the splash screen and logo images.

 The Behaviors folder contains the behavior that is used to highlight controls that have

validation errors.

 The Common folder contains the style resource dictionaries used in the app.

 The Models folder contains the model class used in the app, and a helper class that returns

strings from the app's resource file.

208

 The Strings folder contains resource strings for the en-US locale.

 The ViewModels folder contains the view model class that is exposed to the view.

 The Views folder contains the view that makes up the UI for the app's page.

The Microsoft.Practices.Prism.StoreApps library contains reusable classes used by this Quickstart.

For more info about this library, see Prism for the Windows Runtime reference. With little or no

modification, you can reuse many of the classes from this Quickstart in another app. You can also

adapt the organization and ideas that this Quickstart provides.

Note This Quickstart does not include any suspend and resume functionality. For a validation

implementation that includes suspend and resume functionality see Validating user input.

Key classes in the Quickstart

There are several classes involved in validation. The text boxes in the UserInfoView page bind to

properties of a UserInfo model object.

The UserInfo class derives from the ValidatableBindableBase class that is provided by the

Microsoft.Practices.Prism.StoreApps library. The base class contains an instance of the

BindableValidator class, and uses it to invoke validation whenever a bound property changes, or

when the user selects the Validate button.

The BindableValidator instance acts as the data source for validation error messages that are shown

in the user interface. It is the type of the ValidatableBindableBase class's Errors property.

To perform the validation, the BindableValidator class retrieves validation rules that are encoded as

custom attributes of the UserInfo object. It raises PropertyChanged and ErrorsChanged events

when validation state changes.

The following diagram shows a conceptual view of the key classes involved i n performing validation

in this Quickstart.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx

209

Specifying validation rules

Validation rules for data are specified in the UserInfo model class. To participate in validation the

UserInfo class must derive from the ValidatableBindableBase class.

The text boxes on the UserInfoView page use compound binding path expressions such as "{Binding

UserInfo.FirstName, Mode=TwoWay}". This expression associates the text box's contents with the

FirstName property of the object that is returned by the UserInfo property of the page's data

context. This page's data context is a UserInfoViewModel object.

The UserInfo class contains properties for storing the first, middle, and last names. Validation rules

for the value of each property are specified by adding attributes to each property that derive from

the ValidationAttribute attribute. The following code example shows the FirstName property from

the UserInfo class.

C#: ValidationQuickstart\Model\UserInfo.cs

private const string RegexPattern = @"\A\p{L}+([\p{Zs}\-][\p{L}]+)*\z";

[Required(ErrorMessageResourceType = typeof(ErrorMessagesHelper),

 ErrorMessageResourceName = "FirstNameRequired")]

[RegularExpression(RegexPattern, ErrorMessageResourceType =

 typeof(ErrorMessagesHelper), ErrorMessageResourceName = "FirstNameRegex")]

public string FirstName

{

 get { return _firstName; }

 set { SetProperty(ref _firstName, value); }

}

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx

210

The Required attribute of the FirstName property specifies that a validation failure occurs if the field

is null, contains an empty string, or contains only white-space characters. The RegularExpression

attribute specifies that when the FirstName property is validated it must match the specified regular

expression.

The static ErrorMessagesHelper class is used to retrieve validation error messages from the resource

dictionary for the locale, and is used by the Required and RegularExpression validation attributes.

For example, the Required attribute on the FirstName property specifies that if the property doesn't

contain a value, the validation error message will be the resource string returned by the

FirstNameRequired property of the ErrorMessagesHelper class. In addition, the RegularExpression

attribute on the FirstName property specifies that if the data in the property contains characters

other than letters, spaces, and hyphens, the validation error message will be the resource string

returned by the FirstNameRegex property of the ErrorMessagesHelper class.

Note Using resource strings supports localization. However, this Quickstart only provides strings for

the en-US locale.

Similarly, Required and RegularExpression attributes are specified on the MiddleName and

LastName properties in the UserInfo class.

Triggering validation explicitly

Validation can be triggered manually when the user selects the Validate button. This calls the

ValidatableBindableBase.ValidateProperties method, which in turn calls the

BindableValidator.ValidateProperties method.

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

public bool ValidateProperties()

{

 var propertiesWithChangedErrors = new List<string>();

 // Get all the properties decorated with the ValidationAttribute attribute.

 var propertiesToValidate = _entityToValidate.GetType()

 .GetRuntimeProperties()

 .Where(c =>

c.GetCustomAttributes(typeof(ValidationAttribute)).Any());

 foreach (PropertyInfo propertyInfo in propertiesToValidate)

 {

 var propertyErrors = new List<string>();

 TryValidateProperty(propertyInfo, propertyErrors);

 // If the errors have changed, save the property name to notify the update

 // at the end of this method.

 bool errorsChanged = SetPropertyErrors(propertyInfo.Name, propertyErrors);

 if (errorsChanged &&

 !propertiesWithChangedErrors.Contains(propertyInfo.Name))

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.regularexpressionattribute.aspx

211

 {

 propertiesWithChangedErrors.Add(propertyInfo.Name);

 }

 }

 // Notify each property whose set of errors has changed since the last

 // validation.

 foreach (string propertyName in propertiesWithChangedErrors)

 {

 OnErrorsChanged(propertyName);

 OnPropertyChanged(string.Format(CultureInfo.CurrentCulture,

 "Item[{0}]", propertyName));

 }

 return _errors.Values.Count == 0;

}

This method retrieves all properties that have attributes that derive from the ValidationAttribute

attribute, and attempts to validate them by calling the TryValidateProperty method for each

property. If new validation errors occur the ErrorsChanged and PropertyChanged events are raised

for each property than contains a new error.

The TryValidateProperty method uses the Validator class to apply the validation rules. This is shown

in the following code example.

C#: Microsoft.Practices.Prism.StoreApps\BindableValidator.cs

private bool TryValidateProperty(PropertyInfo propertyInfo, List<string>

propertyErrors)

{

 var results = new List<ValidationResult>();

 var context = new ValidationContext(_entityToValidate)

 { MemberName = propertyInfo.Name };

 var propertyValue = propertyInfo.GetValue(_entityToValidate);

 // Validate the property

 bool isValid = Validator.TryValidateProperty(propertyValue, context, results);

 if (results.Any())

 {

 propertyErrors.AddRange(results.Select(c => c.ErrorMessage));

 }

 return isValid;

}

Triggering validation implicitly on property change

Validation is automatically triggered whenever a bound property's value changes. When a two way

binding in the UserInfoView class sets a bound property in the UserInfo class, the SetProperty

http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validationattribute.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.componentmodel.dataannotations.validator.aspx

212

method is called. This method, provided by the BindableBase class, sets the property value and

raises the PropertyChanged event. However, the SetProperty method is also overridden by the

ValidatableBindableBase class. The ValidatableBindableBase.SetProperty method calls the

BindableBase.SetProperty method, and then provided that the property value has changed, calls

the ValidateProperty method of the BindableValidator class instance.

The ValidateProperty method validates the property whose name is passed to the method by calling

the TryValidateProperty method shown above. If a new validation error occurs the ErrorsChanged

and PropertyChanged events are raised for the property.

Highlighting validation errors

Each text box on the UI uses the HighlightFormFieldOnErrors behavior to highlight validation errors.

This behavior can also be used to highlight validation errors on ComboBox controls. The following

code example shows how this behavior is attached to a text box.

XAML: ValidationQuickstart\Views\UserInfoView.xaml

<TextBox x:Name="FirstNameValue"

 Grid.Row="2"

 Text="{Binding UserInfo.FirstName, Mode=TwoWay}">

 <interactivity:Interaction.Behaviors>

 <quickstartbehaviors:HighlightFormFieldOnErrors PropertyErrors=

 "{Binding UserInfo.Errors[FirstName]}" />

 </interactivity:Interaction.Behaviors>

</TextBox>

The HighlightFormFieldOnErrors behavior gets and sets the PropertyErrors dependency property.

The following code example shows how the PropertyErrors dependency property is defined in the

HighlightFormFieldOnErrors class.

C#: ValidationQuickstart\Behaviors\HighlightFormFieldOnErrors.cs

public static DependencyProperty PropertyErrorsProperty =

 DependencyProperty.RegisterAttached("PropertyErrors",

 typeof(ReadOnlyCollection<string>),

 typeof(HighlightFormFieldOnErrors),

 new PropertyMetadata(BindableValidator.EmptyErrorsCollection,

 OnPropertyErrorsChanged));

The PropertyErrors dependency property is registered as a ReadOnlyCollection of strings, by the

RegisterAttached method. The dependency property also has property metadata assigned to it. This

metadata specifies a default value that the property system assigns to all cases of the property, and

a static method that is automatically invoked by the property system whenever a new property

value is detected. Therefore, when the value of the PropertyErrors dependency property changes,

the OnPropertyErrorsChanged method is invoked.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.propertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.combobox.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/ms132474.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701833.aspx

213

Note The HighlightFormFieldOnErrors behavior also defines a dependency property named

HighlightStyleName. By default this property is set to HighlightTextBoxStyle, but can be set to the

HighlightComboBoxStyle when declaring the behavior instance.

The following code example shows the OnPropertyErrorsChanged method.

