
Developing Multi-tenant applications for the clouD,
3rD eDition

D
ev

elo
pin

g M
u

lti-ten
a

n
t a

pplic
atio

n
s fo

r th
e c

lo
u

D t
h

ir
D e

D
itio

n
For more information explore:
msdn.microsoft.com/practices

Software Architecture and
Software Development

patterns & practices
 Proven practices for predictable results

Save time and reduce risk on your
software development projects by
incorporating patterns & practices,
Microsoft’s applied engineering
guidance that includes both production
quality source code and documentation.

The guidance is designed to help
software development teams:

Make critical design and technology
selection decisions by highlighting
the appropriate solution architectures,
technologies, and Microsoft products
for common scenarios

Understand the most important
concepts needed for success by
explaining the relevant patterns and
prescribing the important practices

Get started with a proven code base
by providing thoroughly tested
software and source that embodies
Microsoft’s recommendations

The patterns & practices team consists
of experienced architects, developers,
writers, and testers. We work openly
with the developer community and
industry experts, on every project, to
ensure that some of the best minds in
the industry have contributed to and
reviewed the guidance as it is being
developed.

We also love our role as the bridge
between the real world needs of our
customers and the wide range of
products and technologies that
Microsoft provides.

How can you create an application that has truly global reach, and can scale
rapidly to meet sudden massive spikes in demand? Historically, companies
had to invest in an infrastructure capable of supporting such an application
themselves, and plan for peak demand—which often means that much of the
capacity sits idle for much of the time. Typically, only large companies would
have the available resources to risk such an enterprise.

The cloud has changed the rules of the game. By making infrastructure
available on a “pay as you go” basis, creating a massively scalable, global
application is within the reach of both large and small companies. Yes, by
moving applications to the cloud you’re giving up some control and autonomy,
but you’re also going to benefit from reduced costs, increased flexibility, and
scalable computation and storage.

This guide is the third release of the second volume in a series about Windows
Azure. It demonstrates how you can create from scratch a multi-tenant, Software
as a Service (SaaS) application to run in the cloud by using the Windows Azure
tools and the increasing range of capabilities of Windows Azure.

De v e lo p i n g
Mu lt i-t e n a n t
ap p l i c at i o n s
f o r t h e
clo u D

Dominic Betts
Alex Homer
Alejandro Jezierski
Masashi Narumoto
Hanz Zhang

The guide focuses on both good
practice design and the practicalities
of implementation for multi-tenant
applications, but also contains a
wealth of information on factors
such as security, scalability, availability,
and elasticity that are relevant to all
types of cloud hosted applications.

Third Edition

on Microsoft
Windows Azure™

Securing Multi-tenant Applications
Protecting sensitive data, protecting
session tokens, authentication and
authorization

Partitioning Multi-tenant
Applications

Partitioning for tenants,
session state management,

caching, using MVC

The Tailspin Scenario
Motivations, constraints,

and goals of a SaaS ISV
building an application on

Windows Azure

Managing and Monitoring
Multi-tenant Applications
ALM, endpoint protection, provisioning
new tenants, customization, billing

Hosting a Multi-tenant Application
on Windows Azure
Selecting a single or a multi-tenant
architecture, stability, scalability,
SLAs, authentication, ALM, monitoring,
customization

Maximizing Availability, Scalability,
and Elasticity
Geo-location, CDN, asynchronous
execution, autoscaling roles

Choosing a Multi-tenant
Data Architecture

Data models, partitioning,
extensibility and scalability.

Using Windows Azure SQL
Database, Windows Azure

blobs and tables, data
paging, and data analysis

Developing Multi-tenant
Applications for the Cloud
3rd Edition

Dominic Betts
Alex Homer
Alejandro Jezierski
Masashi Narumoto
Hanz Zhang

978-1-62114-023-8

This document is provided “as-is.” Information and views expressed in this
document, including URL and other Internet website references, may change
without notice. You bear the risk of using it. Some examples depicted herein
are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

© 2012 Microsoft. All rights reserved.

Microsoft, Microsoft Dynamics, Active Directory, MSDN, SharePoint, SQL
Server, Visual C#, Visual C++, Visual Basic, Visual Studio, Windows, Windows
Azure, Windows Live, Windows PowerShell, Windows Server, and Windows
Vista are trademarks of the Microsoft group of companies.

All other trademarks are the property of their respective owners.

Contents

Foreword: Bill Hilf xi

Preface xiii
Who This Guide Is For xiii
Why This Guide Is Pertinent Now xiv
How This Guide Is Structured xiv
What You Need to Use the Code xv
Where to Go for More Information xvi
Who’s Who xvi

Acknowledgments xix
Acknowledgements of Contributors to the Third Edition xxi

 The Tailspin Scenario 1
The Tailspin Company 1

Tailspin’s Strategy 1
The Surveys Application 2
Tailspin’s Goals and Concerns 3

The Surveys Application Architecture 5
More Information 7

Hosting a Multi-Tenant Application on Windows Azure 9
Goals and Requirements 9

The Tenant’s Perspective 9
The Provider’s Perspective 10

Single Tenant vs. Multiple Tenant 11
Multi-Tenancy Architecture in Windows Azure 13
Selecting a Single-Tenant or Multi-Tenant Architecture 14

Architectural Considerations 14
Application Stability 14
Making the Application Scalable 15
Resource Limitations and Throttling 18
Geo-location 19

 v

vi

Service Level Agreements 19
The Legal and Regulatory Environment 19
Handling Authentication and Authorization 19
The Command Query Responsibility Segregation (CQRS)
Pattern 20

Application Life Cycle Management Considerations 20
Maintaining the Code Base 20
Handling Application Updates 21
Monitoring the Application 21
Using Third-Party Components 21
Provisioning for Trials and New Subscribers 22

Customizing the Application 22
Customizing the Application by Tenant 22
URLs to Access the Application 23

Financial Considerations 24
Billing Subscribers 24
Managing Application Costs 26
Engineering Costs 26

More Information 27

Choosing a Multi-Tenant Data Architecture 29
Storing Data in Windows Azure Applications 29

Windows Azure Table Storage 29
Windows Azure Blob Storage 30
Windows Azure SQL Database 30
Other Storage Options 31
Storage Availability 31

Multi-Tenant Data Architectures 32
Partitioning to Isolate Tenant Data 32

Shared Access Signatures 35
Data Architecture Extensibility 36
Data Architecture Scalability 38
An Example 39

Option 1 — Using a Single Table 40
Option 2 — Table per Tenant 40
Option 3 — Table per Base Entity Type 40
Option 4 — Table per Entity Type 41
Option 5 — Table per Entity Type per Tenant 41
Comparing the Options 42

Goals and Requirements 42
Isolation of Tenants’ Data 42
Application Scalability 43
Extensibility 43
Paging through Survey Results 43
Exporting Survey Data to SQL Database for Analysis 43

 vii

Overview of the Solution 44
Storage Accounts 44
The Surveys Data Model 44

Storing Survey Definitions 45
Storing Tenant Data 49
Storing Survey Answers 50
Storing Survey Answer Summaries 51

Comparing Paging Solutions 52
Paging with Table Storage 52
Paging with Blob Storage 53
Comparing the Solutions 53

The SQL Database Design 53
Inside the Implementation 55

The Data Store Classes 55
SurveyStore Class 55
SurveyAnswerStore Class 55
SurveyAnswersSummaryStore Class 55
SurveySqlStore Class 55
SurveyTransferStore Class 55
TenantStore Class 56

Accessing Custom Data Associated with a Survey 56
Defining a Tenant’s Custom Fields 56
Writing Custom Fields to the Surveys Table 57
Reading Custom Fields from the Surveys Table 61

Implementing Paging 62
Implementing the Data Export 64
Displaying Questions 66
Displaying the Summary Statistics 68

More Information 69

Partitioning Multi-Tenant Applications 71
Partitioning a Windows Azure Application 71

Partitioning Web and Worker Roles 73
Identifying the Tenant in a Web Role 74
Identifying the Tenant in a Worker Role 77

Partitioning Queues 78
Partitioning Caches 80

Goals and Requirements 81
Isolation 81
Scalability 81
Accessing the Surveys Application 82
Premium Subscriptions 82
Designing Surveys 83

viii

Overview of the Solution 84
Partitioning Queues and Worker Roles 84
Tenant Isolation in Web Roles 84
DNS Names, Certificates, and SSL in the Surveys Application 85

https://tailspin.cloudapp.net 86
http://tailspin.cloudapp.net 87
Accessing Tailspin Surveys in Different Geographic
Regions 87

Maintaining Session State 87
Isolating Cached Tenant Data 89

Inside the Implementation 90
Prioritizing Work in a Worker Role 90

The BatchMultipleQueueHandler and the Related Classes 92
Using MVC Routing Tables 97
Web Roles in Tailspin Surveys 100
Implementing Session Management 102

Configuring a Cache in Windows Azure Caching 106
Configuring the Session State Provider in the TailSpin.Web
Application 107

Caching Frequently Used Data 108
More Information 111

Maximizing Availability, Scalability, and Elasticity 113
Maximizing Availability in Multi-Tenant Applications 113
Maximizing Scalability in Multi-Tenant Applications 114

Caching 115
SQL Database Federation 115
Shared Access Signatures 116
Content Delivery Network 116

Implementing Elasticity in Multi-Tenant Applications 116
Scaling Windows Azure Applications with Worker Roles 117

Example Scenarios for Worker Roles 118
Triggers for Background Tasks 119
Execution Model 120
The MapReduce Algorithm 123

Goals and Requirements 123
Performance and Scalability when Saving Survey
Response Data 123
Summary Statistics 124
Geo-location in the Surveys Application 125
Making the Surveys Application Elastic 126
Scalability 126

 ix

Overview of the Solution 127
Options for Saving Survey Responses 127

Writing Directly to Storage 127
Using the Delayed Write Pattern 128
Comparing the Options 132

Options for Generating Summary Statistics 137
Scaling out the Generate Summary Statistics Task 139

Using Windows Azure Caching 139
Using the Content Delivery Network 140

Setting the Access Control for the BLOB Containers 141
Configuring the CDN and Storing the Content 141
Configuring URLs to Access the Content 142
Setting the Caching Policy 143

Hosting Tailspin Surveys in Multiple Locations 144
Synchronizing Survey Statistics 145

Autoscaling and Tailspin Surveys 147
Inside the Implementation 147

Saving the Survey Response Data Asynchronously 148
Calculating the Summary Statistics 150
Pessimistic and Optimistic Concurrency Handling 154

More Information 156

Securing Multi-Tenant Applications 157
Protecting Users’ Data in Multi-Tenant Applications 157

Authentication 157
Authorization 158
Protecting Sensitive Data 158

Splitting Sensitive Data across Multiple Subscriptions 160
Using Shared Access Signatures 161

Goals and Requirements 163
Authentication and Authorization 163
Privacy 163

Overview of the Solution 164
Identity Scenarios in the Surveys Application 164

Integrating a Subscribers Own Identity Mechanism 164
Providing an Identity Mechanism for Small Organizations 165
Integrating with Social Identity Providers 166
Windows Azure Access Control Service and Windows
Azure Active Directory 167

Configuring Identity Federation for Tenants 168
Encrypting Session Tokens in a Windows Azure Application 169

Inside the Implementation 169
Using Windows Identity Foundation 170
Protecting Session Tokens in Windows Azure 174

More Information 175

x

Managing and Monitoring Multi-Tenant Applications 177
ALM Considerations for Multi-Tenant Applications 177

Goals and Requirements 177
Overview of the Solution 179

Testing Strategies 179
Stress Testing and Performance Tuning 181
Application Deployment and Update Strategies 182
Application Management Strategies 182
Application Monitoring Strategies 185

Inside the Implementation 186
Unit Testing 186
Testing Worker Roles 191
Testing Multi-Tenant Features and Tenant Isolation 193
Performance and Stress Testing 194
Managing the Surveys Application 197
Monitoring the Surveys Application 198

ISV Considerations for Multi-Tenant Applications 199
Goals and Requirements 199
Overview of the Solution 200

Onboarding for Trials and New Subscribers 200
Configuring Subscribers 201
Supporting Per Tenant Customization 201
Financial Goals and Billing Subscribers 202

Inside the Implementation 204
Onboarding for Trials and New Subscribers 204
Customizing the Surveys Application for Each Subscriber 209
Billing Subscribers in the Surveys Application 212

More Information 213

Glossary 215

Index 219

 xi

Foreword: Bill Hilf

Whether you regard it as evolution or revolution, there’s no doubt that the cloud is changing the way
our industry works. It presents us with exciting new opportunities for implementing modern applica-
tions. It’s also changing the way we view operating systems, data storage, development languages,
operations and IT infrastructure. I’m proud, in my own career, to have had the opportunity to play a
part in the evolution of Microsoft’s cloud platform, Windows Azure.
In addition to rich platform services for building new applications, Windows Azure provides Infrastruc-
ture as a Service (IaaS) support for both Windows Server and Linux operating systems, and simple
automated integration with a wide range of open source software such as databases, blogs, forums, and
more; which reinforces just how flexible and powerful Windows Azure really is. The package of highly
integrated services, features, options, and manageability that it offers allows you to create almost any
kind of application in the cloud; and get great performance and reliability built right in. No matter
whether it’s .NET, node.js, PHP, Python, or Java—you bring your designs and your applications and we
provide the environment, allowing you to focus on your apps and not the infrastructure.
One of the areas where Windows Azure really scores is performance and reliability. Learning from our
many years of building mission critical enterprise software and also running huge public online ser-
vices, we’ve built an enterprise-ready infrastructure with datacenters across the globe so that you can
deploy what you need, where you need it, and give your customers the best possible experience.
Your customers’ concerns include a whole range of additional factors such as security, privacy, corpo-
rate presence, and regulatory requirements. This guide, from the patterns & practices team here at
Microsoft, will help you to think about how you address these concerns, how Windows Azure can
help you to meet your requirements, and how you can get the most benefit from our cloud platform
and services. Based on a fictitious company that needs to build a real-world, multi-tenant application,
the guide walks through the decision making, planning, design, and implementation of Tailspin’s Sur-
veys application. It also discusses how Tailspin tests and deploys the application, and manages and
monitors it as it runs.
The team that created this guide worked closely with the Windows Azure development team to en-
sure that their guidance is accurate, useful, and up to date. Yes, they discuss many different options so
that you get to see the range and flexibility of Windows Azure, but they also help you to choose what
will best suit the specific needs of your own applications. You want solid guidance, good practice
advice, working examples, hands-on labs, and plenty links to help you find out more? If so, you are
already reading the right book! I hope you enjoy it.
Bill Hilf
General Manager
Windows Azure Product Marketing
Microsoft Corporation

xiii

Preface

How can a company create an application that has truly global reach and that can scale rapidly to meet
sudden, massive spikes in demand? Historically, companies had to invest in building an infrastructure
capable of supporting such an application themselves and, typically, only large companies would have
the resources available to risk such an enterprise. Building and managing this kind of infrastructure is
not cheap, especially because you have to plan for peak demand, which often means that much of the
capacity sits idle for much of the time. The cloud has changed the rules of the game. By making the
infrastructure available on a “pay as you go” basis, creating a massively scalable, global application is
within the reach of both large and small companies.
The cloud platform provides you with access to capacity on demand, fault tolerance, distributed
computing, data centers located around the globe, and the capability to integrate with other plat-
forms. Someone else is responsible for managing and maintaining the entire infrastructure, and you
only pay for the resources that you use in each billing period. You can focus on using your core domain
expertise to build and then deploy your application to the data center or data centers closest to the
people who use it. You can then monitor your applications, and scale up or scale back as and when
the capacity is required.
Yes, by locating your applications in the cloud you’re giving up some control and autonomy, but you’re
also going to benefit from reduced costs, increased flexibility, and scalable computation and storage.
This guide shows you how to do this.

Who This Guide Is For
This guide is the second volume in a series about Windows Azure. Volume 1, Moving Applications to
the Cloud, discusses the hosting options, cost model, and application life cycle management for cloud-
based applications; and describes several scenarios for migrating an existing ASP.NET application to
the cloud. This guide demonstrates how you can create from scratch a multi-tenant, Software as a
Service (SaaS) application to run in the cloud by using the latest versions of the Windows Azure tools
and the latest features of Windows Azure.
The guide is intended for any architect, developer, or information technology (IT) professional who
designs, builds, or operates applications and services that run on or interact with the cloud. Although
applications do not need to be based on the Microsoft Windows operating system to work in Win-
dows Azure, or be written using a .NET language, this guide is written for people who work with
Windows based systems. You should be familiar with the Microsoft .NET Framework, Microsoft
Visual Studio development system, ASP.NET MVC, and Microsoft Visual C#.

xiv

Why This Guide Is Pertinent Now
In general, the cloud has become a viable option for making your applications accessible to a broad set
of customers. In particular, Windows Azure now has in place a complete set of tools for developers
and IT professionals. Developers can use the tools they already know, such as Visual Studio, to write
their applications for the cloud. In addition, Windows Azure SDK includes a storage emulator and a
compute emulator that developers can use to locally write, test, and debug their applications before
they deploy them to the cloud. There are also tools and an API to manage your Windows Azure ac-
counts. This guide shows you how to use all these tools in the context of a common scenario—how
to develop a brand new, multi-tenant, SaaS application for Windows Azure.

How This Guide Is Structured
Here is the tube map for the guide:How This Book Is Structured

Securing Multi-tenant Applications
Protecting sensitive data, protecting
session tokens, authentication and
authorization

Partitioning Multi-tenant
Applications

Partitioning for tenants,
session state management,

caching, using MVC

The Tailspin Scenario
Motivations, constraints,

and goals of a SaaS ISV
building an application on

Windows Azure

Managing and Monitoring
Multi-tenant Applications
ALM, endpoint protection, provisioning
new tenants, customization, billing

Hosting a Multi-tenant Application
on Windows Azure
Selecting a single or a multi-tenant
architecture, stability, scalability,
SLAs, authentication, ALM, monitoring,
customization

Maximizing Availability, Scalability,
and Elasticity
Geo-location, CDN, asynchronous
execution, autoscaling roles

Choosing a Multi-tenant
Data Architecture

Data models, partitioning,
extensibility and scalability.

Using Windows Azure SQL
Database, Windows Azure

blobs and tables, data
paging, and data analysis

 xvpreface

“The Tailspin Scenario” introduces you to the Tailspin company and the Surveys application. It pro-
vides an architectural overview of the Surveys application; the following chapters provide more infor-
mation about how Tailspin designed and implemented the Surveys application for the cloud. Reading
this chapter will help you understand Tailspin’s business model, its strategy for adopting the cloud
platform, and some of its concerns. It will also help you to understand some of the fundamental
choices Tailspin had to make when designing the application.
“Hosting a Multi-tenant Application on Windows Azure” discusses the major considerations that
surround architecting and building multi-tenant applications to run on Windows Azure. It describes
the benefits of a multi-tenant architecture and the trade-offs that you must consider. This chapter
provides a conceptual framework that helps you understand the topics that are discussed in more
detail in the subsequent chapters.
“Choosing a Multi-tenant Data Architecture” describes the important factors to consider when de-
signing the data model for multi-tenant applications. The major factors are how you can partition data,
plan for extensibility and scalability, and how you can apply your design using Windows Azure storage
and a relational database. The chapter describes how the Surveys application stores data in both
Windows Azure tables and blobs, and how the developers at Tailspin designed their storage classes to
be extensible and testable. It also describes the role that Windows Azure SQL Database plays in the
Surveys application.
“Partitioning Multi-tenant Applications” describes how you can partition your application code for
multiple tenants. This includes how you can use Cloud Services web and worker roles, queues, and the
Model View Controller pattern to best effect in a multi-tenant application. The chapter also dis-
cusses issues around caching, and how Tailspin solved some specific problems related to implementing
session state.
“Maximizing Availability, Scalability, and Elasticity” describes techniques you can use to get the best
performance and responsiveness for your applications, especially when they are designed to support
multiple tenants. The chapter covers topics such as hosting the application in multiple geographic
locations, using the Content Delivery Network (CDN) to cache content, read and write patterns using
queues, paging and displaying data, and autoscaling the role instances.
“Securing Multi-tenant Applications” describes authentication and authorization scenarios for multi-
tenant applications when supporting individual subscribers and users, and through trust relationships.
It also examines how Tailspin implemented protection and isolation of sensitive data, and how it
protects session tokens.
“Managing and Monitoring Multi-tenant Applications” examines application lifecycle management
(ALM) considerations for multi-tenant applications, how Tailspin manages and monitors the applica-
tion, and how the application supports on-boarding, customization, and billing for customers.

What You Need to Use the Code
These are the system requirements for running the scenarios:
•	 Microsoft Windows 7 with Service Pack 1, Microsoft Windows 8, Microsoft Windows Server

2008 R2 with Service Pack 1, or Microsoft Windows Server 2012 (32-bit or 64-bit editions).
•	 Microsoft .NET Framework version 4.0.

xvi

•	 Microsoft Visual Studio 2010 Ultimate, Premium, or Professional edition with Service Pack 1
installed, or Visual Studio 2012 Ultimate, Premium, or Professional edition.

•	 Windows Azure SDK (includes the Windows Azure Tools for Visual Studio). See the Release Notes
for information on the specific version required.

•	 Microsoft SQL Server 2012, SQL Server Express 2012, SQL Server 2008, or SQL Server Express 2008.
See the Release Notes for information on specific versions depending on your operating system.

•	 ASP.NET MVC 4 Framework.
•	 Windows Identity Foundation. This is required for claims-based authorization.
•	 WebAii testing framework. This is required only if you want to run the functional tests. Place the

assembly ArtOfTest.WebAii.dll in the Lib\WebAii folder of the examples.
Other components and frameworks required by the examples are installed using NuGet when you run
the solutions. See the Release Notes included with the examples for instructions on installing and
configuring them.

Where to Go for More Information
There are a number of resources listed in text throughout the book. These resources will provide
additional background, bring you up to speed on various technologies, and so forth. For your conve-
nience, there is a bibliography online that contains all the links so that these resources are just a click
away.
You can find the bibliography at: http://msdn.microsoft.com/library/jj871057.aspx.

Who’s Who
A panel of experts comments on Tailspin’s development efforts and on the example application pro-
vided for this guide. The panel includes a cloud specialist, a software architect, a software developer,
and an IT professional. The delivery of the application can be considered from each of these points of
view. The following table lists these experts.

Bharath is a cloud specialist. He checks that a cloud-based solution will work for a
company and provide tangible benefits. He is a cautious person, for good reasons.

“Implementing a single-tenant application for the cloud is easy. Realizing the benefits that a
cloud-based solution can offer to multi-tenant applications is not always so straight-forward.”

 xvii

Jana is a software architect. She plans the overall structure of an application.
Her perspective is both practical and strategic. In other words, she considers the
technical approaches that are needed today and the direction a company needs
to consider for the future.“

Markus is a senior software developer. He is analytical, detail-oriented, and me-
thodical. He’s focused on the task at hand, which is building a great cloud-based ap-
plication. He knows that he’s the person who’s ultimately responsible for the code.

“For the most part, a lot of what we know about software development can be applied
to the cloud. But, there are always special considerations that are very important.”

Poe is an IT professional who’s an expert in deploying and running applications in
the cloud. Poe has a keen interest in practical solutions; after all, he’s the one who
gets paged at three o’clock in the morning when there’s a problem.

“It’s not easy to balance the needs of the company, the users, the IT
organization, the developers, and the technical platforms we rely on.”

If you have a particular area of interest, look for notes provided by the specialists whose interests align
with yours.

“Running applications in the cloud that are accessed by thousands of users involves some big
challenges. I want to make sure our cloud apps perform well, are reliable, and are secure. The
reputation of Tailspin depends on how users perceive the applications running in the cloud.”

xix

Acknowledgments

On March 4, 2010 I saw an email from our CEO, Steve Ballmer, in my inbox. I don’t normally receive
much email from him, so I gave it my full attention. The subject line of the email was: “We are all in,”
and it summarized the commitment of Microsoft to cloud computing. If I needed another confirma-
tion of what I already knew, that Microsoft is serious about the cloud, there it was.
My first contact with what eventually became Windows Azure, and other components of what is now
called the Windows Azure platform, was several years ago. I was in the Developer & Platform Evan-
gelism (DPE) team, and my job was to explore the world of software delivered as a service. Some of
you might even remember a very early mockup I developed in late 2007, called Northwind Hosting. It
demonstrated many of the capabilities that the Windows Azure platform offers today. (Watching an
initiative I’ve been involved with since the early days become a reality makes me very, very happy.)
In February 2009, I left DPE and joined the patterns & practices team. My mission was to lead the
“cloud program” - a collection of projects that examined the design challenges of building applications
for the cloud. When the Windows Azure platform was announced, demand for guidance about it
skyrocketed.
As we examined different application development scenarios, it became quite clear that identity man-
agement is something you must get right before you can consider anything else. It’s especially impor-
tant if you are a company with a large portfolio of on-premises investments, and you want to move
some of those assets to the cloud. This describes many of our customers.
In December 2009, we released the first edition of A Guide to Claims-Based Identity and Access
Control. This was patterns & practices’s first deliverable, and an important milestone in our cloud
program. We followed it with Moving Applications to the Cloud. This was the first in a three part
series of guides that address development in Windows Azure. Both of these guides have been regu-
larly updated as Windows Azure evolves.
Windows Azure is special in many ways. One is the rate of innovation. The various teams that deliver
all of the platform’s systems proved that they could rapidly ship new functionality. To keep up with
them, I felt we had to develop content very quickly. We decided to run our projects in two-months
sprints, each one focused on a specific set of considerations.

xx

This guide covers a Greenfield scenario: designing and developing new multi-tenant applications for
the Windows Azure platform. This follows on from the previous guide that focused on how to move
an existing application to the Windows Azure platform. As in the previous guides, we’ve developed a
fictitious case study that explains, step by step, the challenges our customers are likely to encounter.
I want to start by thanking the following subject matter experts and contributors to this guide:
Dominic Betts (Content Master Ltd), Scott Densmore (Microsoft Corporation), Ryan Dunn, Steve
Marx, and Matias Woloski. Dominic has the unusual skill of knowing a subject in great detail and of
finding a way to explain it to the rest of us that is precise, complete, and yet simple to understand.
Scott brought us a wealth of knowledge about how to build scalable Windows Azure applications,
which is what he did before he joined my team. He also brings years of experience about how to build
frameworks and tools for developers. I’ve had the privilege of working with Ryan in previous projects,
and I’ve always benefited from his acuity, insights, and experience. As a Windows Azure evangelist,
he’s been able to show us what customers with very real requirements need. Steve is a technical
strategist for Windows Azure. He’s been instrumental in shaping this guide. We rely on him to show
us not just what the platform can do today but how it will evolve. This is important because we want
to provide guidance today that is aligned with longer-term goals. Last but not least, Matias is a vet-
eran of many projects with me. He’s been involved with Windows Azure since the very first day, and
his efforts have been invaluable in creating this guide.
As it happens with all our written content, we have sample code for most of the chapters. They
demonstrate what we talk about in the guide. Many thanks to the project’s development and test
teams for providing a good balance of technically sound, focused and simple-to-understand code:
Masashi Narumoto (Microsoft Corporation), Scott Densmore (Microsoft Corporation), Federico
Boerr (Southworks), Adrián Menegatti (Southworks), Hanz Zhang (Microsoft Corporation), Ravindra
Mahendravarman (Infosys Ltd.), Rathi Velusamy (Infosys Ltd.).
Our guides must not only be technically accurate but also entertaining and interesting to read. This is
no simple task, and I want to thank Dominic Betts (Content Master Ltd), RoAnn Corbisier (Microsoft
Corporation), Alex Homer (Microsoft Corporation), and Tina Burden from the writing and editing
team for excelling at this.
The visual design concept used for this guide was originally developed by Roberta Leibovitz and Colin
Campbell (Modeled Computation LLC) for A Guide to Claims-Based Identity and Access Control.
Based on the excellent responses we received, we decided to reuse it for this guide. The guide design
was created by John Hubbard (eson). The cartoon faces were drawn by the award-winning Seattle-
based cartoonist Ellen Forney. The technical illustrations were adapted from my Tablet PC mockups
by Rob Nance and Katie Niemer.
All of our guides are reviewed, commented upon, scrutinized, and criticized by a large number of
customers, partners, and colleagues. We also received feedback from the larger community through
our CodePlex website. The Windows Azure platform is broad and spans many disciplines. We were
very fortunate to have the intellectual power of a very diverse and skillful group of readers available
to us.
I also want to thank all of these people who volunteered their time and expertise on our early content
and drafts. Among them, I want to mention the exceptional contributions of David Aiken (Microsoft
Corporation), Graham Astor (Avanade), Edward Bakker (Inter Access), Vivek Bhatnagar (Microsoft
Corporation), Patrick Butler Monterde (Microsoft Corporation), Shy Cohen, James Conard (Microsoft

 xxi

Corporation), Brian Davis (Longscale), Aashish Dhamdhere (Windows Azure, Microsoft Corporation),
Andreas Erben (DAENET), Giles Frith, Eric L. Golpe (Microsoft Corporation), Johnny Halife (South-
works), Simon Ince (Microsoft Corporation), Joshy Joseph (Microsoft Corporation), Andrew Kimball,
Milinda Kotelawele (Longscale), Mark Kottke (Microsoft Corporation), Chris Lowndes (Avanade),
Dianne O’Brien (Windows Azure, Microsoft Corporation), Steffen Vorein (Avanade), Michael Wood
(Strategic Data Systems).
I hope you find this guide useful!

Eugenio Pace
Senior Program Manager – patterns & practices
Microsoft Corporation

Acknowledgements of Contributors to the Third Edition
Windows Azure is an evolving platform. We originally published the first edition of this guide in 2010,
demonstrating a basic set of Windows Azure features. I’m now pleased to release the third edition of
this guide, which is more tailored to multi-tenant scenario. This new edition describes common chal-
lenges in the multi-tenant Software as a Service applications such as partitioning data, data extensibil-
ity, automated provisioning, customizing to multiple tenants, and so on.
As our scope increased, we also added new community members and industry experts who have
provided significant help throughout the development of this edition. I want to acknowledge the
exceptional contributions of following people: Dominic Betts (ContentMaster), Alex Homer (Micro-
soft Corporation), Alejandro Jezierski (Southworks), Mauro Krikorian (Southworks), Jorge Rowies
(Southworks), Marcos Castany (Southworks), Hanz Zhang (Microsoft Corporation), Rathi Velusamy
(Infosys), RoAnn Corbisier (Microsoft Corporation), Nelly Delgado (Microsoft Corporation), Eugenio
Pace (Microsoft Corporation), Carlos Farre (Microsoft Corporation), Trent Swanson (Full Scale 180
Inc.), Ercenk Keresteci (Full Scale 180 Inc.), Jane Sinyagina (Microsoft Corporation), Hatay Tuna (Mi-
crosoft Corporation), Patrick Butler Monterde (Microsoft Corporation), and Michael Wood. I also
want to thank everyone who participated in our CodePlex community site.

Masashi Narumoto
Senior Program Manager – patterns & practices
Microsoft Corporation
Redmond, October 2012

1

1

This chapter introduces a fictitious company named Tailspin. It describes Tailspin’s plans to launch a
new online service named Surveys that will enable other companies or individuals to conduct their
own online surveys. The chapter also describes why Tailspin wants to host its survey application on
Windows Azure. As with any company considering this process, there are many issues to consider and
challenges to be met, particularly because this is the first time Tailspin is using the cloud. The chapters
that follow this one show how Tailspin architected and built its survey application to run on Windows
Azure.

The Tailspin Company
Tailspin is a startup ISV company of approximately 20 employees that specializes in developing solu-
tions using Microsoft technologies. The developers at Tailspin are knowledgeable about various
Microsoft products and technologies, including the .NET Framework, ASP.NET MVC, SQL Server, and
Visual Studio. These developers are aware of Windows Azure but have not yet developed any com-
plete applications for the platform.
The Surveys application is the first of several innovative online services that Tailspin wants to take to
market. As a startup, Tailspin wants to develop and launch these services with a minimal investment
in hardware and IT personnel. Tailspin hopes that some of these services will grow rapidly, and the
company wants to have the ability to respond quickly to increasing demand. Similarly, it fully expects
some of these services to fail, and it does not want to be left with redundant hardware on its hands.

Tailspin’s Strategy
Tailspin is an innovative and agile organization, well placed to exploit new technologies and the busi-
ness opportunities offered by the cloud. As a startup, Tailspin is willing to take risks and use new
technologies when it implements applications. Tailspin’s plan is to embrace the cloud and gain a com-
petitive advantage as an early adopter. It hopes to rapidly gain some experience, and then quickly ex-
pand on what it has learned. This strategy can be described as “try, fail fast, learn, and then try again.”
Tailspin has decided to start with the Surveys application as its first cloud-based service offering.

 The Tailspin Scenario

2 chapter one

The Surveys Application
The Surveys application enables Tailspin’s customers to design a survey, publish the survey, and collect
the results of the survey for analysis. A survey is a collection of questions, each of which can be one
of several types such as multiple-choice, numeric range, or free text. Customers begin by creating a
subscription with the Surveys service, which they use to manage their surveys and to apply branding
by using styles and logo images.
Customers can also select a geographic region for their account, so that they can host their surveys
as close as possible to the survey audience. In addition, Tailspin enables premium customers to add
custom fields to surveys for integration with the customers’ own systems. The Surveys application
allows users to try out the application for free, and to sign up for one of several different packages
that offer different collections of services for a monthly fee.
Figure 1 illustrates the Surveys application and highlights the three different groups of users who in-
teract with application. All three websites interact with the core services that comprise the Surveys
application and provide access to the application’s data storage.

Public
website

Tailspin
website

Tailspin
core

Subscriber
website

Tailspin

Complete
surveys

Manange applications
Manage subscribers

Create survey
Analyze survey

Large subscriber

Medium subscriber

Small subscriber

Windows Azure region

Figure 1
The Surveys application

 3The Tailspin Scenario

Customers who sign up and become subscribers to the Surveys ser-
vice (or who are using a free trial) access the Subscriber website that
enables them to design their own surveys, apply branding and custom-
ization, and collect and analyze the survey results. Depending on the
package they select, they have access to different levels of functional-
ity within the Surveys application. Tailspin expects its subscribers to
be of various sizes and from all over the world; and they can select a
geographic region for their account and surveys.
Tailspin wants to design the service in such a way that most of the
administrative and configuration tasks are “self-service” and per-
formed by the subscriber with minimal intervention by Tailspin staff.
The public website enables the people participating in the survey to
complete their responses to the survey questions. The survey creator
will inform their survey audience of the URL to visit to complete the
survey.
The Tailspin website enables staff at Tailspin to manage the application
and manage the subscriber accounts. Note that this website is not in-
cluded in the example application you will see discussed in this guide,
which focuses on the public and the subscriber website functionality.

For information about building a Windows Phone 7 client
application for the Tailspin Surveys application, see “Developing
an Advanced Windows Phone 7.5 App that Connects to the
Cloud.”

Tailspin’s Goals and Concerns
Tailspin faces several challenges, both as an organization and with the
Surveys application in particular. First, subscribers might want to cre-
ate surveys associated with a product launch or a marketing campaign,
or the surveys might be seasonal—perhaps associated with a holiday
period. Often, subscribers who use the Surveys application will want
to set up these surveys with a very short lead-time. Surveys will usu-
ally run for a fixed, short period of time but may have a large number
of respondents.
This means that usage of the Surveys application will tend to spike
and Tailspin will have very little warning of when these spikes will
occur. Tailspin wants to be able to offer the Surveys application to
subscribers around the world, and because of the nature of the Sur-
veys application with sudden spikes in demand, it wants to be able to
quickly expand or contract its infrastructure in different geographical
locations. It doesn’t want to purchase and manage its own hardware,
or maintain sufficient capacity to meet peak demand. Neither does
Tailspin want to sign long-term contracts with hosting providers for
capacity that it will use for only part of the time.

In the world of Software as
a Service (SaaS), subscribers
are commonly known as
“tenants.” We commonly
refer to applications like
Tailspin Surveys as “multi-
tenant” applications. When
we talk about Tailspin’s
“customers” we are
referring to the subscribers
or tenants, and we use this
terminology throughout
most of this guide.

Resource elasticity and
geo-distribution are key
properties of Windows
Azure.

http://msdn.microsoft.com/en-us/library/gg490765.aspx
http://msdn.microsoft.com/en-us/library/gg490765.aspx
http://msdn.microsoft.com/en-us/library/gg490765.aspx

4 chapter one

Tailspin wants to be able to maintain its competitive advantage by rapidly rolling out new features for
existing services, or gain competitive advantage by being first to market with new products and ser-
vices.
With the Surveys application, Tailspin wants to offer its subscribers a reliable, customizable, and
flexible service for creating and conducting online surveys. It must provide its subscribers with the
ability to create surveys using a range of question types, and the ability to brand the surveys using
corporate logos and color schemes.
Tailspin wants to be able to offer different packages (at different prices) to subscribers, based on each
subscriber’s specific requirements. Tailspin wants to offer its larger subscribers the ability to integrate
the Surveys application into that subscriber’s own infrastructure. For example, integration with the
subscriber’s own identity infrastructure could provide single sign-on (SSO), or enable multiple users
to manage surveys or access billing information. Integration with the subscriber’s own business intel-
ligence (BI) systems could provide for a more sophisticated analysis of survey results. For small sub-
scribers who don’t need, or can’t use, the sophisticated integration features, a basic package might
include an authentication system. The range of available packages should also include a free trial to
enable subscribers to try the Surveys application before they purchase a subscription.
The subscriber and public websites also have different scalability requirements. It is likely that thou-
sands of users might complete a survey, but only a handful of users from each subscriber will edit
existing surveys or create new surveys. Tailspin wants to optimize the resources for each of these
scenarios.
The Tailspin business model is to charge subscribers a monthly fee for a service such as the Surveys
application and, because of the global market they are operating in, Tailspin wants its prices to be
competitive. Tailspin must then pay the actual costs of running the application, so in order to maintain
its profit margin Tailspin must tightly control the running costs of the services it offers to subscribers.

In this scenario, Tailspin’s customers (the subscribers) are not Windows Azure customers.
Subscribers pay Tailspin, who in turn pays Microsoft for the subscribers’ use of Windows Azure
services.

Tailspin wants to ensure that subscribers’ data is kept safe. For example, a subscriber’s data must be
private to that subscriber, there must be multiple physical copies of the survey data, and subscribers
should not be able to lose data by accidently deleting a survey. In addition, all existing survey data must
be preserved whenever Tailspin updates the application.
Finally, Tailspin would like to be able to leverage the existing skills of its developers to build the Sur-
veys application, and minimize any necessary retraining.

 5The Tailspin Scenario

The Surveys Application Architecture
To achieve the goals of the Surveys application, Tailspin decided to implement the application as a
cloud-based service using Windows Azure. Figure 2 shows a high-level view of this architecture.

Figure 2
The Surveys application architecture

The architecture of the Surveys application is straightforward, and one that many other Windows Azure
applications use. The core of the application uses Windows Azure web roles, worker roles, and storage.
Figure 2 shows the three groups of users who access the application: the application owner, the public,
and the subscribers to the Surveys service (in this example, the tenants Adatum and Fabrikam). It also
highlights how the application uses Windows Azure SQL Database to provide a mechanism for subscrib-
ers to dump their survey results into a relational database so that they can analyze the results in detail.
This guide discusses how Tailspin designed and implemented the Surveys application as a multi-tenant ap-
plication. It addresses common multi-tenant challenges such as partitioning, extensibility, provisioning,
testability, and customization. For example, the guide describes how Tailspin handles the integration of the
application’s authentication mechanism with a subscriber’s own security infrastructure by using a “feder-
ated identity with multiple partners” model. The guide also covers the reasoning behind the decision to use
a hybrid data model that comprises both Windows Azure storage and Windows Azure SQL Database.

Worker

MVC web
application

Storage

Application
owner

Dump results

Creat
e survey

Fill survey

Survey
respondent

Survey tenant

Fabrikam

Windows Azure

SQL
Database

Adatum

Public accessTailspin (ISV)

Manage tenants

Acce
ss res

ult d
umps

6 chapter one

Other topics covered in this guide include how the application uses Windows Azure Caching to en-
sure the responsiveness of the public website for survey respondents, how the application automates
the on-boarding and provisioning process, how the application leverages the Windows Azure geo-
graphic location feature, and the subscriber billing model that Tailspin adopted for the Surveys ap-
plication.
Tailspin will build the application using Visual Studio, ASP.NET MVC, and the .NET Framework. The
following table will help you to identify the areas of the guide that correspond to the various features
of the application and the Windows Azure services it uses.

Chapter Topic Areas Relevant Technologies

2 – “Hosting a
Multi-Tenant
Application on
Windows Azure”

Choosing a single or multi-tenant architecture.

Considerations for stability, scalability, authentica-
tion and authorization, ALM, SLAs, monitoring, code
partitioning, billing, and customization.

3 – “Choosing a
Multi-Tenant Data
Architecture”

Considerations for Windows Azure storage, SQL
Server, and SQL Database.

Using SQL Federations.

Data partitioning strategies.

Data architecture, extensibility, and scalability.

Displaying data in the UI.

Windows Azure storage tables and blobs.

Microsoft SQL Server.

Windows Azure SQL Database.

4 – “Partitioning
Multi-Tenant
Applications”

Partitioning queues and worker roles.

Prioritizing some tenants.

Accessing the web roles as a tenant.

Session management.

Windows Azure web and worker roles.

Windows Azure storage queues.

ASP.NET MVC.

5 – “Maximizing
Availability,
Scalability, and
Elasticity”

Geo-location and routing.

The delayed write pattern.

Background processes.

Caching static data.

Auto scaling role instances.

Windows Azure worker roles.

Windows Azure storage queues.

Windows Azure Caching.

Windows Azure Traffic Manager.

Enterprise Library Integration Pack for
Windows Azure.

6 – “Securing
Multi-Tenant
Applications”

Authentication and authorization strategies.

Protecting sensitive data.

Protecting session tokens.

Windows Identity Framework.

Claims-based authentication and
authorization.

Windows Azure Active Directory.

7 – “Managing and
Monitoring
Multi-Tenant
Applications”

Application lifecycle management, including testing,
monitoring, and managing the application.

Automated provisioning and trial subscriptions.

Per tenant customization.

Billing subscribers.

Windows Azure diagnostics.

Windows Azure PowerShell Cmdlets.

Windows Azure Endpoint Protection.

 7The Tailspin Scenario

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/library/jj871057.aspx.
Overview of Windows Azure features.
Data Storage Offerings on the Windows Azure Platform.
Introducing Windows Azure provides a list of features and services.
For information about building a Windows Phone 7 client application for the Tailspin Surveys
application, see the guide “Developing an Advanced Windows Phone 7.5 App that Connects to the
Cloud.”
The guide “Moving Applications to the Cloud” explores techniques for migrating existing applications
to Windows Azure.
The guide “Building Hybrid Applications in the Cloud” describes the scenarios for and usage of many
Windows Azure features.

http://msdn.microsoft.com/library/jj871057.aspx
http://www.windowsazure.com/en-us/home/features/overview/
http://social.technet.microsoft.com/wiki/contents/articles/1674.data-storage-offerings-on-the-windows-azure-platform.aspx
http://www.windowsazure.com/en-us/develop/net/fundamentals/intro-to-windows-azure/
http://msdn.microsoft.com/en-us/library/gg490765.aspx
http://msdn.microsoft.com/en-us/library/gg490765.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://msdn.microsoft.com/en-us/library/hh871440.aspx

9

2

This chapter discusses some of the issues that surround architecting and building multi-tenant applica-
tions to run on Windows Azure. A highly scalable, cloud-based platform offers a compelling set of
features for building services that many users will pay a subscription to use. A multi-tenant architec-
ture where multiple users share the application enables economies of scale as users share resources,
but at the cost of a more complex application that has to manage multiple users independently of each
other.
This chapter does not focus specifically on Tailspin or the Surveys application, but it uses the sce-
nario described in the previous chapter to illustrate some of the factors that you might consider when
choosing how to implement a multi-tenant application on Windows Azure.
This chapter provides a conceptual framework that helps you understand some of the topics discussed
in more detail in the subsequent chapters of this guide.

Goals and Requirements
This section outlines some of the goals and requirements that are common to many multi-tenant ap-
plications. Some may not be relevant in some specific scenarios, and the importance of individual goals
and requirements will differ in each scenario. For example, not all multi-tenant applications require
the same level of customizability by the tenant or face the same regulatory constraints.
It is also useful to consider the goals and requirements for a multi-tenant application from the perspec-
tive of both the tenant and the provider.

The Tenant’s Perspective
Multiple tenants share the use of a multi-tenant application, but different tenants may have different
goals and requirements. A tenant is unlikely to be interested how the provider implements the multi-
tenancy, but will expect the application to behave as if the tenant is its sole user. The following pro-
vides a list of the most significant goals and requirements from a tenant’s perspective.
•	 Isolation. This is the most important requirement in a multi-tenant application. Individual

tenants do not want the activities of other tenants to affect their use of the application. They
also need to be sure that other tenants cannot access their data. Tenants want the application to
appear as though they have exclusive use of it.

 Hosting a Multi-Tenant
Application on

Windows Azure

10 chapter two

•	 Availability. Individual tenants want the application to be constantly available, perhaps with
guarantees defined in an SLA. Again, the activities of other tenants should not affect the avail-
ability of the application.

•	 Scalability. Even though multiple tenants share a multi-tenant application, an individual tenant
will expect the application to be scalable and be able to meet his level of demand. The presence
and actions of other tenants should not affect the performance of the application.

•	 Costs. One of the expectations of using a multi-tenant application is that the costs will be lower
than running a dedicated, single-tenant application because multi-tenancy enables the sharing of
resources. Tenants also need to understand the charging model so that they can anticipate the
likely costs of using the application.

•	 Customizability. An individual tenant may require the ability to customize the application in
various ways such as adding or removing features, changing colors and logos, or even adding their
own code or script.

•	 Regulatory Compliance. A tenant may need to ensure that the application complies with
specific industry or regulatory laws and limitations, such as those that relate to storing personally
identifiable information (PII) or processing data outside of a defined geographical area. Different
tenants may have different requirements.

The Provider’s Perspective
The provider of the multi-tenant application will also have goals and requirements. The following
provides a list of the most significant goals and requirements from a provider’s perspective.
•	 Meeting the tenants’ goals and requirements. The provider must ensure that the application

meets the tenants’ expectations. A provider may offer a formal SLA that defines how the applica-
tion will meet the tenants’ requirements.

•	 Profitability. If the provider offers the application as a commercial service, the provider will want
to obtain an appropriate rate of return on the investment it has made in developing and providing
the service. Revenue from the application must be sufficient to cover both the capital and
running costs of the application.

•	 Billing. The provider needs a way to bill the tenants. This may require the application to monitor
resource usage if the provider does not want to use a fixed rate charging approach. An example
of a fixed rate approach would be if Tailspin charges each tenant a monthly fee for using the
Surveys application. An alternative is that Tailspin charges each tenant based on the number of
survey responses it collects, or on some other usage metric.

 11Hosting a Multi-Tenant Application on Windows Azure

•	 Multiple service levels. The provider may want to offer different versions of a service at differ-
ent monthly rates, such as a standard or a premium subscription. These different subscription
levels may include different functions, different usage limitations, have different SLAs, or specify
some combination of these factors.

•	 Provisioning. The provider must be able to provision new tenants for the application. If there are
a small number of tenants, this may be a manual process. For multi-tenant applications with a
large number of tenants, it is usually necessary to automate this process by enabling self-service
provisioning.

•	 Maintainability. The provider must be able to upgrade the application and perform other
maintenance tasks while multiple tenants are using it.

•	 Monitoring. The provider must be able to monitor the application at all times to identify any
problems and to troubleshoot them. This includes monitoring how each tenant is using the
application.

•	 Automation. In addition to automated provisioning, the provider may want to automate other
tasks in order to provide the required level of service. For example, the provider may want to
automate the scaling of the application by dynamically adding or removing resources as and when
they are required.

 Single Tenant vs. Multiple Tenant
One of the first architectural decisions that the team at Tailspin had to make about how the Surveys
application could best support multiple subscribers was whether it should be a single-tenant or multi-
tenant application. Figure 1 shows the difference between these approaches at a high-level. The single-
tenant model has a separate physical instance of the application for each subscriber, while the multi-
tenant model has a single physical instance of the application shared by many subscribers.
It’s important to note that the multi-tenant model still offers separate views of the application’s data
to its users. In the Surveys application, Client B must not be able to see or modify Client A’s surveys
or data. Tailspin, as the owner of the application, will have full access to all the data stored in the ap-
plication.

12 chapter two

Figure 1
Logical view of single tenant and multiple tenant architectures

Instance of Surveys
(not client specific)

Tailspin

Instance of
Surveys for ClientB

Instance of
Surveys for ClientA

Instance of
Surveys for ClientC

Instance of
Surveys for ClientB

Tailspin

ClientA ClientAClientC

ClientAClientB

ClientA ClientAClientC

ClientAClientB

Multi-instance, single tenant Single instance, multi-tenant

This diagram shows logical instances of the
Surveys application. In practice, you can
implement each logical instance as multiple
physical instances to scale the application.

 13Hosting a Multi-Tenant Application on Windows Azure

Multi-Tenancy Architecture in Windows Azure
In Windows Azure, the distinction between the multi-tenant model and the single-tenant model is
not as straightforward as that shown in Figure 1 because an application in Windows Azure can consist
of many elements, each of which can be single tenanted or multiple tenanted. For example, if an ap-
plication has a user interface (UI) element, a services element, and a storage element, a possible design
could look like that shown in Figure 2.

Windows Azure

ClientA

ClientB

ClientC
Web UI
- ClientC
- Single tenant

Web UI
- ClientB
- Single tenant

Web UI
- ClientA
- Single tenant

Storage
- ClientC
- Single tenant

Storage
- ClientB
- Single tenant

Storage
- ClientA
- Single tenant

Surveys services
- Multi-tenant

Figure 2
Sample architecture for Windows Azure

This is not the only possible design, but it illustrates that you don’t have to make the same choice of
either a single-tenancy or a multi-tenancy model for every element in your application. In practice, a
Windows Azure application consists of many more elements than shown in Figure 2 such as queues,
caches, and virtual networks that might have a single-tenant or a multi-tenant architecture.

Chapter 3, “Choosing a Multi-Tenant Data Architecture,” looks at the issues that relate to data
storage and multi-tenancy. Chapter 4, “Partitioning Multi-Tenant Applications,” looks at the issues
that relate to partitioning Windows Azure roles, caches, and queues. Chapter 6, “Securing Multi-
Tenant Applications,” and Chapter 7, “Managing and Monitoring Multi-Tenant Applications,” cover
multi-tenancy in other application elements.

Should you design your Windows Azure application to be single-tenant or multi-tenant? There’s no
right or wrong answer but, as you will see in the following section, there are a number of factors that
can influence your choice.

14 chapter two

Selecting a Single-Tenant or Multi-Tenant Architecture
This section introduces some of the criteria that an architect would consider when deciding on a
single-tenant or multi-tenant design. The guide revisits many of these topics in more detail, and with
specific reference to Tailspin and the Surveys application, in later chapters. The relative importance
of the different criteria will vary for different application scenarios.
This chapter focuses on application architecture, management, and financial considerations. Chapter
3, “Choosing a Multi-Tenant Data Architecture,” explores the topics you must consider when choosing
a suitable data architecture for a multi-tenant application.

Architectural Considerations
The architectural requirements of your application will influence your choice of a single-tenant or
multi-tenant architecture.
The focus of this guide is on building a multi-tenant application using Windows Azure cloud services:
web and worker roles. However, the architectural considerations addressed in this chapter, and many
of the design decisions that Tailspin faced during the implementation of the Surveys application dis-
cussed in subsequent chapters, are equally relevant to other hosting choices for your multi-tenant
application. For example, if you decide to build your multi-tenant application using Windows Azure
Web Sites or to deploy it to Windows Azure Virtual Machines you will face many of the same chal-
lenges that Tailspin faced building the Surveys application for deployment to Windows Azure Cloud
Services.
For a detailed discussion of the Infrastructure as a Service (IaaS) approach offered by Windows Azure
Virtual Machines, you should read Chapter 2, “Getting to the Cloud,” in the guide “Moving Applications
to the Cloud.” Chapter 3, “Moving to Windows Azure Cloud Services,” in that guide discusses using
Windows Azure Web Sites to host your application in the cloud.

Application Stability
A multi-tenant application is more vulnerable to instance failure than a single-tenant application. If a
single-tenant instance fails, only the user of that instance is affected. If the multi-tenant instance fails,
all users are affected. However, Windows Azure can help to mitigate this risk by enabling you to de-
ploy multiple, identical instances of the Windows Azure roles that make up your application (this is
really a multi-tenant, multi-instance model).

http://msdn.microsoft.com/en-us/library/ff803358.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://msdn.microsoft.com/en-us/library/ff803371.aspx

 15Hosting a Multi-Tenant Application on Windows Azure

Windows Azure load balances requests across those role instances,
and you must design your application so that it functions correctly
when you deploy multiple instances. For example, if your application
uses session state you must make sure that each web role instance
can access the state for any user. In addition, the tasks that a worker
role performs must function correctly when Windows Azure can
select any instance of the role to handle a particular task. Windows
Azure monitors your role instances and automatically restarts any
that have failed.
Windows Azure can throttle access to resources, making them tem-
porarily unavailable. Typically, this happens when there is high conten-
tion for a resource. Your Windows Azure application should detect
when it is being throttled, and take appropriate action such as retrying
the operation after a short delay.

Making the Application Scalable
The scalability of an application running on Windows Azure depends
largely on being able to deploy multiple instances of your web and
worker roles, while being able to access the same data from those
instances. Both single-tenant and multi-tenant applications use this
feature to scale out when they run on Windows Azure. Windows
Azure also offers various instance sizes that enable you to scale up or
scale down individual instances.

The Transient Fault Handling
Application Block, available
as a separately installable
part of the Enterprise
Library 5.0 Integration
Pack for Windows Azure,
can handle in a standard
and configurable way the
transient faults that may
occur because of throttling.

For the Windows Azure SLA to
apply to your application, you
must have at least two instances
of each role type running. For
more information, see “Service
Level Agreements.”

http://msdn.microsoft.com/en-us/library/hh680918(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680918(PandP.50).aspx
http://www.windowsazure.com/en-us/support/legal/sla/
http://www.windowsazure.com/en-us/support/legal/sla/

16 chapter two

Figure 3 shows how you can scale out the application by running a variable number of instances. In
Windows Azure cloud services, these would be multiple instances of your web and worker roles.

Instance of Surveys
(not client specific)

Tailspin

Instance of
Surveys for ClientB

Instance of
Surveys for ClientA

Instance of
Surveys for ClientC

Instance of
Surveys for ClientB

Tailspin

ClientA ClientAClientC

ClientAClientB

ClientA ClientAClientC

ClientAClientB

Multi-instance, single tenant Single instance, multi-tenant

Figure 3
Scaling out a multi-tenant application

In Windows Azure, the preferred way to adapt your application to manage varying load is to
scale out by adding additional nodes, rather than scale up by using larger nodes. This enables
you to add or remove capacity as and when it’s needed without interruption to services.
You can use frameworks or scripts to automatically add and remove instances based on a
schedule, or in response to changes in demand. The Autoscaling Application Block, available as
part of the Enterprise Library 5.0 Integration Pack for Windows Azure, is an example of such
a framework.

http://msdn.microsoft.com/en-us/library/hh680918(PandP.50).aspx

 17Hosting a Multi-Tenant Application on Windows Azure

For some applications, you may not want to have all your subscribers sharing just one multi-tenant
instance. For example, you may want to group your subscribers based on the functionality they use or
their expected usage patterns, and then optimize each instance for the subscribers who are using it.
In this case, you may need to have two or more copies of your multi-tenanted application deployed
in different cloud services or Windows Azure accounts.
Figure 4 illustrates a scenario where premium subscribers share one instance of the application, and stan-
dard subscribers share another instance. Note that you can scale each instance independently of the other.

Instance of Surveys
for standard clientsInstance of Surveys

for premium clients

Tailspin

ClientE

ClientAClientF

ClientAClientD

ClientA ClientAClientB

ClientAClientC

Multi-instance, multi-tenant

Figure 4
Using multiple multi-tenant instances

Although the model shown in Figure 4 makes it easy to scale the application for premium
subscribers independently of standard subscribers, it is not the only way to handle different
subscription levels. For example, if both premium and standard subscribers shared the
same instance you could implement an algorithm that gives preference to premium users,
ensuring that their workload and tasks are given priority within the instance. By providing
configuration parameters, you could adjust the algorithm dynamically.

18 chapter two

If you use an autoscaling solution when your application has multiple
tenants, you need to consider any limits that you want to place on the
scalability of your application because each running role instance will
accrue charges. It’s possible that the activities of a tenant could cause
a large number of instances to automatically start. With fixed rate
charging, this could result in high costs for the provider. With usage
based charging, this could result in high costs for the tenant.
You may want to consider using Windows Azure Caching and Windows
Azure Traffic Manager to enhance the scalability of your application. In
addition to providing output caching and data caching, Windows Azure
Caching includes a highly scalable session provider for use in ASP.NET
applications. Traffic Manager enables you to control the distribution of
traffic to multiple Windows Azure deployments, even if those deploy-
ments are running in different data centers.
Chapter 4, “Partitioning Multi-Tenant Applications,” of this guide
contains more information about how you can use Windows Azure
Caching. Chapter 5, “Maximizing Availability, Scalability, and Elastici-
ty,” of this guide discusses scalability and related topics, including us-
ing Windows Azure Traffic Manager and how you can automatically
scale instances of your application using the Enterprise Library Auto-
scaling Application Block.

Resource Limitations and Throttling
Individual elements of your application architecture will have specific
limitations, such as the maximum throughput of the message queuing
element (Windows Azure storage queues or Windows Azure Service
Bus), or the maximum number of transactions per second supported
by the data storage system used in your application. These resource
limitations may place constraints on the number of tenants who can
share a particular instance. You must understand the resource limita-
tions and quotas in relation to the likely usage patterns of your ten-
ants so that these resource limitations do not affect overall perfor-
mance of the application.

Some of the quotas associated with Windows Azure Service Bus
include the queue/topic size, the number of concurrent
connections, and the number of topics/queues per service
namespace.

Furthermore, many resources in the cloud, such as message queues
and storage systems, may throttle usage at certain times when they
are under high load or encounter spikes of high activity. You should
try to design your application so that it is unlikely to be throttled, but
it must still be resilient if it does encounter throttling.

Remember that Windows
Azure is itself a multi-
tenant service, and one of
the ways that it manages
contention for resources
by its tenants is to use
throttling.

 19Hosting a Multi-Tenant Application on Windows Azure

Geo-location
If your application has tenants from multiple geographic locations, giving them access to resources in
their country or region can help to improve performance and reduce latency. In this scenario, you
should consider a partitioning scheme that uses location to associate tenants with specific resource.
In Windows Azure, whenever you create a resource such as a storage account, a cloud service, or a
service namespace you can specify the geographic location where the resource will be hosted.

Service Level Agreements
You may want to offer a different Service Level Agreement (SLA) with the different subscription
levels for the service. If subscribers with different SLAs are sharing the same multi-tenant instance,
you should aim to meet the highest SLA, thereby ensuring that you also satisfy the lower SLAs for
other subscribers.
However, if you have a limited number of different SLAs, you could put all the subscribers that share
the same SLA into the same multi-tenant instance and make sure that the instance has sufficient re-
sources to satisfy the requirements of the SLA.

The Legal and Regulatory Environment
For some applications, you may need to take into account specific regulatory or legal issues. This may
require some differences in functionality, specific legal messages to be displayed in the UI, guaranteed
separate databases for storage, or storage located in a specific county or region. This may again lead
to having separate multi-tenant deployments for groups of subscribers, or it may even require a single-
tenant architecture.

Handling Authentication and Authorization
You may want to provide your own authentication and authorization systems for your cloud applica-
tion that require subscribers to set up accounts for the users who will interact with the application.
However, subscribers may prefer to use an identity they have already established with an existing
authentication system (such as a Microsoft or a Google account, or an account in their own Active
Directory) and avoid having to create a new set of credentials for your application.
In a multi-tenant application, this implies being able to support multiple authentication providers, and
it may possibly require a custom mapping to your application’s authorization scheme. For example,
someone who is a “Manager” in Active Directory at Adatum might map to being an “Administrator” in
Adatum’s Tailspin Surveys application.
Chapter 6, “Securing Multi-Tenant Applications,” of this guide discusses topics such as authentication
and authorization in multi-tenant applications in more detail.

For more information about identity, authentication, and authorization in cloud applications see “A
Guide to Claims-Based Identity and Access Control.” You can download a PDF copy of this guide.

http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx

20 chapter two

The Command Query Responsibility Segregation (CQRS)
Pattern
The CQRS pattern is an architectural design pattern that enables you
to meet a wide range of architectural challenges such as managing
complexity, managing changing business rules, or achieving scalability
in some portions of your system. It’s important to note that the CQRS
pattern is not a top-level pattern, and should only be applied in the
specific areas of a system where it brings clearly identifiable benefits.
Many of the multi-tenant considerations listed in this chapter relate
to architectural challenges that CQRS can help you to address. How-
ever, you should not assume that multi-tenancy necessarily implies
that you should use the CQRS pattern. For example, although the
Tailspin Surveys application must be highly scalable to support many
subscribers with different usage patterns, it is not an especially com-
plex application. In particular, it is not a collaborative application
where multiple users simultaneously edit the same data, which is one
of the scenarios specifically addressed by the CQRS pattern. Further-
more, Tailspin does not expect the business rules in the Surveys ap-
plication to change much over time.

For more information about the CQRS pattern, and when you
should consider using it, see the guide “A CQRS Journey.”

Application Life Cycle Management Considerations
Your choice of a single-tenant or multi-tenant architecture will deter-
mine how easy it is to develop, deploy, maintain, and monitor your
application.

Maintaining the Code Base
Maintaining separate code bases for different subscribers will rapidly
lead to escalating support and maintenance costs for an ISV because it
becomes more difficult to track which subscribers are using which ver-
sion. This will lead to costly mistakes being made. A multi-tenant system
with a single, logical instance guarantees a single code base for the ap-
plication. If your multi-tenant application uses some single-tenant ele-
ments, there could be a short-term temptation (with long-term conse-
quences) to branch the code in those elements for individual subscribers
in order to meet the specific requirements of some subscribers.
In some scenarios, where there is a requirement for a high-degree of
customization, multiple code bases may be a viable option but you
should explore how far you can get with custom configurations or
custom business rule components before going down this route. If you
do need multiple code bases, you should structure your application
such that custom code is limited to as few components as possible.

Many ISVs find that, when
they move to hosting
applications in the cloud
instead of hosting them at
client sites, release cycles
become shorter. This
means that they can much
more quickly incorporate
as part of a standard
release a customization or
enhancement requested
by one client. This can
benefit all subscribers while
preventing unnecessary
forking or multiple versions
of the source code.

http://msdn.microsoft.com/en-us/library/jj554200.aspx

 21Hosting a Multi-Tenant Application on Windows Azure

Handling Application Updates
A multi-tenant application that has a single code base makes it easy to
roll out application updates to all your subscribers at the same time.
This approach means that you have only a single logical instance to
update, which reduces the maintenance effort. In addition, you know
that all your subscribers are using the latest version of the software,
which makes the support job easier. Windows Azure update domains
facilitate this process by enabling you to roll out your update across
multiple role instances without stopping the application. However,
you must still carefully plan how you will perform a no-downtime
update to your application, taking into consideration the fact that
during the update process you may temporarily have instances with
different versions of your software running simultaneously.
If a client has operational procedures or software tied to a specific
version of your application, any updates must be coordinated with
that client. To mitigate the risks associated with updating the applica-
tion, you can implement a rolling update program that updates some
users, monitors the new version, and when you are confident in the
new version, rolls out the changes to the remainder of the user base.

For information about how you can update a Windows Azure
service and the different approaches that are available, see
“Overview of Updating a Windows Azure Service.”

Monitoring the Application
Monitoring a single application instance is easier than monitoring
multiple instances. In the multi-instance, single-tenant model any au-
tomated provisioning would need to include setting up the monitor-
ing environment for the new instance, which will add to the complex-
ity of the provisioning process for your application. Monitoring will
also be more complex if you decide to use rolling updates because you
must monitor two versions of the application simultaneously and use
the monitoring data to evaluate the new version of the application.
Chapter 7, “Managing and Monitoring Multi-Tenant Applications,” of
this guide contains more information about implementing efficient
management and monitoring practices for multi-tenant applications.

Using Third-Party Components
If you decide on a multi-tenant architecture, you must carefully evalu-
ate how well any third-party components will work. You may need to
take some additional steps ensure that a third-party component is
“multi-tenant aware.” With a single-tenant, multi-instance deploy-
ment, where you want to be able to scale out for large tenants, you
will also need to verify that third-party components are “multi-in-
stance aware.”

You should carefully test
your update procedures
before performing the
update in your production
environment, and ensure
that you have a plan to
revert to the original
version if things don’t go as
planned.

http://msdn.microsoft.com/en-us/library/hh472157.aspx

22 chapter two

Provisioning for Trials and New Subscribers
Provisioning a new client or initializing a free trial of your service will
be easier and quicker to manage if it involves only a configuration
change. A multi-instance, single-tenant model will require you to de-
ploy a new instance of the application for every subscriber, including
those using a free trial. Although you can automate this process, it will
be considerably more complicated than changing or creating configu-
ration data in a single-instance, multi-tenant application.
Chapter 7, “Managing and Monitoring Multi-Tenant Applications,” of
this guide contains more information about provisioning for new
subscribers in multi-tenant applications.

Customizing the Application
Whether you choose a single-tenant or multi-tenant architecture,
subscribers will still need to be able to customize the application.

Customizing the Application by Tenant
Subscribers will want to be able to style and brand the site for their
own users. You must establish how much control subscribers will
want in order to determine how best to enable the customization.
This may vary from just the ability to customize the appearance of the
application, such as by allowing subscribers to upload cascading style
sheets and image files, to enabling subscribers to design complete
pages that interact with the application’s services through a standard
API.
You can implement simple customizations through configuration val-
ues that tenants can change and that the application stores in its data
store, such as custom logo images, welcome text, or switches to en-
able certain functionality. For example, in the Surveys application,
subscribers can choose whether to integrate the application’s identity
infrastructure with their own infrastructure, and they can choose the
geographic location for their surveys. This type of configuration data
can easily be stored in Windows Azure storage.
Other applications may require the ability to enable users to custom-
ize the business process within the application to some degree. Op-
tions here would include implementing a plug-in architecture so that
subscribers could upload their own code, or using some form of rules
engine that enables process customization through configuration. To
implement a plug-in architecture, you could consider hosting the
PowerShell runtime (see System.Management.Automation Namespace
on MSDN) in your application, or using the Managed Extensibility
Framework (MEF).

Allowing tenants to upload
their own code increases
the risks of introducing a
security vulnerability or of
application failure because
you have less control over
the code that is running
in the application. Many
Software as a Service (SaaS)
systems apply limits to
this. Most simply disallow
it. Allowing tenants to
upload code or scripts
also increases the security
risks associated with the
application.