C#: ValidationQuickstart\Behaviors\HighlightFormFieldOnErrors.cs

private static void OnPropertyErrorsChanged(DependencyObject d,

DependencyPropertyChangedEventArgs args)

{

 if (args == null || args.NewValue == null)

 {

 return;

 }

 var control = ((Behavior<FrameworkElement>)d).AssociatedObject;

 var propertyErrors = (ReadOnlyCollection<string>)args.NewValue;

 Style style = (propertyErrors.Any()) ?

 (Style)Application.Current.Resources[

 ((HighlightFormFieldOnErrors)d).HighlightStyleName] : null;

 control.Style = style;

}

The OnPropertyErrorsChanged method parameters give the instance of the control that the

PropertyErrors dependency property is attached to, and any validation errors for the control. Then,

if validation errors are present the value of the HighlightStyleName dependency property is applied

to the control, so that it is highlighted with a red BorderBrush.

The UI also displays validation error messages below the Submit button in an ItemsControl. This

ItemsControl binds to the AllErrors property of the UserInfoViewModel class. The

UserInfoViewModel constructor subscribes to the ErrorsChanged event of the UserInfo class, which

is provided by the ValidatableBindableBase class. When this event is raised, the OnErrorsChanged

handler updates the AllErrors property with the list of validation error strings from the dictionary

returned by the call to the GetAllErrors method on the UserInfo instance, as shown in the following

code example.

C#: ValidationQuickstart\ViewModels\UserInfoViewModel.cs

private void OnErrorsChanged(object sender, DataErrorsChangedEventArgs e)

{

 AllErrors = new ReadOnlyCollection<string>(_userInfo.GetAllErrors().Values

 .SelectMany(c => c).ToList());

}

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.border.borderbrush.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.itemscontrol.aspx

214

Event aggregation Quickstart for Windows Store apps using C#, XAML,

and Prism

Summary

 Define a pub/sub event by creating an empty class that derives from the

PubSubEvent<TPayload> class.

 Notify subscribers by retrieving the pub/sub event from the event aggregator and calling its

Publish method.

 Register to receive notifications by using one of the Subscribe method overloads available in

the PubSubEvent<TPayload> class.

Learn how to perform event aggregation using Prism for the Windows Runtime. Event aggregation

allows communication between loosely coupled components in an app, removing the need for

components to have a reference to each other.

Download

You will learn

 How event aggregation enables communication between loosely coupled components in a

Windows Store app.

 How to define a pub/sub event.

 How to notify subscribers by retrieving a pub/sub event from the event aggregator.

 How to register to receive notifications for a pub/sub event.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

The Quickstart contains a publisher and several subscribers that communicate using an instance of

the Microsoft.Practices.Prism.PubSubEvents library 's PubSubEvent<TPayload> class. This instance is

managed by an EventAggregator object.

In this Quickstart, the lifetimes of publishers and subscribers are independent because the objects

are not connected by object references. There are also no type dependencies between publishers

and subscribers—publisher and subscriber classes can be packaged in unrelated assemblies.

http://go.microsoft.com/fwlink/p/?LinkID=296755
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=296753

215

Nonetheless, when the publisher invokes the PubSubEvent<TPayload> class's Publish method, the

system will run all actions that have been registered by the PubSubEvent<TPayload> class's

Subscribe method. Subscribers can control how the actions run. The Quickstart shows the following

options:

 The action is invoked synchronously in the same thread as the Publish thread.

 The action is scheduled to run in the background on a thread-pool thread.

 The action is dispatched to the app's UI thread.

Subscriptions in this Quickstart use weak references. Registering a subscription action does not add a

reference to the subscriber.

Building and running the Quickstart

Build the Quickstart as you would a standard project:

1. On the Microsoft Visual Studio menu bar, choose Build > Build Solution.

2. After you build the project, you must deploy it. On the menu bar, choose Build > Deploy

Solution. Visual Studio also deploys the project when you run the app from the debugger.

3. After you deploy the project, pick the Quickstart tile to run the app. Alternatively, from

Visual Studio, on the menu bar, choose Debug > Start Debugging.

When the app runs you will see a page similar to the one shown in the following diagram.

Panels represent the PublisherViewModel and SubscriberViewModel classes. In the left panel are

two buttons that allow you to add items to a shopping cart, from the UI thread and from a

background thread. Selecting either button causes the PublisherViewModel class to add an item to

216

the shopping cart and invoke the Publish method of the ShoppingCartChangedEvent class that

derives from the PubSubEvent<TPayload> class. The SubscriberViewModel class has two

subscriptions to this event, in order to update the count of the number of items in the shopping cart,

and to display a warning message once there are more than 10 items in the shopping cart.

On the right of the page there's a button for adding a background subscriber to the

ShoppingCartChangedEvent. If this button is selected, a message dialog is shown from the

background subscriber whenever the ShoppingCartChangedEvent is published. There's also a button

that forces the background subscriber to be garbage collected. No special cleaned is required—the

background subscriber did not need to call the ShoppingCartChangedEvent class's Unsubscribe

method.

For more info about event aggregation, see Communicating between loosely coupled components.

Solution structure

The EventAggregatorQuickstart Visual Studio solution contains three projects:

EventAggregatorQuickstart, Microsoft.Practices.Prism.PubSubEvents, and

Microsoft.Practices.Prism.StoreApps. The EventAggregatorQuickstart project uses Visual Studio

solution folders to organize the source code into these logical categories:

 The Assets folder contains the splash screen and logo images.

 The Common folder contains the styles resource dictionary used in the app.

 The Events folder contains the ShoppingCartChangedEvent class.

 The Models folder contains the two model classes used in the app.

 The ViewModels folder contains the view model classes that are exposed to the views.

 The Views folder contains the views that make up the UI for the app's page.

The Microsoft.Practices.Prism.StoreApps library contains reusable classes used by this Quickstart.

The Microsoft.Practices.Prism.PubSubEvents project is a Portable Class Library (PCL) that implements

event aggregation. For more info about portal class libraries, see Cross-Platform Development with

the .NET Framework. This project has no dependencies on any other projects, and can be added to

your own Visual Studio solution without the Microsoft.Practices.Prism.StoreApps library. For more

info about these libraries, see Prism for the Windows Runtime reference. With little or no

modification, you can reuse many of the classes from this Quickstart in another app. You can also

adapt the organization and ideas that this Quickstart provides.

Key classes in the Quickstart

The EventAggregator class is responsible for locating or building events and for managing the

collection of events in the system. In this Quickstart, an instance of the EventAggregator class is

created in the OnLaunched method in the App class. The EventAggregator instance must be created

on the UI thread in order for UI thread dispatching to work. This instance is then passed into the

view model classes through constructor injection. This is shown in the following code examples.

http://msdn.microsoft.com/en-us/library/windows/apps/gg597391.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/gg597391.aspx

217

C#: EventAggregatorQuickstart\Bootstrapper.cs

public void Bootstrap(INavigationService navService)

{

 // Create the singleton EventAggregator so it can be dependency injected down

 // to the view models who need it

 _eventAggregator = new EventAggregator();

 ViewModelLocator.Register(typeof(MainPage).ToString(),

 () => new MainPageViewModel(_eventAggregator));

}

The app has a singleton instance of the EventAggregator class that is created on the UI thread.

C#: EventAggregatorQuickstart\ViewModels\MainPageViewModel.cs

public MainPageViewModel(IEventAggregator eventAggregator)

{

 // Pass the injected event aggregator singleton down to children since there

 // is no container to do the dependency injection

 SubscriberViewModel = new SubscriberViewModel(eventAggregator);

 PublisherViewModel = new PublisherViewModel(eventAggregator);

}

View models, such as the MainPageViewModel, take the event aggregator object as a constructor

parameter and pass this object to any of their child objects that need to use event aggregation. In

the code example, the MainPageViewModel passes the event aggregator to the

SubscriberViewModel and PublisherViewModel instances that it contains.

The PubSubEvent<TPayload> class connects event publishers and subscribers, and is the base class

for an app's specific events. TPayload is the type of the event's payload, and is the argument that

will be passed to subscribers when an event is published. Compile-time checking helps publishers

and subscribers provide successful event connection.

The following diagram shows a conceptual view of how event aggregation is used in this Quickstart.

218

Defining the ShoppingCartChangedEvent class

The ShoppingCartChangedEvent class's Publish method is invoked when the user adds an item to

the shopping cart. This class, which derives from the PubSubEvent<TPayload> class, is used to

communicate between the loosely coupled PublisherViewModel and SubscriberViewModel classes.

The following code example shows how the ShoppingCartChangedEvent is defined, specifying

ShoppingCart as the payload type.

C#: EventAggregatorQuickstart\Events\ShoppingCartChangedEvent.cs

public class ShoppingCartChangedEvent : PubSubEvent<ShoppingCart> { }

Notifying subscribers of the ShoppingCartChangedEvent

Users can add an item to the shopping cart from both the UI thread and from a background thread.

When an item is added to the shopping cart the PublisherViewModel class calls the

ShoppingCartChangedEvent's Publish method in order to alert subscribers of the change to the

shopping cart. The following code example shows how the subscribers are notified.