Customization is, of course,
nothing new. Microsoft
Dynamics CRM is a great
example of an application
that has these levels of
customization available.

http://msdn.microsoft.com/en-us/library/system.management.automation(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx
http://msdn.microsoft.com/en-us/library/dd460648.aspx

 23Hosting a Multi-Tenant Application on Windows Azure

Another alternative to consider is enabling your application to call a
service endpoint provided by the tenant, which performs some cus-
tom logic and returns a result.
You may also want to provide tenants with ways to extend the ap-
plication without using custom code. Subscribers to the survey ap-
plication may want to capture additional information about a survey
respondent that the standard application does not collect. To achieve
this you must implement a mechanism for customizing the UI to col-
lect the data, and a way of extending the data storage schema to in-
clude the new data.
Chapter 7, “Managing and Monitoring Multi-Tenant Applications,” of
this guide contains more information about customizing applications
for multiple tenants, and establishing an efficient on-boarding mecha-
nism.

URLs to Access the Application
There are several different URL schemes that you could adopt in a
multi-tenant application to enable tenants to access their data. The
following describes some possible options for the Tailspin Surveys
scenario where a subscriber can publish public surveys, and where
public users do not need to sign in to access the survey:
•	 http://surveys.tailspin.com/{unique-survey-name}. All surveys

are available on the same domain, and subscribers must choose a
unique survey name for every survey.

•	 http://surveys.tailspin.com/{subscriber-name}/{survey-name}.
Again all surveys are made available on the same domain, but
subscribers now only need to ensure that their own survey names
are unique.

•	 http://{subscriber-domain-name}.tailspinsurveys.com/{survey-
name}. Each subscriber is allocated its own unique sub domain,
and subscribers only need to ensure that their own survey names
are unique.

•	 http://{subscriber-domain-name}/{survey-name}. Each subscrib-
er has its own domain, and subscribers only need to ensure that
their own survey names are unique.

Subscribers may prefer one of options where their company name
is included in the URL that the public will access.

If you need to provide
extensive customizations
per tenant, it may become
impractical to handle this
in a shared multi-tenant
instance. In this case
you should consider
using a multi-instance,
single-tenant architecture,
but beware of the
potential running costs
of this approach and the
difficulties in maintaining
the application if there are
multiple versions of the
source code. This approach
is usually appropriate only if
you have a small number of
tenants.

24 chapter two

The following describes some possible options for the Tailspin Sur-
veys scenario where a subscriber can design and manage their surveys,
and where the subscriber must sign in:
•	 https://surveyadmin.tailspin.com/. After the subscriber logs on,

they can design and manage their own surveys.
•	 https://surveyadmin.tailspin.com/{subscriber-name}. A sub-

scriber must still log on to design and manage their surveys.
•	 http://{subscriber-domain-name}.tailspinsurveys.com/admin.

Each subscriber is allocated its own unique sub domain, and the
admin path requires the subscriber to log on.

•	 https://{subscriber-domain-name}/. Each subscriber has its own
domain for accessing the administrative functionality, and sub-
scribers must still log on.

In this case, the first option may be acceptable. There is no significant
benefit in including the subscriber’s name anywhere in the URL.
In both scenarios, as well as considering the preferences of the sub-
scribers you also need to consider how the choice of URL scheme
might affect other parts of the application, such as the provisioning
process and the authentication mechanisms in use. For example, cus-
tom domain names take time to propagate through the Domain Name
System (DNS). In addition, if you support multiple authentication
schemes, you must consider how to select the correct authentication
mechanism for a subscriber if the subscriber name is not included in
the URL. If you need to use SSL, you also need to consider how to
install the necessary certificates.
Chapter 4, “Partitioning Multi-Tenant Applications,” discusses the
URL scheme adopted by Tailspin to work with the two web roles in
the Surveys application.

Financial Considerations
Your billing and cost model may affect your choice of single-tenant or
multi-tenant architecture.

Billing Subscribers
For an application deployed to Windows Azure, Microsoft will bill
you each month for the services (compute, storage, transactions, and
so on) that each of your Windows Azure accounts consumes. If you
are selling a service to your subscribers, such as in the Tailspin Surveys
application, you need to bill your subscribers for the service.

Stress testing your
application can help you to
determine what resources
you need to support a given
number of tenants. This can
help you decide how much
to charge your subscribers.

 25Hosting a Multi-Tenant Application on Windows Azure

Pay per Use Plans
One approach to billing is to use a pay-per-use plan. With this ap-
proach, you monitor the resources used by each of your subscribers,
calculate the cost of those resources, and apply a markup to ensure
you make a profit. If you use a single-tenant architecture and create a
separate Windows Azure account for each of your subscribers, it’s
easy to determine how much an individual subscriber is costing in
terms of compute time, storage, and so on, and then bill the sub-
scriber appropriately.
However, for a single-tenant instance running in a separate Windows
Azure account, some costs will effectively be fixed; for example, pay-
ing for a 24x7 compute instance or a Windows Azure SQL Database
instance may make the starting cost too high for small subscribers.
With a multi-tenant architecture, you can share the fixed costs be-
tween tenants, but calculating the costs per tenant is not so straight-
forward and you will have to add some additional code to your ap-
plication to meter each tenant’s application usage. Furthermore,
subscribers will want some way of tracking their costs, so you will
need to be transparent about how the costs are calculated and pro-
vide access to the captured usage data.

Fixed Monthly Fee Plans
A second approach is to adopt a billing model that offers the Surveys
service for a fixed monthly fee. It is difficult to predict exactly what
usage an individual subscriber will make of the service; for the Surveys
application, Tailspin cannot predict how many surveys a subscriber
will create or how many survey answers the subscriber will receive in
a specified period. Therefore, the profit margin will vary between
subscribers (and could even be negative in some cases).
By making Surveys a multi-tenant application, Tailspin can smooth out
the differences in usage patterns between subscribers, making it much
easier to predict total costs and revenue, and reduce the risk of taking
a loss. The more subscribers you have, the easier it becomes to predict
average usage patterns for a service.
From the subscriber’s perspective, charging a fixed fee for the service
means that subscribers know, in advance, exactly what their costs will
be for the next billing period. This also means that you have a much
simpler billing system. Some costs, such as those associated with stor-
age and transactions, will be variable and will depend on the number
of subscribers you have and how they use the service. Other costs,
such as compute costs or the cost of a Windows Azure SQL Database
instance, will effectively be fixed. To be profitable, you need to sell
sufficient subscriptions to cover both the fixed and variable costs.

If your application can
scale out and scale back
automatically, it will
directly affect your costs.
Autoscaling can reduce
your costs because it can
help to ensure that you
use just the resources
you need. However, with
an autoscaling solution
you will also want to put
some upper limits on
the resources that your
application can use to place
a cap on potential costs.

26 chapter two

Different Levels of Fixed Fees
If your subscriber base is a mixture of heavy users and light users, a standard monthly charge may be
too high to attract smaller users. In this scenario, you will need a variation on the second approach to
offer a range of packages for different usage levels. For example, in the Surveys application, Tailspin
might offer a light package at a lower monthly cost than the standard package. The light package may
limit the number of surveys a subscriber can create or the number of survey responses that a sub-
scriber can collect each month.
Offering a product where different subscribers can choose different features and/or quotas requires
that you design the product with that in mind. Such a requirement affects the product at all levels:
presentation, logic, and data. You will also need to undertake some market research to determine the
expected demand for the different packages at different prices to try to estimate your expected
revenue stream and costs.

Managing Application Costs
You can divide the running costs of a Windows Azure application into fixed and variable costs. For
example, if the cost of a compute node is $0.12 per hour, the cost of running two compute nodes (to
gain redundancy) 24x7 for one month is a fixed cost of approximately $180. If this is a multi-tenant
application, all the tenants share that cost. To reduce the cost per tenant you should try to have as
many tenants as possible sharing the application, without causing a negative impact on the applica-
tion’s performance. You also need to analyze the application’s performance characteristics to deter-
mine whether scaling up by using larger compute nodes or scaling out by adding additional instances
would be the best approach when demand increases. Chapter 5, “Maximizing Availability, Scalability,
and Elasticity,” discusses the pros and cons of scaling out by adding more instances compared to
scaling up by using larger instances.
Variable costs will depend on how many subscribers you have, and how those subscribers use the
application. In the Tailspin Surveys application, the number of surveys and the number of respondents
for each survey will largely determine monthly storage and transaction costs. Whether your applica-
tion is single-tenant or multi-tenant will not affect the cost per tenant; regardless of the model, a
specific tenant will require the same amount of storage and use the same number of compute cycles.
To manage these costs, you must make sure that your application uses these resources as efficiently
as possible.

For more information about estimating Windows Azure costs, see Chapter 6, “Evaluating Cloud
Hosting Costs” in the guide “Moving Applications to the Cloud.” You can find information about
storage costs by using the Windows Azure Pricing calculator, and in the blog post “Understanding
Windows Azure Storage Billing – Bandwidth, Transactions, and Capacity.”

Engineering Costs
Windows Azure bills you for the cost of running your application in the cloud. You must also con-
sider the costs associated with designing, implementing, and managing your application. Typically,
multi-tenant application elements are more complex than single-tenant application elements. For
example, you must consider how to isolate the tenants within an instance so that their data is kept
private, and consider how the actions of one tenant might affect the way the application behaves for
other tenants. This additional complexity can add considerably to the engineering costs associated
with both building a multi-tenant application, and managing it.

http://msdn.microsoft.com/en-us/library/ff803372.aspx
http://msdn.microsoft.com/en-us/library/ff803372.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://www.windowsazure.com/en-us/pricing
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/07/09/understanding-windows-azure-storage-billing-bandwidth-transactions-and-capacity.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/07/09/understanding-windows-azure-storage-billing-bandwidth-transactions-and-capacity.aspx

 27Hosting a Multi-Tenant Application on Windows Azure

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/library/jj871057.aspx.
For more information about working with the Windows Azure platform including planning,
designing, and managing, see “Windows Azure Developer Guidance.”
For more information about designing multi-tenant applications for Windows Azure, see “Designing
Multitenant Applications on Windows Azure.”
For more information about the costs associated with running a Windows Azure application, see
“Estimating Cost Of Running The Web Application On Windows Azure” and “Windows Azure Cost
Assessment.”
For more information about ALM considerations, see “Testing, Managing, Monitoring and Optimizing
Windows Azure Applications.”
For more information about continuous delivery and using Team Foundation Service with Windows
Azure, see “Continuous Delivery for Cloud Services in Windows Azure.”

http://msdn.microsoft.com/library/jj871057.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj155986
http://msdn.microsoft.com/en-us/library/windowsazure/hh689716.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh689716.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh873026.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj136829.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj136829.aspx
http://msdn.microsoft.com/en-us/library/hh674492.aspx
http://msdn.microsoft.com/en-us/library/hh674492.aspx
http://www.windowsazure.com/en-us/develop/net/common-tasks/continuous-delivery/

29

3 Choosing a Multi-Tenant
Data Architecture

This chapter discusses important factors you must consider when
designing the data architecture for multi-tenant applications, and ex-
plores how the Tailspin Surveys application uses data. It describes the
data model used by the Surveys application, and then discusses why
the team at Tailspin chose this data model with reference to a number
of specific scenarios in the application. Finally, it describes how and
why the application also uses Windows Azure SQL Database.

Storing Data in Windows Azure
Applications
Windows Azure offers several options for storing application data. In
a multi-tenant application your data architecture typically requires
you use a partitioning scheme that ensures each tenant’s data is iso-
lated, and that the application is scalable. In addition, you may need
to consider how to make your storage solution extensible in order to
support per tenant customization.
There are many factors to consider when selecting the type of storage
to use in your application, such as features, cost, supported program-
ming models, performance, scalability, and reliability. This section
outlines the main options that are available, and identifies the key
features that relate specifically to multi-tenancy. For a more general
discussion of the pros and cons of the data storage options, see the
associated patterns & practices guide “Moving Applications to the
Cloud.”

Windows Azure Table Storage
Windows Azure tables contain large collections of state stored as
property bags. Each property bag is called an entity, and each entity
in a table can contain a different set of properties. You can filter and
sort the entities in a table.

Windows Azure table
storage is often referred
to as schema-less because
every entity in a table
could have different set
of properties. However,
when all the entities in a
table have the same set of
properties (they have the
same schema) a Windows
Azure table is much like
a table in a traditional
database.

http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx

30 chapter three

Each table can be subdivided into partitions by using a partition key,
and the scalability of a solution that uses Windows Azure table stor-
age is primarily determined by the use of appropriate partition keys.
Searching for and accessing entities that are stored in the same parti-
tion is much faster than searching for and accessing entities across
multiple partitions, and a query that specifies a partition key and row
key is typically the most performant. In addition, Windows Azure
table storage only supports transactions across entities that reside on
the same partition.
The choice of keys can also help to define your multi-tenant data ar-
chitecture. In a multi-tenant application you typically need to access
only the data associated with a single tenant in a query, so you should
use partition keys based on tenant IDs. You can store different entity
types, such as tenant header and detail records, in the same table
partition. Therefore, any queries that combine data from different
entities associated with the same tenant will run efficiently.
Windows Azure tables are associated with a Windows Azure storage
account that is accessed using an account key, and each storage ac-
count is tied to a specific Windows Azure data center.

Windows Azure Blob Storage
Windows Azure blob storage is for storing individual items such as
documents, media items, XML data, or binary data. Blobs are ideal for
unstructured data, so each tenant can easily store any customized
data in blob storage.
You place blobs in containers, which you can use to control the visibil-
ity of your blobs. Windows Azure blobs and blob containers are as-
sociated with a Windows Azure storage account that is accessed using
an account key.

A single storage account can contain tables, blobs, and queues.
You can have multiple storage accounts in a Windows Azure
subscription.

Windows Azure SQL Database
Windows Azure SQL Database is a scalable, relational database man-
agement system for Windows Azure. It is based on SQL Server and is
very similar in functionality. It is made available using the Platform as
a Service (PaaS) model, so you are billed based on your usage.

Partitioning by tenant is a
very natural boundary to
choose in a multi-tenant
application. Almost all of
your queries will be scoped
to a single tenant.

 31Choosing a Multi-Tenant Data Architecture

SQL Database also supports federation to enable greater scalability. Federation makes use of a tech-
nique called sharding that splits tables horizontally by row across multiple databases. This allows you
to take advantage of the database resources in the cloud on demand, remove the risk of having a single
point of failure, and minimize I/O bottlenecks and database throttling. For a detailed discussion of SQL
Database Federation see the article “Scaling Out with SQL Azure Federation” in MSDN Magazine.

Other Storage Options
Other storage options for a Windows Azure application include running a relational database such as
SQL Server or MySQL in a Windows Azure Virtual Machine (VM), or running a no-SQL database such
as MongoDB in a Windows Azure VM.

Storage Availability
One additional aspect you should consider when choosing a storage method is availability. Storage
availability is mainly governed by two factors: whether the storage mechanism responds without fail
to every request, and whether the behavior of the network connection between the application and
storage constrains or even prevents access. Application performance and user experience will suffer
if there is a problem when accessing storage, even if it is only a short delay while the attempt is retried,
although this can be minimized in some circumstances by the judicious use of caching.
Each type of data store has a guaranteed availability and a specific maximum throughput. For example,
the Service Level Agreement (SLA) for Windows Azure storage indicates that the expected avail-
ability is 99.9% (anything less than this will result in a partial refund of hosting cost). Windows Azure
blob storage has a throughput limit of 60 MB per second for a single blob, while Windows Azure table
storage has a throughput limit of 500 entities per second for a single partition. Careful storage design
and the use of appropriate partitioning strategies can help to avoid hitting these limits.
Windows Azure SQL Database availability is also guaranteed to be 99.9%, though actual response time
may be affected by throttling that is applied automatically when the underlying system detects over-
loading of the database server or a specific database. Throttling is applied initially by increasing re-
sponse times for the affected database. However, if the situation continues Windows Azure will begin
to refuse connections until the load decreases. Good query design, promptly closing connections, and
the appropriate use of caching can minimize the chances of encountering database throttling.
Microsoft SQL Server 2012 supports new availability features through AlwaysOn Availability Groups.
You can configure multiple SQL Server 2012 instances in Windows Azure Virtual Machines as an
availability group to provide instant failover, plus the capability to read from replicas as well as from
the primary instance. You can also use both a synchronous and an asynchronous commit approach to
maximize performance and availability. The SLA for hosted service roles guarantees an uptime of
99.9% as long as two or more roles are deployed, and 99.9% availability of connectivity to the roles.
The second main factor that affects storage availability is the performance of the network between
the application and the data source. Application and data store should, wherever possible, be located
in the same datacenter to minimize network latency. The use of affinity groups can also help by caus-
ing the resources to be located in the same sector of the datacenter.

http://msdn.microsoft.com/en-us/magazine/hh848258.aspx

32 chapter three

Where the application and the data it uses must be geographically separated, consider using replicas
of the primary data store at the same location as the application. The geo-replication feature of
Windows Azure storage can create multiple copies of the data in several datacenters, but you cannot
specify which datacenters are used. However, you can create storage accounts in the appropriate
datacenters and copy the data between them, and use Windows Azure Caching or the Content De-
livery Network (CDN) to cache data at locations closer to the application.
When using SQL Database or SQL Server consider placing database replicas in locations close to the
application, and using SQL Database Sync to synchronize the data.

You can download the SLAs for Window Azure services from “Service Level Agreements.” For more
information about maximizing performance and availability in multi-tenant applications see
Chapter 5, “Maximizing Availability, Scalability, and Elasticity.”

Multi-Tenant Data Architectures
Your data architecture must ensure that a subscriber’s data is kept private from other subscribers, and
that your solution is scalable. Your application may also need to support customized data storage.

For more information about multi-tenant data architectures, see “Multi-Tenant Data Architecture”
and “Architecture Strategies for Catching the Long Tail.”

Partitioning to Isolate Tenant Data
The perceived risk of either accidental or malicious data disclosure is greater in a multi-tenant model.
It will be harder to convince subscribers that their private data is safe if they know they are physically
sharing the application with other subscribers. However, a robust design that logically isolates each
tenant’s data can provide a suitable level of protection. This type of design might use database sche-
mas where each tenant’s tables are in a separate schema, database security features that enable you
to use access control mechanisms within the database, a partitioning scheme to separate tenants’ data,
or a combination of these approaches.

For a more detailed exploration of data security issues in multi-tenant applications, see Chapter 6,
“Securing Multi-Tenant Applications,” of this guide.

In all multi-tenant applications the design must ensure that tenants can access only their own data. To
achieve proper isolation you must be sure not to reveal any storage account keys, and be sure that all
queries in your code access and return the correct tenant’s data.
For all the data storage mechanisms described in this section, if the tenant provides the subscription
this makes clear that the tenant owns, and is responsible for, the data stored in any storage account
or database in the subscription.
The following table shows the partitioning schemes you could use based on Windows Azure subscrip-
tions. These partitioning schemes can be used with Windows Azure storage, SQL Database, and
hosting a database in a VM.

http://www.windowsazure.com/en-us/support/legal/sla/
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://msdn.microsoft.com/en-us/library/aa479069.aspx

 33Choosing a Multi-Tenant Data Architecture

Partitioning
scheme

Applies to Notes

One subscription
per tenant

Table storage

Blob storage

SQL Database

Database
hosted in VM

Makes it easy to bill individual tenants for the storage resources they consume.
Enables tenants to provide their own storage and then manage it.
During the provisioning process, the tenant would need to provide access details
such as storage account keys or database passwords to the provider.
You need to be careful about the location of the storage account in relation to
the location of the cloud services roles to control data transfer costs and
minimize latency.
Provisioning a new Windows Azure subscription is a manual process.

Group multiple
tenants in a
subscription

Table storage

Blob storage

SQL Database

Database
hosted in VM

If your tenants can subscribe to different levels of functionality for the applica-
tion (such as light, standard, and premium), using a different subscription for each
level but grouping all the tenants for each level in the same subscription makes it
easier to track the costs of providing each level of functionality.
You must still partition the data that belongs to different tenants within a
subscription using one of the other partitioning schemes.

The following table shows the partitioning schemes you could use with Windows Azure storage, in
addition to partitioning by Windows Azure subscription.

Partitioning
scheme

Applies to Notes

One storage
account per
tenant

Table storage

Blob storage

Five storage accounts per subscription is a soft limit. You can request to extend
this up to the hard limit of 20 storage accounts per subscription; however, this
may limit the usefulness of this partitioning approach.
Each storage account appears as a line item on your Windows Azure bill, so this
approach can be useful if you want to identify the precise costs per tenant.

Group multiple
tenants in a
storage account

Table storage

Blob storage

Enables you to group tenants by geographic region, by regulatory requirements,
and by replication requirements.
You must still partition the data that belongs to different tenants within a
storage account using one of the other partitioning schemes.

One table per
tenant

Table storage There is no practical limit to the number of tables you can have in a Windows
Azure storage account.
You can automate creating a table within the provisioning process.
Include the tenant’s ID in the table name.

Single table with
one partition key
per tenant

Table storage There is no practical limit on the number of partitions in a table.

Include the tenant’s ID in the partition key.

One container
per tenant

Blob storage There is no practical limit on the number of containers you can have in a
Windows Azure storage account.
Enables you to store all the blobs associated with a single tenant in a single
container, much like using a folder on the file system. This makes it easy to
manage tenant specific data. For example, provisioning and de-provisioning
tenants, backup, archiving, and setting access policies.
You can create containers automatically during the provisioning process.
Include the tenant’s ID in the container name.

Blob naming
convention

Blob storage There is no practical limit to the number of blobs you can have in a container.
Include the tenant’s ID in the blob name whenever you create a new blob.

34 chapter three

Windows Azure storage is billed by the amount of storage used and
by the number of storage transactions, so from a cost perspective it
doesn’t matter how many separate storage accounts or containers
you have.

The following table shows the partitioning schemes you could use with Windows Azure SQL Data-
base, or with a database such as SQL Server or MySQL hosted in a Windows Azure VM. These are in
addition to partitioning by Windows Azure subscription (as described in the previous tables).

Partitioning
scheme

Applies to Notes

One server per
tenant

SQL Database Each SQL Database server can be hosted in a different geographic region.

There is a limit on the number of SQL Database servers for a subscription.

One VM per
tenant

Database
hosted in VM

For each tenant you will incur the costs associated with running a Windows
Azure VM.

You can give the tenant access to the VM.

You are limited to 25 VMs in a Windows Azure IaaS deployment.

One database per
tenant

SQL Database

Database
hosted in VM

Each database you create has a specified size that determines the monthly cost.

You can create each database in a different logical server, or host several
databases in a single server.

You have more databases to manage.

There is a limit on the number of databases you can install on a SQL Database
server.

Multiple tenants
per database
with per tenant
tables

SQL Database

Database
hosted in VM

Enabling multiple tenants to share a database helps to reduce per tenant costs by
efficiently using the storage you are paying for.

You isolate tenant data by using separate tables for each tenant. You can use a
naming convention that includes the tenant ID in the table name, or use a
different database schema for each tenant.

Multiple tenants
per database
with shared
tables

SQL Database

Database
hosted in VM

You must have a partitioning scheme to identify each tenant’s records in each
table, such as using the tenant’s ID as part of the key.

For more information about managing multi-tenant data in relational databases such as SQL Server or
SQL Database, see the article “Multi-Tenant Data Architecture” and the blog post “Full Scale 180 Tack-
les Database Scaling with Windows Azure.”

Using blob containers instead of a blob naming
convention is the simplest solution to identify
who the blob belongs to.

http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://blogs.msdn.com/b/windowsazure/archive/2012/05/24/windows-azure-isv-blog-series-full-scale-180-tackles-database-scaling-with-windows-azure.aspx
http://blogs.msdn.com/b/windowsazure/archive/2012/05/24/windows-azure-isv-blog-series-full-scale-180-tackles-database-scaling-with-windows-azure.aspx

 35Choosing a Multi-Tenant Data Architecture

Windows Azure SQL Database cost is based on the number and size
of databases you have, so it makes sense from a cost perspective to
have as many tenants as possible sharing each instance.
At the time of writing you are limited to six Windows Azure SQL
Database servers per Windows Azure subscription and 150 databases
per server, although these limits may be extended on request and may
change in the future.

Shared Access Signatures
Both Windows Azure table storage and Windows Azure blob storage
support shared access signatures as a mechanism for controlling ac-
cess to data. You can use shared access signatures to ensure isolation
of tenant data.
Typically, all table data in a storage account is available for read and
write access to any client that has access to the storage account key.
With blob storage, a client that has access to the storage account key
also has read and write access to all blobs in all containers in the stor-
age account. In addition, you can grant public read access to a blob so
that anyone who knows the blob’s URL will be able to read its content.
A shared access signature is a way to grant temporary access to a re-
source using a token. Your application can generate a shared access
signature token for a blob container, an individual blob, or for a range
of entities in a table. A shared access signature grants the holder of
the token specific access rights such as read, write, update, and delete
for a fixed time. You could use a role instance to generate shared ac-
cess signatures for a specific tenant’s data and then issue those tokens
to another role instance, possibly in another Windows Azure subscrip-
tion. In this way only specific roles need to have access to the storage
account keys that grant full access to the data in the storage account.
For more information about shared access signatures see Chapter 6,
“Securing Multi-tenant Applications,” in this guide, and the blog post
“Introducing Table SAS (Shared Access Signature), Queue SAS and up-
date to Blob SAS.”

You are billed for Windows Azure SQL Database based on the
number of databases you have, and the size of the databases. If you
transfer data in and out of Windows Azure SQL Database from
within the same data center there’s no data transfer cost, but if you
transfer out of the data center you’ll be charged for the data transfer.

SQL Federation, described
later in this chapter as
a technique for scaling
your SQL Database
instance both in size and
performance, uses the
“multiple tenants per
database with shared
tables” approach to
enable it to scale out your
database. To support a
multi-tenant application,
SQL Federation typically
uses the tenant ID to
determine which database
instance in the federation
should store a particular
tenant’s record. SQL
Federation also supports
filtered connections; you
can use these to isolate
tenant data and ensure that
only individual tenant’s
data can be accessed over a
connection.

http://blogs.msdn.com/b/windowsazurestorage/archive/2012/06/12/introducing-table-sas-shared-access-signature-queue-sas-and-update-to-blob-sas.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2012/06/12/introducing-table-sas-shared-access-signature-queue-sas-and-update-to-blob-sas.aspx

36 chapter three

Data Architecture Extensibility
There are a number of ways you can design your data storage to en-
able tenants to extend the data model so that it includes their own
custom data. These approaches range from each tenant having a
separate schema, to providing a set of pre-defined custom columns,
to more flexible schemas that enable a tenant to add an arbitrary
number of custom fields to a table.
If you use Windows Azure SQL Database, much of the application’s
complexity will result from having to work within the constraints of
fixed data schemas. If you are using Windows Azure table storage, the
complexity will arise from working with variable schemas. Windows
Azure table storage allows records in the same table to have com-
pletely different structures, which allows for a great deal of flexibility
at the cost of more complexity in the code.

Microsoft SharePoint is an example of an application with a fixed
schema database that looks extremely flexible.

Custom extensions to the application’s data model should not require
changes to the application code. To enable the application’s business
logic and presentation logic to integrate with the data model exten-
sions, you will require either a set of configuration files that describe
the extensions, or write code that can dynamically discover the exten-
sions. However, if you enable tenants to extend the application
through some predefined extension points or through an API, an ex-
tension could include both changes to the data model and to the code.
The following table summarizes the options for implementing an ex-
tensible data architecture in Windows Azure table storage:

Extensibility approach Notes

Separate table per tenant Each table can use custom schemas for that
particular tenant.

Single table with multiple
schemas

Each tenant can use custom schemas for the
entities it stores in the table.

Single schema with
separate tables holding
custom data

In Windows Azure table storage, transactions are
only supported within a partition on a table. With
this approach it is not possible to save all the data
associated with an entity in a single transaction.

You should aim to have a
single codebase for your
application, and avoid the
situation where custom
data extensions require
different codebases.

 37Choosing a Multi-Tenant Data Architecture

Figure 1 illustrates these alternatives using two of Tailspin’s subscribers, Adatum and Fabrikam, as
examples. Each subscriber is storing different data as part of a survey definition.

Adatum Survey Table

Survey ID
Survey Title
Survey Slug Name
Survey Created On
Product Name

Adatum Survey Schema

Fabrikam Survey Table

Survey ID
Survey Title
Survey Slug Name
Survey Created On
Campaign ID
Owner

Fabrikam Survey Schema

Separate table per tenant

Survey Table

Survey ID
Survey Title
Survey Slug Name
Survey Created On
Product Name

Adatum Survey Schema

Survey ID
Survey Title
Survey Slug Name
Survey Created On
Campaign ID
Owner

Fabrikam Survey Schema

Single table with multiple schemas

Survey Table

Survey ID
Tenant ID
Survey Title
Survey Slug Name
Survey Created On

Survey Schema

Adatum Extension Table

Survey ID
Product Name

Adatum Extension Schema

Single schema with separate table holding custom data

Fabrikam Extension Table

Survey ID
Campaign ID
Owner

Fabrikam Extension Schema

Figure 1
Examples showing per tenant customizations

A slug name stored in the Survey table is a string where all whitespace and
invalid characters are replaced with a hyphen (-). The term comes from the
newsprint industry and has nothing to do with those things in your garden!

38 chapter three

Using different schemas for different tenants—either in the same table
or in different tables—enables a great deal of flexibility for extending
and customizing the data architecture. In Windows Azure table stor-
age you don’t need to predefine the schemas you will use before add-
ing entities to a table. However, managing multiple schemas will add to
the complexity of your solution. By limiting the customizability of your
application you can limit the complexity of your solution.
The following table summarizes the options for implementing an ex-
tensible data architecture in SQL Database, and in relational data-
bases such as SQL Server and MySQL that can run in a Windows
Azure VM.

Extensibility approach Notes

Separate database with
custom schema per tenant

Each database can use a different schema to
accommodate the requirements of each tenant.

Typically, the custom schema must be defined
during the provisioning process.

Shared database with
separate schema or tables
for each tenant

For relational databases that support multiple
schemas within a database, each tenant can use a
custom schema. Otherwise each tenant can have
its own set of tables, identified using a naming
convention.

Typically, the custom schema must be defined
during the provisioning process.

Single fixed schema with a
set of columns available for
custom data

Limits the amount of customization that is possible
because there are a limited number of custom
columns available.

Single fixed schema with
separate tables holding
custom data

Allows slightly more flexibility than using custom
columns.

Using custom schemas will add to the complexity of the solution, es-
pecially because the schema must be defined before you can use the
database. It is difficult to change a schema after you have added data
to a table.

Data Architecture Scalability
If you can partition your data horizontally you will be able to scale out
your data storage. In the case of Windows Azure SQL Database, if you
decide that you need to scale out you should be able to move all of an
individual tenant’s data to a new database instance. The partitioning
scheme you choose will also affect the scalability of your solution.

You can use multiple
schemas in a Windows
Azure table to enable you
to store different types of
entity or to support per
tenant customizations in a
single table. However, this
approach can make your
code more complex. Using
one schema per table, and
having multiple tables, can
simplify your code but it
does mean you have more
tables to manage.

 39Choosing a Multi-Tenant Data Architecture

For Windows Azure table storage, the most significant decision that affects scalability is the choice
of partition key for a table. Queries that operate on a single partition are much more efficient than
queries that access entities that exist on multiple partitions. In addition, you can only use transactions
when all the entities involved reside on the same partition in the same table. Typically, a partition key
that includes the tenant ID will help to make your Windows Azure table storage design scalable be-
cause the majority of your queries will need to access only a single partition to retrieve their data. For
more information, see Chapter 7, “Moving to Windows Azure Table Storage” of the related patterns &
practices guide “Moving Applications to the Cloud.”
For SQL Database, federation helps you to scale out across multiple databases by partitioning your
data horizontally. If you decide to partition your tenant data by including the tenant ID in the pri-
mary key, this can be combined with SQL Database federation to achieve scalability.

Partitioning data horizontally, also known as sharding, implies taking some of the records in a table
and moving them to a new table. Partitioning data vertically implies taking some fields from every
row and placing them in a different table. For a discussion of federation and sharding in Windows
Azure SQL Database, see “Federations in Windows Azure SQL Database.”

An Example
This section shows a set of alternative data architectures in order to illustrate some of the key issues
you should consider, such as isolation, extensibility, and scalability. This simple example makes the
following assumptions about the application and the data:
•	 A multi-tenant application stores the data.
•	 You are storing the data in Windows Azure table storage.
•	 There are two basic record types: a header record and a detail record where there is a one-to-

many relationship between them.
•	 All queries in the application access records for a specific month in a specific year.
•	 Tenants with a premium subscription use an extended version of the detail record. Tenant B is an

example of a tenant with a premium subscription; tenant A has a standard subscription.
The following is a list of five alternatives, and it describes the entity types stored in each table in each
case. This is not an exhaustive list of the possible options, but it does illustrate a range of possibilities
that you might consider. All of the options are designed to ensure that the application can keep each
tenant’s data isolated. You can find a discussion of some of the advantages and limitations of the
different approaches at the end of this section.

http://msdn.microsoft.com/en-us/library/ff803362.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh597452

40 chapter three

Option 1 — Using a Single Table
Application Data

Partition Key Row Key Entry Type

Tenant ID, Month, Year Header Entity ID Header record

Tenant ID, Month, Year Detail Entity ID Detail record
(standard schema)

Tenant ID, Month, Year Detail Entity ID Detail record
(extended schema)

Option 2 — Table per Tenant
Tenant A (uses standard detail record schema)

Partition Key Row Key Entry Type

Month, Year Header Entity ID Header record

Month, Year Header Entity ID, Detail
Entity ID

Detail record
(standard schema)

Tenant B (uses extended detail record schema)

Partition Key Row Key Entry Type

Month, Year Entity ID Header record

Month, Year Header Entity ID, Detail
Entity ID

Detail record
(extended schema)

Option 3 — Table per Base Entity Type
Header Records

Partition Key Row Key Entry Type

Tenant ID, Month, Year Header Entity ID Header record

Detail Records

Partition Key Row Key Entry Type

Tenant ID, Month, Year Header Entity ID, Detail
Entity ID

Detail record
(standard schema,
standard tenants)

Tenant ID, Month, Year Header Entity ID, Detail
Entity ID

Detail record
(extended schema,
premium tenants)

 41Choosing a Multi-Tenant Data Architecture

Option 4 — Table per Entity Type
Header Records

Partition Key Row Key Entry Type

Tenant ID, Month, Year Header Entity ID Header record

Detail Records (standard tenants)

Partition Key Row Key Entry Type

Tenant ID, Month, Year Header Entity ID, Detail
Entity ID

Detail record
(standard schema,
standard tenants)

Detail Records (premium tenants)

Partition Key Row Key Entry Type

Tenant ID, Month, Year Header Entity ID, Detail
Entity ID

Detail record
(extended schema,
premium tenants)

Option 5 — Table per Entity Type per Tenant
Tenant A Header Records

Partition Key Row Key Entry Type

Month, Year Header Entity ID Header record

Tenant B Header Records

Partition Key Row Key Entry Type

Month, Year Header Entity ID Header record

Tenant A Detail Records (standard schema)

Partition Key Row Key Entry Type

Month, Year Header Entity ID, Detail
Entity ID

Detail record
(standard schema,
standard tenants)

Tenant B Detail Records (extended schema)

Partition Key Row Key Entry Type

Month, Year Header Entity ID, Detail
Entity ID

Detail record
(extended schema,
premium tenants)

42 chapter three

Comparing the Options
There is no right or wrong choice from the options listed above; the specific requirements of your
application will determine which one you choose. There are many considerations that might affect
your choice, some of which include the following:
•	 Transactional behavior. Windows Azure table storage only supports transactions within a

partition. If there is a requirement to support transactions that span the header and detail
records, options one and two provide this functionality.

•	 Query Performance. Queries against Windows Azure table storage perform best when you can
specify the partitions that contain the data in the query. You need to analyze the queries in your
application to decide on a partition scheme that can optimize their performance.

•	 Code complexity. Dealing with multi-schema tables is more complex than single-schema tables.
However, if you plan to have additional schema extensions or allow per tenant schema custom-
izations, it could be more complex to manage many different tables in addition to supporting
multiple schemas.

•	 Managing the data. Performing management operations such as backing up, creating and delet-
ing tenants, and logging may be easier if each tenant has its own set of tables.

•	 Scale out. For very large volumes of data and transactions, you may want to scale out to use
multiple Windows Azure storage accounts. You should chose an architecture that makes it easy
to divide your data across storage accounts, most likely by placing some tenants in one account
and others in a different one. For more information about scaling multi-tenant applications, see
Chapter 5, “Maximizing Availability, Scalability, and Elasticity.”

•	 Geo location. To reduce latency and improve performance you may want to store the data
belonging to a particular tenant in a particular datacenter. Again, your architecture should
support this type of partitioning.

The options shown above illustrate alternative approaches to storing multi-tenant data and do not
specifically address the issue of scalability. There is an anti-pattern for Windows Azure table storage
where you only append or prepend entities to a specific partition: all writes then go to the same
partition, limiting the scalability of the solution. A common way to implement this anti-pattern is to
use the current date as the table partition key, so in the options shown above you should verify
whether the anticipated volume of transactions means that a choice of month and year for the parti-
tion key is sub optimal. For more information, see the presentation Windows Azure Storage Deep Dive
on Channel 9.

Goals and Requirements
This section describes the specific goals and requirements that Tailspin has for the Surveys application
with respect to the architecture and design of the data storage elements of the application.

Isolation of Tenants’ Data
Tailspin wants to ensure that each tenant’s data is fully isolated from every other tenant’s data. When
a tenant publishes a survey it becomes publically available, but each tenant must be able to manage its
survey definitions privately. For example, a tenant can control when its surveys become publically vis-
ible. In addition, the survey response data must be confidential to the tenant who created the survey.

http://channel9.msdn.com/Events/PDC/PDC10/CS11

 43Choosing a Multi-Tenant Data Architecture

Application Scalability
As Tailspin signs up more tenants for the Surveys application it must
be able to scale out the storage. This is particularly important for
Survey response data because some Surveys might result in a large
number of responses. Furthermore, Tailspin would like to be able to
scale the Surveys application out (and in) automatically because Tail-
spin cannot predict when a tenant will create a survey that elicits a
large number of responses.

Extensibility
As a feature for premium subscribers, Tailspin plans to allow tenants
to store additional, tenant-specific information as part of each survey.
Tenants must be able to store one or more custom fields as part of a
survey definition. Tenants can use this information to store metadata
for each survey, such as the product the survey relates to or the per-
son who owns the survey.
Tailspin plans to add support for new question types in the future.
However these will be made available to all subscribers and will not
be treated as a per tenant customization.

Paging through Survey Results
The owner of a survey must be able to browse through the survey
results, displaying a single survey response at a time. This feature is in
addition to being able to view summary statistical data, and being able
to analyze the results using Windows Azure SQL Database. The Sur-
veys application contains a Browse Responses page for this function.
The design of this feature of the application must address two spe-
cific requirements. The first requirement is that the application must
display the survey responses in the order they were originally submit-
ted. The second requirement is to ensure that this feature does not
adversely affect the performance of the web role.

Exporting Survey Data to SQL Database for Analysis
The Surveys application uses Windows Azure storage to store survey
definitions and survey responses. Tailspin chose to use Windows Azure
storage because of its lower cost and because the cost depends on the
amount of usage—both in terms of capacity used and the number of
storage transactions per month. However, to control the costs associ-
ated with storage, the Surveys application does not offer a great deal of
flexibility in the way that subscribers can analyze the survey responses.
A subscriber can browse through the responses to a survey in the order
that users submitted their responses, and a subscriber can view a set of
fixed design summaries of the statistical data for each survey.

Adding support for a new
question type will affect
many areas of Tailspin
Surveys such as storage, the
UI, exporting to SQL Azure,
and data summarization.
Therefore, Tailspin will
develop any new question
types as extensions
available to all subscribers.

Windows Azure SQL Database
allows subscribers to perform
complex analysis on their survey
results. Subscribers can also
create custom reports using
Windows Azure SQL Reporting.
For complex datasets subscribers
can use a Windows Azure Big
Data solution based on the
Apache Hadoop software library.

44 chapter three

To extend the analysis capabilities of the Surveys application, Tailspin allows subscribers to dump their
survey responses into a Windows Azure SQL Database instance. They can then perform whatever
detailed statistical analysis they want using tools of their choosing, or they can use this as a mechanism
to download their survey results to an on-premise application by exporting the data from Windows
Azure SQL Database.
The application must be able to export all survey data to Windows Azure SQL Database, including
the question definitions as well as the survey responses.
This feature is included in the monthly fee for a Premium subscription. Subscribers at other levels can
purchase this feature as an add-on to their existing subscription. Subscribers who choose to use this
feature have their own private instance of Windows Azure SQL Database to ensure that they are free
to analyze and process the data in any way that they see fit. For example, they may choose to create
new tables of summary data, design complex data analysis queries, or design custom reports. This data
must be kept confidential for each tenant.

Overview of the Solution
This section describes some specific features of the Tailspin Surveys application related to data archi-
tecture, and discusses the reasons for the solution adopted by Tailspin. It identifies any alternatives
Tailspin considered and the trade-offs they imply.

Storage Accounts
Tailspin considered using separate Windows Azure subscriptions for its premium and standard sub-
scribers, but the additional complexity of managing separate subscriptions did not provide any sig-
nificant benefits. The billing information provided by Windows Azure for a single subscription gives
Tailspin enough detailed information to understand its costs.
Tailspin does plan to use separate storage accounts for the different regions where it hosts the Surveys
application. This is discussed in more detail in Chapter 5, “Maximizing Availability, Scalability, and
Elasticity.”

A storage account is tied to a specific Windows Azure data center, so Tailspin must use multiple
storage accounts to store data in different regions.

The Surveys Data Model
This section describes the data model in the Surveys application and explains how the table design
partitions the data by tenant.

 45Choosing a Multi-Tenant Data Architecture

The Surveys application uses a mix of table storage and blob storage
to store its data. The section, “Options for Saving Survey Responses”
in Chapter 5, “Maximizing Availability, Scalability, and Elasticity,” and
the following section in this chapter discuss why the application uses
blob storage for some data. Figure 2 shows, at a high level, which data
is stored in the different types of storage.

The Surveys application uses
blob and table storage.

Surveys (table)
1 row/survey

SurveyExtensions
(table)
0 or 1 row/survey

Questions (table)
1 row/question

surveyanswerssummaries
(container)
1 blob/survey

surveyanswers-tenant-survey
(container)
1 container/survey
1 blob/answer

surveyanswerlists
(container)
1 blob/survey

tenants (container)
1 blob/tenant

1

*

Figure 2
Data storage in the Surveys application

Storing Survey Definitions
The Surveys application stores the definition of surveys in two
Windows Azure tables. This section describes these tables and ex-
plains why Tailspin adopted this design.
Tailspin chose to store survey definition in Windows Azure table stor-
age to simplify the implementation of this part of the application.
Every survey has some header data that describes the survey, and an
ordered list of questions. It is easy to model this using a parent/child
relationship between the two types of entity stored in the tables.

46 chapter three

Survey definitions are read whenever a user responds to a survey, and Tailspin minimizes the number
of storage transactions involved by caching survey definitions in memory. Although Tailspin cannot
use a transaction when it saves survey definitions because it is using two tables, it maintains data
consistency by saving the question entities before the corresponding survey entity. This can lead to
orphaned question entities if a failure occurs before the survey entity is saved and so Tailspin will
regularly scan the Questions table for such orphaned rows.

A transaction cannot be used to ensure full consistency of data when saving it in two
separate Windows Azure storage tables. By saving the data in the child table first, and then
saving the linked row in the parent table only if the child rows were saved successfully,
Tailspin can prevent inconsistencies in the data. However, it does mean that some child rows
could be saved without a matching row in the parent table if the second save operation fails,
and so Tailspin will need to create and run a separate process that periodically sweeps the
child table for orphaned rows. This will add to the development and runtime cost.

The following table describes the fields in the Surveys table. This table holds a list of all of the surveys
in the application.

Field name Notes

PartitionKey This field contains the tenant name. Tailspin chose this value because they want to be able to filter
quickly by tenant name, and ensure the isolation of survey definitions by tenant.

RowKey This field contains the tenant name from the PartitionKey field concatenated with the slug name
version of the survey name. This makes sure that a subscriber cannot create two surveys with the
same name. Different subscribers can use the same name for a survey; these surveys are differenti-
ated by the tenant name part of the ID.

Timestamp Windows Azure table storage automatically maintains the value in this field.

CreatedOn This field indicates when the subscriber created the survey. This will differ from the Timestamp value
if the subscriber edits the survey.

SlugName The slug name version of the survey name.

Title The survey name.

 47Choosing a Multi-Tenant Data Architecture

The following table describes the fields in the Questions table. The
application uses this table to store the question definitions and to
render a survey.

Field name Notes

PartitionKey This field contains the row key from the Surveys table, which
is the tenant name from the PartitionKey field in the Surveys
table concatenated with the slug name version of the survey
name. This enables the application to insert all questions for a
survey in a single transaction and to retrieve all the questions
in a survey quickly from a single partition.

RowKey This field contains a formatted tick count concatenated with
the position of the question within the survey. This guarantees
a unique RowKey value and defines the ordering of the
questions.

Timestamp Windows Azure table storage automatically maintains the
value in this field.

Possible-
Answers

This field contains a list of the possible answers if the question
is a multiple-choice question.

Text The question text.

Type The question type: Simple text, multiple choice, or five stars (a
numeric range).

Each of these tables uses the tenant ID in the partition key. This helps
to isolate tenant data because all of the queries in the Tailspin Surveys
application include a partition key value. Using a single table to store
all of the tenants’ data makes it easier for Tailspin to manage this data.
For example, Tailspin can easily back up all of the survey definitions.
Premium tenants can add their own custom metadata to enable link-
ing with their own applications and services. This level of customiza-
tion requires Tailspin to extend the schema of the Surveys table in
Windows Azure storage and to add code to the application that rec-
ognizes this custom data. To extend the survey table schema Tailspin
considered two alternative approaches:
•	 Store the custom data in the existing survey table, using different

custom fields for each tenant.
•	 Store the custom data in a separate table.
Tailspin chose the first option. Windows Azure table storage allows
you to use multiple schemas in the same table; therefore, each tenant
can have its own custom fields. Furthermore, if a tenant changes the
type of custom data that it needs to store, it can itself have multiple
schemas. The following table illustrates how Adatum added a new
custom field before it added its second survey, and how Fabrikam has
different custom fields from Adatum.

Remember that Windows
Azure table storage only
supports transactions within
a single partition in a single
table, and that a transaction
cannot modify more than
100 rows at a time.

48 chapter three

Partition
key

Row key Slug
name

Title Product
name

Owner Promotion

adatum adatum_
survey-1

survey-1 Survey 1 Widgets

adatum adatum_
survey-2

survey-2 Survey 2 Gadgets Mary

fabrikam fabrikam_
survey-1

survey-1 Survey 1 Promo 1

fabrikam fabrikam_
survey-2

survey-2 Survey 2 Promo 2

The first Adatum survey only has the Product name custom field in the
surveys table; the second Adatum survey has both the Product name
and Owner custom fields in the surveys table. The two Fabrikam sur-
veys only have the Promotion custom field in the surveys table.
The Surveys application must be able to read from and write to the
custom fields in the Surveys table. The developers at Tailspin consid-
ered two approaches to this. The first was to use a custom DLL for
each tenant that was responsible for accessing the custom fields. The
second approach was to store details of the custom fields as part of
the tenant configuration data, and use this configuration data to de-
termine how to access the custom fields at runtime.
Tailspin selected the second approach for two reasons: there is no
need for Tailspin to create custom code for each tenant to support
that tenant’s custom fields. It is also easier to support different ver-
sions of the customization for a tenant. In the table of custom fields
shown earlier, you can see that Adatum changes the set of custom
fields it uses after it creates the first survey.
To read a more detailed discussion of RowKeys and PartitionKeys in
Windows Azure table storage, see Chapter 7, “Moving to Windows
Azure Table Storage” of the guide “Moving Applications to the Cloud.”

The Surveys table is a multi-
schema table. Each tenant
can specify its own custom
fields.

http://msdn.microsoft.com/en-us/library/ff803362.aspx
http://msdn.microsoft.com/en-us/library/ff803362.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx

 49Choosing a Multi-Tenant Data Architecture

Storing Tenant Data
The application collects most of the subscriber data during the on-
boarding process. The Logo property of the Tenant class, shown be-
low, contains the URL for the subscriber’s logo. The application stores
logo images in a public blob container named logos.

C#
[Serializable]
public class Tenant
{
 public string ClaimType { get; set; }
 public string ClaimValue { get; set; }
 public string HostGeoLocation { get; set; }
 public string IssuerThumbPrint { get; set; }
 public string IssuerUrl { get; set; }
 public string IssuerIdentifier { get; set; }
 public string Logo { get; set; }
 [Required(ErrorMessage =
 "* You must provide a Name for the subscriber.")]
 public string Name { get; set; }
 public string WelcomeText { get; set; }
 public SubscriptionKind SubscriptionKind { get; set; }
 public Dictionary<string, List<UDFMetadata>>
 ExtensionDictionary { get; set; }
 public string SqlAzureConnectionString { get; set; }
 public string DatabaseName { get; set; }
 public string DatabaseUserName { get; set; }
 public string DatabasePassword { get; set; }
 public string SqlAzureFirewallIpStart { get; set; }
 public string SqlAzureFirewallIpEnd { get; set; }
}

We chose to store tenant
data in Windows Azure
blob storage to simplify the
implementation of this part
of the application. Tenant
data has a very simple
structure that can easily
be stored in a blob, and it
does not require any of the
features provided by table
storage. Tenant data is read
very frequently and so, to
minimize the number of
storage transactions and to
improve performance, the
application caches tenant
data in memory.

50 chapter three

Storing Survey Answers
The Surveys application saves survey answers in blob storage. The application creates a blob con-
tainer for each survey with a name that follows this pattern: surveyanswers-<tenant name>-<survey
slug name>. This guarantees a unique container name for every survey and ensures that the application
can easily identify the answers that belong to a specific survey or tenant.

Tailspin chose to save each complete survey to blob storage rather than as a set of answer
entities in a table because it found that saving to blob storage was faster in this particular
scenario. The developers at Tailspin ran timing tests to compare saving to a blob and sav-
ing the same data as a set of rows in an Entity Group Transaction to table storage and
found a significant difference between the two approaches. However, when using blob
storage to persist survey responses Tailspin must also consider how subscribers can
browse their survey responses in the order that they were submitted. For a more detailed
explanation of how Tailspin evaluated the pros and cons of saving survey response data to
blob or table storage, see Chapter 5, “Maximizing Availability, Scalability, and Elasticity.”

For each completed survey response, the Surveys application saves a blob into the survey’s container.
The content of each blob is a SurveyAnswer object serialized in the JavaScript Object Notation
(JSON) format. A SurveyAnswer object encapsulates a respondent’s complete survey response, with
all the respondent’s answers to individual questions. The following code example shows the Survey-
Answer and QuestionAnswer classes. The QuestionAnswers property of the SurveyAnswer class is
a list of QuestionAnswer objects.

C#
public class SurveyAnswer
{
 ...

 public string SlugName { get; set; }
 public string Tenant { get; set; }
 public string Title { get; set; }
 public DateTime CreatedOn { get; set; }
 public IList<QuestionAnswer>
 QuestionAnswers { get; set; }
}

public class QuestionAnswer
{
 public string QuestionText { get; set; }
 public QuestionType QuestionType { get; set; }
 [Required(ErrorMessage = "* You must provide an answer.")]
 public string Answer { get; set; }
 public string PossibleAnswers { get; set; }
}

 51Choosing a Multi-Tenant Data Architecture

The name of the blob used to store each survey response is a GUID, which ensures that each blob in
the container has a unique name. This means that the application does not save the survey responses
with blob names that provide any useful ordering. Tailspin chose this approach in preference to saving
the blobs using a naming convention that reflects the order in which the system received the survey
answers in order to avoid the append/prepend anti pattern described in the presentation Windows
Azure Storage Deep Dive on Channel 9.
However, Tailspin does have a requirement to enable subscribers to view the survey responses in the
order they were submitted. To achieve this, the Surveys application also uses blob storage to store an
ordered list of the responses to each survey. For each survey, the application stores a blob that con-
tains a serialized List object containing the ordered names of all the survey response blobs (each of
which contains a serialized SurveyAnswer object) for that survey. The List object is serialized in the
JSON format. The section “Implementing Paging” later in this chapter explains how the Surveys ap-
plication uses these List objects to enable paging through the survey results.
However, it’s possible that a very large number of answers to a survey will affect performance because
the process of updating this list will take longer as the size of the list grows. See the section “Maintain-
ing a List of Survey Answers” in Chapter 7, “Managing and Monitoring Multi-tenant Applications,” for
more details of how Tailspin plans to resolve this issue.

Storing Survey Answer Summaries
The Surveys application uses blob storage to save the summary statistical data for each survey. For each
survey, it creates a blob named <tenant name>-<survey slug name> in the surveyanswerssummaries
container. The application serializes a SurveyAnswersSummary object in JSON format to save the
data. A SurveyAnswersSummary object contains summary data for a survey, such as the total number
of responses received that is stored in the TotalAnswers property. There is one SurveyAnswers-
Summary object for every survey.
The QuestionAnswersSummaries property of a SurveyAnswersSummary object contains a list of the
questions in the survey. A QuestionAnswerSummary object contains the summary data for an indi-
vidual question, such as an average for numeric questions. There is one QuestionAnswerSummary
object for each question in a survey.

http://channel9.msdn.com/Events/PDC/PDC10/CS11
http://channel9.msdn.com/Events/PDC/PDC10/CS11

52 chapter three

The following code example shows the SurveyAnswersSummary and QuestionAnswersSummary
classes that define this summary data.

C#
public class SurveyAnswersSummary
{
 ...

 public string Tenant { get; set; }
 public string SlugName { get; set; }
 public int TotalAnswers { get; set; }
 public IList<QuestionAnswersSummary>
 QuestionAnswersSummaries { get; set; }

 ...
}

public class QuestionAnswersSummary
{
 public string AnswersSummary { get; set; }
 public QuestionType QuestionType { get; set; }
 public string QuestionText { get; set; }
 public string PossibleAnswers { get; set; }
}

Notice that the summary is stored as a string for all question types, including numeric. This helps to
minimize the number of changes that would be required to add a new question type to the Surveys
application.

Comparing Paging Solutions
The developers at Tailspin considered two solutions to enable tenants to browse through survey re-
sponses, each based on a different storage model. The first option assumed that the application stored
the survey response data in table storage. The second option, which was the one chosen, assumed that
the application stored the survey response data in blob storage.

Paging with Table Storage
The developers at Tailspin looked at two features of the Windows Azure table storage API to help
them design this solution. The first feature is the continuation token that you can request from a
query, which enables you to execute a subsequent query that starts where the previous query finished.
You can use a stack data structure to maintain a list of continuation tokens that you can use to go
forward one page or back one page through the survey responses. You must then keep this stack of
continuation tokens in the user’s session state to enable navigation for the user.

For an example of this approach, see the section, “Implementing Paging with Windows Azure Table
Storage” in Chapter 7, “Moving to Windows Azure Table Storage,” of the guide “Moving
Applications to the Cloud.”

http://msdn.microsoft.com/en-us/library/ff803362.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx

 53Choosing a Multi-Tenant Data Architecture

The second useful API feature is the ability to run asynchronous que-
ries against Windows Azure table storage. This can help avoid thread
starvation in the web server’s thread pool in the web role by offload-
ing time-consuming tasks to a background thread.

Paging with Blob Storage
The assumption behind this solution is that each survey answer is
stored in a separate blob. To access the blobs in a predefined order,
you must maintain a list of all the blobs. You can then use this list to
determine the identity of the previous and next blobs in the sequence
and enable the user to navigate backward and forward through the
survey responses. To support alternative orderings of the data, you
must maintain additional lists.

Comparing the Solutions
Chapter 5, “Maximizing Availability, Scalability, and Elasticity,” identi-
fies cost savings as a reason to store survey responses directly in blob
storage. In addition, paging with table storage is complex because you
must manage the continuation stack in the user’s session state.
However, you must consider the costs and complexity associated with
maintaining the ordered list of blobs in the second of the two alterna-
tive solutions. This incurs two additional storage transactions for ev-
ery new survey response; one as the list is retrieved from blob storage,
and one as it is saved back to blob storage. However, this still results
in fewer transactions per survey response than the table-based solu-
tion. Furthermore, it’s possible to avoid using any session state by
embedding the links to the next and previous blobs directly in the
web page.

The SQL Database Design
During the on-boarding process, the application will provision a new
Windows Azure SQL Database instance for those subscribers who
have access to this feature. This enables tenants to customize the
database to their own requirements, and to manage their own custom
reporting requirements using Windows Azure SQL Reporting. A pri-
vate instance of Windows Azure SQL Database for each tenant also
helps to ensure that survey response data remains confidential.
The provisioning process will create the necessary tables in the data-
base. As part of the on-boarding process, the Surveys application
saves in blob storage (as part of the subscriber’s details) the informa-
tion that the application and the subscriber require to access the
Windows Azure SQL Database instance.

Giving every subscriber
a separate instance of
Windows Azure SQL
Database allows the
subscribers to customize
the database to their
own requirements. It also
simplifies the security
model, making it easier
for Tailspin to ensure that
survey response data is kept
isolated.

What at first seems like the
obvious solution (in this
case, to use table storage)
may not always turn out to
be the best.

54 chapter three

A subscriber can use the UI to request the application export the survey data to a SQL Database in-
stance. The UI notifies the worker role by placing a message on a queue. A task in a worker role
monitors the queue for messages that instruct it to dump a subscriber’s survey results to tables in
Windows Azure SQL Database. Figure 3 shows the table structure in Windows Azure SQL Database.

QuestionResponse

ResponseId

QuestionId

Answer

FK_QuestionResponse_Response

Response

Id

SurveyId

CreatedOn

FK_Question_Survey

Survey

Id

Title

CreatedOn

FK_Response_Survey

FK_PossibleAnswer_Question

Question

Id

SurveyId

QuestionText

QuestionType

PossibleAnswer

QuestionId

Answer

Figure 3
Surveys table structure in Windows Azure SQL Database

 55Choosing a Multi-Tenant Data Architecture

Inside the Implementation
Now is a good time to walk through some of the code in the Tailspin
Surveys application in more detail. As you go through this section, you
may want to download the Visual Studio solution for the Tailspin
Surveys application from http://wag.codeplex.com/.

The Data Store Classes
The Surveys application uses store classes to manage storage. This
section briefly outlines the responsibilities of each of these store
classes.

SurveyStore Class
This class is responsible for saving survey definitions to table storage
and retrieving the definitions from table storage.

SurveyAnswerStore Class
This class is responsible for saving survey answers to blob storage and
retrieving survey answers from blob storage. This class creates a new
blob container when it saves the first response to a new survey, so
there is one container per survey. It uses a queue to track new survey
responses; the application uses this queue to calculate the summary
statistical data for surveys.
This class also provides support for browsing sequentially through
survey responses.

SurveyAnswersSummaryStore Class
This class is responsible for saving summary statistical data for surveys
to blobs in the surveyanswerssummaries container, and for retrieving
this data.

SurveySqlStore Class
This class is responsible for saving survey response data to Windows
Azure SQL Database. For more information, see the section “Imple-
menting the Data Export” later in this chapter.

SurveyTransferStore Class
This class is responsible for placing a message on a queue when a
subscriber requests the application to dump survey data to Windows
Azure SQL Database.

This class uses caching
to reduce latency when
retrieving survey definitions
for the public web site.

http://wag.codeplex.com/

56 chapter three

TenantStore Class
This class is responsible for saving and retrieving subscriber data and
saving uploaded logo images. In the sample code, this class generates
some default data for the Adatum and Fabrikam subscribers. This class
also uses caching to reduce latency when retrieving tenant informa-
tion from blob storage.

Accessing Custom Data Associated with a Survey
Tenants with premium subscriptions can choose to define additional
properties for their surveys. When a tenant creates a new survey, the
UI allows that tenant to add user-defined fields and specify the values
for the new survey. When the tenant views a list of surveys, the list
includes the custom data values for each survey.

Defining a Tenant’s Custom Fields
As part of the configuration data for premium tenants, Tailspin stores
a dictionary of that tenant’s custom fields. For example, if Adatum had
chosen to use two custom fields, ProductName and Owner with its
surveys, the blob that contains the Adatum configuration, would
contain the following information:

JSON
"ExtensionDictionary":{"SurveyRow":[
 {
 "Name":"ProductName",
 "Type":5,
 "Display":"Product Name",
 "Mandatory":false,
 "DefaultValue":null
 },
 {
 "Name":"Owner",
 "Type":5,
 "Display":"Owner",
 "Mandatory":false,
 "DefaultValue":null
 }
]}

We don’t use asynchronous
calls to write data to
Windows Azure storage,
although this is an option
that would allow us to
write to more than one
store concurrently. It would
also free up threads for
other tasks, which could
improve performance.
However, as you will see in
the section “Synchronous
and Asynchronous Calls to
Windows Azure Storage”
in Chapter 7, “Managing
and Monitoring Multi-
tenant Applications,”
there are no obvious areas
where concurrent access
to storage is practical in
the Surveys application,
and our tests revealed
no worthwhile gain in
performance in our own
scenario.

 57Choosing a Multi-Tenant Data Architecture

Every custom field has a name, a data type such as string or integer, a display value to use as a label in
the UI, a Boolean flag to specify whether it is a required field, and an optional default value. A sub-
scriber can add or delete custom field definitions on the Model extensions tab in the private tenant
web site.

Writing Custom Fields to the Surveys Table
When a tenant creates a new survey, the private tenant web site UI reads the custom field definitions
from the tenant configuration and adds appropriate UI elements to enable the tenant to add values
to these fields. The Surveys application then persists these values in the custom fields to the surveys
table when the tenant saves a survey.
The following code sample shows the definition of the Survey class that includes a list of user-defined
fields. The IUDFModel interface defines the UserDefinedFields property.

C#
[Serializable]
public class Survey : IUDFModel
{
 private readonly string slugName;

 ...

 public string Tenant { get; set; }

 [Required(ErrorMessage =
 "* You must provide a Title for the survey.")]
 public string Title { get; set; }

 public DateTime CreatedOn { get; set; }

 public List<Question> Questions { get; set; }

 public IList<UDFItem> UserDefinedFields { get; set; }
}

58 chapter three

Figure 4 shows an overview of the way that the mechanism for saving a new survey includes the ca-
pability to save user-defined fields, and the core classes that are involved in the process. The following
section of this chapter describes the process in more detail.

SurveyRowRWStrategy

SurveyStore

SaveSurvey

Add

WriteEntity

WriteEntity

Add (columns)

SaveChanges

Windows Azure storage table

AzureTable

UDFModelRWStrategy

Figure 4
Overview of the mechanism for saving user-defined fields in a new survey

 59Choosing a Multi-Tenant Data Architecture

The SaveSurvey method in the SurveyStore class takes a Survey object as a parameter, and is respon-
sible for creating a SurveyRow object and adding it as a new row to the Survey table. The SurveyStore
class takes as parameters to its constructor instances of objects that implement the IAzureTable in-
terface, one each for the Survey table and the Question table.
Objects that implement the IAzureTable interface are generic types that accept a table row type, such
as SurveyRow and QuestionRow, and they expose a property named ReadWriteStrategy of type
IAzureTableRWStrategy that is populated by a class that exposes the ReadEntity and WriteEntity
methods. The following code sample from the ContainerBootstraper class in the Tailspin.Web project
shows how the application registers the required types for dependency injection into the SurveyStore
class, including an instance of the SurveyRowRWStrategy class for the ReadWriteStrategy prop-
erty of the AzureTable class.

C#
container.RegisterType<IUDFDictionary, UDFDictionary>();

container.RegisterType<IAzureTableRWStrategy,
 SurveyRowRWStrategy>(typeof(SurveyRow).Name);

var readWriteStrategyProperty = new InjectionProperty(
 "ReadWriteStrategy",
 new ResolvedParameter(
 typeof(IAzureTableRWStrategy),
 typeof(SurveyRow).Name));

container
 .RegisterType<IAzureTable<SurveyRow>,
 AzureTable<SurveyRow>>(
 new InjectionConstructor(cloudStorageAccountType,
 AzureConstants.Tables.Surveys),
 readWriteStrategyProperty,
 retryPolicyFactoryProperty)
...

60 chapter three

The SaveSurvey method of the SurveyStore class saves a SurveyRow instance to table storage by
calling the Add method of the AzureTable instance. This method creates a new TableServiceContext
to use to access the Windows Azure table by calling the CreateContext method defined in the
AzureTable class. The CreateContext method hooks up the ReadEntity and WriteEntity methods
of the SurveyRowRWStrategy class to the ReadingEntity and WritingEntity events of the Table-
ServiceContext, as shown in the following code sample.

C#
private TableServiceContext CreateContext()
{
 ...

 if (this.ReadWriteStrategy != null)
 {
 context.ReadingEntity += (sender, args)
 => this.ReadWriteStrategy.ReadEntity(context, args);
 context.WritingEntity += (sender, args)
 => this.ReadWriteStrategy.WriteEntity(context, args);
 }

 return context;
}

The SurveyRowRWStrategy class inherits from the UDFModelRWStrategy class and does not over-
ride the WriteEntity method. The following code sample shows the WriteEntity method from the
UDFModelRWStrategy class, which creates the user-defined fields and adds them to the table schema.

C#
public virtual void WriteEntity(
 TableServiceContext context,
 ReadingWritingEntityEventArgs args)
{
 var ns = XNamespace.Get(DATASERVICESNS);
 var nsmd = XNamespace.Get(DATASERVICESMETADATANS);
 var survey = args.Entity as SurveyRow;
 if (survey != null && survey.UserDefinedFields != null
 && survey.UserDefinedFields.Count > 0)
 {
 var properties = args.Data
 .Descendants(nsmd + "properties").First();
 foreach (var udfItem in survey.UserDefinedFields)
 {
 var udfField = new XElement(ns + udfItem.Name,
 udfItem.Value);
 udfField.Add(new XAttribute(nsmd + "type",
 udfItem.GetEdmType()));
 properties.Add(udfField);
 }
 }
}

 61Choosing a Multi-Tenant Data Architecture

For more information about this method of saving entities to Azure table storage, see the blog post
“Entities in Azure Tables.”

Reading Custom Fields from the Surveys Table
Saving a survey definition to Windows Azure table storage always includes the custom fields that are
currently defined in the tenant’s configuration data. When a survey definition is read it must include
the custom fields that were defined when the survey was originally saved.
Figure 5 shows an overview of the way that the mechanism for reading a survey definition includes
the capability to retrieve the user-defined fields and add them to the SurveyRow that is returned, and
the core classes that are involved in the process.

SurveyRowRWStrategy

SurveyStore

Get survey(s)

Select

ReadEntity

InstanceFieldsFor

Get (metadata)

Windows Azure storage table

AzureTable

UDFDictionary

UDFModelRWStrategy

Get (values)

SurveyRow ReadEntity

Figure 5
Overview of the mechanism for retrieving user-defined fields for a survey

The SurveyStore class executes a Select query against the AzureTable instance that was injected into
it when it was instantiated. The ReadingEntity event that occurs when reading entities from the
TableServiceContext causes the ReadEntity method in the SurveyRowRWStrategy class to execute.

http://convective.wordpress.com/2009/12/30/entities-in-azure-tables/

62 chapter three

The SurveyRowRWStrategy class holds a reference to an instance of a class that implements the
IUDFDictionary interface. The dependency injection registration you saw earlier causes this to be
populated with an instance of the UDFDictionary class.
The ReadEntity method of the SurveyRowRWStrategy class calls the InstanceFieldsFor method of
the UDFDictionary class to discover the names of the fields from the table metadata, and then calls
the ReadEntity method of the UDFModelRWStrategy class to get the field values from the table
itself. The SurveyRowRWStrategy class then assigns the collection of user-defined fields to the
UserDefinedFields property of the SurveyRow instance.