C#: EventAggregatorQuickstart\ViewModels\PublisherViewModel.cs

private void PublishOnUIThread()

{

 AddItemToCart();

 // Fire the event on the UI thread

 _eventAggregator.GetEvent<ShoppingCartChangedEvent>().Publish(_cart);

}

private void PublishOnBackgroundThread()

{

 AddItemToCart();

 Task.Factory.StartNew(() =>

 {

 // Fire the event on a background thread

 _eventAggregator.GetEvent<ShoppingCartChangedEvent>().Publish(_cart);

 Debug.WriteLine(String.Format("Publishing from thread: {0}",

 Environment.CurrentManagedThreadId));

 });

}

private void AddItemToCart()

{

 var item = new ShoppingCartItem("Widget", 19.99m);

 _cart.AddItem(item);

}

Publishing can occur from any thread. The EventAggregator and PubSubEvent<TPayload> classes

are thread safe. The Quickstart shows this by notifying subscribers from both the UI thread and a

background thread.

219

Note If you access objects from more than one thread you must ensure that you appropriately

serialize reads and writes. For example, the ShoppingCart class in this Quickstart is a thread safe

class.

The PublishOnUIThread and PublishOnBackgroundThread methods add an item to the shopping

cart by creating and initializing an instance of the ShoppingCartItem class. Then, the

ShoppingCartChangedEvent is retrieved from the EventAggregator class and the Publish method is

invoked on it. This supplies the ShoppingCart instance as the ShoppingCartChangedEvent event's

parameter. The EventAggregator class's GetEvent method constructs the event if it has not already

been constructed.

Registering to receive notifications of the ShoppingCartChangedEvent

Subscribers can register actions with a PubSubEvent<TPayload> instance using one of its Subscribe

method overloads. The SubscriberViewModel class subscribes to the ShoppingCartChangedEvent

on the UI thread, regardless of which thread published the event. The subscriber indicates this

during subscription by specifying a ThreadOption.UIThread value, as shown in the following code

example.

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

// Subscribe indicating this handler should always be called on the UI Thread

_eventAggregator.GetEvent<ShoppingCartChangedEvent>()

 .Subscribe(HandleShoppingCartUpdate, ThreadOption.UIThread);

// Subscribe indicating that this handler should always be called on UI thread,

// but only if more than 10 items in cart

_eventAggregator.GetEvent<ShoppingCartChangedEvent>()

 .Subscribe(HandleShoppingCartUpdateFiltered, ThreadOption.UIThread, false,

 IsCartCountPossiblyTooHigh);

Subscribers provide an action with a signature that matches the payload of the pub/sub event. For

example, the HandleShoppingCartUpdate method takes a ShoppingCart parameter. The method

updates the number of items that are in the shopping cart.

A second subscription is made to the ShoppingCartChangedEvent using a filter expression. The filter

expression defines a condition that the payload must meet for before the action will be invoked. In

this case, the condition is satisfied if there are more than 10 items in the shopping cart. The

HandleShoppingCartUpdateFiltered method shows a warning message to the user, indicating that

they have more than 10 items in their shopping cart.

Note For UI thread dispatching to work, the EventAggregator class must be created on the UI

thread. This allows it to capture and store the SynchronizationContext that is used to dispatch to the

UI thread for subscribers that use the ThreadOption.UIThread value. If you want to use dispatching

on the UI thread, you must make sure that you instantiate the EventAggregator class in your app's

UI thread.

http://msdn.microsoft.com/en-us/library/windows/apps/system.threading.synchronizationcontext.aspx

220

The PubSubEvent<TPayload> class, by default, maintains a weak delegate reference to the

subscriber's registered action and any filter. This means that the reference that the

PubSubEvent<TPayload> class holds onto will not prevent garbage collection of the subscriber.

Using a weak delegate reference relieves the subscriber from the need to unsubscribe from the

event. The garbage collector will dispose the subscriber instance when there are no references to it.

Note Lambda expressions that capture the this reference cannot be used as weak references. You

should use instance methods as the Subscribe method's action and filter parameters if you want to

take advantage of the PubSubEvent<TPayload> class's weak reference feature.

When the Add Background Subscriber button is selected the AddBackgroundSubscriber method is

invoked. This method creates a background subscriber and holds onto the reference to the

subscribing object in order to prevent it from being garbage collected. The method also subscribes

using the HandleShoppingCartChanged method as the subscribed action. After the subscription is

established, any call to the ShoppingCartChangedEvent's Publish method will synchronously invoke

the HandleShoppingCartChanged method that displays a message dialog that informs the user that

the shopping cart has been updated. The messages gives the numerical thread ID of the calling

thread. You can use this to see that the expected thread was used for the action, depending on

which button you used to add the shopping cart item.

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

private void AddBackgroundSubscriber()

{

 if (_subscriber != null) return;

 // Create subscriber and hold on to it so it does not get

 // garbage collected

 _subscriber = new BackgroundSubscriber(Window.Current.Dispatcher);

 // Subscribe with defaults, pointing to subscriber method that

 // pops a message box when the event fires

 _eventAggregator.GetEvent<ShoppingCartChangedEvent>()

 .Subscribe(_subscriber.HandleShoppingCartChanged);

}

When the GC Background Subscriber button is selected the GCBackgroundSubscriber method is

invoked. This method releases the reference to the background subscriber and forces the garbage

collector to run. This garbage collects the background subscriber. The registered action will then no

longer be invoked by the Publish method.

C#: EventAggregatorQuickstart\ViewModels\SubscriberViewModel.cs

private void GCBackgroundSubscriber()

{

 // Release and GC, showing that we don't have to unsubscribe to keep the

 // subscriber from being garbage collected

 _subscriber = null;

 GC.Collect();

}

221

Bootstrapping an MVVM Windows Store app Quickstart using C#,

XAML, and Prism

Summary

 Bootstrap your Windows Store app by deriving your App class from the MvvmAppBase

class, and provide app specific startup behavior in your App class to supplement the core

startup behavior of the MvvmAppBase class.

 Use a dependency injection container to abstract dependencies between objects, and

automatically generate dependent object instances.

 Limit view model instantiation to a single class by using a view model locator object.

Learn how to bootstrap a Windows Store business app that uses the Model -View-ViewModel

(MVVM) pattern and Prism for the Windows Runtime. Prism provides core services to a Windows

Store business app, including support for bootstrapping MVVM apps, state management, validation

of user input, navigation, event aggregation, data binding, commands, and settings.

Download

You will learn

 How to bootstrap a Windows Store app that uses the MVVM pattern and a dependency

injection container.

 How to add specific startup behavior to a Windows Store app that uses the MVVM pattern.

 How to bootstrap a Windows Store app that uses the MVVM pattern without a dependency

injection container.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

This Quickstart uses the Unity container for dependency resolution and construction during the

bootstrapping process. However, you are not required to use Unity, or any other dependency

injection container, when bootstrapping an MVVM Windows Store app. To understand how to

perform bootstrapping without using a dependency injection container, see Bootstrapping without a

dependency injection container.

http://go.microsoft.com/fwlink/p/?LinkID=290899
http://go.microsoft.com/fwlink/p/?LinkID=296755
http://go.microsoft.com/fwlink/p/?LinkID=296754

222

Building and running the Quickstart

Build the HelloWorldWithContainer Quickstart as you would a standard project:

1. On the Microsoft Visual Studio menu bar, choose Build > Build Solution.

2. After you build the project, you must deploy it. On the menu bar, choose Build > Deploy

Solution. Visual Studio also deploys the project when you run the app from the debugger.

3. After you deploy the project, pick the Quickstart tile to run the app. Alternatively, from

Visual Studio, on the menu bar, choose Debug > Start Debugging.

When the app runs you will see the page shown in the following diagram.

The page lists some of the architectural features of Prism, and has a Button that allows you to

navigate to a second page. Selecting the Navigate To User Input Page button will take you to the

second page of the app, as shown in the following diagram.

This page allows you to enter data into two TextBox controls. If you suspend the app on this page

any data will be serialized to disk, and when the app resumes the data will be deserialized and

displayed in the TextBox controls. This is accomplished by using the RestorableState attribute for

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.button.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx

223

the data retained in the view model, and the SessionStateService class for the data retained in the

repository. For more info about the SessionStateService class and the RestorableState attribute see

Handling suspend, resume, and activation.

Solution structure

The HelloWorldWithContainer Visual Studio solution contains two projects:

HelloWorldWithContainer, and Microsoft.Practices.Prism.StoreApps. The HelloWorldWithContainer

project uses Visual Studio solution folders to organize the source code into these logical categories:

 The Assets folder contains the splash screen and logo images.

 The Common folder contains the styles resource dictionary used in the app.

 The Services folder contains the IDataRepository interface and its implementing class.

 The ViewModels folder contains the view model classes that are exposed to the views.

 The Views folder contains the views that make up the UI for the app's page.

The Microsoft.Practices.Prism.StoreApps library contains reusable classes used by this Quickstart.

For more info about this library, see Prism for the Windows Runtime reference. With little or no

modification, you can reuse many of the classes from this Quickstart in another app. You can also

adapt the organization and ideas that this Quickstart provides.

Key classes in the Quickstart

The MvvmAppBase class provides core startup behavior for an MVVM app, with its constructor

being the entry point for the app. The App class adds app specific startup behavior to the app.