Implementing Paging
The code walkthrough in this section is divided into two parts. The first describes how the application
maintains an ordered list of blobs. The second describes how the application uses this list to page
through the responses.

Maintaining the Ordered List of Survey Responses
Tailspin Surveys saves and processes survey response data using two asynchronous tasks hosted in a
worker role. For more information about the implementation that Tailspin chose for saving and pro-
cessing survey response data, see Chapter 5, “Maximizing Availability, Scalability, and Elasticity.” This
section focuses on how the data architecture in Tailspin Surveys supports paging through Survey re-
sponses stored in blobs.
The PostRun method in the UpdatingSurveyResultsSummaryCommand class in the worker role calls
the AppendSurveyAnswerIdsToAnswerList method for the collection of new survey responses that
the task processed in the Run method. The following code example shows how the AppendSurvey-
AnswerIdsToAnswerList method in the SurveyAnswerStore class retrieves the list of survey re-
sponses from a blob, adds the new survey responses to the list, and saves the list back to blob storage.

C#
public void AppendSurveyAnswerIdsToAnswersList(
 string tenant, string slugName,
 IEnumerable<string> surveyAnswerIds)
{
 OptimisticConcurrencyContext context;
 string id = string.Format(CultureInfo.InvariantCulture,
 "{0}-{1}", tenant, slugName);
 var answerIdList = this.surveyAnswerIdsListContainer
 .Get(id, out context) ?? new List<string>(1);
 answerIdList.AddRange(surveyAnswerIds);
 this.surveyAnswerIdsListContainer
 .Save(context, answerIdList);
}

 63Choosing a Multi-Tenant Data Architecture

The application stores the list of survey responses in a List object,
which it serializes in the JSON format and stores in a blob. There is
one blob for every survey and the application stores all of these blobs
in the same blob container.
For more information about the concurrency management that the
Surveys application uses when it saves the list of survey answers, see
the section “Pessimistic and Optimistic Concurrency Handling” in
Chapter 5, “Maximizing Availability, Scalability, and Elasticity.”

Implementing the Paging
When the Surveys application displays a survey response, it finds the
blob that contains the survey response by using a blob ID. It can use
the ordered list of blob IDs to create navigation links to the next and
previous survey responses.
The following code example shows the BrowseResponses action
method in the SurveysController class in the TailSpin.Web project.

C#
public ActionResult BrowseResponses(string tenant,
 string surveySlug, string answerId)
{
 SurveyAnswer surveyAnswer = null;
 if (string.IsNullOrEmpty(answerId))
 {
 answerId = this.surveyAnswerStore
 .GetFirstSurveyAnswerId(tenant, surveySlug);
 }

 if (!string.IsNullOrEmpty(answerId))
 {
 surveyAnswer = this.surveyAnswerStore
 .GetSurveyAnswer(tenant, surveySlug, answerId);
 }

 var surveyAnswerBrowsingContext = this.surveyAnswerStore
 .GetSurveyAnswerBrowsingContext(tenant,
 surveySlug, answerId);

 var browseResponsesModel = new BrowseResponseModel
 {
 SurveyAnswer = surveyAnswer,
 PreviousAnswerId =
 surveyAnswerBrowsingContext.PreviousId,
 NextAnswerId = surveyAnswerBrowsingContext.NextId
 };

The application adds new
responses to the queue
in the order that they are
received. When it retrieves
messages from the queue
and adds the blob IDs to
the list, it preserves the
original ordering.

64 chapter three

 var model = this.CreateTenantPageViewData
 (browseResponsesModel);
 model.Title = surveySlug;
 return this.View(model);
}

This action method uses the GetSurveyAnswer method in Survey-
AnswerStore class to retrieve the survey response from blob storage
and the GetSurveyAnswerBrowsingContext method to retrieve a
SurveyBrowsingContext object that contains the blob IDs of the
next and previous blobs in the sequence. It then populates a model
object with this data to forward on to the view.

Implementing the Data Export
The following code example shows the task in the worker role that
executes when it is triggered by a message in a queue. Chapter 4,
“Partitioning Multi-Tenant Applications,” describes the message
queues and the worker role in Tailspin Surveys in more detail. This
section focuses on how the application handles data and the data
export process.
You can find the Run method that performs the data export in the
TransferSurveysToSqlAzureCommand class in the worker role proj-
ect. The SurveyTransferMessage class identifies the tenant who
owns the data, and the survey to export.

C#
public bool Run(SurveyTransferMessage message)
{
 Tenant tenant =
 this.tenantStore.GetTenant(message.Tenant);
 this.surveySqlStore.Reset(
 tenant.SqlAzureConnectionString, message.Tenant,
 message.SlugName);

 Survey surveyWithQuestions = this.surveyStore
 .GetSurveyByTenantAndSlugName(message.Tenant,
 message.SlugName, true);

 IEnumerable<string> answerIds = this.surveyAnswerStore
 .GetSurveyAnswerIds(message.Tenant,
 surveyWithQuestions.SlugName);

 SurveyData surveyData = surveyWithQuestions.ToDataModel();

 foreach (var answerId in answerIds)

This task is part of the
worker role described in
Chapter 4, “Partitioning
Multi-Tenant Applications.”
A message in a queue
triggers this task.

 65Choosing a Multi-Tenant Data Architecture

 {
 SurveyAnswer surveyAnswer = this.surveyAnswerStore
 .GetSurveyAnswer(surveyWithQuestions.Tenant,
 surveyWithQuestions.SlugName, answerId);

 var responseData = new ResponseData
 {
 Id = Guid.NewGuid().ToString(),
 CreatedOn = surveyAnswer.CreatedOn
 };

 foreach (var answer in surveyAnswer.QuestionAnswers)
 {
 QuestionAnswer answerCopy = answer;
 var questionResponseData = new QuestionResponseData
 {
 QuestionId = (
 from question in surveyData.QuestionDatas
 where question.QuestionText ==
 answerCopy.QuestionText
 select question.Id).FirstOrDefault(),
 Answer = answer.Answer
 };
 responseData.QuestionResponseDatas
 .Add(questionResponseData);
 }
 if (responseData.QuestionResponseDatas.Count > 0)
 {
 surveyData.ResponseDatas.Add(responseData);
 }
 }

 this.surveySqlStore
 .SaveSurvey(tenant.SqlAzureConnectionString,
 surveyData);
 return true;
}

The method first resets the survey data in Windows Azure SQL Database before it iterates over all
the responses to the survey and saves the data to the tenant’s SQL Database instance. The application
does not attempt to parallelize this operation; for subscribers who have large volumes of data, the
dump operation may run for some time.
The application uses LINQ to SQL to manage the interaction with Windows Azure SQL Database.
The following code from the SurveySqlStore class shows how the application uses the SurveyData
and SurveySqlDataContext classes. The SurveySql.dbml designer creates these classes.

66 chapter three

C#
public void SaveSurvey(string connectionString,
 SurveyData surveyData)
{
 this.ConnectionRetryPolicy.ExecuteAction(() =>
 {
 using (var dataContext =
 new SurveySqlDataContext(connectionString))
 {
 dataContext.SurveyDatas.InsertOnSubmit(surveyData);
 try
 {
 this.CommandRetryPolicy.ExecuteAction(
 () => dataContext.SubmitChanges());
 }
 catch (SqlException ex)
 {
 TraceHelper.TraceError(ex.TraceInformation());
 throw;
 }
 }
 });
}

This code uses the Transient Fault Handling Application Block to
handle any transient errors when it tries to save the data to SQL
Database.

Displaying Questions
The application stores the definition of a survey and its questions in
table storage. To render the questions in a page in the browser from
the Tailspin.Web.Survey.Public web application project, the applica-
tion uses the MVC EditorExtensions class.

Tailspin chose this
mechanism to render
the questions because it
makes it easier to extend
the application to support
additional question types.

 67Choosing a Multi-Tenant Data Architecture

When the Display action method in the SurveysController class in the TailSpin.Web.Survey.Public
project builds the view to display the survey, it retrieves the survey definition from table storage,
populates a model, and passes the model to the view. The following code example shows this action
method.

C#
[HttpGet]
public ActionResult Display(string tenant,
 string surveySlug)
{
 var surveyAnswer = CallGetSurveyAndCreateSurveyAnswer(
 this.surveyStore, tenant, surveySlug);

 var model =
 new TenantPageViewData<SurveyAnswer>(surveyAnswer);
 if (surveyAnswer != null)
 {
 model.Title = surveyAnswer.Title;
 }
 return this.View(model);
}

The view uses the EditorExtensions class to render the questions. The following code example shows
how the Display.aspx page uses the Html.EditorFor element that is defined in the System.Web.Mvc.
EditorExtensions class.

HTML
<% for (int i = 0;
 i < this.Model.ContentModel.QuestionAnswers.Count; i++)
{ %>
 ...
<%: Html.EditorFor(m=>m.ContentModel.QuestionAnswers[i],
 QuestionTemplateFactory.Create(
 Model.ContentModel.QuestionAnswers[i].QuestionType)) %>
 ...
<% } %>

This element iterates over all the questions that the controller retrieved from storage and uses the
QuestionTemplateFactory utility class to determine which user control (an .ascx file) to use to render
the question. The user controls FiveStar.ascx, MultipleChoice.ascx, and SimpleText.ascx are in the
EditorTemplates folder in the project.

68 chapter three

Displaying the Summary Statistics
The asynchronous task that generates the summary statistics from survey responses (this task is de-
scribed in Chapter 5, “Maximizing Availability, Scalability, and Elasticity”) stores the summaries in blob
storage. It uses a separate blob for each survey. The Surveys application displays these summary sta-
tistics in the same way that it displays questions. The following code example shows the Analyze
action method in the SurveysController class in the TailSpin.Web project that reads the results from
blob storage and populates a model.

C#
public ActionResult Analyze(string tenant,
 string surveySlug)
{
 var surveyAnswersSummary =
 this.surveyAnswersSummaryStore
 .GetSurveyAnswersSummary(tenant, surveySlug);

 var model =
 this.CreateTenantPageViewData(surveyAnswersSummary);
 model.Title = surveySlug;
 return this.View(model);
}

The view uses the Html.DisplayFor element to render the questions. The following code example
shows a part of the Analyze.aspx file.

HTML
<% for (int i = 0;
 i < this.Model.ContentModel
 .QuestionAnswersSummaries.Count; i++)
{ %>

<%: Html.DisplayFor(m =>
 m.ContentModel.QuestionAnswersSummaries[i],
 "Summary-" + TailSpin.Web.Survey.Public.Utility
 .QuestionTemplateFactory.Create
 (Model.ContentModel.QuestionAnswersSummaries[i]
 .QuestionType))%>

<% } %>

The user control templates for rendering the summary statistics are named Summary-FiveStar.ascx
(which displays an average for numeric range questions), Summary-MultipleChoice.ascx (which dis-
plays a histogram), and Summary-SimpleText.ascx (which displays a word cloud). You can find these
templates in the DisplayTemplates folder in the TailSpin.Web project. To support additional question
types you must add additional user control templates to this folder.

 69Choosing a Multi-Tenant Data Architecture

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/library/jj871057.aspx.
For more information about Windows Azure storage services, see “Data Services” and the Windows
Azure Storage Team Blog.
For a comparison of Windows Azure Table Storage and Windows Azure SQL Database, see
“Windows Azure Table Storage and Windows Azure SQL Database - Compared and Contrasted.”
For further information about continuation tokens and Windows Azure table storage, see the
section, “Implementing Paging with Windows Azure Table Storage” in Chapter 7, “Moving to
Windows Azure Table Storage” of the guide “Moving Applications to the Cloud.”

http://msdn.microsoft.com/library/jj871057.aspx
http://www.windowsazure.com/en-us/develop/net/data/
http://blogs.msdn.com/b/windowsazurestorage/
http://blogs.msdn.com/b/windowsazurestorage/
http://msdn.microsoft.com/en-us/library/jj553018.aspx
http://msdn.microsoft.com/en-us/library/ff803362.aspx
http://msdn.microsoft.com/en-us/library/ff803362.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx

71

This chapter examines architectural and implementation considerations in the Surveys application
from the perspective of building a multi-tenant application. Questions such as how to partition the
application, how users will interact with the application, how you can configure it for multiple tenants,
and how you handle session state and caching are all directly relevant to a multi-tenant architecture.
This chapter describes how Tailspin resolved these questions for the Surveys application. For other
applications, different choices may be appropriate.

Partitioning a Windows Azure Application
There are two related reasons for partitioning a Windows Azure application. First, physically partition-
ing the application enables you to scale the application out. For example, by running multiple in-
stances of the worker roles in the application you can achieve higher throughput and faster processing
times. Second, in a multi-tenant application, you either logically or physically partition the application
to provide isolation between the tenants. Isolating tenants’ data helps to ensure that data belonging
to a tenant is kept private but also helps to manage the application. For example, you may want to
provide different levels of service to different tenants by scaling them out differently, or provide a
different set of features to some tenants based on the type of subscription they have.
A Windows Azure application is typically comprised of multiple elements such as worker roles, web
roles, queues, storage, and caching. If your application is a multi-tenant application, you can chose
between different models for each of these elements:
•	 Single instance, multi-tenant model. For example, a single instance of a queue handles messages

for all the tenants in your application.
•	 Multi-instance, single-tenant model. For example, each tenant has its own private message

queue.
•	 Multi-instance, multi-tenant model. For example, premium tenants each have their own queues,

but standard tenants use a shared queue.

4 Partitioning Multi-Tenant
Applications

72 chapter four

Chapter 2, “Hosting a Multi-Tenant Application on Windows Azure,” describes the differences be-
tween these models in more detail, along with a discussion of criteria you should consider when you
are choosing between them for any particular part of the application. Chapter 3, “Choosing a Multi-
Tenant Data Architecture,” addresses these issues in relation to data storage in a Windows Azure
application. This chapter focuses on partitioning web and worker roles, queues, and caches. It exam-
ines this partitioning from the perspective of the choices that Tailspin made in the design and imple-
mentation of the Surveys application.
Figure 1 illustrates the relationships between the various Windows Azure elements discussed in this
chapter.

Table Table

Table

Blob

Blob
Web role Worker role

Worker role

Management
API keys

Windows
account

Web role

Queue

Queue
Cloud service (hosted in a specified data center)

Windows Azure subscription

Cloud service (hosted in a specified data center)

Cloud service (hosted in a specified data center)
Storage account (hosted in a specified data center)

Storage account (hosted in a specified data center)

Figure 1
Key Windows Azure elements discussed in this chapter

Some key points to note from Figure 1 are:
•	 Administrative access is at the level of a Windows Azure subscription using a Windows Account

or a Management API key.
•	 A Windows Azure subscription can contain multiple cloud services and multiple storage ac-

counts.
•	 Every cloud service is assigned a unique DNS name.
•	 Each cloud service and each storage account is hosted in a data center selected by the subscrip-

tion administrator.

 73Partitioning Multi-Tenant Applications

Partitioning Web and Worker Roles
A Windows Azure application is typically comprised of multiple role types. For example, the Tailspin
Surveys application has two web roles (one for the public website and one for the private tenant
website), and a single worker role. When you deploy a web or worker role to Windows Azure, you
deploy it to a cloud service that itself is part of a Windows Azure subscription. The options available
for partitioning a deployment by tenant are described in the following table:

Partitioning scheme Notes

One subscription per
tenant

Makes it easy to bill individual tenants for the compute resources they consume.

Enables tenants to provide their own compute resources and then manage them.

During the provisioning process, the tenant would need to provide access details such as
Management API keys or Microsoft account credentials if you are going to deploy the
application to the tenant’s subscription.

You need to be careful about the location of the cloud service that hosts the roles in relation
to the location of the cloud storage the application uses in order to control data transfer costs
and minimize latency.

Provisioning a new Windows Azure subscription is a manual process.

This does not allow tenants to share resources and costs. Each tenant must pay for all the role
instances it uses.

This scheme also implies one tenant per cloud service.

Group multiple
tenants in a
subscription

If your tenants can subscribe to different levels of functionality (such as basic, standard, and
premium) for the application, then using different subscriptions makes it easier to track the
costs of providing each level of functionality.

You must still partition the application for different tenants within a subscription using one of
the other partitioning schemes.

One tenant per cloud
service

Cloud services can be provisioned automatically.

Each tenant can run the application in a geographic region of their choice.

Makes it easy to assign costs to tenants because each cloud service is a separate line item on
the Windows Azure bill.

Provides for a very high degree of tenant isolation.

This does not allow tenants to share resources and costs. Each tenant must pay for all the role
instances it uses.

Group multiple
tenants in a cloud
service

You can use cloud services to group tenants based on geographic region or on different levels
of functionality.

You must still partition the application for tenants within a cloud service using one of the
other partitioning schemes, such as using multi-tenant roles.

Tenants in a cloud service share the resources and costs associated with that service.

Group multiple
tenants in a role

Requires the web or worker role to support multi-tenancy.

Tenants share the resources and costs associated with the role.

74 chapter four

At the time of writing, there is a soft limit of 20 cores per Windows
Azure subscription. With this limit, you could deploy 20 small role
instances, 10 medium role instances, or 5 large role instances. This
limit makes any solution that assigns tenants to roles in a one-to-one
relationship within a subscription impractical for any multi-tenant
application with more than a small number of tenants.

Identifying the Tenant in a Web Role
Every cloud service must have a unique DNS name. Therefore, if you
have one tenant per cloud service, each tenant can use a unique DNS
name to access its copy of the application.
However, if you have multiple tenants sharing web roles within a
cloud service, you must have some way to identify the tenant for each
web request that accesses tenant specific data. Once you know which
tenant the web request is associated with you can ensure that any
queries or data updates operate only on the data or other resources
that belong to that tenant.
There are a number of options for identifying the tenant from a web
request.
•	 Authentication. If users accessing the site must authenticate, the

site can determine the tenant from the authenticated identity.
•	 The URL path. For example, Tailspin’s tenants Adatum and

Fabrikam could use http://tailspinsurveys.cloudapp.net/adatum/
surveys and http://tailspinsurveys.cloudapp.net/fabrikam/surveys.

•	 The subdomain. For example, Tailspin’s tenants Adatum and
Fabrikam could use http://adatum.tailspinsurveys.com and http://
fabrikam.tailspinsurveys.com.

•	 A custom domain. For example, Tailspin’s tenants Adatum and
Fabrikam could use http://surveys.adatum.com and http://surveys.
fabrikam.com.

Option 1 — Using Authentication
For the first option, using authentication, you can use any standard
authentication mechanism as long as your application can determine
from the authenticated identity the tenant that should be associated
with the request. You don’t need to include the tenant ID anywhere
in the URL, so you can use the same domain and path for all tenant
requests for a specific service. For example, Tailspin could use http://
tailspinsurveys.cloudapp.net/surveys to enable a tenant to access a list
of all its surveys.

It is your responsibility to
ensure that your web roles
can identify the tenant in the
request, and to ensure that web
roles preserve the isolation
between your tenants.

A Windows Azure
subscription is primarily
for managing billing, a
cloud service is primarily
about defining endpoints
and deployment location.
Although it is possible to
use both subscriptions and
cloud services to isolate
your tenants, making your
roles multi-tenant will be
the most cost effective
solution in most cases.

 75Partitioning Multi-Tenant Applications

Tailspin could also add a CNAME entry to its DNS configuration to map a custom subdomain to the
surveys application. For example, Tailspin could map http://surveys.tailspin.com to http://tailspinsurveys.
cloudapp.net/surveys.
This approach also enables you to protect your site using SSL by uploading to your cloud service a
standard SSL certificate that identifies a single domain, and then configuring an HTTPS endpoint that
uses this certificate.

Option 2 — Using the URL Path
If you are using ASP.NET MVC it is very easy to use MVC routing to identify the tenant from an ele-
ment in the path. This approach is useful if you don’t want to use authentication (for example, on a
public site) but you do need to identify the tenant.
You can use the same domain for all requests. For example, Tailspin could use http://tailspinsurveys.
cloudapp.net/{tenant}/surveys, where {tenant} is the ID of a tenant, to enable public access to a list of
tenant surveys.
This approach also enables you to protect your site using SSL by uploading to your cloud service a
standard SSL certificate that identifies a single domain, and then configuring an HTTPS endpoint that
uses this certificate.

Option 3 — Using a Subdomain for Each Tenant
Although routing based on a subdomain is not part of the standard MVC routing functionality, it is
possible to implement this behavior in MVC. For an example, see the blog post “ASP.NET MVC Domain
Routing.” This approach is also useful if you don’t want to use authentication (for example, on a public
site) but you do need to identify the tenant.
To be able to use a separate subdomain for each tenant you must create a CNAME entry for each
tenant in your DNS configuration. For example, Tailspin’s DNS configuration might look like this:

adatum.tailspinsurveys.com CNAME tailspinsurveys.cloudapp.net

fabrikam.tailspinsurveys.com CNAME tailspinsurveys.cloupapp.net
Some DNS providers enable you to use a wildcard CNAME entry so that you don’t need to create an
entry for every tenant. For example:

*.tailspinsurveys.com CNAME tailspinsurveys.cloudapp.net

Option 4 — Enabling Tenants to Use Custom Domains
There are several possible approaches to enable each tenant to map a custom domain to your Windows
Azure application.
You can use host headers to map each tenant to a separate website in the cloud service. Although this
enables you to have a separate website for every tenant, you must redeploy the application whenever
you need to configure a new tenant because this approach requires entries in the Windows Azure
service definition file.

For more information about how to configure host headers in a Windows Azure application, see
“How to Configure a Web Role for Multiple Web Sites,” and the useful walkthrough “Exercise 1
Registering Sites, Applications, and Virtual Directories” in the Windows Azure Training Course.

http://blog.maartenballiauw.be/post/2009/05/20/aspnet-mvc-domain-routing.aspx
http://blog.maartenballiauw.be/post/2009/05/20/aspnet-mvc-domain-routing.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433110.aspx
http://msdn.microsoft.com/en-us/wazplatformtrainingcourse_advancedwebandworkerroles_topic2
http://msdn.microsoft.com/en-us/wazplatformtrainingcourse_advancedwebandworkerroles_topic2

76 chapter four

As an alternative you could allow each tenant to create its own DNS
entry that maps a domain or subdomain owned by the tenant to one
of your application’s DNS names. For example, Adatum could create
the following DNS entry in its DNS configuration:

surveys.adatum.com CNAME adatum.tailspinsurveys.com
Or Adatum could create the following entry:

surveys.adatum.com CNAME www.tailspinsurveys.net
In either case you could use the custom domain name in your ASP.
NET routing by using the technique suggested in option 3 above, or
use the Request.Url class in your code to identify the domain.

Using SSL with Windows Azure Cloud Services
Windows Azure uses the name of your cloud service to generate a
unique subdomain at cloudapp.net for every cloud service; for exam-
ple, tailspinsurveys.cloudapp.net. You can configure your DNS pro-
vider to point one or more of your subdomains to your cloudapp.net
subdomain. For example, Tailspin could configure the following
CNAME entries:

adatum.tailspinsurveys.com CNAME tailspinsurveys.
cloudapp.net

fabrikam.tailspinsurveys.com CNAME tailspinsurveys.
cloupapp.net

admin.tailspinsurveys.com CNAME tailspinsurveys.cloupapp.
net

Each Windows Azure cloud service can only have a single SSL certifi-
cate. Typically, an SSL certificate is valid for a single subdomain, so
Tailspin might choose to upload an SSL certificate that is valid for
admin.tailspinsurveys.com. The other two subdomains would only be
able to use the HTTP protocol. However, it is possible to purchase a
wildcard SSL certificate. If Tailspin purchased an SSL certificate that
is valid for *.tailspinsurveys.com, then all tailspinsurveys subdomains
could use the HTTPS protocol.

You can have multiple web roles within a Windows Azure
cloud service, but each web role must listen on a different port.
Because Internet Information Services (IIS) can have only one
SSL certificate associated with a port, a multi-tenant application
can use only a single domain name in a cloud service on the
default HTTPS port 443.

If you allow tenants to
map their own domain
or subdomain to your
Windows Azure cloud
application, you should
verify that the tenant owns
the domain before you
customize your application
to recognize the tenant’s
domain. Also, if you allow
tenants to map their
own DNS entries to your
Windows Azure application,
they should map to one of
your DNS names instead of
the underlying cloudapp.
net address. This gives
you the ability to manage
redirections if you need
to temporarily point your
tenants to a different cloud
service. This may be useful
during updates of the
application, or if a Windows
Azure data center becomes
temporarily unavailable.

 77Partitioning Multi-Tenant Applications

Identifying the Tenant in a Worker Role
In a multi-tenant Windows Azure application, tenants typically share
worker role instances. Either all tenants share a worker role; or groups
of tenants share each worker role. Figure 2 shows three possible models.

Tailspin cloud service

Tailspin worker role

Model 1

Tailspin cloud service

Tailspin standard worker role

Model 2

Tailspin premium worker role

Tailspin U.S. cloud service

Tailspin worker role

Model 3

Tailspin European cloud service

Tailspin worker role

Figure 2
Different models for multi-tenant worker roles

In Model 1 all the tenants share all the worker role instances. In Model
2 all standard tenants use one set of worker role instances, and all
premium tenants use another set; this enables you to scale the worker
roles independently or provide different features for the different
groups of tenants. Model 3 enables you to deploy the same worker role
into different geographic regions; Tailspin plans to use this model.

Tailspin plans deploy the
same worker role into
different geographic
regions, but also plans to
prioritize the work for
premium subscribers within
the role.

78 chapter four

Whichever model you choose, worker roles typically receive messages
from queues, and these messages cause the worker role to perform
some work on behalf of a tenant. In a multi-tenant application, you
must be able to identify the tenant associated with the message that
the worker role receives. There are two ways to identify the tenant:
either every message contains the tenant ID, or every tenant has its
own queue.
In some scenarios, you may also need to identify the type of tenant,
such as whether the tenant has a standard or a premium subscription.
If you are processing work for both types of tenant in the same role
instances then, again, you can either include the tenant type in every
message or use different message queues for each type of tenant. If
you want to give priority to messages from tenants with premium
subscriptions, using different queues for the different tenant types
makes this easy to accomplish.

Partitioning Queues
You create Windows Azure queues within a Windows Azure storage
account. By default you are limited to five storage accounts per sub-
scription but you can request additional accounts by contacting
Windows Azure customer support. Although you could use different
storage accounts for different tenants, this approach is typically use-
ful only if each tenant uses its own Windows Azure subscription for
its Windows Azure queues.

Partitioning queues by using
different subscriptions can
be useful if you have a small
number of tenants with
very high throughput.

 79Partitioning Multi-Tenant Applications

The previous discussion of worker role partitioning highlighted the
use of queues as the way that web roles typically pass information to
worker roles. You can use queues to partition the messages for ten-
ants in three ways, as shown in Figure 3.

Tailspin web role

Model 1

Tailspin worker roleShared queue

Tailspin web role

Model 2

Tailspin worker role

Standard tenant queue

Premium tenant queue

Tailspin web role

Model 3

Tailspin worker role

Tenant A queue

Tenant B queue

Tenant C queue

Tenant D queue

Figure 3
Different models for partitioning queues

The first model is useful if you do not need to distinguish between
types of tenant. The second model makes it easy for the worker role
to identify and process messages from different groups of tenants;
Tailspin uses this approach to enable the worker role to prioritize mes-
sages from tenants with premium subscriptions. The third model is
useful if you have very high volumes of messages or need the ability
to manage each tenant’s queue individually.
Within a storage account you can create as many queues as you need.
You are charged based on the number of messages that you send, so
there is no financial penalty in using multiple queues. However there
are some limits on the total number of transactions per second and
the bandwidth for each storage account. For more information, see
Best Practices for the Design of Large-Scale Services on Windows Azure
Cloud Services on MSDN.

Using a separate queue
for each tenant has some
potential scaling issues. For
example, if you have 2,000
tenants, the consumer in
the worker role must loop
through and monitor 2,000
queues looking for work.

http://msdn.microsoft.com/en-us/library/windowsazure/jj717232.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj717232.aspx

80 chapter four

It is your responsibility to ensure that the application uses the correct
queue for any message associated with a specific client. Windows
Azure does not provide any configuration options that enable you to
set permissions that limit access to a queue to a specific tenant or
message type.

You can also use Windows Azure Service Bus queues to transport
messages from web roles to worker roles. For more information
about the differences between the two types of queues, see
“Windows Azure Queues and Windows Azure Service Bus
Queues - Compared and Contrasted.”

Partitioning Caches
At the time of writing, Windows Azure offers two caching models:
Windows Azure Caching and Shared Caching. Windows Azure Cach-
ing uses one or more of the roles in your application to host cached
data, whereas Shared Caching is a separate service that hosts cached
data outside of your application.
When you configure Windows Azure Caching it creates a cache that
is private to your application. However all of the tenants who use the
application will, by default, have access to all of the data in the cache,
so it is your responsibility to ensure that the design of your applica-
tion prevents tenants from accessing cached data that belongs to
other tenants.
It is possible to create multiple named caches in your application ei-
ther by adding dedicated caching roles or by configuring caching on
multiple roles. When you read or write to a Windows Azure Caching
cache, you can specify the named cache you want to use.
You can also subdivide a named Windows Azure Caching cache into
named regions. Regions are useful for grouping cached items together
and enable you to tag items within a region. You can then query for
items within a region by using tag values. You can also remove all the
items cached in a single region with a single API call.

Although you could use different named caches to enable single-tenant caches, creating a new
named cache requires changing your service configuration. Typically, you use multiple, named
caches where you need multiple caching policies. For example, Tailspin could decide to use different
caching policies for premium and standard tenants where the time to live for sessions belonging to
premium subscribers is set to 30 minutes, but for standard subscribers is set to only five minutes.

http://msdn.microsoft.com/en-us/library/hh767287.aspx
http://msdn.microsoft.com/en-us/library/hh767287.aspx

 81Partitioning Multi-Tenant Applications

Windows Azure Shared Caching enables you to create separate named
caches, each of which has a maximum size. However, because you are
charged for each shared cache that you create, this would be an ex-
pensive solution if you wanted to have one cache per tenant.

Goals and Requirements
This section describes the goals and requirements Tailspin has for the
Surveys application that relate to partitioning it as a multi-tenant ap-
plication.

Isolation
When subscribers to the Tailspin Surveys application access their
subscription details, survey definitions, and survey results, they should
only see their own data. Subscribers must authenticate with the ap-
plication to gain access to this private data.
It is a key requirement of the application to protect survey designs and
results from unauthorized access, and the application will use a claims-
based infrastructure to achieve this. Chapter 6, “Securing Multi-Tenant
Applications,” discusses the authentication and authorization mecha-
nisms in the Tailspin Surveys application.
When survey respondents visit the Tailspin Surveys public site to com-
plete a survey, they don’t need to authenticate. However, survey re-
spondents should not have access to survey response data, and the re-
sponse data must be private to the subscriber who published the survey.

Scalability
The Tailspin Surveys application must be scalable. The partitioning
schemes that Tailspin uses for the web and worker roles and for the
Windows Azure queues should not limit Tailspin’s ability to scale out the
application. The web roles, the worker role, and the Windows Azure
queues must be capable of being scaled independently of each other.
Three distinct groups of users will access the Surveys application:
administrators at Tailspin who will manage the application, subscribers
who will be creating their own custom surveys and analyzing the re-
sults, and users who will be filling out their survey responses. The first
two groups will account for a very small proportion of the total num-
ber of users at any given time; the vast majority of users will be people
who are filling out surveys. A large survey could have hundreds of
thousands of users filling it out, while a subscriber might create a new
survey only every couple of weeks.

There are three distinct groups
of users who will use the
Surveys application.

Although you need to
authenticate using an
ACS key when you use a
Windows Azure shared
cache, this identity is
only used to access the
shared cache and cannot
be used to control access
to individual items in the
cache.

82 chapter four

Furthermore, the numbers of users filling out surveys will be subject
to sudden, large, short-lived spikes as subscribers launch new surveys.
In addition to the different scalability requirements that arise from the
two usage profiles, other requirements such as security will also vary.

Chapter 5, “Maximizing Availability, Scalability, and Elasticity,”
covers issues around scaling the Tailspin Surveys application in
greater depth.

Accessing the Surveys Application
There will be a single URL for the subscriber website where subscrib-
ers will need to authenticate before accessing their query designs and
survey results data. Additionally, all access to the application by sub-
scribers and administrators will use HTTPS to protect the data trans-
ferred between the application and the client.
The public website where users complete surveys will not require
authentication. Survey respondents should be given some indication
of the identity of the survey author through the URL they use to ac-
cess the survey questions, and optionally through branding applied to
the web pages. In the future, Tailspin also plans to enable subscribers
to include a public landing page accessible from a URL that includes
the subscriber’s name, and which lists all of the surveys published by
that subscriber.
Public surveys do not require HTTPS. This enables the use of DNS
CNAME entries that define custom URLs for users to access and fill
out these surveys.
Subscribers and survey respondents may be in different geographical
locations. For example, a subscriber may be based in the U.S. but
wants to perform some market research in Europe. Tailspin can mini-
mize the latency for survey respondents by enabling subscribers to
host their surveys in a datacenter located in an appropriate geograph-
ical region. However, subscribers may need to analyze the results
collected from these surveys in their own geographical location.

Premium Subscriptions
Tailspin plans to offer multiple levels of subscription, initially standard
and premium, with the ability to add further levels in the future. Tail-
spin wants to be able to offer different functionality and different
levels of service with the different subscriptions. Initially, Tailspin will
give priority to premium tenants ensuring that the worker role pro-
cesses and saves their data faster than for standard tenants.

Windows Azure enables
you to deploy role
instances to datacenters
in different geographic
locations. Tailspin can
host the subscriber and
the survey web roles in
different datacenters and
use Windows Azure Traffic
Manager to automatically
route requests to the most
appropriate datacenter.
For more information see
Chapter 5, “Maximizing
Availability, Scalability, and
Elasticity.”

 83Partitioning Multi-Tenant Applications

Designing Surveys
When a user designs a new survey in the Surveys application, they create the survey and then add
questions one-by-one to the survey until it’s complete. Figure 4 shows the sequence of screens, from
an early mockup of this part of the UI, when a user creates a survey with two questions.

Add a new question

Where...?Question:

Add a new question

How...?Question:

Create a new survey

Feedback...Title:

Create

Add Question

Create a new survey

Feedback...Title:

Create

Add Question

How...?

Create a new survey

Feedback...Title:

Create

Add Question

How...?
Where...?

Add to Survey

Add to Survey

Figure 4
Creating a survey with two questions

As you can see in the diagram, this scenario involves two different
screens that require the application to maintain state as the user adds
questions to the survey.

The Surveys application must
maintain session state while a
user designs a survey.

84 chapter four

Overview of the Solution
This section describes the approach taken by Tailspin to meet the goals and requirements that relate
to partitioning the application.

Partitioning Queues and Worker Roles
In order to enable giving priority to premium subscribers in the application Tailspin considered two
alternatives for partitioning the workload for the standard and premium subscribers in the Tailspin
Surveys worker role.
The first option is to use two different worker roles, one for tenants with standard subscriptions and
one for tenants with premium subscriptions. Tailspin could then use two separate queues to deliver
messages to the two worker roles. The second option is to use a single worker role with two queues,
one queue for messages from premium subscribers and one queue for messages from standard sub-
scribers. The worker role could then prioritize messages from the premium subscriber’s queue.
Tailspin preferred the second option because it avoids the need to manage and run different types of
worker role. It can modify the priorities of the different subscriptions by adjusting configuration val-
ues for a single worker role.
In addition to the worker role using two (or more) different queues to enable it to partition the work
for different groups of subscribers, the web role must choose the correct queue to use when it sends
a message to the worker role.
However, Tailspin realized that there are limitations in the throughput of Windows Azure storage
queues that could affect the number of concurrent messages that a queue can handle. The recom-
mended solution is to use multiple queues and implement a round-robin process at each end of the
queues to distribute the messages evenly between the queues, and to read messages from all of the
queues. See the section “Azure Queues Throughput” in Chapter 7, “Managing and Monitoring Multi-
tenant Applications,” for more information.

Tenant Isolation in Web Roles
Chapter 3, “Choosing a Multi-Tenant Data Architecture,” describes how the Surveys application data
model partitions the data by subscriber. This section describes how the Surveys application uses MVC
routing tables and areas to make sure that a subscriber sees only his or her own data.
Tailspin considered using host headers and virtual sites to enable tenants to use their own DNS name
to provide access to their public surveys. However, because many smaller tenants will not want the
additional complexity of managing DNS entries, and because you cannot configure a new site and host
header without redeploying the application, it decided against using this option.

 85Partitioning Multi-Tenant Applications

The developers at Tailspin decided to use the path in the application’s
URL to indicate which subscriber is accessing the application. For the
public Surveys website, the application doesn’t require authentica-
tion.
The following are three sample paths on the Subscriber website:

•	 /survey/adatum/newsurvey
•	 /survey/adatum/newquestion
•	 /survey/adatum

The following are two example paths on the public Surveys website:
•	 /survey/adatum/launch-event-feedback
•	 /survey/adatum/launch-event-feedback/thankyou

The application uses the first element in the path to indicate the dif-
ferent areas of functionality within the application. In the initial re-
lease of the Tailspin Surveys service the only functional area is survey,
but in the future Tailspin expects there to be additional functional
areas such as onboarding and security. The second element indicates
the subscriber name, in these examples “Adatum,” and the last element
indicates the action to perform, such as creating a new survey or add-
ing a question to a survey.
You should take care when you design the path structure for your
application that there is no possibility of name clashes that result from
a value entered by a subscriber. In the Surveys application, if a sub-
scriber creates a survey named “newsurvey” the path to this survey is
the same as the path to the page subscribers use to create new sur-
veys. However, the application hosts surveys on an HTTP endpoint
and the page to create surveys on an HTTPS endpoint, so there is no
name clash in this particular case.

A slug name is a string where all whitespace and invalid
characters are replaced with a hyphen (-). The term comes from
the newsprint industry and has nothing to do with those things in
your garden!

DNS Names, Certificates, and SSL in the Surveys
Application
In Chapter 1, “The Tailspin Scenario,” you saw how the Surveys ap-
plication has three different groups of users. This section describes
how Tailspin can use Domain Name System (DNS) entries to manage
the URLs that each group can use to access the service, and how
Tailspin plans to use SSL to protect some elements of the Surveys
application.

The URL path identifies
the functional area in the
application, the subscriber,
and the action.

The third example element
of the public Surveys
website, “launch-event-
feedback,” is a slug name
version of the survey title,
originally “Launch Event
Feedback,” to make it URL
friendly.

86 chapter four

To make it easy for the Surveys application to meet the requirements
outlined earlier, the developers at Tailspin decided to use separate
web roles. One web role will contain the subscriber and administrative
functionality, while a separate web role will host the surveys them-
selves. This partitioning of the UI functionality enables Tailspin to
scale each web role to support its usage profile independently of the
other.
Having multiple web roles in a hosted cloud service affects the choice
of URLs that you can use to access the application. Windows Azure
assigns a single DNS name (for example, tailspin.cloudapp.net) to a
cloud service, which means that different websites within a hosted
service must have different port numbers. For example, two websites
within Tailspin’s hosted service could have the addresses listed in the
following table.

Site A Site B

http://tailspin.cloudapp.net:80 http://tailspin.cloudapp.net:81

You can use DNS CNAME records to map custom domain names
to the default DNS names provided by Windows Azure. You can
also use DNS A records to map a custom domain name to your
service, but the IP address is only guaranteed to remain the same
while the application is deployed. If you delete the deployment
and then redeploy to the same cloud service, your application will
have new IP address, and you will need to change the A record.
An IP address is associated with a deployment, not a cloud
service. For more information, see the blog post “Windows Azure
Deployments and The Virtual IP.”

Because of the specific security requirements of the Surveys applica-
tion, Tailspin decided to use the following URLs:

•	 https://tailspin.cloudapp.net
•	 http://tailspin.cloudapp.net

The next sections describe each of these.

https://tailspin.cloudapp.net
This HTTPS address uses the default port 443 to access the web role
that hosts the administrative functionality for both subscribers and
Tailspin. Because an SSL certificate protects this site, it is possible to
map only a single custom DNS name. Tailspin plans to use an address
such as https://surveys.tailspin.com to access this site.

To use HTTPS you must
deploy a certificate to your
cloud service. To avoid
warnings in the browser,
you should use an SSL
certificate issued by a
trusted third-party.

http://blogs.msdn.com/b/windowsazure/archive/2011/07/06/windows-azure-deployments-and-the-virtual-ip-address.aspx
http://blogs.msdn.com/b/windowsazure/archive/2011/07/06/windows-azure-deployments-and-the-virtual-ip-address.aspx

 87Partitioning Multi-Tenant Applications

http://tailspin.cloudapp.net
This HTTP address uses the default port 80 to access the web role that
hosts the public surveys. Because there is no SSL certificate, it is possible
to map multiple DNS names to this site. Tailspin will configure a default
DNS name such as http://surveys.tailspin.com to access the surveys, and
individual tenants can then create their own CNAME entries to map to
http://surveys.tailspin.com; for example, http://surveys.adatum.com,
http://surveys.tenant2.org, or http://survey.tenant3.co.de.

Accessing Tailspin Surveys in Different Geographic Regions
Tailspin plans to create separate hosted cloud services to host copies
of the Surveys service in different geographic regions. This will enable
subscribers to choose where to host their surveys in order to minimize
any latency for their users. Each regional version of the public Tailspin
Surveys service will be available at a different URL by using a different
subdomain. For example, Tailspin could use the following URLs to
enable access to versions of Tailspin Surveys hosted in the US, Europe,
and the Far East: http://surveys.tailspin.com, http://eusurveys.tailspin.
com, and http://fesurveys.tailspin.com. Subscribers could then map their
own DNS names to these addresses.

If Tailspin wanted to enable a subscriber to publish a survey that
it intends to be available globally, rather than in a specific region,
the survey could be hosted on all the Tailspin Surveys cloud
services. Tailspin could then use Windows Azure Traffic Manager
to route client requests to closest version of Tailspin Surveys.
For more information see “Traffic Manager” and Chapter 6,
“Maximizing Scalability, Availability, and Performance in the
Orders Application,” of the related patterns & practices guide
“Building Hybrid Applications in the Cloud on Windows Azure.”

Maintaining Session State
The tenant website uses session state during the survey creation pro-
cess. The developers at Tailspin considered three options for managing
session state.
•	 Use JavaScript and manage the complete survey creation work-

flow on the client. Then use AJAX calls to send the complete
survey to the server after it’s complete.

•	 Use the standard built-in Request.Session object to store the
intermediate state of the survey while the user is creating it.
Because the Tailspin web role will run on several node instances
Tailspin cannot use the default, in-memory session state provider,
and would have to use another provider such as the session state
provider that’s included in Windows Azure Caching. For more
information, see “Caching in Windows Azure.”

Tailspin will need to
publish some guidance to
subscribers that describes
how they can set up their
CNAMEs in their DNS
settings.

http://msdn.microsoft.com/en-us/library/windowsazure/hh745750
http://msdn.microsoft.com/en-us/library/hh868042.aspx
http://msdn.microsoft.com/en-us/library/hh868042.aspx
http://msdn.microsoft.com/en-us/library/hh871440.aspx
http://msdn.microsoft.com/en-us/library/gg278356.aspx

88 chapter four

•	 Use an approach similar to ViewState that serializes and deserial-
izes the workflow state and passes it between the two pages.

You can compare the three options using several different criteria.
Which criteria are most significant will depend on the specific require-
ments of your application.

Simplicity
Something that is simple to implement is usually also easy to maintain.
The first option is the most complex of the three, requiring JavaScript
skills and good knowledge of an AJAX library. It is also difficult to unit
test. The second option is the easiest to implement because it uses
the standard ASP.NET Session object. Using the session state pro-
vider is simply a matter of “plugging-in” the Windows Azure Caching
Service session state provider in the Web.config file. The third option
is moderately complex, but you can simplify the implementation by
using some of the features in ASP.NET MVC. Unlike the second op-
tion, it doesn’t require any server side setup or configuration other
than the standard MVC configuration.
Although the second option is easy to implement, it does introduce
some potential concerns about the long-term maintenance of the ap-
plication. The current version of Windows Azure Caching does not
support disabling eviction on a cache, so if the cache fills up it could
evict session data while the session is still active. The cache uses a
least recently used (LRU) policy if it needs to evict items. Tailspin
should monitor cache usage and check for the situation where the
cache has evicted items from an active session. If this occurs, Tailspin
can increase the size of the cache or enable compression to store
more data in the existing cache.

Cost
The first option has the lowest costs because it uses a single POST
message to send the completed survey to the server. The second op-
tion has moderate costs. If Tailspin chooses to use a Windows Azure
Shared Cache, it is easy to determine the cost because Windows
Azure bills for the cache explicitly based on the cache size. If Tailspin
chooses to use Windows Azure Caching, it is harder to quantify the
cost because this type of cache uses a proportion of the memory in
Tailspin’s role instances. The third option incurs costs that arise from
bandwidth usage; Tailspin can estimate the costs based on the ex-
pected number of questions created per day and the average size of
the questions.

If, in the future, Tailspin
decides to use Windows
Azure Caching for other
purposes in the Surveys
application, this could
lead to greater pressure
on the cache and
increase the likelihood
of cache evictions.

Data is encoded using a
Base64 algorithm when
you store it in the ASP.
NET ViewState, so any
estimate of the average
question size must take
this into account.

 89Partitioning Multi-Tenant Applications

Performance
The first option offers the best performance because the client performs almost all the work with no
roundtrips to the server until the browser sends a final HTTP POST message containing the complete
survey. The second option will introduce a small amount of latency into the application; the amount
of latency will depend on the number of concurrent sessions, the amount of data in the session ob-
jects, and the latency between the web role and the cache. If Tailspin uses Windows Azure Shared
Caching, the latency between the web role and the cache maybe greater than if Tailspin uses Windows
Azure Caching. The third option will also introduce some latency because each question will require
a round-trip to the server and each HTTP request and response message will include all the current
state data.

Scalability
All three options scale well. The first option scales well because it doesn’t require any session state
data outside the browser, the second and third options scale well because they are “web-farm friend-
ly” solutions that you can deploy on multiple web roles.

Robustness
The first option is the least robust, relying on client-side JavaScript code. The second option is robust,
using a feature that is a standard part of the Windows Azure. The third option is also robust, using
easily testable server-side code.

User Experience
The first option provides the best user experience because there are no postbacks during the survey
creation process. The other two options require a postback for each question.

Security
The first two options offer good security. With the first option, the browser holds all the survey in
memory until the survey creation is complete, and with the second option, the browser just holds a
cookie with a session ID while Windows Azure Caching holds the survey data. The third option is not
so secure because it simply serializes the data to Base64 without encrypting it. It’s possible that sensi-
tive data could “leak” during the flow between pages.
Tailspin decided to use the second option that uses the session state provider included with Windows
Azure Caching. This solution meets Tailspin’s criteria for this part of the Tailspin Surveys application.

Isolating Cached Tenant Data
In addition to using a Windows Azure cache for storing session state, Tailspin also chose to use
Windows Azure Caching to cache application data. Tailspin chose to use a co-located Windows Azure
cache that uses a proportion of the memory available to the public web site web role instances.

For more information about Windows Azure Caching, see “Overview of Caching in Windows
Azure.”

http://msdn.microsoft.com/en-us/library/hh914172.aspx
http://msdn.microsoft.com/en-us/library/hh914172.aspx

90 chapter four

In order to isolate tenant data in the cache that Tailspin Surveys uses to cache frequently used data,
such as survey definitions and tenant configuration data, the developers at Tailspin chose to use re-
gions in the Windows Azure cache and assign each tenant its own region. To retrieve an item from the
cache the calling code must specify the cache region that contains the required item. This makes it
easy for the application to ensure that only data that belongs to a tenant is accessed by that tenant.

Inside the Implementation
Now is a good time to walk through some of the code in the Tailspin Surveys application in more
detail. As you go through this section, you may want to download the Visual Studio solution for the
Tailspin Surveys application from http://wag.codeplex.com/.

Prioritizing Work in a Worker Role
To enable the worker role in Tailspin Surveys to support prioritizing work from different groups of
tenants, the developers at Tailspin introduced some “plumbing” code to launch tasks within a worker
role. The following code sample from the Run method of the WorkerRole class in the Tailspin.Workers.
Surveys project shows how the Surveys application uses the BatchMultipleQueueHandler class from
this plumbing code.

C#
var standardQueue = this.container.Resolve
 <IAzureQueue<SurveyAnswerStoredMessage>>
 (SubscriptionKind.Standard.ToString());
var premiumQueue = this.container.Resolve
 <IAzureQueue<SurveyAnswerStoredMessage>>
 (SubscriptionKind.Premium.ToString());

BatchMultipleQueueHandler
 .For(premiumQueue, GetPremiumQueueBatchSize())
 .AndFor(standardQueue, GetStandardQueueBatchSize())
 .Every(TimeSpan.FromSeconds(
 GetSummaryUpdatePollingInterval()))
 . WithLessThanTheseBatcheIterationsPerCycle(
 GetMaxBatchIterationsPerCycle())
 .Do(this.container.Resolve
 <UpdatingSurveyResultsSummaryCommand>());

The For, AndFor, Every, WithLessThanTheseBatchesPerCycle, and Do methods implement a
fluent API for instantiating tasks in the worker role. Fluent APIs help to make the code more
legible.

http://wag.codeplex.com/

 91Partitioning Multi-Tenant Applications

The Run method creates two Windows Azure queues, one to handle
messages for standard subscribers and one to handle messages for
premium subscribers. The worker role prioritizes processing messages
for premium subscribers based on the batch sizes it reads from the
service configuration file using the GetPremiumQueueBatchSize and
GetStandardQueueBatchSize methods. The worker role also uses
the GetSummaryUpdatePollingInterval method to read the service
configuration file and set the polling interval for reading messages
from the queue, and the GetMaxBatchIterationsPerCycle method
to set the maximum number of messages that will be processed in
each cycle.

It’s important to limit the maximum number of messages
that the worker role process can read from the queue in
each cycle. If the code continues reading messages until
the queue is empty, but the web role is adding messages
faster than the web role can process them, the cycle will
never end!

The BatchMultipleQueueHandler class in the worker role enables
you to invoke commands of type IBatchCommand<T> by using the
Do method. You can invoke these commands on several Windows
Azure queues of type IAzureQueue by using the For and AndFor
methods, at an interval specified by the Every method. The With-
LessThanTheseBatchIterationsPerCycle method limits the number
of batches that the task retrieves from the queue before it processes
the messages.
The example code you saw above shows the worker role processing
a premium and a standard queue, both of which transport Survey-
AnswerStoredMessage messages. It processes the messages every ten
seconds by using the UpdatingSurveyResultsSummaryCommand
class.
There is also a QueueHandler class that processes messages from a
single queue. It has a slightly simpler API; the Do method enables you
to invoke commands of type ICommand, the For method identifies a
single Windows Azure queue of type IAzureQueue, and the Every
method specifies how frequently to process messages.

The tasks that Tailspin runs in the worker role using the task
framework described in this chapter include saving the survey
responses and calculating the summary statistics. See Chapter 5,
“Maximizing Availability, Scalability, and Elasticity,” for
descriptions of these tasks.

The design of the
BatchMultipleQueue-
Handler class enables
the compiler to check
that the two queues and
the UpdatingSurvey-
ResultsSummary-
Command class all use the
same message type.

92 chapter four

The BatchMultipleQueueHandler and the Related Classes
This section describes the implementation of the BatchMultipleQueueHandler class and the related
classes. The implementation using the QueueHandler class is very similar but runs tasks that imple-
ment the simpler ICommand interface instead of the IBatchCommand interface.

Figure 5
Key plumbing types

 93Partitioning Multi-Tenant Applications

Figure 5 shows the key types that make up the plumbing code related to the BatchMultipleQueue-
Handler class that the application uses to prioritize work for premium subscribers. The worker role
first invokes the For method in the static BatchMultipleQueueHandler class, which invokes the For
method in the BatchMultipleQueueHandler<T> class. The For method returns a BatchMultiple-
QueueHandler<T> instance that contains a reference to the IAzureQueue<T> instance to monitor.
The plumbing code identifies the queue by name and associates it with a message type that derives
from the AzureQueueMessage type. For example, both the Standard and Premium queues handle
SurveyAnswerStoredMessage messages. The following code example shows how the static For
method in the BatchMultipleQueueHandler class instantiates a BatchMultipleQueueHandler<T>
instance and invokes the For method, passing the required batch size as a parameter.

C#
using Tailspin.Web.Survey.Shared.Stores.AzureStorage;

public static class BatchMultipleQueueHandler
{
 public static BatchMultipleQueueHandler<T>
 For<T>(IAzureQueue<T> queue, int batchSize)
 where T : AzureQueueMessage
 {
 return BatchMultipleQueueHandler<T>.For
 (queue, batchSize);
 }
}

Next, the worker role invokes the AndFor method for each additional queue that transports mes-
sages. The following code sample shows both the For and the AndFor methods of the BatchMultiple-
QueueHandler<T> class.

C#
public static BatchMultipleQueueHandler<T> For
 (IAzureQueue<T> queue, int batchSize)
{
 if (queue == null)
 {
 throw new ArgumentNullException("queue");
 }

 batchSize = Math.Max(1, batchSize);
 return new BatchMultipleQueueHandler<T>(queue, batchSize);
}

94 chapter four

public BatchMultipleQueueHandler<T> AndFor
 (IAzureQueue<T> queue, int batchSize)
{
 if (queue == null)
 {
 throw new ArgumentNullException("queue");
 }

 batchSize = Math.Max(1, batchSize);
 this.queuesConfiguration.Add
 (QueueBatchConfiguration.BuildConfig(queue, batchSize));
 return this;
}

Next, the worker role invokes the Every method of the Batch-
MultipleQueueHandler<T> object to specify how frequently the
task should be run. Then it invokes the WithLessThanTheseBatch-
IterationsPerCycle method to limit the number of batches to process
in each cycle.
Finally, the worker role invokes the Do method of the BatchMultiple-
QueueHandler<T> object, passing an IBatchCommand object that
identifies the command that the plumbing code should execute on
each message in the queue. The following code example shows how
the Do method uses the Task.Factory.StartNew method from the
Task Parallel Library (TPL) to execute the PreRun, ProcessMessages,
and PostRun methods on the queue at the requested interval.

C#
public virtual void Do(IBatchCommand<T> batchCommand)
{
 Task.Factory.StartNew(
 () =>
 {
 while (true)
 {
 this.Cycle(batchCommand);
 }
 },
 TaskCreationOptions.LongRunning);
}

Use Task.Factory.StartNew
in preference to ThreadPool.
QueueUserWorkItem to ensure
that your application can
maximize performance on any
system on which it will run.

 95Partitioning Multi-Tenant Applications

protected void Cycle(IBatchCommand<T> batchCommand)
{
 try
 {
 batchCommand.PreRun();

 int batches = 0;
 bool continueProcessing;
 do
 {
 continueProcessing = false;
 foreach (var queueConfig in this.queuesConfiguration)
 {
 var messages = queueConfig.Queue
 .GetMessages(queueConfig.BatchSize);
 GenericQueueHandler<T>.ProcessMessages(
 queueConfig.Queue, messages, batchCommand.Run);
 continueProcessing |= messages.Count()
 >= queueConfig.BatchSize;
 }
 batches++;
 }
 while (continueProcessing && batches
 < maxBatchesPerCycle);

 batchCommand.PostRun();

 this.Sleep(this.interval);
 }
 catch (TimeoutException ex)
 {
 TraceHelper.TraceWarning(ex.TraceInformation());
 }
 catch (Exception ex)
 {
 // No exception should get here -
 // we don’t want the handler to stop
 // (we log it as ERROR)
 TraceHelper.TraceError(ex.TraceInformation());
 }
}

The Cycle method repeatedly pulls messages for processing from the
queue, up to the number specified as the batch size in the For and
AndFor methods, in a single transaction; until there are no more mes-
sages left or the maximum batches per cycle is reached.

By configuring one queue to
use a larger batch size, you
can ensure that the worker
role processes messages in
that queue faster than other
queues. In addition, reading
messages from queues in
batches can reduce your
costs because it reduces
the number of storage
operations.

96 chapter four

The following code example shows the ProcessMessages method in the GenericQueueHandler class
that performs the actual message processing.

C#
protected static void ProcessMessages(IAzureQueue<T> queue,
 IEnumerable<T> messages, Func<T, bool> action)
{
 ...

 foreach (var message in messages)
 {
 var allowDelete = false;
 var corruptMessage = false;

 try
 {
 allowDelete = action(message);
 }
 catch (Exception ex)
 {
 TraceHelper.TraceError(ex.TraceInformation());
 allowDelete = false;
 corruptMessage = true;
 }
 finally
 {
 if (allowDelete || (corruptMessage
 && message.GetMessageReference().DequeueCount > 5))
 {
 queue.DeleteMessage(message);
 }
 }
 }
}

 97Partitioning Multi-Tenant Applications

This method uses the action parameter to invoke the custom command on each message in the queue;
if this fails it logs the error. Finally, the method checks for poison messages by looking at the Dequeue-
Count property of the message; if the application has tried more than five times to process the mes-
sage, the method deletes the message.

Instead of deleting poison messages, you should send them to a dead message queue for analysis
and troubleshooting.

Using MVC Routing Tables
The request routing implementation in the Tailspin Surveys application uses a combination of ASP.
NET routing tables and MVC areas to identify the subscriber and map requests to the correct func-
tionality within the application.
The following code example shows how the public Surveys Web site uses routing tables to determine
which survey to display based on the URL.

C#
using System.Web.Mvc;
using System.Web.Routing;

public static class AppRoutes
{
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.MapRoute(
 "Home",
 string.Empty,
 new { controller = "Surveys", action = "Index" });

 routes.MapRoute(
 "ViewSurvey",
 "survey/{tenant}/{surveySlug}",
 new { controller = “Surveys”, action = "Display" });

 routes.MapRoute(
 "ThankYouForFillingTheSurvey",
 "survey/{tenant}/{surveySlug}/thankyou",
 new { controller = "Surveys", action = "ThankYou" });
 }
}

98 chapter four

The code extracts the tenant name and survey name from the URL
and passes them to the appropriate action method in the Surveys-
Controller class. The following code example shows the Display ac-
tion method that handles HTTP GET requests.

C#
[HttpGet]
public ActionResult Display(string tenant,
 string surveySlug)
{
 var surveyAnswer = CallGetSurveyAndCreateSurveyAnswer(
 this.surveyStore, tenant, surveySlug);

 var model =
 new TenantPageViewData<SurveyAnswer>(surveyAnswer);
 if (surveyAnswer != null)
 {
 model.Title = surveyAnswer.Title;
 }
 return this.View(model);
}

If the user requests a survey using a URL with a path value of /survey/
adatum/launch-event-feedback, the value of the tenant parameter will
be “Adatum” and the value of the surveySlug parameter will be “launch-
event-feedback.” The Display action method uses the parameter
values to retrieve the survey definition from the store, populate the
model with this data, and pass the model to the view that renders it
to the browser.

There is also a Display
action to handle HTTP
POST requests. This
controller action is
responsible for saving
the data from a filled out
survey.

 99Partitioning Multi-Tenant Applications

The Subscriber website is more complex because, in addition to enabling subscribers to design new
surveys and analyze survey results, it must handle authentication and onboarding new subscribers.
Because of this complexity it uses MVC areas as well as a routing table. The following code from the
AppRoutes class in the TailSpin.Web project shows how the application maps top level requests to
the controller classes that handle onboarding and authentication.

C#
public static void RegisterRoutes(RouteCollection routes)
{
 routes.MapRoute(
 "OnBoarding",
 string.Empty,
 new { controller = "OnBoarding", action = "Index" });

 routes.MapRoute(
 "FederationResultProcessing",
 "FederationResult",
 new { controller = "ClaimsAuthentication",
 action = "FederationResult" });

 routes.MapRoute(
 "FederatedSignout",
 "Signout",
 new { controller = "ClaimsAuthentication",
 action = "Signout" });
 }
 ...
}

100 chapter four

The application also defines an MVC area for the core survey func-
tionality. MVC applications register areas by calling the RegisterAll-
Areas method. In the TailSpin.Web project you can find this call in the
Application_Start method in the Global.asax.cs file. The Register-
AllAreas method searches the application for classes that extend the
AreaRegistration class, and then it invokes the RegisterArea method.
The following code example shows a part of this method in the Survey-
AreaRegistration class.

C#
public override void RegisterArea(
 AreaRegistrationContext context)
{
 context.MapRoute(
 "MySurveys",
 "survey/{tenant}",
 new { controller = "Surveys", action = "Index" });

 context.MapRoute(
 "NewSurvey",
 "survey/{tenant}/newsurvey",
 new { controller = "Surveys", action = "New" });

 context.MapRoute(
 "NewQuestion",
 "survey/{tenant}/newquestion",
 new { controller = "Surveys", action = "NewQuestion" });

 context.MapRoute(
 "AddQuestion",
 "survey/{tenant}/newquestion/add",
 new { controller = "Surveys", action = "AddQuestion" });

 ...
}

Notice how all the routes in this routing table include the tenant name
that MVC passes as a parameter to the controller action methods.

Web Roles in Tailspin Surveys
To implement the two different websites within a single hosted cloud
service, the developers at Tailspin defined two web roles in the solu-
tion. The first website, named TailSpin.Web, is an MVC project that
handles the administrative functionality within the application. This
website requires authentication and authorization, and users access it
using HTTPS. The second website, named Tailspin.Web.Survey.Public,
is an MVC project that handles users filling out surveys. This website
is public, and users access it using HTTP.

MVC areas enable you to
group multiple controllers
together within the
application, making it
easier to work with large
MVC projects. Each MVC
area typically represents a
different functional area
within the application.

 101Partitioning Multi-Tenant Applications

The following code example shows the contents of an example ServiceDefinition.csdef file and the
definitions of the two web roles in Tailspin Surveys:

XML
<?xml version="1.0" encoding="utf-8"?>
<ServiceDefinition name="Tailspin.Cloud" xmlns=...>
 <WebRole name="Tailspin.Web"
 enableNativeCodeExecution="true">
 <Sites>
 <Site name="Web">
 <Bindings>
 <Binding name="HttpsIn" endpointName="HttpsIn" />
 </Bindings>
 </Site>
 </Sites>
 <Certificates>
 <Certificate name="localhost"
 storeLocation="LocalMachine" storeName="My" />
 </Certificates>
 <Endpoints>
 <InputEndpoint name="HttpsIn" protocol="https"
 port="443" certificate="localhost" />
 </Endpoints>
 ...
 </WebRole>
 <WebRole name="Tailspin.Web.Survey.Public">
 <Sites>
 <Site name="Web">
 <Bindings>
 <Binding name="HttpIn" endpointName="HttpIn" />
 </Bindings>
 </Site>
 </Sites>
 <Endpoints>
 <InputEndpoint name="HttpIn" protocol="http"
 port="80" />
 </Endpoints>
 ...
 </WebRole>
 <WorkerRole name="Tailspin.Workers.Surveys">
 ...
 </WorkerRole>
</ServiceDefinition>

102 chapter four

This example ServiceDefinition.csdef file does not exactly match the file in the downloadable solu-
tion, which uses a different name for the SSL certificate.

Remember, you may want to use different SSL certificates when you are testing the application
using the local compute emulator. You must make sure that the configuration files reference the
correct certificates before you publish the application to Windows Azure. For more information
about managing the deployment, see Chapter 3, “Moving to Windows Azure Cloud Services,” in the
guide “Moving Applications to the Cloud.”

In addition to the two web role projects, the solution also contains a worker role project and a library
project named TailSpin.Web.Survey.Shared that contains code shared by the web and worker roles.
This shared code includes the model classes and the data access layer.

Implementing Session Management
The Surveys application must maintain some state data for each user as they design a survey. This
section describes the design and implementation of user state management in the Surveys application.
The following code examples shows how the action methods in the SurveysController controller
class in the TailSpin.Web project use the MVC TempData property to cache the survey definition
while the user is designing a new survey. Behind the scenes, the TempData property uses the ASP.NET
session object to store cached objects.
The New method that handles GET requests, shown here, is invoked when a user navigates to the
New Survey page.

C#
[HttpGet]
public ActionResult New()
{
 var cachedSurvey = (Survey)this.TempData[CachedSurvey];

 if (cachedSurvey == null)
 {
 cachedSurvey = new Survey(); // First time to the page
 }

 var model = this.CreateTenantPageViewData(cachedSurvey);
 model.Title = "New Survey";

 this.TempData[CachedSurvey] = cachedSurvey;

 return this.View(model);
}

http://msdn.microsoft.com/en-us/library/ff803371.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx

 103Partitioning Multi-Tenant Applications

The NewQuestion method is invoked when a user chooses the Add Question link on the Create a
new survey page. The method retrieves the cached survey that the New method created, ready to
display it to the user.

C#
[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult NewQuestion(Survey contentModel)
{
 var cachedSurvey = (Survey)this.TempData[CachedSurvey];

 if (cachedSurvey == null)
 {
 return this.RedirectToAction("New");
 }

 cachedSurvey.Title = contentModel.Title;
 this.TempData[CachedSurvey] = cachedSurvey;

 var model = this.CreateTenantPageViewData(new Question());
 model.Title = "New Question";

 return this.View(model);
}

104 chapter four

The AddQuestion method is invoked when a user chooses the Add to survey button on the Add a
new question page. The method retrieves the cached survey and adds the new question, then updates
the survey stored in the session.

C#
[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult AddQuestion(Question contentModel)
{
 var cachedSurvey = (Survey)this.TempData[CachedSurvey];

 if (!this.ModelState.IsValid)
 {
 this.TempData[CachedSurvey] = cachedSurvey;
 var model = this.CreateTenantPageViewData(
 contentModel ?? new Question());
 model.Title = "New Question";
 return this.View("NewQuestion", model);
 }

 if (contentModel.PossibleAnswers != null)
 {
 contentModel.PossibleAnswers =
 contentModel.PossibleAnswers.Replace("\r\n", "\n");
 }

 cachedSurvey.Questions.Add(contentModel);
 this.TempData[CachedSurvey] = cachedSurvey;
 return this.RedirectToAction(“New”);
}

 105Partitioning Multi-Tenant Applications

The New method that handles POST requests is invoked when a user
chooses the Create button on the Create a new survey page. The
method retrieves the completed, cached survey, saves it to persistent
storage, and removes it from the session.

C#
[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult New(Survey contentModel)
{
 var cachedSurvey = (Survey)this.TempData[CachedSurvey];

 if (cachedSurvey == null)
 {
 return this.RedirectToAction("New");
 }

 if (cachedSurvey.Questions == null ||
 cachedSurvey.Questions.Count <= 0)
 {
 this.ModelState.AddModelError("ContentModel.Questions",
 string.Format(CultureInfo.InvariantCulture,
 "Please add at least one question to the survey."));
 }

 contentModel.Questions = cachedSurvey.Questions;
 if (!this.ModelState.IsValid)
 {
 var model = this.CreateTenantPageViewData(contentModel);
 model.Title = "New Survey";
 this.TempData[CachedSurvey] = cachedSurvey;
 return this.View(model);
 }

 contentModel.Tenant = this.TenantName;
 try
 {
 this.surveyStore.SaveSurvey(contentModel);
 }
 catch (DataServiceRequestException ex)
 {
 ...
 }

 this.TempData.Remove(CachedSurvey);
 return this.RedirectToAction("Index");
}

Tailspin use the TempData
property instead of working
with the ASP.NET Session
object directly because the
entries in the TempData
dictionary live only for a
single request, after which
they’re automatically
removed from the session.
This makes it easier to
manage the contents of the
session.