There are two view classes in the app, MainPage and UserInputPage that bind to the

MainPageViewModel and UserInputPageViewModel classes respectively. Each view class derives

from the VisualStateAwarePage class, provided by the Microsoft.Practices.Prism.StoreApps library,

that provides view management and navigation support. Each view model class derives from the

ViewModel base class, provided by the Microsoft.Practices.Prism.StoreApps library, that provides

support for navigation and suspend/resume functionality. A static ViewModelLocator object,

provided by the Microsoft.Practices.Prism.StoreApps library, is used to manage the instantiation of

view models and their association to views. This approach has the advantage that the app has a

single class that is responsible for the location and instantiation of view model classes. For more info

about how the ViewModelLocator object manages the instantiation of view models and their

association to views, see Using the MVVM pattern.

Bootstrapping an MVVM app using the MvvmAppBase class and a

dependency injection container

The MvvmAppBase class, provided by the Microsoft.Practices.Prism.StoreApps library, is responsible

for providing core startup behavior for an MVVM app, and derives from the Application class. The

MvvmAppBase class constructor is the entry point for the app. The following diagram shows a

conceptual view of how app startup occurs.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.application.aspx

224

The MvvmAppBase class helps bootstrap Windows Store apps with suspension, navigation, and

other services.

In order to bootstrap an app using the MvvmAppBase class, the App class must derive from the

MvvmAppBase class, as shown in the following code examples.

XAML: HelloWorldWithContainer\App.xaml

<prism:MvvmAppBase

 ...

 xmlns:prism="using:Microsoft.Practices.Prism.StoreApps">

 <Application.Resources>

 ...

 </Application.Resources>

</prism:MvvmAppBase>

C#: HelloWorldWithContainer\App.xaml.cs

sealed partial class App : MvvmAppBase

Adding app specific startup behavior to the App class

When deriving from the MvvmAppBase class, app specific startup behavior can be added to the App

class. A required override in the App class is the OnLaunchApplication method from where you will

typically perform your initial navigation to a launch page, or to the appropriate page based on a

search, sharing, or secondary tile launch of the app. The following code example shows the

OnLaunchApplication method in the App class.

C#: HelloWorldWithContainer\App.xaml.cs

public override Task OnLaunchApplication(LaunchActivatedEventArgs args)

{

 NavigationService.Navigate("Main", null);

 return Task.FromResult<object>(null);

}

225

This method navigates to the MainPage in the app, when the app launches. "Main" is specified as

the logical name of the view that will be navigated to. The default convention specified in the

MvvmAppBase class is to append "Page" to the name and look for that page in a .Views child

namespace in the project. Alternatively, another convention can be specified by overriding the

GetPageType method in the MvvmAppBase class.

Note The OnLaunchApplication method returns a Task, allowing it to launch a long running

operation. If you don't have a long running operation to launch you should return an empty Task.

The app uses the Unity dependency injection container to reduce the dependency coupling between

objects by providing a facility to instantiate instances of classes and manage their lifetime based on

the configuration of the container. An instance of the container is created as a singleton in the App

class, as shown in the following code example.

C#: HelloWorldWithContainer\App.xaml.cs

IUnityContainer _container = new UnityContainer();

If you require app specific initialization behavior you should override the OnInitialize method in the

App class. For instance, this method should be overridden if you need to initialize services, or set a

default factory or default view model resolver for the ViewModelLocator object. The following code

example shows the OnInitialize method.

C#: HelloWorldWithContainer\App.xaml.cs

protected override void OnInitialize(IActivatedEventArgs args)

{

 // Register MvvmAppBase services with the container so that view models can

 // take dependencies on them

 _container.RegisterInstance<ISessionStateService>(SessionStateService);

 _container.RegisterInstance<INavigationService>(NavigationService);

 // Register any app specific types with the container

 _container.RegisterType<IDataRepository, DataRepository>();

 // Set a factory for the ViewModelLocator to use the container to construct

 // view models so their dependencies get injected by the container

 ViewModelLocator.SetDefaultViewModelFactory((viewModelType)

 => _container.Resolve(viewModelType));

}

This method registers the SessionStateService and NavigationService instances from the

MvvmAppBase class with the container as singletons, based on their respective interfaces, so that

the view model classes can take dependencies on them. The DataRepository class is then registered

with the container, based on its interface. The DataRepository class provides data for display on the

MainPage, and methods for reading and writing data input from one of the TextBox controls on the

UserInputPage. The OnInitialize method then sets the default view model factory for the

http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx

226

ViewModelLocator object so that it uses the container to construct view model instances whose

dependencies are injected by the container.

In this Quickstart the ViewModelLocator object uses a convention-based approach to locate and

instantiate view models from views. This convention assumes that view models are in the same

assembly as the view types, that view models are in a .ViewModels child namespace, that views are

in a .Views child namespace, and that view model names correspond with view names and end with

"ViewModel". The ViewModelLocator class has an attached property, AutoWireViewModel, that is

used to manage the instantiation of view models and their association to views. In the view's XAML

this attached property is set to true to indicate that the view model class should be automatically

instantiated from the view class.

XAML: HelloWorldWithContainer\Views\MainPage.xaml

prism:ViewModelLocator.AutoWireViewModel="true"

The AutoWireViewModel property is a dependency property that is initialized to false, and when its

value changes the AutoWireViewModelChanged event handler in the ViewModelLocator class is

called to resolve the view model for the view. The following code example shows how this is

achieved.

C#: Microsoft.Practices.Prism.StoreApps\ViewModelLocator.cs

private static void AutoWireViewModelChanged(DependencyObject d,

 DependencyPropertyChangedEventArgs e)

{

 FrameworkElement view = d as FrameworkElement;

 if (view == null) return; // Incorrect hookup, do no harm

 // Try mappings first

 object viewModel = GetViewModelForView(view);

 // Fallback to convention based

 if (viewModel == null)

 {

 var viewModelType = defaultViewTypeToViewModelTypeResolver(view

 .GetType());

 if (viewModelType == null) return;

 // Really need Container or Factories here to deal with injecting

 // dependencies on construction

 viewModel = defaultViewModelFactory(viewModelType);

 }

 view.DataContext = viewModel;

}

The AutoWireViewModelChanged method first attempts to resolve the view model based on

mappings that are not present in this Quickstart. If the view model cannot be resolved using this

approach, for instance if the mapping wasn't registered, the method falls back to using the

227

convention-based approach outlined earlier to resolve the correct view model type. The view model

factory, set by the OnInitialize method in the App class, uses the dependency injection container to

construct view model instances whose dependencies are injected by the container. When the view

model instances are constructed, dependencies specified by the constructor parameters are

resolved by the container and then passed into the view model. This is referred to as constructor

injection. This approach removes the need for an object to locate its dependencies or manage their

lifetimes, allows swapping of implemented dependencies without affecting the object, and facilitates

testability by allowing dependencies to be mocked. Finally, the method sets the DataContext

property of the view type to the registered view model instance.

Bootstrapping without a dependency injection container

You are not required to use Unity, or any other dependency injection container, when bootstrapping

Windows Store apps. The HelloWorld Quickstart demonstrates how to bootstrap a Windows Store

app that uses the MVVM pattern by registering factory methods against view types, with a view

model locator object.

As previously mentioned, if you require app specific initialization behavior you should override the

OnInitialize method in the App class. For instance, this method should be overridden if you need to

initialize services, or set a default factory or default view model resolver for the ViewModelLocator

object. The following code example shows the OnInitialize method.

C#: HelloWorld\App.xaml.cs

protected override void OnInitialize(IActivatedEventArgs args)

{

 // New up the singleton data repository, and pass it the state service it

 // depends on from the base class

 _dataRepository = new DataRepository(SessionStateService);

 // Register factory methods for the ViewModelLocator for each view model that

 // takes dependencies so that you can pass in the dependent services from the

 // factory method here.

 ViewModelLocator.Register(typeof(MainPage).ToString(),

 () => new MainPageViewModel(_dataRepository, NavigationService));

 ViewModelLocator.Register(typeof(UserInputPage).ToString(),

 () => new UserInputPageViewModel(_dataRepository, NavigationService));

}

This method creates a singleton from the DataRepository class, passing in the SessionStateService

from the MvvmAppBase class. The DataRepository class provides data for display on the MainPage,

and methods for reading and writing data input from one of the TextBox controls on the

UserInputPage. The OnInitialize method also registers a factory method for each view type with the

static ViewModelLocator object. This ensures that the ViewModelLocator object instantiates the

correct view model object for a view type, passing in dependent services to the view model

constructor from the factory method.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.frameworkelement.datacontext.aspx
http://go.microsoft.com/fwlink/p/?LinkID=290899
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.textbox.aspx

228

Extended splash screen Quickstart for Windows Store apps using C#,

XAML, and Prism

Summary

 Create an extended splash screen by creating a class that derives from the Page class.

 Display an extended splash screen by setting the ExtendedSplashScreenFactory property in

Prism’s MvvmAppBase class to a delegate that returns an instance of the extended splash

screen class.

 While displaying the extended splash screen, launch any additional loading tasks from the

OnLaunchApplication method in the App class.