106 chapter four

Tailspin just needed to modify the configuration settings in the Surveys application to change from
using the default, in-memory, ASP.NET session state provider to using the session state provider that
uses Windows Azure Caching. No application code changes were necessary. The following sections
describe the configuration changes Tailspin made.

Configuring a Cache in Windows Azure Caching
Tailspin uses the ASP.NET 4 Caching Session State Provider in the tenant web role. This requires
Tailspin to configure Windows Azure Caching in the project, and Tailspin chose to use a co-located
cache that uses a proportion of the web role’s memory. You can configure the settings for this type
of cache using the role properties in Visual Studio.
The following sample shows the part of the service configuration file where the cache configuration
is stored. The value for NamedCaches is the default set by the SDK; it allows you to change the cache
settings while the application is running simply by editing the configuration file.

XML
<ServiceConfiguration serviceName="Tailspin.Cloud" ... >
 <Role name="Tailspin.Web">
 <Instances count="1" />
 <ConfigurationSettings>
 ...
 <Setting
 name="Microsoft.WindowsAzure.Plugins
 .Caching.NamedCaches"
 value="{"caches":[{"name"
 :"default","policy"
 :{"eviction"
 :{"type":0},"expiration"
 :{"defaultTTL"
 :10,"isExpirable"
 :true,"type":1},"
 serverNotification"
 :{"isEnabled"
 :false}},"secondaries":0}]}" />
 <Setting
 name="Microsoft.WindowsAzure.Plugins
 .Caching.DiagnosticLevel"
 value="1" />
 <Setting name="Microsoft.WindowsAzure.Plugins
 .Caching.Loglevel"
 value="" />
 <Setting name="Microsoft.WindowsAzure.Plugins
 .Caching.CacheSizePercentage"
 value="30" />

 107Partitioning Multi-Tenant Applications

 <Setting name="Microsoft.WindowsAzure.Plugins
 .Caching.ConfigStoreConnectionString"
 value=”UseDevelopmentStorage=true” />
 </ConfigurationSettings>
 ...
 </Role>
 <Role name="Tailspin.Web.Survey.Public">
 ...
 </Role>
 <Role name="Tailspin.Workers.Surveys">
 ...
 </Role>
</ServiceConfiguration>

This example shows how to configure a default cache that use 30% of the available memory in the
Tailspin.Web web role instances. It uses the local storage emulator to store the cache’s runtime state,
and you must change this to use a Windows Azure storage account when you deploy the application
to Windows Azure.

Tailspin used NuGet to add the required assemblies and references to the Tailspin.Web.Survey.
Shared project.

Configuring the Session State Provider in the TailSpin.Web Application
The final changes that Tailspin made were to the Web.config file in the TailSpin.Web project. The
following example shows these changes.

XML
<configSections>
 ...
 <section name="dataCacheClients"
 type="Microsoft.ApplicationServer
 .Caching.DataCacheClientsSection,
 Microsoft.ApplicationServer.Caching.Core"
 allowLocation="true" allowDefinition="Everywhere"/>
</configSections>
...
<dataCacheClients>
 <tracing sinkType="DiagnosticSink"
 traceLevel="Error" />
 <dataCacheClient name="default"
 maxConnectionsToServer="5">
 <autoDiscover isEnabled="true"
 identifier="Tailspin.Web" />
 </dataCacheClient>
 </dataCacheClients>
 ...

108 chapter four

<system.web>
 <sessionState mode="Custom"
 customProvider="AppFabricCacheSessionStoreProvider">
 <providers>
 <add name="AppFabricCacheSessionStoreProvider"
 type="Microsoft.Web.DistributedCache
 .DistributedCacheSessionStateStoreProvider,
 Microsoft.Web.DistributedCache"
 cacheName="default" useBlobMode="false"
 dataCacheClientName="default" />
 </providers>
 </sessionState>
 ...
</system.web>

The sessionState section configures the application to use the default cache provided by the
Windows Azure Caching session state provider.

Caching Frequently Used Data
The public website frequently accesses survey definitions and tenant data in read-only mode to display
surveys to respondents. To reduce latency the application attempts to use cached versions of this data
if it is available.
The following code sample shows the TenantCacheHelper class that ensures that each tenant has its
own region in the cache in order to isolate its data from other tenants. The sample also shows how
the RemoveAllFromCache method removes all the cache entries that belong to a single tenant.

C#
internal static class TenantCacheHelper
{
 private static readonly DataCacheFactory CacheFactory;
 private static readonly IRetryPolicyFactory
 RetryPolicyFactory;
 ...

 internal static void AddToCache<T>(string tenant,
 string key, T @object) where T : class
 {
 GetRetryPolicy().ExecuteAction(() =>
 {
 DataCache cache = CacheFactory.GetDefaultCache();
 if (!cache.GetSystemRegions().Contains(
 tenant.ToLowerInvariant()))

 109Partitioning Multi-Tenant Applications

 {
 cache.CreateRegion(tenant.ToLowerInvariant());
 }
 cache.Put(key.ToLowerInvariant(), @object,
 tenant.ToLowerInvariant());
 });
 }

 internal static T GetFromCache<T>(string tenant,
 string key, Func<T> @default) where T : class
 {
 return GetRetryPolicy().ExecuteAction<T>(() =>
 {
 var result = default(T);

 var success = false;
 DataCache cache = CacheFactory.GetDefaultCache();
 result = cache.Get(key.ToLowerInvariant(),
 tenant.ToLowerInvariant()) as T;
 if (result != null)
 {
 success = true;
 }
 else if (@default != null)
 {
 result = @default();
 if (result != null)
 {
 AddToCache(tenant.ToLowerInvariant(),
 key.ToLowerInvariant(), result);
 }
 }
 TraceHelper.TraceInformation(
 "cache {2} for {0} [{1}]",
 key, tenant, success ? "hit" : "miss");
 return result;
 });
 }

 internal static void RemoveFromCache(string tenant,
 string key)

110 chapter four

 {
 GetRetryPolicy().ExecuteAction(() =>
 {
 DataCache cache = CacheFactory.GetDefaultCache();
 cache.Remove(key.ToLowerInvariant(),
 tenant.ToLowerInvariant());
 });
 }

 internal static void RemoveAllFromCache(string tenant)
 {
 GetRetryPolicy().ExecuteAction(() =>
 {
 DataCache cache = CacheFactory.GetDefaultCache();
 cache.RemoveRegion(tenant.ToLowerInvariant());
 });
 }

 ...
}

The following code sample shows how the SurveyStore class uses the TenantCacheHelper class to
maintain survey definitions in the cache.

C#
public class SurveyStore : ISurveyStore
{
 ...
 public void SaveSurvey(Survey survey)
 {
 ...
 TenantCacheHelper.AddToCache(survey.Tenant,
 slugName, survey);
 ...
 }

 public void DeleteSurveyByTenantAndSlugName(
 string tenant, string slugName)
 {
 ...
 TenantCacheHelper.RemoveFromCache(tenant, slugName);
 ...
 }

 111Partitioning Multi-Tenant Applications

 public Survey GetSurveyByTenantAndSlugName(string tenant,
 string slugName, bool getQuestions)
 {
 ...
 return this.CacheEnabled ?
 TenantCacheHelper.GetFromCache(tenant,
 slugName, resolver) : resolver();
 ...
 }
 ...
}

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/library/jj871057.aspx.
For more information about Windows Azure multi-tenant application design, see “Designing
Multitenant Applications on Windows Azure.”
For more information about routing in ASP.NET, see “ASP.NET Routing” on MSDN.
For more information about using CNAME entries in DNS, see the post “Custom Domain Names in
Windows Azure” on Steve Marx’s blog.
For a description of the different caching options available in Windows Azure, see “Caching in
Windows Azure.”
For more information about Windows Azure resource provisioning, see “Provisioning Windows Azure
for Web Applications.”
For more information about the hard and soft limits in Windows Azure, see “Best Practices for the
Design of Large-Scale Services on Windows Azure Cloud Services” on MSDN.
For more information about fluent APIs, see the entry for “Fluent interface” on Wikipedia.
For information about the Task Parallel Library, see “Task Parallel Library” on MSDN.
For information about the advantages of using the Task Parallel library instead of working with the
thread pool directly, see the following:
•	 The article “Optimize Managed Code for Multi-Core Machines” in MSDN Magazine.
•	 The blog post “Choosing Between the Task Parallel Library and the ThreadPool” on the Parallel

Programming with .NET blog.

http://msdn.microsoft.com/library/jj871057.aspx
http://msdn.microsoft.com/en-us/library/hh689716.aspx
http://msdn.microsoft.com/en-us/library/hh689716.aspx
http://msdn.microsoft.com/en-us/library/cc668201.aspx
http://blog.smarx.com/posts/custom-domain-names-in-windows-azure
http://blog.smarx.com/posts/custom-domain-names-in-windows-azure
http://msdn.microsoft.com/en-us/library/gg278356.aspx
http://msdn.microsoft.com/en-us/library/gg278356.aspx
http://msdn.microsoft.com/en-us/library/hh674493.aspx
http://msdn.microsoft.com/en-us/library/hh674493.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj717232.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj717232.aspx
http://en.wikipedia.org/wiki/Fluent_interface
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://msdn.microsoft.com/en-us/magazine/cc163340.aspx
http://blogs.msdn.com/b/pfxteam/archive/2009/10/06/9903475.aspx

113

This chapter explores how you can maximize performance and avail-
ability for multi-tenant applications that run in Windows Azure. This
includes considering how you can ensure that the application is scal-
able and responsive, and how you can take advantage of the elasticity
available in Windows Azure to minimize running costs while meeting
performance requirements.
Topics you will see discussed in this chapter include maximizing avail-
ability through geo-location, caching, and by using the Content Deliv-
ery Network (CDN); maximizing scalability through the use of Win-
dows Azure storage queues, background processing, and asynchronous
code; and implementing elasticity by controlling the number of web
and worker role instances that are deployed and executing.

Maximizing Availability in Multi-Tenant
Applications
Multiple tenants sharing an instance of a role or other resource in
Windows Azure increases the risk that the application becomes un-
available for several tenants. For example, if a multi-tenant worker role
becomes unavailable it affects all of the tenants sharing the role,
whereas the failure of a single-tenant worker role only affects that one
tenant. These risks can increase if tenants have the ability to apply
extensive customizations to the application. You must ensure that any
extensions to the application, added by either the provider or a tenant,
will not introduce errors that could affect the availability of the role.
In general, Windows Azure enables you to mitigate these risks by us-
ing multiple instances of resources. For example, you can run multiple
instances of any web or worker role. Windows Azure will detect any
failed role instances and route requests to other, functioning instanc-
es. Windows Azure will also attempt to restart failed instances.

5 Maximizing Availability,
Scalability, and Elasticity

One of the major
advantages Windows Azure
offers is the ability to use
and pay for only what
you actually need, while
being able to increase and
decrease the resources you
use on demand without
being forced to invest in
spare or standby capacity.

114 chapter five

However, running multiple instances of a role does impose some re-
strictions on your design. For example, because the Windows Azure
load balancer can forward requests to any instance of a web role, ei-
ther the role must be stateless or you must have a mechanism to share
state across instances.
In the case of Windows Azure storage accounts, which contain blobs,
tables, and queues, Windows Azure maintains multiple redundant
copies. By default, Windows Azure uses geo-replication to make a
copy of your data in another data center in addition to the multiple
copies held in the data center that hosts your storage account.

For more information about how Windows Azure protects your
data, see the blog post Introducing Geo-replication for Windows
Azure Storage.

It’s important, whether your application is multi-tenant or single-
tenant, that you understand the impact of a failure of any element of
your application. In particular, you must understand which failure
conditions Windows Azure can handle automatically, and which fail-
ure conditions your application or your administrators must handle.
Hosting copies of your Windows Azure application in multiple data-
centers is another scenario that can help to keep your application
available. For example, you can use Windows Azure Traffic Manager
to define failover policies in the event that a deployment of your ap-
plication in a particular datacenter becomes unavailable for some
reason. However, you must still carefully plan how you will store your
data and determine the data center or centers where you will store
each item of data.

At the time of writing, Windows Azure Traffic Manager is a
Community Technology Preview (CTP) release.

Maximizing Scalability in Multi-Tenant
Applications
One of the reasons for running applications in Windows Azure is the
scalability it offers. You can add resources to, or remove resources from
your application as and when they are required. As mentioned previ-
ously, Windows Azure applications typically comprise multiple ele-
ments such as web and worker roles, storage, queues, virtual networks,
and caches. One of the advantages of dividing the application into
multiple elements is that you can then scale each element individually.
You might be able to meet a change in your tenants’ processing require-
ments by doubling the number of worker role instances without in-
creasing the number of message queues, or the size of your cache.

You should also consider
the granularity of the
scalable elements of
your Windows Azure
application. For example,
if you start with a small
instance of a worker role
rather than a large instance,
you will have much finer
control over the quantity of
resources your application
uses (and finer control over
costs) because you can
add or remove resources in
smaller increments.

http://blogs.msdn.com/b/windowsazurestorage/archive/2011/09/15/introducing-geo-replication-for-windows-azure-storage.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/09/15/introducing-geo-replication-for-windows-azure-storage.aspx

 115M a ximizing Availability, Scalability, and Elasticity

In a multi-tenant application, you may decide to allocate groups of
tenants to specific resources. For example, you could have one work-
er role that is dedicated to handling premium tenants, and another
worker role that is dedicated to handling standard tenants. In this way,
you could scale the worker role that supports premium tenants inde-
pendently. This might be useful if you have a different SLA for pre-
mium tenants to that for standard tenants.
In addition to running multiple instances of a role, Windows Azure
offers some features such as caching that are specifically designed to
enhance the scalability of your application.

Caching
One of the most significant things you can do to enhance the scal-
ability of your Windows Azure application is to use caching. Typically,
you should try to cache frequently accessed data from blob storage,
table storage, and databases such as SQL Database. Caching can re-
duce the latency in retrieving data, reduce the workload on your stor-
age system, and reduce the number of storage transactions.
However, you must consider issues such as how much caching space
you will need, your cache expiration policies, your strategies for ensur-
ing that the cache is loaded with the correct data, and how much
staleness you are willing to accept. Appendix E, “Maximizing Scalabil-
ity, Availability, and Performance,” in the guide “Building Hybrid Applica-
tions in the Cloud on Windows Azure” explores caching strategies for a
range of scenarios.
In a multi-tenant application, you also need to consider how to isolate
tenant data within the cache. For more information about how to
partition a cache in Windows Azure, see Chapter 4, “Partitioning
Multi-Tenant Applications.”
Windows Azure offers two main caching mechanisms for application
data: Windows Azure Shared Caching and Windows Azure Caching. For
more information about the differences and similarities between these
two approaches, see “Overview of Caching in Windows Azure” on MSDN.

SQL Database Federation
You can use SQL Database Federation to scale out your SQL Data-
base databases across multiple servers. SQL Database federations
work by horizontally partitioning the data stored in your SQL Data-
base tables across multiple databases. For more information, see
“Federations in Windows Azure SQL Database.”

If you decide to use a
co-located Windows Azure
cache in one or more of
your role instances, you
must consider the impact of
allocating this memory to
the cache instead of to the
application.

The type of horizontal
partitioning used in SQL
Database federations
is often referred to as
“sharding.”

http://msdn.microsoft.com/en-us/library/hh868048.aspx
http://msdn.microsoft.com/en-us/library/hh868048.aspx
http://msdn.microsoft.com/en-us/library/hh871440.aspx
http://msdn.microsoft.com/en-us/library/hh871440.aspx
http://msdn.microsoft.com/en-us/library/hh914172.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh597452.aspx

116 chapter five

Shared Access Signatures
Shared Access Signatures (SAS) can help to make your application scalable by enabling clients to ac-
cess items stored in blobs, tables, or queues directly and offloading the work of mediating access to
these resources from your web and worker roles. For example, your application could use SAS to make
the contents of a blob, such as an image, directly accessible from a web browser, without the need
either to make the blob public, or the need to read private blob data in a web role and then pass it on
to the client browser.
You could also use SAS to give a worker role hosted in another Windows Azure subscription access
to specific rows in a table without either revealing your storage account keys or using a worker role
in your subscription to retrieve the data on behalf of the worker role in the other subscription.
For more information about SAS, see “Creating a Shared Access Signature” on MSDN.

Content Delivery Network
The Content Delivery Network (CDN) can host static application resources such as media elements
in edge caches. This reduces the latency for clients requesting these items, and it enhances the scal-
ability of your application by offloading some of the work typically performed by web roles.
For more information about the CDN, see “Caching” on the Windows Azure features page.

Implementing Elasticity in Multi-Tenant Applications
Elasticity refers to the ability of the application to dynamically scale out or in based on actual or an-
ticipated demand for resources. The discussion in the previous section about the scalability of web
and worker roles in multi-tenant applications also applies to elasticity. In particular, you must decide
at what level you want to enable elasticity: for individual tenants, for groups of tenants, or for all of
the tenants in the application. You also need to identify which elements of the application, such as
roles, storage, queues, and caches, must be elastic.
Elasticity is particularly important for multi-tenant applications because levels of demand may be less
predictable than for single-tenant applications. For a single-tenant application, you can probably pre-
dict peak usage times during the day and then schedule resource-hungry batch processing to other
times. In a multi-tenant application, and especially those with users from around the globe, there are
less likely to be predictable patterns of usage. However, if you have a large number of tenants it may
be that variations in resource usage are averaged out.

http://msdn.microsoft.com/en-us/library/windowsazure/hh508996.aspx
http://www.windowsazure.com/en-us/home/features/caching/

 117M a ximizing Availability, Scalability, and Elasticity

Scaling Windows Azure Applications
with Worker Roles
Because Windows Azure applications are typically made up of multi-
ple elements such as web and worker roles, tables, blobs, queues, and
caches you must consider how to design the application so that each
element can support multi-tenancy within the application as a whole,
keeping it available and scalable.
You must also consider how best to achieve these goals within the
web and worker roles that run your application code. It is possible,
though not advisable, to create a large and complex multi-tenant ap-
plication that has just a single web role (along with any storage that it
requires in the cloud). However, you must then ensure that your single
web role can handle multiple tenants and be scalable and available.
This will almost certainly require complex code that uses multi-
threading and asynchronous behavior.
One of the key reasons for using multiple worker role types in your
application is to simplify some aspects of the design of your applica-
tion. For example, by using worker roles you can easily implement
background processing tasks, and by using queues you can implement
asynchronous behavior. Furthermore, by using multiple role types you
can scale each one independently. You might have four instances of
your web role, two instances of worker role A, two instances of
worker role B, and eight queues. You could also scale roles vertically,
for example worker role A could be a small instance, and worker role
B a large instance.
By using worker roles to handle storage interactions in your applica-
tion, and queues to deliver storage insert, update, and delete requests
to the worker role, you can implement load leveling. This is particu-
larly important in the Windows Azure environment because both
Windows Azure storage and SQL Database can throttle requests
when the volume of requests gets too high.
Scalability is an issue for both single-tenant and multi-tenant architec-
tures. Although it may be acceptable to allow certain operations at
certain times to utilize most of the available resources in a single-tenant
application (for example, calculating aggregate statistics over a large
dataset at 2:00 A.M.), this is not an option for most multi-tenant ap-
plications where different tenants have different usage patterns.
You can use worker roles in Windows Azure to offload resource-
hungry operations from the web roles that handle user interaction.
These worker roles can perform tasks asynchronously when the web
roles do not require the output from the worker role operations to be
immediately available.

Use worker roles to implement
asynchronous background
processing tasks in your
Windows Azure application.

The timing of maintenance
tasks is typically more
difficult to plan for multi-
tenant applications. In a
single-tenant application
there may be windows of
time to perform system
maintenance without
affecting users. This is much
less likely to be the case in
a multi-tenant application.
Chapter 7, “Managing and
Monitoring Muli-Tenant
Applications,” discusses this
issue in more detail.

118 chapter five

Example Scenarios for Worker Roles
The following table describes some example scenarios where you might partition the functionality of
the application into separate worker roles for asynchronous job processing. Not all of these scenarios
come from the Surveys application; but, for each scenario, the table specifies how to trigger the job
and how many worker role instances it could use.

Scenario Description Solution

Update survey
statistics

The survey owner wants
to view the summary
statistics of a survey, such
as the total number of
responses and average
scores for a question.
Calculating these statistics
is a resource intensive task.

Every time a user submits a survey response the application puts a
message in a queue named statistics-queue with a pointer to the survey
response data.

Every ten minutes a worker role retrieves the pending messages from the
statistics-queue queue and adjusts the survey statistics to reflect those
survey responses. Only one worker instance should do the calculation
over a queue to avoid any concurrency issues when it updates the
statistics table.

Triggered by: Time

Execution model: Single worker or multiple workers with concurrency
control

Dump survey
data to
Windows
Azure SQL
Database

The survey owner wants
to analyze the survey data
using a relational database.
Transferring large volumes
of data is a time consuming
operation.

The survey owner requests the application export the responses for a
survey. This action creates a row in a table named exports and puts a
message in a queue named export-queue pointing to that row. Any
worker can dequeue messages from the export-queue queue and
execute the export. After it finishes, it updates the row in the exports
table with the status of the export process.

Triggered by: Message in queue

Execution model: Multiple workers

Store a survey
response

Every time a respondent
completes a survey, the
response data must be
reliably persisted to
storage. The user should
not have to wait while the
application persists the
survey data.

When a user submits a survey response the application writes the raw
survey data to blob storage and puts a message in a queue named
responses-queue. A worker role polls the responses-queue queue and,
when a new message arrives, it stores the survey response data in table
storage and puts a message in the statistics-queue queue to recalculate
the statistics.

Triggered by: Message in queue

Execution model: Multiple workers

Heartbeat Many workers running in
a grid-like system have to
send a “ping” at a fixed
time interval to indicate to
a controller that they are
still active. The heartbeat
message must be sent
reliably without interrupt-
ing the worker’s main task.

Every minute each worker executes a piece of code that sends a “ping.”

Triggered by: Time

Execution model: Multiple workers

You can scale the “Update survey statistics” scenario described in the preceding table by using one
queue and one worker role instance for every tenant, or even for every survey. What’s important is
that only one worker role instance should process and update data that is mutually exclusive within
the dataset.

 119M a ximizing Availability, Scalability, and Elasticity

Looking at these example scenarios suggests you can categorize worker roles that perform back-
ground processing according to the criteria in the following table.

Trigger Execution Types of tasks

Time Single worker An operation on a set of data that changes frequently, and that requires an exclusive
lock to avoid concurrency issues. Examples include aggregation, summarization, and
denormalization.

You may have multiple workers running, but you need some kind of concurrency
control to avoid corrupting the data. Depending on the scenario you need to choose
between optimistic and pessimistic locking by determining which approach enables
the highest throughput.

Time Multiple workers An operation on a set of data that is mutually exclusive from other sets so that there
are no concurrency issues.

Independent operations that don’t work over data, such as a “ping.”

Message in
a queue

Single or multiple
workers

An operation on a small number of resources (for example, a blob or several table
rows) that should start as soon as possible.

In the scenario where you use a single worker to update data that requires exclusive ac-
cess, you may be able to use multiple workers if you can implement a locking mechanism
to manage concurrent access. If you implement concurrency control with multiple work-
ers to avoid corrupting shared data, you must choose between optimistic and pessimistic
locking by determining which approach enables the highest throughput in your particular
scenario.

Triggers for Background Tasks
The trigger for a background task could be a timer or a signal in the form of a message in a queue.
Time-based background tasks are appropriate when the task must process a large quantity of data that
trickles in little by little. This approach is cheaper and will offer higher throughput than an approach
that processes each piece of data as it becomes available because you can batch the operations and
reduce the number of storage transactions required to process the data. You can implement a time-
based trigger by using a Timer object in a worker role that executes a task at fixed time interval.

For flexibility in scheduling tasks you could use the Windows Task Scheduler within a worker role,
or a specialized library such as Quartz.NET.

http://quartznet.sourceforge.net/

120 chapter five

If the frequency at which new items of data become available is low
and there is a requirement to process the new data as soon as possible,
using a message in a queue as a trigger is the appropriate approach.
You can implement a message-based trigger in a worker role by creat-
ing an infinite loop that polls a message queue for new messages. You
can retrieve either a single message or multiple messages from the
queue and execute a task to process the message or messages.

Execution Model
In Windows Azure you typically execute background tasks by using
worker roles. You could partition the application by having a separate
worker role type for each type of background task in your application,
but this approach means that you will need at least one separate
worker role instance for each type of task. Often you can make better
use of the available compute resources by having one worker role
handle multiple types of tasks, especially when you have high volumes
of data, because this approach reduces the risk of underutilizing your
compute nodes. This approach, often referred to as role conflation,
involves several trade-offs:
•	 The first trade-off is the complexity and cost of implementing

role conflation against the potential cost savings that result from
reducing the number of running worker role instances.

•	 The second trade-off is the cost savings of running fewer role
instances against the flexibility of being able to scale the resourc-
es assigned to individual tasks.

•	 The third trade-off is the time required to implement and test a
solution that uses role conflation, and other business priorities
such as time-to-market. In this scenario you can still scale out the
application by starting up additional instances of the worker role.

You can pull multiple
messages from a queue in a
single transaction.

 121M a ximizing Availability, Scalability, and Elasticity

Figure 1 shows the two scenarios for running tasks in worker roles.

Multiple task types per worker role

Task type A Task type B Task type C

Worker role

One task type per worker role

Task type A

Worker role A

Task type B

Worker role B

Task type C

Worker role C

Figure 1
Handling multiple background task types

In the scenario where multiple instances of a worker role can all execute the same set of task types
you must distinguish between the task types where it is safe to execute the task in multiple worker
roles simultaneously, and the task types where it is only safe to execute the task in a single worker role
at a time.

122 chapter five

To ensure that only one copy of a task can run at a time you must implement a locking mechanism. In
Windows Azure you could use a message on a queue or a lease on a blob for this purpose. The diagram
in Figure 2 shows that multiple copies of Tasks A and C can run simultaneously, but only one copy of
Task B can run at any one time. One copy of Task B acquires a lease on a blob and runs; other copies
of Task B will not run until they can acquire the lease on the blob.

Task type A
running

Task type B
blocked

Task type C
running

Worker role instance

Blob
(used as lock)

Task type A
running

Task type C
running

Worker role instance

Task type A
running

Task type B
blocked

Task type C
running

Worker role instance

Task type B
running

Lease

Figure 2
Multiple worker role instances

 123M a ximizing Availability, Scalability, and Elasticity

The MapReduce Algorithm
For some Windows Azure applications, being limited to a single task
instance for complex long-running calculations may have a significant
impact on performance and may limit the scalability of the applica-
tion. In these circumstances the MapReduce algorithm may provide a
way to parallelize the calculations across multiple worker role in-
stances.
The original concepts behind MapReduce come from the map and
reduce functions that are widely used in functional programming
languages such as Haskell, F#, and Erlang. In the current context,
MapReduce is a programming model that enables you to parallelize
operations on a large dataset. In the case of the Surveys application,
Tailspin considered using this approach to calculate the summary
statistics by using multiple, parallel tasks instead of a single task. The
benefit would be to speed up the calculation of the summary statis-
tics by using multiple worker role instances.

Hadoop on Windows Azure provides a framework that enables
you to optimize the type of operations that benefit from the
MapReduce programming model. For more information, see
“Introduction to Hadoop on Windows Azure.”

Goals and Requirements
This section describes the availability, scalability, and elasticity goals
and requirements that Tailspin has for the Surveys application.

Performance and Scalability when Saving Survey
Response Data
When a user completes a survey, the application must save the user’s
answers to the survey questions to storage so that the survey creator
can access and analyze the results as required. The way that the ap-
plication saves the summary response data must enable the Surveys
application to meet the following three requirements:
•	 The owner of the survey must be able to browse the results.
•	 The application must be able to calculate summary statistics from

the answers.
•	 The owner of the survey must be able to export the answers in a

format that enables detailed analysis of the results.

For the Surveys application,
speed is not a critical factor
in the calculation of the
summary statistics. Tailspin
is willing to tolerate a delay
while this summary data is
calculated, so it does not
use MapReduce.

http://www.windowsazure.com/en-us/develop/net/tutorials/intro-to-hadoop/

124 chapter five

Tailspin expects to see a very large number of users completing sur-
veys, and so the process that initially saves the data should be as ef-
ficient as possible. The application can handle any processing of the
data after it has been saved by using an asynchronous worker process.
For information about the design of this background processing func-
tionality in the Surveys application, see the section “Partitioning Web
and Worker Roles” in Chapter 4, “Partitioning Multi-Tenant Applica-
tions,” of this guide.
The focus in this chapter is on the way the Surveys application stores
the survey answers. Whatever type of storage the Surveys application
uses, it must be able to support the three requirements listed earlier
while ensuring the application remains scalable. Storage costs are also
a significant factor in the choice of storage type because survey an-
swers account for the majority of the application’s storage require-
ments; both in terms of space used and the number of storage trans-
actions required.

Summary Statistics
Tailspin anticipates that some surveys may have thousands, or even
hundreds of thousands of respondents, and wants to make sure that
the public website remains responsive for all users at all times. At the
same time, survey owners want to be able to view summary statistics
calculated from the survey responses submitted to date.
In addition to browsing survey responses, subscribers must be able to
view some basic summary statistics that the application calculates for
each survey, such as the total number of responses received, histo-
grams of the multiple-choice results, and aggregations such as aver-
ages of the range results. The Surveys application provides a predeter-
mined set of summary statistics that cannot be customized by
subscribers. Subscribers who want to perform a more sophisticated
analysis of their survey responses can export the survey data to a
Windows Azure SQL Database instance.
Because of the expected volume of survey response data, Tailspin
anticipates that generating the summary statistics will be an expensive
operation because of the large number of storage transactions that
must occur when the application reads the survey responses. Tailspin
wants to have a different SLA for premium and standard subscribers.
The Surveys application will prioritize updating the summary statistics
for premium subscribers over updating the summary statistics for
standard subscribers.
The public site where respondents fill out surveys must always have
fast response times when users save their responses, and it must re-
cord the responses accurately so that there is no risk of any errors in
the data when a subscriber comes to analyze the results.

Calculating summary statistics
is an expensive operation if
there are a large number of
responses to process.

Depending on the volume
of survey responses
received, transaction costs
may become significant
because calculating
summary statistical data
and exporting survey results
will require the application
to read survey responses
from storage.

 125M a ximizing Availability, Scalability, and Elasticity

The developers at Tailspin also want to be able to run comprehensive
unit tests on the components that calculate the summary statistics
without any dependencies on Windows Azure storage.

Geo-location in the Surveys Application
Tailspin plans to offer subscriptions to the Surveys application to a
range of users, from large enterprises to individuals. These subscribers
could be based anywhere in the world, and may want to run surveys
in other geographic locations. Each subscriber will select a geograph-
ic location during the on-boarding process; this location will be where
the subscriber creates surveys, accesses the survey response data, and
is also the default location for publishing surveys. Windows Azure
allows you to select a geographic location for your Windows Azure
services so that you can host your application close to your users.
Tailspin wants to allow subscribers to the Surveys service to override
their default geographical location when they publish a survey. By
default, a U.S. based subscriber publishes surveys to a U.S. based in-
stance of the Surveys application, and a European subscriber would
probably want to choose a Europe based service. However, it’s possible
that a subscriber might want to run a survey in a different geographic
region than the one the subscriber is located in. Figure 3 shows how a
U.S. based subscriber might want to run a survey in Europe:

There are also integration
tests that verify the end-
to-end behavior of the
application using Windows
Azure storage.

The Surveys application is a
“geo-aware” service.

US subscriber

Windows Azure US Windows Azure Europe

Tailspin core

Subscriber
website

Public
website

Public
website

Figure 3
A U.S. based subscriber running a survey in Europe

You can check the current status of any Windows Azure
datacenter on the “Windows Azure Service Dashboard.”

http://www.microsoft.com/windowsazure/support/status/servicedashboard.aspx

126 chapter five

Of course, this doesn’t address the question of how users will access
the appropriate datacenter. If a survey is hosted in only one datacen-
ter, the subscriber would typically provide a link for users that speci-
fies the survey in that datacenter; for example, http://eusurveys.tailspin.
com/tenant1/europesurvey. A tenant could also use a CNAME in its
DNS configuration to map an address such as http://eu.tenant1.com/
surveys/tenant1/europesurvey to the actual URL of the survey installed
in the North Europe datacenter at http://eusurveys.tailspin.com/
tenant1/europesurvey.
However, if a subscriber decides to run an international survey and
host it in more than one datacenter, Tailspin could allow it to config-
ure a Windows Azure Traffic Manager policy that routes users’ re-
quests to the appropriate datacenter—the one that will provide the
best response times for their location.
For more information, see the section “Reducing Network Latency for
Accessing Cloud Applications with Windows Azure Traffic Manager”
in Appendix E of the guide “Building Hybrid Applications in the Cloud
on Windows Azure.”

Making the Surveys Application Elastic
In addition to ensuring that Tailspin can scale out the Surveys applica-
tion to meet higher levels of demand, Tailspin wants the application
to be elastic and automatically scale out during anticipated and unex-
pected increases in demand for resources. The application should also
automatically release resources when it no longer needs them in order
to control its running costs.

Scalability
In addition to partitioning the application into web and worker roles,
queues, and storage, Tailspin plans to investigate any other features of
Windows Azure that might enhance the scalability of the application.
For example, it will evaluate whether the Surveys application will
benefit from using the Content Delivery Network (CDN) to share
media resources and offload some of the work performed by the web
roles. It will also evaluate whether Shared Access Signatures (SAS) will
reduce the workload of worker roles by making blob storage directly
and securely available to clients.
Tailspin also wants to be able to test the application’s behavior when
it encounters high levels of demand. Tailspin wants to verify that the
application remains available to all its users, and that the automatic
scaling that makes the application elastic performs effectively.
The scalability of the solution can be measured only by stress testing
the application. Chapter 7, “Managing and Monitoring Multi-Tenant
Applications,” outlines the approach that Tailspin took to stress test
the Surveys application, and describes some of its findings.