Learn how to use Prism for the Windows Runtime to display an extended splash screen that imitates

the splash screen displayed by Windows. An extended splash screen is a splash screen that stays on

the screen for an extended period of time, and should be displayed when an app needs more time to

prepare its initial UI.

Download

You will learn

 How to create an extended splash screen that responds to resize events.

 How to position and size the extended splash screen correctly.

 How to use Prism for the Windows Runtime to display an extended splash screen while an

app completes additional loading tasks.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Building and running the Quickstart

Build the Quickstart as you would a standard project:

1. On the Microsoft Visual Studio menu bar, choose Build > Build Solution.

2. After you build the project, you must deploy it. On the menu bar, choose Build > Deploy

Solution. Visual Studio also deploys the project when you run the app from the debugger.

3. After you deploy the project, pick the Quickstart tile to run the app. Alternatively, from

Visual Studio, on the menu bar, choose Debug > Start Debugging.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://go.microsoft.com/fwlink/p/?LinkID=296755
http://go.microsoft.com/fwlink/p/?LinkID=296754

229

When the app runs you will see the extended splash screen for the app, as shown in the following

diagram.

This Quickstart demonstrates how to use Prism for the Windows Runtime to display an extended

splash screen that imitates the splash screen displayed by Windows. If an app needs more time to

prepare its UI or load network data, you can use an extended splash screen to display a message to

the user as the app completes those tasks.

For more info about extended splash screens, see How to extend the splash screen and Guidelines

for splash screens.

Solution structure

The ExtendedSplashScreen Visual Studio solution contains two projects:

ExtendedSplashScreenQuickstart, and Microsoft.Practices.Prism.StoreApps. The

ExtendedSplashScreenQuickstart project uses Visual Studio solution folders to organize the source

code into these logical categories:

 The Assets folder contains the splash screen and logo images.

 The Common folder contains classes provided by Visual Studio that help to simplify

application development.

 The DataModels folder contains the sample data used in the app.

 The Views folder contains the views that make up the UI for the app's pages.

http://msdn.microsoft.com/en-us/library/windows/apps/hh868191.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465338.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465338.aspx

230

The Microsoft.Practices.Prism.StoreApps library contains reusable classes used by this Quickstart.

For more info about this library, see Prism for the Windows Runtime reference. With little or no

modification, you can reuse many of the classes from this Quickstart in another app. You can also

adapt the organization and ideas that this Quickstart provides.

Key classes in the Quickstart

The MvvmAppBase class provides core startup behavior for a Prism app, with its constructor being

the entry point for the app. The App class adds app-specific startup behavior to the app.

The ExtendedSplashScreen class defines the extended splash screen that imitates the splash screen

that is displayed by Microsoft Windows.

Creating the extended splash screen

An extended splash screen is simply a splash screen that stays on the screen for an extended period

of time. It can be defined by creating a class that derives from the Page class, as shown in the

following code example.

XAML: ExtendedSplashScreenQuickstart\ExtendedSplashScreen.xaml

<Page ...>

 <Canvas Background="#1d1d1d">

 <!-- The real position of these controls will change during runtime -->

 <Image Stretch="None" x:Name="splashImage"

 Source="Assets/SplashScreen.png"

 Canvas.Left="350"

 Canvas.Top="250"/>

 <ProgressRing x:Name="progressRing"

 Height="50"

 Width="50"

 IsActive="True"

 Canvas.Left="650"

 Canvas.Top="550"/>

 </Canvas>

</Page>

An extended splash screen must contain an Image control as the child of a Canvas control. The

Canvas displays the image that is used on the extended splash screen. The image itself must have a

resolution of 620x300 pixels. The ProgressRing control is used to inform users that the app hasn’t

crashed and will be ready soon. This helps to create a positive loading experience.

Note An extended splash screen should use the same background color and image as the Windows

splash screen. This helps to ensure a smooth transition from the Windows splash screen to the

extended splash screen.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.canvas.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.progressring.aspx

231

Responding to resize and image opened events for the extended splash

screen

The extended splash screen should adjust the coordinates of its image whenever the window size

changes, for example if the user changes the orientation of the device. This helps to ensure a

smooth loading experience, regardless of how users manipulate their devices or change the layout of

apps on their screens.

To position the extended splash screen image at the same screen coordinates where Windows

positions the splash screen image requires a SplashScreen instance to be passed to the

ExtendedSplashScreen class. The SplashScreen instance is passed into the class through its

constructor.

C#: ExtendedSplashScreenQuickstart\ExtendedSplashScreen.xaml.cs

public ExtendedSplashScreen(SplashScreen splashScreen)

{

 this.splashScreen = splashScreen;

 this.InitializeComponent();

 this.SizeChanged += ExtendedSplashScreen_SizeChanged;

 this.splashImage.ImageOpened += splashImage_ImageOpened;

}

The constructor registers event handlers for two events. The event handler for the SizeChanged

event of the window ensures that the extended splash screen is positioned and sized correctly. The

event handler for the ImageOpened event of the Image control is used to prevent flickering when

transitioning from the splash screen displayed by Windows to the extended splash screen. It does

this by not activating the window until the extended splash screen is ready to be shown. Each event

handler calls the Resize method of the ExtendedSplashScreen class, which is shown in the following

code example.

C#: ExtendedSplashScreenQuickstart\ExtendedSplashScreen.xaml.cs

private void Resize()

{

 if (this.splashScreen == null) return;

 // The splash image's not always perfectly centered. Therefore we need to set

 // our image's position to match the original one to obtain a clean transition

 // between both splash screens.

 this.splashImage.Height = this.splashScreen.ImageLocation.Height;

 this.splashImage.Width = this.splashScreen.ImageLocation.Width;

 this.splashImage.SetValue(Canvas.TopProperty,

 this.splashScreen.ImageLocation.Top);

 this.splashImage.SetValue(Canvas.LeftProperty,

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.window.sizechanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.imageopened.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.image.aspx

232

 this.splashScreen.ImageLocation.Left);

 this.progressRing.SetValue(Canvas.TopProperty,

 this.splashScreen.ImageLocation.Top +

 this.splashScreen.ImageLocation.Height + 50);

 this.progressRing.SetValue(Canvas.LeftProperty,

 this.splashScreen.ImageLocation.Left +

 this.splashScreen.ImageLocation.Width / 2 - this.progressRing.Width / 2);

}

The Resize method is used to correctly position and size the controls in the extended splash screen

by updating their values based upon the coordinates of the splash screen image displayed by

Windows.

Displaying the extended splash screen and launching additional loading

tasks

Prism for the Windows Runtime defines an ExtendedSplashScreenFactory property in the

MvvmAppBase class. The MvvmAppBase class will check this property during app startup, and if it’s

defined it will show the extended splash screen. Therefore the property should be set to a delegate

that returns the app’s extended splash screen. In this Quickstart this occurs in the constructor of the

App class.

C#: ExtendedSplashScreenQuickstart\App.xaml.cs

this.ExtendedSplashScreenFactory =

 (splashscreen) => new ExtendedSplashScreen(splashscreen);

When an app is launched the system passes splash screen information to the app’s launch activation

event handler. This information should be used to correctly position the image on the extended

splash screen page, over the splash screen image displayed by Windows. In an app that uses Prism

for the Windows Runtime, the app’s launch activation event handler is the OnLaunched method in

the MvvmAppBase class. This method in turn calls the InitializeFrameAsync method in the same

class, passing in the launch activation event arguments.

C#: Microsoft.Practices.Prism.StoreApps\MvvmAppBase.cs

rootFrame = new Frame();

if (ExtendedSplashScreenFactory != null)

{

 Page extendedSplashScreen =

 this.ExtendedSplashScreenFactory.Invoke(args.SplashScreen);

 rootFrame.Content = extendedSplashScreen;

}

233

Inside the InitializeFrameAsync method, if the ExtendedSplashScreenFactory property is defined

the factory will create the extended splash screen page and place it in the Frame for display, before

continuing with further initialization. This approach allows the extended splash screen to be

displayed without performing a navigation operation, ensuring that it will not form part of the app's

navigation history.

Once frame initialization is complete, the OnLaunched method will call the OnLaunchApplication

method in the App class.

C#: ExtendedSplashScreenQuickstart\App.xaml.cs

protected override async Task OnLaunchApplication(LaunchActivatedEventArgs args)

{

 if (args.PreviousExecutionState != ApplicationExecutionState.Running)

 {

 // Here we would load the application's resources.

 await this.LoadAppResources();

 }

 this.NavigationService.Navigate("GroupedItems", null);

}

The OnLaunchApplication method in the App class adds app-specific startup behavior to the app.

The LoadAppResource method is called provided that the app is being activated. This method

simulates the asynchronous loading of resources by creating a Task that will complete after a 7

second delay. Once the Task has completed the GroupedItemsPage is navigated to.

For info about how app startup occurs and the interaction between the MvvmAppBase class and the

App class, see Bootstrapping an MVVM Windows Store app Quickstart.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dd321424.aspx

234

Incremental loading Quickstart for Windows Store apps using C# and

XAML

Summary

 Use incremental loading functionality in your GridView or ListView to enable an item

template to render its controls in phases when the user scrolls faster than the XAML

rendering engine can keep up with.

 Use the IncrementalUpdateBehavior from the Behavior SDK (XAML) to implement

incremental loading.

 Handle the ContainerContentChanging event in code-behind in scenarios that require more

specialized control over rendering phases, or when the Behavior SDK behaviors do not

provide sufficient performance.

Learn how to add incremental loading capabilities to a GridView or ListView to create a more

responsive and useful UI when the user scrolls through large data sets.

Download

You will learn

 How to add the IncrementalUpdateBehavior to a XAML control in an item template.

 How to handle the ContainerContentChanging event and define in code-behind what

happens during each rendering phase.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

This Quickstart demonstrates how to add incremental loading capabilities to a GridView or ListView.

However, use of incremental loading techniques in most cases do not significantly impact the total

loading time for all the items compared to simple data binding. The benefit that incremental loading

provides is to make the items usable sooner, by first displaying just enough item data to enable the

user to decide whether they are interested in the item or not.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.containercontentchanging.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listview.aspx
http://go.microsoft.com/fwlink/p/?LinkID=296755

235

Building and running the Quickstart

Build the Quickstart as you would a standard project:

1. On the Microsoft Visual Studio menu bar, choose Build > Build Solution.

2. After you build the project, you must deploy it. On the menu bar, choose Build > Deploy

Solution. Visual Studio also deploys the project when you run the app from the debugger.

3. After you deploy the project, pick the Quickstart tile to run the app. Alternatively, from

Visual Studio, on the menu bar, choose Debug > Start Debugging.

When the app runs you will see a page similar to the one shown in the following diagram.

Each button demonstrates a different approach to incremental loading using the same data set and

GridView template. The Data Binding button is provided for comparison purposes. Press the button

and then scroll rapidly through the items to observe how the rendering experience differs with each

approach.

Solution structure

The IncrementalLoadingQuickstart Visual Studio solution uses Visual Studio solution folders to

organize the source code into these logical categories:

 The Assets folder contains the item images.

 The Common folder contains the auto-generated helper classes used for navigation and app

lifecycle management.

 The SampleData folder contains the non-image data that is used to populate the items.

In the main folder, the DataBindingScenario.* files show basic data binding with no incremental

loading. The BlendBehaviorScenario.* files show the IncrementalUpdateBehavior and the

CCCWithCodeScenario.* files show the handling of the ContainerContentChanging event. The

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.containercontentchanging.aspx

236

ItemViewer.* files define a user control that we use to represent each item in the GridView. The

ItemViewer class contains the methods that are called in response to ContainerContentChanging

events in the second scenario described below.

Using the IncrementalUpdateBehavior to add incremental loading

To use the IncrementalUpdateBehavior, you must first add a reference to the Behaviors SDK

(XAML). In Solution Explorer, right click on the References node and in the left pane, choose

Extensions and in the middle pane, check the Behaviors SDK option.

Next, add the Microsoft.Xaml.Interactivity and Microsoft.Xaml.Interactions.Core namespaces to

the root Page element.

XAML: IncrementalLoadingQuickstart\BlendBehaviorScenario.xaml

xmlns:Interactivity="using:Microsoft.Xaml.Interactivity"

xmlns:Core="using:Microsoft.Xaml.Interactions.Core"

All that is left to do is to attach the behaviors to the controls and assign a phase number to each

behavior, as shown in the following code example.

XAML: IncrementalLoadingQuickstart\BlendBehaviorScenario.xaml

<Interactivity:Interaction.Behaviors>

 <Core:IncrementalUpdateBehavior Phase="2"/>

</Interactivity:Interaction.Behaviors>

In this example three phases are defined. As a general rule, three phases is the maximum number

because it shouldn't take more two or three phases to display enough content to make the item

usable, and in the phase after that you might as well just render the rest of the item template. The

following example shows the entire item template for the GridView, with behaviors attached to

each element. Note that multiple elements can be assigned the same phase number.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactivity.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.page.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx

237

XAML: IncrementalLoadingQuickstart\BlendBehaviorScenario.xaml

<GridView.ItemTemplate>

 <DataTemplate>

 <Grid HorizontalAlignment="Left" Background="{StaticResource

 ApplicationPageBackgroundThemeBrush}">

 <StackPanel Orientation="Horizontal" Margin="10,10,0,0">

 <Grid>

 <Image Source="ms-appx:///Assets/placeHolderImage.png"

 Height="100" Width="60" VerticalAlignment="Center"

 Margin="0,0,10,0"/>

 <Image Source="{Binding ImageUri}" Height="100" Width="60"

 VerticalAlignment="Center" Margin="0,0,10,0">

 <Interactivity:Interaction.Behaviors>

 <Core:IncrementalUpdateBehavior Phase="3"/>

 </Interactivity:Interaction.Behaviors>

 </Image>

 </Grid>

 <StackPanel Margin="0,0,0,0" Orientation="Vertical">

 <TextBlock Text="{Binding Title}" TextWrapping="Wrap"

 Foreground="{StaticResource

 ApplicationForegroundThemeBrush}" FontSize="14.667"

 FontWeight="Light" Width="100" VerticalAlignment="Center"

 HorizontalAlignment="Left" FontFamily="Segoe UI">

 <Interactivity:Interaction.Behaviors>

 <Core:IncrementalUpdateBehavior Phase="1"/>

 </Interactivity:Interaction.Behaviors>

 </TextBlock>

 <TextBlock Text="{Binding Category}" TextWrapping="Wrap"

 Foreground="{StaticResource

 ApplicationForegroundThemeBrush}" FontSize="14.667"

 FontWeight="Light" Width="100" MaxHeight="20"

 VerticalAlignment="Center" HorizontalAlignment="Left">

 <Interactivity:Interaction.Behaviors>

 <Core:IncrementalUpdateBehavior Phase="2"/>

 </Interactivity:Interaction.Behaviors>

 </TextBlock>

 <HyperlinkButton Content="{Binding Link}"

 NavigateUri="{Binding Link}">

 <Interactivity:Interaction.Behaviors>

 <Core:IncrementalUpdateBehavior Phase="2"/>

 </Interactivity:Interaction.Behaviors>

 </HyperlinkButton>

 </StackPanel>

 </StackPanel>

 </Grid>

 </DataTemplate>

</GridView.ItemTemplate>

238

The following diagram shows what happens when a user scrolls quickly as the items are loading. In

this image, phases 1 and 2 have completed on all the items, and phase 3 is about to start.

The effect will typically be more noticeable on ARM devices.

Handling the ContainerContentChanging event in code-behind

If the IncrementalUpdateBehavior approach does not provide you with the control or performance

you need, then you can try handling the ContainerContentChanging event that is raised by the

ListViewBase class whenever it is called up to re-render its content, for example in response to the

user scrolling to the right or left. For a full tutorial on how to handle this event, see Update GridView

and ListView items incrementally.

The first step is to add the event to the XAML GridView element.

XAML: IncrementalLoadingQuickstart\CCCWithCodeScenario.xaml

ContainerContentChanging="ItemGridView_ContainerContentChanging"

In the event handler, we first check whether the data is in the "recycle queue." This means that the

container is being reused, and we clear the contents before setting it again in the various phases.

The current phase is passed in the ContainerContentChangingEventArgs argument. For each phase,

we call a method that changes the opacity of the item elements in various ways to achieve the

desired effect. If the opacity of an element is set to zero, the XAML engine will not bother to render

it at all, which of course speeds up that phase. Note also that in the first two phases, a callback is

registered that tells the XAML engine to call this handler again when the next phase begins.

http://msdn.microsoft.com/en-us/library/windows/apps/microsoft.xaml.interactions.core.incrementalupdatebehavior.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.containercontentchanging.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.listviewbase.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn465797.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/dn465797.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.gridview.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.containercontentchangingeventargs.aspx

239

C#: IncrementalLoadingQuickstart\CCCWithCodeScenario.xaml.cs

void ItemGridView_ContainerContentChanging(ListViewBase sender,

 ContainerContentChangingEventArgs args)

{

 ItemViewer iv = args.ItemContainer.ContentTemplateRoot as ItemViewer;

 if (args.InRecycleQueue == true)

 {

 iv.ClearData();

 }

 else if (args.Phase == 0)

 {

 iv.ShowPlaceholder(args.Item as Item);

 // Register for async callback to visualize Title asynchronously

 args.RegisterUpdateCallback(ContainerContentChangingDelegate);

 }

 else if (args.Phase == 1)

 {

 iv.ShowTitle();

 iv.ShowImagePlaceHolder();

 args.RegisterUpdateCallback(ContainerContentChangingDelegate);

 }

 else if (args.Phase == 2)

 {

 iv.ShowCategory();

 iv.ShowLinkbutton();

 args.RegisterUpdateCallback(ContainerContentChangingDelegate);

 }

 else if (args.Phase == 3)

 {

 iv.ShowImage();

 }

 // For improved performance, set Handled to true since app is visualizing the

 // data item

 args.Handled = true;

}

The following example shows the methods that are called from the event handler and which

perform the work of adjusting the opacity levels on the elements. An Opacity value of zero means

the element will not be rendered at all and a value of one means that it will be rendered completely

opaque, with no blending over the background. You can also set Opacity to intermediate levels

between 0 and 1, but doing so will not help to speed up rendering.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.uielement.opacity.aspx

240

C#: IncrementalLoadingQuickstart\ItemViewer.xaml.cs

public void ShowPlaceholder(Item item)

{

 _item = item;

 titleTextBlock.Opacity = 0;

 categoryTextBlock.Opacity = 0;

 image.Opacity = 0;

 linkButton.Opacity = 0;

}

/// <summary>

/// Visualize the Title by updating the TextBlock for Title and setting Opacity

/// to 1.

/// </summary>

public void ShowTitle()

{

 titleTextBlock.Text = _item.Title;

 titleTextBlock.Opacity = 1;

}

public void ShowLinkbutton()

{

 linkButton.Content = _item.Link;

 linkButton.NavigateUri = new System.Uri(_item.Link);

 linkButton.Opacity = 1;

}

241

Prism for the Windows Runtime reference

Summary

 Use the Microsoft.Practices.Prism.StoreApps library to add MVVM support with lifecycle

management, and core services to your Windows Store app.

 Use the Microsoft.Practices.Prism.PubSubEvents library to communicate between loosely

coupled components in your app.

Learn about the Prism for the Windows Runtime libraries that help developers create Windows

Store business apps using C# and XAML. The libraries accelerate the development of apps by

providing support for Model-View-ViewModel (MVVM), loosely coupled communication, state

management, navigation, validation of user input, data binding, commands, and settings.

You will learn

 About the classes and interfaces contained in the Microsoft.Practices.Prism.StoreApps

library.

 About the classes and interfaces contained in the Microsoft.Practices.Prism.PubSubEvents

library.

Applies to

 Windows Runtime for Windows 8.1

 C#

 Extensible Application Markup Language (XAML)

Prism helps developers create managed Windows Store apps. It accelerates development by

providing support for MVVM, loosely coupled communication, and the core services required in

Windows Store apps. It is designed to help developers create apps that need to accomplish the

following:

 Address the common Windows Store app development scenarios.

 Separate the concerns of presentation, presentation logic, and model through support for

Model-View-ViewModel (MVVM).

 Use an architectural infrastructure to produce a consistent and high quality app.

Both libraries in Prism ship as source, with the Microsoft.Practices.Prism.PubSubEvents library also

shipping as a signed binary.

http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=296753
http://go.microsoft.com/fwlink/p/?LinkID=296753

242

Microsoft.Practices.Prism.StoreApps library

The Microsoft.Practices.Prism.StoreApps library is a class library that provides MVVM support with

lifecycle management, and core services to a Windows Store app.

The following table lists the classes contained in the Microsoft.Practices.Prism.StoreApps library:

Class Description

AppManifestHelper Loads the package manifest and allows you to retrieve the application

id, and check if the app uses the Search contract. This class can be

extended to retrieve other app manifest values that are not exposed

by the API.

BindableBase Implementation of the INotifyPropertyChanged interface, to simplify

view model and model class property change notification.

BindableValidator Validates entity property values against entity-defined validation rules

and exposes, through an indexer, a collection of errors for properties

that did not pass validation.

Constants An internal class that contains constants used by the library.

DelegateCommand An ICommand implementation whose delegates do not take any

parameters for Execute() and CanExecute().

DelegateCommand<T> An ICommand implementation whose delegates can be attached for

Execute(T) and CanExecute(T).

DelegateCommandBase The base ICommand implementation whose delegates can be attached

for Execute(Object) and CanExecute(Object).

FrameFacadeAdapter A facade and adapter class that implements the IFrameFacade

interface to abstract the Frame object.

FrameNavigationService A service class that implements the INavigationService interface to

navigate through the pages of an app.

MvvmAppBase Helps to bootstrap Windows Store apps that use the MVVM pattern,

with services provided by the Microsoft.Practices.Prism.StoreApps

library.

MvvmNavigatedEventArgs Provides data for navigation methods and event handlers that cannot

cancel a navigation request.

ResourceLoaderAdapter An adapter class that implements the IResourceLoader interface to

adapt the ResourceLoader object.

RestorableStateAttribute Defines an attribute that indicates that any marked property will save

its state on suspension, provided that the marked property is in an

instance of a class that derives from the ViewModel class.

http://go.microsoft.com/fwlink/p/?LinkID=296754
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.inotifypropertychanged.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.input.icommand.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.resources.resourceloader.aspx

243

SessionStateService A service class that implements the ISessionStateService interface to

capture global session state in order to simplify process lifetime

management for an app.

ValidatableBindableBase Implements the IValidatableBindableBase interface to validate model

property values against their validation rules and return any validation

errors.

ViewModel The base view model class that implements the INavigationAware

interface to provide navigation support and state management to

derived view model classes.

ViewModelLocator Locates the view model class for views that have the

AutoWireViewModel attached property set to true.

VisualStateAwarePage The base view class for pages that need to be aware of layout changes

and update their visual state accordingly.

The following table lists the interfaces contained in the Microsoft.Practices.Prism.StoreApps library:

Interface Description

ICredentialStore Defines an interface for the RoamingCredentialStore class that

abstracts the PasswordVault object for managing user credentials.

IFlyoutViewModel Defines an interface that should be implemented by flyout view model

classes to provide actions for opening and closing a flyout, and

navigation away from the flyout.

IFrameFacade Defines an interface for the FrameFacadeAdapter class that abstracts

the Frame object for use by apps that derive from the MvvmAppBase

class.

INavigationAware Defines an interface that allows an implementing class to participate in

a navigation operation.

INavigationService Defines an interface that allows an implementing class to create a

navigation service.

IResourceLoader Defines an interface for the ResourceLoaderAdapter class that abstracts

the ResourceLoader object for use by apps that derive from the

MvvmAppBase class.

ISessionStateService Defines an interface that allows an implementing class to capture global

session state.

IValidatableBindableBase Defines an interface that allows an implementing class to add validation

support to model classes that contain validation rules.

http://go.microsoft.com/fwlink/p/?LinkID=296754
http://msdn.microsoft.com/en-us/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.controls.frame.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.resources.resourceloader.aspx

244

For info about how this library was used in the AdventureWorks Shopper reference implementation,

see Using the Model-View-ViewModel (MVVM) pattern, Creating and navigating between pages,

Validating user input, Managing application data, Handling suspend, resume, and activation,

Communicating between loosely coupled components, and Implementing search.

Microsoft.Practices.Prism.PubSubEvents library

The Microsoft.Practices.Prism.PubSubEvents library is a Portable Class Library (PCL) that contains

classes that implement event aggregation. You can use this library for communicating between

loosely coupled components in your own app. The library has no dependencies on other libraries,

and can be added to your Visual Studio solution without the Microsoft.Practices.Prism.StoreApps

library. The PCL targets:

 Microsoft .NET for Windows Store apps

 .NET Framework 4 and higher

 Microsoft Silverlight 4 and higher

 Windows Phone 7 and higher

 Xbox 360

For more info about portal class libraries, see Cross-Platform Development with the .NET Framework

The following table lists the classes contained in the Microsoft.Practices.Prism.PubSubEvents library:

Class Description

BackgroundEventSubscription<TPayload> Extends EventSubscription<TPayload> to invoke the

Action delegate in a background thread.

DataEventArgs<TData> Generic arguments class to pass to event handlers that

need to receive data.

DelegateReference Represents a reference to a Delegate that may contain

a WeakReference to the target. This class is used

internally.

DispatcherEventSubscription<TPayload> Extends EventSubscription<TPayload> to invoke the

Action delegate in a specific Dispatcher.

EventAggregator Implements IEventAggregator.

EventBase Defines a base class to publish and subscribe to events.

EventSubscription<TPayload> Provides a way to retrieve a Delegate to execute an

action depending on the value of a second filter

predicate that returns true if the action should execute.

PubSubEvent<TPayload> Defines a class that manages publication and

subscription to events.

SubscriptionToken Subscription token returned from EventBase on

subscribe.

http://go.microsoft.com/fwlink/p/?LinkID=296753
http://go.microsoft.com/fwlink/p/?LinkID=296754
http://msdn.microsoft.com/en-us/library/windows/apps/gg597391.aspx
http://go.microsoft.com/fwlink/p/?LinkID=296753
http://msdn.microsoft.com/en-us/library/windows/apps/system.delegate.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.weakreference.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.windows.threading.dispatcher.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/system.delegate.aspx

245

The following table lists the interfaces contained in the Microsoft.Practices.Prism.PubSubEvents

library:

Interface Description

IDelegateReference Represents a reference to a Delegate.

IEventAggregator Defines an interface to get instances of an event type.

IEventSubscription Defines a contract for an event subscription to be used by EventBase.

The following table lists the enumerations contained in the Microsoft.Practices.Prism.PubSubEvents

library:

Enumeration Description

ThreadOption Specifies on which thread a PubSubEvent<TPayload> subscriber will be called.

For info about publishing and subscribing to events, see Communicating between loosely coupled

components and Event aggregation Quickstart.

http://go.microsoft.com/fwlink/p/?LinkID=296753
http://msdn.microsoft.com/en-us/library/windows/apps/system.delegate.aspx
http://go.microsoft.com/fwlink/p/?LinkID=296753

	Developing a Windows Store business app using C#, XAML, and Prism for the Windows Runtime
	Download
	Prerequisites
	Exploring the guidance
	What's in the box?
	Where to start?

	Exploring the documentation
	Community
	Release notes
	Learning resources
	Downloads for the previous release

	Getting started using Prism for the Windows Runtime
	Download
	You will learn
	Applies to
	Building and running the sample
	Visual Studio solution structure for a Windows Store business app that uses the MVVM pattern
	The AdventureWorks.Shopper project
	The AdventureWorks.UILogic project
	The AdventureWorks.WebServices project
	The Microsoft.Practices.Prism.PubSubEvents project
	The Microsoft.Practices.Prism.StoreApps project

	Where to get more info

	Developer guidance summary and checklists for Windows Store business apps using C#, XAML, and Prism
	Download
	You will learn
	Applies to
	Making key decisions
	Windows Store business apps developer checklists
	Designing the user experience
	Using the Model-View-ViewModel (MVVM) pattern
	Creating and navigating between pages
	Using touch
	Validating user input
	Managing application data
	Handling suspend, resume, and activation
	Communicating between loosely coupled components
	Working with tiles
	Implementing search
	Improving performance
	Testing and deploying apps

	Developer tasks for building a Windows Store business app using C#, XAML, and Prism
	Download
	Applies to
	Windows Store business app developer tasks
	Guidance summary and checklists for Windows Store business apps
	Using Prism for the Windows Runtime
	Designing the user experience
	Creating pages
	Using touch
	Managing application data
	Working with tiles
	Implementing search
	Improving performance
	Testing and deploying apps
	Extended splash screen Quickstart
	Incremental loading Quickstart

	Using Prism to create a Windows Store app
	You will learn
	Applies to
	Architecture of a Windows Store business app that uses Prism
	Creating a Windows Store app project using Prism and Unity
	Creating a view
	Creating a view model class
	Creating a model class with validation support
	Adding items to the Settings pane
	Changing the Prism conventions
	Changing the convention for naming and locating views
	Changing the convention for naming, locating, and associating view models with views
	Registering a view model factory with views instead of using a dependency injection container

	Designing the user experience of a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	AdventureWorks Shopper user experiences
	Deciding the user experience goals
	Deciding the app flow
	Deciding what Windows features to use
	Deciding how to monetize the app
	Making a good first impression
	Validating the design

	Using the Model-View-ViewModel (MVVM) pattern in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	MVVM in AdventureWorks Shopper
	What is MVVM?
	Using a dependency injection container
	Bootstrapping an MVVM app using Prism's MvvmAppBase class
	Using the ViewModelLocator class to connect view models to views
	Using a convention-based approach to connect view models to views

	Other approaches to constructing view models and views
	Creating a view model declaratively
	Creating a view model programmatically
	Creating a view defined as a data template

	Updating a view in response to changes in the underlying view model or model
	Additional considerations when implementing property change notification

	UI interaction using the DelegateCommand class and Blend behaviors
	Implementing command objects
	Invoking commands from a view
	Implementing behaviors to supplement the functionality of XAML elements
	Invoking behaviors from a view

	Additional MVVM considerations
	Centralize data conversions in the view model or a conversion layer
	Expose operational modes in the view model
	Keep views and view models independent
	Use asynchronous programming techniques to keep the UI responsive

	Creating and navigating between pages in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Creating pages and navigating between them in AdventureWorks Shopper
	Creating pages
	Adding design time data
	Supporting multiple view states
	Creating a custom GridView control that responds to layout changes
	Creating a custom GridView control that displays items at multiple sizes
	Styling controls
	Enabling page localization
	Separate resources for each locale
	Ensure that each piece of text that appears in the UI is defined by a string resource
	Add contextual comments to the app resource file
	Define the flow direction for all pages
	Ensure error messages are read from the resource file

	Enabling page accessibility
	Navigating between pages
	Handling navigation requests
	Navigating to the hub page when AdventureWorks Shopper is activated
	Invoking navigation using behaviors

	Using touch in a Windows Store business app using C# and XAML
	You will learn
	Applies to
	Making key decisions
	Touch in AdventureWorks Shopper
	Tap for primary action
	Slide to pan
	Swipe to select, command, and move
	Pinch and stretch to zoom
	Swipe from edge for app commands
	Swipe from edge for system commands

	Validating user input in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Validation in AdventureWorks Shopper using Prism
	Specifying validation rules
	Triggering validation when properties change
	Triggering validation of all properties
	Triggering server-side validation
	Highlighting validation errors with behaviors
	Persisting user input and validation errors when the app suspends and resumes

	Managing application data in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Managing application data in AdventureWorks Shopper
	Storing data in the app data stores
	Local application data
	Roaming application data
	Storing and roaming user credentials
	Temporary application data

	Exposing settings through the Settings charm
	Creating data transfer objects
	Accessing data through a web service
	Consuming data
	Exposing data
	Data formats
	Consuming data from a web service using DTOs
	Caching data from a web service
	Authenticating users with a web service

	Handling suspend, resume, and activation in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Suspend and resume in AdventureWorks Shopper
	Understanding possible execution states
	Implementation approaches for suspend and resume
	Suspending an app
	Saving view model state
	Saving view state
	Saving state from service and repository classes

	Resuming an app
	Activating an app
	Restoring view model state
	Restoring view state
	Restoring state from service and repository classes

	Other ways to close the app

	Communicating between loosely coupled components in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Event aggregation in AdventureWorks Shopper
	Event aggregation
	Defining and publishing pub/sub events
	Defining an event
	Publishing an event

	Subscribing to events
	Default subscription
	Subscribing on the UI thread
	Subscription filtering
	Subscribing using strong references

	Unsubscribing from pub/sub events

	Working with tiles in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Tiles in AdventureWorks Shopper
	Creating app tiles
	Using periodic notifications to update tile content

	Creating secondary tiles
	Launching the app from a secondary tile

	Implementing search in a Windows Store business app using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Search in AdventureWorks Shopper
	Adding search functionality
	Providing query suggestions
	Responding to search queries
	Populating the search results page with data
	Navigating to the result's detail page
	Enabling users to type into the search box

	Improving performance in a Windows Store business app using C# and XAML
	You will learn
	Applies to
	Making key decisions
	Performance considerations
	Limit the startup time
	Emphasize responsiveness
	Trim resource dictionaries
	Optimize the element count
	Reuse identical brushes
	Use independent animations
	Minimize the communication between the app and the web service
	Limit the amount of data downloaded from the web service
	Use UI virtualization
	Use the IncrementalUpdateBehavior to implement incremental loading
	Avoid unnecessary termination
	Keep your app's memory usage low when it's suspended
	Reduce battery consumption
	Minimize the amount of resources that your app uses
	Limit the time spent in transition between managed and native code
	Reduce garbage collection time

	Testing and deploying Windows Store business apps using C#, XAML, and Prism
	You will learn
	Applies to
	Making key decisions
	Testing AdventureWorks Shopper
	Unit and integration testing
	Testing synchronous functionality
	Testing asynchronous functionality

	Suspend and resume testing
	Security testing
	Localization testing
	Accessibility testing
	Performance testing
	Device testing
	Testing your app with the Windows App Certification Kit
	Creating a Windows Store certification checklist
	Deploying and managing Windows Store apps

	Meet the AdventureWorks Shopper and Prism team
	Meet the team

	Quickstarts for Windows Store business apps using C#, XAML, and Prism
	Download

	Validation Quickstart for Windows Store apps using C#, XAML, and Prism
	Download
	You will learn
	Applies to
	Building and running the Quickstart
	Solution structure
	Key classes in the Quickstart
	Specifying validation rules
	Triggering validation explicitly
	Triggering validation implicitly on property change
	Highlighting validation errors

	Event aggregation Quickstart for Windows Store apps using C#, XAML, and Prism
	Download
	You will learn
	Applies to
	Building and running the Quickstart
	Solution structure
	Key classes in the Quickstart
	Defining the ShoppingCartChangedEvent class
	Notifying subscribers of the ShoppingCartChangedEvent
	Registering to receive notifications of the ShoppingCartChangedEvent

	Bootstrapping an MVVM Windows Store app Quickstart using C#, XAML, and Prism
	Download
	You will learn
	Applies to
	Building and running the Quickstart
	Solution structure
	Key classes in the Quickstart
	Bootstrapping an MVVM app using the MvvmAppBase class and a dependency injection container
	Adding app specific startup behavior to the App class
	Bootstrapping without a dependency injection container

	Extended splash screen Quickstart for Windows Store apps using C#, XAML, and Prism
	Download
	You will learn
	Applies to
	Building and running the Quickstart
	Solution structure
	Key classes in the Quickstart
	Creating the extended splash screen
	Responding to resize and image opened events for the extended splash screen
	Displaying the extended splash screen and launching additional loading tasks

	Incremental loading Quickstart for Windows Store apps using C# and XAML
	Download
	You will learn
	Applies to
	Building and running the Quickstart
	Solution structure
	Using the IncrementalUpdateBehavior to add incremental loading
	Handling the ContainerContentChanging event in code-behind

	Prism for the Windows Runtime reference
	You will learn
	Applies to
	Microsoft.Practices.Prism.StoreApps library
	Microsoft.Practices.Prism.PubSubEvents library