Tailspin expects that
elasticity will be important
for the public web site and
the worker role. However,
usage of the private
subscriber web site will be
much lower and Tailspin
does not expect to have to
scale this site automatically.

http://msdn.microsoft.com/en-us/library/hh868048.aspx
http://msdn.microsoft.com/en-us/library/hh868048.aspx

 127M a ximizing Availability, Scalability, and Elasticity

Overview of the Solution
This section describes the approach taken by Tailspin to meet the goals and requirements that relate
to making the application available, scalable, and elastic.

Options for Saving Survey Responses
As you saw in Chapter 3 of this guide, Tailspin chose to use Windows Azure blob storage to store
survey responses submitted by users filling out surveys in the public survey website. You will see more
details in this section of how Tailspin made that decision, and the factors it considered.
In addition to the two options, writing directly to storage and using the delayed write pattern, that
are discussed below, Tailspin also considered using shared access signatures to enable the client
browser to save survey responses directly to blob storage and post a notification directly to a message
queue. The benefit of this approach would be to offload the work of saving survey response data from
the web role. However, they discounted this approach because of the complexity of implementing a
reliable cross-browser solution and because of the loss of control in the web role over the process of
saving survey responses.

Writing Directly to Storage
Figure 4 shows the process Tailspin implemented for saving the survey responses by writing them di-
rectly to blob storage using code running in the web role instances.

Figure 4
Saving survey responses and generating statistics

Browser

Tp

Complete
answers

Get survey

Post

Thank You !!

Survey
website Blob Worker

Get

Statistics

Update

128 chapter five

Figure 4 also shows how the worker role instances collect each new set of responses from storage and
uses them to update the summary statistics for that survey. Not shown in this figure is the way that
the web role informs the worker role that a new set of answers has been saved in blob storage. It does
this by sending a message containing the identifier of the new set of survey answers to a notification
queue that the worker role listens on.
Amongst the concerns the developers had when choosing a storage mechanism was that saving a
complete set of answers directly to Windows Azure storage from the web role could cause a delay
(shown as Tp in Figure 4) at the crucial point when a user has just completed a survey. If a user has to
wait while the answers are saved, he or she may decide to leave the site before the operation com-
pletes. To address this concern, the developers considered implementing the delayed write pattern.

Using the Delayed Write Pattern
The delayed write pattern is a mechanism that allows code to hand off tasks that may take some time
to complete, without needing to wait for them to finish. The tasks can execute asynchronously as
background processes, while the code that initiated them continues to other perform other work or
returns control to the user.
The delayed write pattern is particularly useful when the tasks that must be carried out can run as
background processes, and you want to free the application’s UI for other tasks as quickly as possible.
However, it does mean that you cannot return the result of the background process to the user
within the current request. For example, if you use the delayed write pattern to queue an order placed
by a user, you will not be able to include the order number generated by the background process in
the page you send back.
In Windows Azure, background tasks are typically initiated by allowing the UI to hand off the task by
sending a message to a Windows Azure storage queue. Because queues are the natural way to com-
municate between the roles in a Windows Azure application, it’s tempting to consider using them for
an operation such as saving data collected in the UI. The UI code can write the data to a queue and then
continue to serve other users without needing to wait for operations on the data to be completed.

 129M a ximizing Availability, Scalability, and Elasticity

Figure 5 shows the delayed write pattern that the Surveys application
could use to save the results of a filled out survey to Windows Azure
storage.

Tp

Browser

Complete
answers

Get survey

Survey
website

Worker Storage

Get
Store

Update

Post

Thank You !!

Queue

Statistics

Figure 5
Delayed write pattern for saving survey responses in the Surveys application

Based on tests that Tailspin performed, writing to a queue
takes approximately the same time as writing to blob stor-
age, and so there is no additional overhead for the web
role compared to saving the data directly to blob storage
when using the delayed write pattern.

In this scenario a user browses to a survey, fills it out, and then submits
his or her answers to the Surveys website. The code running in the
web role instance puts the survey answers into a message on a queue
and returns a “Thank you” message to the user as quickly as possible,
minimizing the value of Tp in Figure 5. One or more tasks in the
worker role instances are then responsible for reading the survey re-
sponse from the queue, saving it to Windows Azure storage, and up-
dating the summary statistics. This operation must be idempotent to
avoid any possibility of double counting and skewing the results.

Surveys is a “geo-aware”
application. For example, a
European company might
want to run a survey in the
U.S. but analyze the data
locally in Europe; it could
use a copy of the Surveys
website and queues running
in a datacenter in the U.S.,
and use worker roles and
a storage account hosted
in a datacenter in Europe.
Moving data between
data centers will incur
bandwidth costs.

130 chapter five

Handling Large Messages
There is a 64 kilobyte (KB) maximum size for a message on a Windows
Azure queue, or 48 KB when using Base64 encoding for the message,
so the approach shown in Figure 5 works only if the size of each sur-
vey response is less than the maximum. In most cases, except for very
large surveys, it’s unlikely that the answers will exceed 48 KB but
Tailspin must consider how it will handle this limitation.
One option would be to implement a hard limit on the total response
size by limiting the size of each answer, or by checking the total re-
sponse size using JavaScript code running in the browser. However,
Tailspin wants to avoid this as it may limit the attractiveness of its
service to some subscribers.
Figure 6 shows how Tailspin could modify the delayed write pattern
solution to handle survey results that are greater than 64 KB in size. It
includes an optimization by saving messages that are larger than 64 KB
to Windows Azure blob storage and placing a message on the “Big
Surveys” queue to notify the worker role, which will read these mes-
sages from blob storage. Messages that are smaller than 64 KB are
placed directly onto a queue as in the previous example.

When you calculate the
size of messages you must
consider the effect of any
encoding, such as Base64,
you use to encode the data
before you place it in a
message.

Browser Survey
website

Tp

Complete
answers

Get survey

Post

Thank You !!

[]Size < 64 kb

Small
surveys

Big
surveys

Big
responses

Blob

Worker

Task 1 Task 2

Get survey

Get survey

[]Size > 64 kb"New survey"

"Survey"

Get survey ID

Figure 6
Handling survey results greater than 64 KB in size

 131M a ximizing Availability, Scalability, and Elasticity

The worker role now contains two tasks dedicated to saving survey responses and updating the sum-
mary statistics:
•	 Task 1 polls the “Small Surveys” queue and picks up the sets of answers. Then (not shown in the

figure) it writes them to storage and updates the summary statistics.
•	 Task 2 polls the “Big Surveys” queue and picks up messages containing the identifier of the new

answers sets that the web role has already written to storage. Then (not shown in the figure) it
retrieves the answers from storage and uses them to update the summary statistics.

Notice that, for messages larger than the limit for the queue, the process is almost identical to that
described in Figure 4 where Tailspin was not using the delayed write pattern.

An alternative approach to overcoming the constraint imposed by the maximum message size in
Windows Azure queues is to use Windows Azure Service Bus instead. Service Bus queues can handle
messages up to 256 KB in size, or 192 KB after Base64 encoding. For more details see “Windows
Azure Queues and Windows Azure Service Bus Queues - Compared and Contrasted.”

Another variation on the approach described here is to use a single queue that transports two differ-
ent message types. One message type holds a full survey response as its payload; the other message
type holds the address of the blob where the big survey response is stored. You can then implement
a RetrieveSurvey method in your messaging subsystem that returns either a small or big survey re-
sponse from the queue to your worker role. Your messaging subsystem now encapsulates all of the
logic for handling different response sizes, hiding it from the rest of your application.

Scaling the Worker Role Tasks
In the initial solution Tailspin implemented, writing directly to storage from the web role, the worker
role instances had only one task to accomplish: updating the summary statistics. When using the de-
layed write pattern the worker roles must accomplish two tasks: saving the answers to storage (where
the answer set is smaller than the limit for a queue) and updating the summary statistics.
It’s possible that Tailspin will want, or need, to scale these two tasks separately. It’s vital that new
answers are saved to storage as quickly as possible, whereas calculating the summary statistics may
not be such an urgent requirement. The summary statistics can be recalculated from the answers
should a failure occur, but the converse is not possible. Tailspin also wants to be able to differentiate
the service level for premium and standard subscribers by ensuring that summaries for premium sub-
scribers are available more quickly.
To scale the tasks separately Tailspin would need to use two separate worker roles:
•	 A worker role that just updates the statistics by polling a queue for messages containing the

identifier of new answer sets. In Figure 6 this is the “Big Surveys” queue that the web role uses to
inform worker roles that it has saved directly to storage a new set of answers that is larger than
the limit for a queue.

•	 A worker role that just saves new answer sets to storage by polling a queue for messages that
contain the answers. In Figure 6 this is the “Small Surveys” queue that the web role uses to post
sets of answers that are smaller than the limit for a queue to worker roles. However, this worker
role would then need to inform the worker role that updates the statistics that it has saved to
storage a new set of answers. It would do this by sending a message containing the identifier of
the new answer set to the “Big Surveys” queue shown in Figure 6.

http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx

132 chapter five

To provide different levels of service, such as the speed of processing summary statistics, Tailspin
could use separate queues for premium and standard subscribers and configure the worker role that
saves the answers to storage to send the notification message to the appropriate queue. The worker
role instances that poll these two queues could do so at different rates, or they could use an algorithm
that gives precedence to premium subscribers.

Comparing the Options
To identify the best solution for saving survey responses in the Surveys application, the developers at
Tailspin considered several factors:
•	 How to minimize the delay between a user submitting a set of answers and the website returning

the “Thank you” page.
•	 The opportunities for minimizing the storage transaction costs encountered with different

approaches for saving the answers and calculating the summary statistics.
•	 The impact on other parts of the system from the approach they choose for saving the answers.
•	 The choice of persistent storage mechanism (blobs or tables) that best suits the approach they

choose for saving and processing the answers, and will have the least impact on other parts of
the system while still meeting all their requirements.

To help them understand the consequences of their choices, Tailspin’s developers created the follow-
ing table to summarize the operations that must be executed for each of the three approaches they
considered.

 133M a ximizing Availability, Scalability, and Elasticity

Option Answer
set size

Web role storage
transactions

Worker role storage transactions Total # of
transactions

Write answers directly
to storage from the
web role.

Any Save answers to
storage.

Post message to
notification
queue.

Read message from notification queue.

Read answers from storage.

Read current summary statistics.

Write updated summary statistics.

Call complete on notification queue.

Seven

Use the delayed write
pattern with the worker
role handling the tasks
of writing to storage
and calculating
summary statistics.

< 64 KB Post answers to
“Small Surveys”
queue.

Read answers from “Small Surveys” queue.

Write answers to storage.

Read current summary statistics.

Write updated summary statistics.

Call complete on “Small Surveys” queue.

Six

> 64 KB Save answers to
storage.

Post message to
“Big Surveys”
queue.

Read message from “Big Surveys” queue.

Read answers from storage.

Read current summary statistics.

Write updated summary statistics.

Call complete on “Big Surveys” queue.

Seven

Use the delayed write
pattern with separate
worker roles for the
tasks of writing to
storage and calculating
summary statistics.

< 64 KB Post answers to
“Small Surveys”
queue.

Save survey worker role:

Read answers from “Small Surveys” queue.

Write answers to storage.

Call complete on “Small Surveys” queue.

Post message to “Big Surveys” queue.

Update statistics worker role:

Read message from “Big Surveys” queue.

Read answers from storage.

Read current summary statistics.

Write updated summary statistics.

Call complete on “Big Surveys” queue.

Ten

> 64 KB Save answers to
storage.

Post message to
“Big Surveys”
queue.

Update statistics worker role:

Read message from “Big Surveys” queue.

Read answers from storage.

Read current summary statistics.

Write updated summary statistics.

Call complete on “Big Surveys” queue.

Seven

Some points to note about the contents of the table are:
•	 Worker roles can read messages from a queue in batches, which reduces the storage transaction

costs because reading a batch of messages counts as a single transaction. However, this means
that there may be a delay between answers being submitted and the worker role processing them
and, when using the delayed write pattern with small answer sets, saving them to storage.

134 chapter five

•	 Using the delayed write pattern with two separate worker role types allows you to scale the two
tasks (writing to storage and calculating the summary statistics) separately. This means that the
two tasks must access the answers separately and in the correct order. One task reads them from
the answers queue, writes them to storage, and only then posts a message to a queue to indicate
new answers are available. The second task reads the answers from storage when the message is
received, and updates the statistics.

•	 Using the delayed write pattern when messages are larger than the limit for the queue is not
really the delayed write pattern at all. It is fundamentally the same as the original approach of
saving the answers direct to storage.

•	 Because the majority of answer sets are likely to be smaller than the limit for the queue, the third
option that uses separate worker role types will typically use more storage transactions than if
there was a predominance of large answer sets.

Keeping the UI Responsive when Saving Survey Responses
A key design goal is to minimize the time it takes to save a survey response and return control to the
UI. Tailspin does not want survey respondents to leave the site while they wait for the application to
save their survey responses. Irrespective of the way that the survey responses are saved to storage, the
Surveys application will use a task in the worker role instances to calculate and save the summary
statistics in the background after the responses are saved.
The initial approach that Tailspin implemented in the Surveys application requires the web role to
perform two operations for each set of answers that users submit. It must first save them to storage
and then, if that operation succeeds, post a message to the notification queue so that worker roles
know there is a new survey response available.
When using the delayed write pattern and the total size of the answer set is smaller than the limit for
Windows Azure storage queues, the web role instances need to perform only one operation. They
just need to post the answers to a queue, and all of the processing will occur in the background. The
worker roles will write the answers to storage and update the summary statistics; meanwhile the web
role can return the “Thank you” page immediately.
If the total size of the answer set is larger than the limit for Windows Azure storage queues, the web
role instances will need to perform two operations: saving the answers and then sending a message
to the notification queue. However, it is expected that the vast majority of surveys will not produce
answer sets that are larger than the limit for a queue.
Even if Tailspin wants to offer premium subscribers the capability for their summary statistics to be
updated more quickly than those of standard subscribers, and does this by using two separate worker
role types, the web role will still need to perform only one operation unless the answers set size is
larger than the limit for a queue.
Therefore, the most efficient option from the point of view of minimizing UI delay will be to use the
delayed write pattern because, in the vast majority of cases, it will require only a single operation
within the web role code.

 135M a ximizing Availability, Scalability, and Elasticity

Minimizing the Number of Storage Transactions
Reading and writing survey responses account for the majority of
storage transactions in the Tailspin Surveys application, and with high
monthly volumes this can account for a significant proportion of
Tailspin’s monthly running costs.
The option that requires the least number of storage transactions is the
delayed write pattern with the worker role saving the answers and
calculating the summary as one operation. This option will require an
additional storage transaction for survey answers larger than the limit
for a queue, but this is not expected to occur very often. However, as
you saw in the previous section, this option limits the capability to scale
the tasks separately in the worker role, and may make using separate
queues for premium and standard subscribers more complicated.
The next best option is to write the answers directly to storage using
code in the web role. To save a complete survey response directly to
blob storage requires a single storage transaction. If the Surveys ap-
plication used Windows Azure table storage instead of blob storage,
and can use a single entity group transaction to save a survey answers
to table storage, it could also save each complete survey response in
a single transaction.
The third option, using the delayed write pattern with separate
worker role types for saving the answers and updating the summary
statistics will require the highest number of storage transactions for
the vast majority of survey answers.

The Impact on Other Parts of the System
The decision on the type of storage to use (blob or table) and wheth-
er to use the delayed write pattern can have an impact on other parts
of the application, and on the associated systems and services. Tail-
spin’s developers carried out a set of spikes to determine whether
using blob storage would make it difficult or inefficient to implement
the other parts of the Surveys application that read the survey re-
sponse data. This includes factors such as paging through survey re-
sponses in the UI, generating summary statistics, and exporting to a
SQL Database instance.
They determined that using blob storage for storing survey response
data will not introduce any significant additional complexity to the
implementation, and will not result a significant increase in the num-
ber of storage transactions within the system. Chapter 3, “Choosing a
Multi-Tenant Data Architecture,” describes how Tailspin implemented
both paging through survey responses stored in blob storage and ex-
porting survey response data to SQL Database. The section “Options
for Generating Summary Statistics” in this chapter describes how Tail-
spin implemented the export feature in the Surveys application.

To be able to save a
complete survey response
in a single entity group
transaction, the survey
answer set must have fewer
than 100 answers, and must
be stored in a single table
partition. An entity group
transaction batches a group
of changes to a single table
partition into a single,
atomic operation that
counts as a single storage
transaction. An entity group
transaction must update
fewer than 100 entities and
the total request size must
be less than 4 MB in size.

136 chapter five

The delayed write pattern has the advantage that it makes it easy to
perform any additional processing on a survey response before it is
saved, without delaying the UI. This processing might include format-
ting the data or adding contextual information. The web role places
the raw survey response in a message. The worker role retrieves the
message from the queue, performs any required processing on the
data in the message, and then saves the processed survey response.
Tailspin did not identify any additional processing that the Surveys
application could perform on the survey responses that would help to
optimize the processes that read the survey data. The developers at
Tailspin determined that they could implement all of these processes
efficiently, whether the survey response data was stored in blob or
table storage.

Choosing between Blob and Table Storage
The initial assumption of Tailspin’s developers during the early design
process for the Surveys application was that it should save each sur-
vey response as a set of rows in Windows Azure table storage. How-
ever, before making the final decision, the developers carried out
some tests to find the comparable speed of writing to table storage
and blob storage. They created some realistic spikes to compare how
long it takes to serialize and save a survey response to a blob with how
long it takes to save the same survey response as a set of entities to
table storage in a single entity group transaction. They found that, in
their particular scenario, saving to blob storage is significantly faster.
When using the delayed write pattern, the additional time to save the
survey response data will affect only the worker role. The web role UI
code will need only to write the survey responses to a queue. There
will be no additional delay for users when submitting their answers.
However, the added overhead in the worker role may require extra
resources such as additional instances, which will increase the running
cost of the application.
If Tailspin chose not to use the delayed write pattern, the increase in
time for the web role to write to table storage will have an impact on
the responsiveness of the UI. Using table storage will also have an
impact when the delayed write pattern is used and the answer sets are
predominantly larger than the limit for a queue. Therefore, in order to
allow for this possibility and to make future extensions to the applica-
tion that may require larger messages to be accepted easier, Tailspin
chose to store the answers in blob storage.

Pre-processing the data before
the application saves it is
typically used to avoid the
need to perform the processing
every time the data is read.
If the application writes the
data once, but reads it n times,
the processing is performed
only once, and not n times.

If you use table storage
you must consider how
your choice of partition
key affects the scalability
of your solution both
when writing and reading
data. If we chose to store
the survey answers in
table storage we’d need
to choose a partition key
that allows the Surveys
application to save each
survey response using an
entity group transaction,
and read survey responses
efficiently when it
calculates summary
statistics or exports data to
SQL Database.

 137M a ximizing Availability, Scalability, and Elasticity

Options for Generating Summary Statistics
To meet the requirements for generating summary statistics, the developers at Tailspin decided to use
a worker role to handle the task of generating these from the survey results. Using a worker role en-
ables the application to perform this resource intensive process as a background task, ensuring that
the web role responsible for collecting survey answers is not blocked while the application calculates
the summary statistics.
Based on the framework for worker roles described in Chapter 4, “Partitioning Multi-Tenant Applica-
tions,” this asynchronous task is one that will be triggered on a schedule. In addition, because it up-
dates a single set of results, it must run as a single instance process or include a way to manage concur-
rent access to each set of summary data.
To calculate the survey statistics, Tailspin considered two basic approaches. The first approach is for
the task in the worker role to retrieve all the survey responses to date, recalculate the summary sta-
tistics, and then save the summary data over the top of the existing summary data. The second ap-
proach is for the task in the worker role to retrieve all the survey response data that the application
has saved since the last time the task ran, and use this data to adjust the summary statistics to reflect
the new survey results.

You can use a queue to maintain a list of all new survey responses. The summarization task is
triggered on a schedule that determines how often the task should look at the queue for new survey
results to process.

The first approach is the simplest to implement, because the second approach requires a mechanism
for tracking which survey results are new. The second approach also depends on it being possible to
calculate the new summary data from the old summary data and the new survey results, without re-
reading all the original survey results.

For many types of summary statistic (such as total, average, count, and standard deviation)
it is possible to calculate the new values based on the current values and the new results.
For example if you have already received five answers to a numeric question and you
know that the average of those answers is four, then if you receive a new response with
an answer of 22, then the new average is ((5 * 4) + 22)/6 which equals seven. Note that
you need to know both the current average and the current number of answers to calcu-
late the new average. However, suppose you want one of your pieces of summary data to
be a list of the ten most popular words used in answering a free-text question. In this
case, you would always have to process all of the survey answers, unless you also main-
tained a separate list of all the words used and a count of how often they appeared. This
adds to the complexity of the second approach.

138 chapter five

The key difference between the two approaches is in the number of storage transactions required to
perform the summary calculations: this directly affects both the cost of each approach and time it
takes to perform the calculations. The graph in Figure 7 shows the result of an analysis that compares
the number of transactions per month of the two approaches for three different daily volumes of
survey answers. The graph shows the first approach on the upper line with the Recalculate label, and
the second approach on the lower line with the Merge label.

1,000,000

100,000

10,000

1,000

100

10

1

M
ill

io
ns

 o
f s

to
ra

ge
 t

ra
ns

ac
tio

n

Merge

Recalculate

209

4

279,000

Survey responses per day 5,000,000 20,000,000

Note: the vertical scale is logarithmic

15,000

1,350

69,750

5,400

Figure 7
Comparison of transaction numbers for alternative approaches to calculating summary statistics

The graph clearly shows that fewer storage transactions are required if Tailspin adopts the merge
approach. Tailspin decided to implement the merge approach in the Surveys application.

The vertical cost scale on the chart is logarithmic. The analysis behind this chart makes a number of
“worst case” assumptions about the way the application processes the survey results. The chart is
intended to illustrate the relative difference in transaction numbers between the two approaches; it
is not intended to show absolute numbers.

It is possible to optimize the recalculate approach if you decide to sample the survey answers instead
of processing every single one when you calculate the summary data. You would need to perform
some detailed statistical analysis to determine what proportion of results you need to select to calcu-
late the summary statistics within an acceptable margin of error.

 139M a ximizing Availability, Scalability, and Elasticity

Scaling out the Generate Summary Statistics Task
The Tailspin Surveys application must be able to scale out to handle an increase in the number of
survey respondents. This should include enabling multiple instances of the worker role that performs
the summary statistics calculation and builds the ordered list of survey responses. For each survey
there is just a single set of summary statistics, so the application must be able to handle concurrent
access to a single blob from multiple worker roles without corrupting the data. Tailspin considered
four options for handling concurrency:
•	 Use a single instance of the worker role. While it is possible to scale up by using a larger instance,

there is a limit to the scalability of this approach. Furthermore, this option does not include any
redundancy if that instance fails.

•	 Use the MapReduce programming model. This approach would enable Tailspin to use multiple
task instances, but would add to the complexity of the solution.

•	 Use pessimistic concurrency. In this approach, the statistics associated with several specific
surveys are locked while a worker role processes a batch of new responses. The worker role reads
a batch of messages from the queue, identifies the surveys they are associated with, locks those
specific sets of summary statistics, calculates and saves the new summary statistics, and then
releases the locks. This would mean that other worker instances trying to update any of the same
sets of summary statistics are blocked until the first instance releases the locks.

•	 Use optimistic concurrency. In this approach, when the worker role instance processes a batch of
messages, it checks for each message whether or not another task is updating that specific
survey’s summary statistics. If another task is already updating the statistics, the current task puts
the message back on the queue to be reprocessed later; otherwise it goes ahead with the update.

Tailspin performed stress testing to determine the optimum solution and chose the fourth option—
using optimistic concurrency. It allows Tailspin to scale out the worker role instance, allows for a
higher throughput of messages than the pessimistic concurrency approach, and offers better perfor-
mance because it does not require any locking mechanism. Although MapReduce would also work, it
adds more complexity to the system than using the optimistic concurrency approach.

For more information about the stress tests Tailspin carried out, see Chapter 7, “Managing and
Monitoring Multi-tenant Applications.” For a description of the MapReduce programming model
see the section “The MapReduce Algorithm” earlier in this chapter.

Using Windows Azure Caching
Chapter 4, “Partitioning Multi-Tenant Applications,” describes how the Tailspin uses Windows Azure
Caching to support the Windows Azure Caching session state provider, and how Tailspin ensures
tenant data is isolated within the cache. Tailspin uses Windows Azure Caching to cache survey defini-
tions and tenant data in order to reduce latency in the public Surveys website.
Tailspin chose to use Windows Azure Caching, configured a cache that is co-located in the Tailspin.
Web worker role, and uses 30% of the available memory. Tailspin will monitor cache utilization levels
and the performance of the Tailspin.Web role in order to review whether these settings provide
enough cache space without affecting the usability of the private tenant web site.
The section “Caching Frequently Used Data” in Chapter 4 shows how caching is implemented in the
data access layer. Tailspin Surveys implements caching behavior in the SurveyStore and TenantStore
classes.

140 chapter five

Using the Content Delivery Network
This section looks at how the Windows Azure Content Delivery Net-
work (CDN) can improve the user experience. The CDN allows you
to cache blob content at strategic locations around the world to make
that content available with the maximum possible bandwidth to users,
and minimize network latency. The CDN is designed to be used with
blob content that is relatively static.
For the Surveys application, the developers at Tailspin have identified
two scenarios where they could use the CDN:
•	 Tailspin is planning to commission a set of training videos with

titles such as “Getting Started with the Surveys Application,”
“Designing Great Surveys,” and “Analyzing your Survey Results.”

•	 Hosting the custom images and style sheets that subscribers
upload.

In both of these scenarios, users will access the content many times
before it’s updated. The training videos are likely to be refreshed only
when the application undergoes a major upgrade, and Tailspin expects
subscribers to upload corporate logos and style sheets that reflect
corporate branding. Both of these scenarios will also account for a
significant amount of bandwidth used by the application. Online
videos will require sufficient bandwidth to ensure good playback qual-
ity, and every request to fill out a survey will result in a request for a
custom image and style sheet.
One of the requirements for using the CDN is that the content must
be in a blob container that you configure for public, anonymous ac-
cess. Again, in both of the scenarios, the content is suitable for unre-
stricted access.
For information about the current pricing for the CDN, see the “Cach-
ing” section of the page “Pricing Details” on the Windows Azure
website.

For data cached on the CDN, you are charged for out-
bound transfers based on the amount of bandwidth you
use and the number of transactions. You are also charged
at the standard Windows Azure rates for the transfers
that move data from blob storage to the CDN. Therefore,
it makes sense to use the CDN for relatively static con-
tent. With highly dynamic content you could, in effect,
pay double because each request for data from the CDN
triggers a request for the latest data from blob storage.

The CDN enables you to
have data that is stored in
blobs cached at strategic
locations around the
world. You can also use
the CDN as an endpoint
for delivering streaming
content from Windows
Azure Media Services.

http://www.windowsazure.com/en-us/pricing/details/

 141M a ximizing Availability, Scalability, and Elasticity

To use the CDN with the Surveys application, Tailspin will have to make a number of changes to the
application. The following sections describe the solution that Tailspin plans to implement in the fu-
ture; the current version of the Surveys application does not use the CDN.

Setting the Access Control for the BLOB Containers
Any blob data that you want to host on the CDN must be in a blob container with permissions set to
allow full public read access. You can set this option when you create the container by calling the
BeginCreate method of the CloudBlobContainer class or by calling the SetPermissions method on
an existing container. The following code shows an example of how to set the permissions for a
container.

C#
protected void SetContainerPermissions(String containerName)
{
 CloudStorageAccount cloudStorageAccount =
 CloudStorageAccount.Parse(
 RoleEnvironment.GetConfigurationSettingValue(
 "DataConnectionString "));

 CloudBlobClient cloudBlobClient =
 cloudStorageAccount.CreateCloudBlobClient();

 CloudBlobContainer cloudBlobContainer =
 new CloudBlobContainer(containerName, cloudBlobClient);

 BlobContainerPermissions blobContainerPermissions =
 new BlobContainerPermissions();

 blobContainerPermissions.PublicAccess =
 BlobContainerPublicAccessType.Container;

 cloudBlobContainer.SetPermissions(
 blobContainerPermissions);
}

Notice that the permission type used to set full public access is BlobContainerPublicAccessType.
Container.

Configuring the CDN and Storing the Content
You configure the CDN at the level of a Windows Azure storage account through the Windows Azure
Management Portal. After you enable CDN delivery for a storage account, any data in public blob
containers is available for delivery by the CDN.
The application must place all the content to be hosted on the CDN into blobs in the appropriate
containers. In the Surveys application, media files, custom images, and style sheets can all be stored in
these blobs. For example, if a training video is packaged with a player application in the form of some
HTML files and scripts, all of these related files can be stored as blobs in the same container.

142 chapter five

You must be careful if scripts or HTML files contain relative paths to other files in the same blob
container because the path names will be case sensitive. This is because there is no real folder
structure within a blob container, and any “ folder names” are just a part of the file name in a single,
flat namespace.

Configuring URLs to Access the Content
Windows Azure allocates URLs to access blob data based on the account name and the container
name. For example, if Tailspin created a public container named “video” for hosting their training videos,
you could access the “Getting Started with the Surveys Application” video directly in Windows Azure
blob storage at http://tailspin.blob.core.windows.net/video/gettingstarted.html. This assumes that the
gettingstarted.html page is a player for the media content.
The CDN provides access to hosted content using a URL in the form http://<uid>.vo.msecnd.net/, so
the Surveys training video would be available on the CDN at http://<uid>.vo.msecnd.net/video/
gettingstarted.html. Figure 8 illustrates this relationship between the CDN and blob storage.

http://tailspin.blob.core.windows.net/video
/gettingstarted.html

Windows Azure Blob Service

Get http://<uid>.vo.msecnd.net/video/gettingstarted.html

C D N

Figure 8
The Content Delivery Network

 143M a ximizing Availability, Scalability, and Elasticity

You can configure a CNAME entry in DNS to map a custom URL to
the CDN URL. For example, Tailspin might create a CNAME entry to
make http://files.tailspin.com/video/gettingstarted.html point to the
video hosted on the CDN. You should verify that your DNS provider
configures the DNS resolution to behave efficiently; the performance
benefits of using the CDN could be offset if the name resolution of
your custom URL involves multiple hops to a DNS authority in a dif-
ferent geographic region.

For information about how to use a custom DNS name with
your CDN content, see “How to Map CDN Content to a
Custom Domain.”

When a user requests content from the CDN, Windows Azure auto-
matically routes their request to the closest available CDN endpoint.
If the blob data is found at that endpoint it’s returned to the user. If
the blob data is not found at the endpoint it’s automatically retrieved
from blob storage before being returned to the user and cached at the
endpoint for future requests.

Setting the Caching Policy
All blobs cached by the CDN have a time-to-live (TTL) period that
determines how long they will remain in the cache before the CDN
goes back to blob storage to check for updated data. The default
CDN caching policy uses an algorithm to calculate the TTL for cached
content based on when the content was last modified in blob storage.
The longer the content has remained unchanged in blob storage, the
greater the TTL, up to a maximum of 72 hours.

The CDN retrieves content from blob storage only if it is not in
the endpoint’s cache, or if it has changed in blob storage.

You can also explicitly set the TTL by using the CacheControl prop-
erty of the BlobProperties class. The following code example shows
how to set the TTL to two hours.

C#
blob.Properties.CacheControl = "max-age=7200";

For more information about how to manage expiration policies with
CDN, see “How to Manage Expiration of Blob Content.”

If the blob data is not
found at the endpoint, you
will incur Windows Azure
storage transaction charges
when the CDN retrieves
the data from blob storage.

http://msdn.microsoft.com/en-us/library/windowsazure/gg680307.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg680307.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg680306

144 chapter five

Hosting Tailspin Surveys in Multiple Locations
Hosting a survey in a web role in a different geographic location
doesn’t, by itself, mean that people filling out the survey will see the
best response times when they use the site. To render the survey, the
application must retrieve the survey definition from storage, and the
application must save the completed survey results to storage. If the
application storage is in the U.S. datacenter, there is little benefit to
European users accessing a website hosted in the European datacenter.
Figure 9 shows how Tailspin designed the application to handle this
scenario and resolve the issue just described.

US subscriber

Windows Azure US Windows Azure Europe

Tailspin core Tailspin
core

Subscriber
website Public

website
Public

website

1 2

4

3

3

Push survey definition

Synchronize

Save
survey

Collect
data

Figure 9
Hosting a survey in a different geographic location

The following describes the steps illustrated in Figure 9:
1. The subscriber designs the survey, and the application saves the

definition in storage hosted in the U.S. datacenter.
2. The Surveys application pushes the survey definition to another

application instance in a European datacenter. This needs to
happen only once.

3. Survey respondents in Europe fill out the survey, and the applica-
tion saves the data to storage hosted in the European datacenter.

4. The application transfers the survey results data back to storage
in the U.S. datacenter, where it is available to the subscriber for
analysis.

Tailspin must create
separate cloud services and
storage accounts for each
region where it plans to
allow subscribers to host
surveys.

 145M a ximizing Availability, Scalability, and Elasticity

Tailspin could use caching to avoid the requirement to transfer the survey definitions between data
centers in step 2. It could cache the survey definition in Europe and load the survey definition into the
cache from the U.S. storage account. This approach means that the Surveys application hosted in
Europe must be able to reach the storage account in the U.S. datacenter to be able to load survey
definitions into the cache. Geo-replication of data in the U.S. datacenter provides resilience in the
case that a major disaster affects the U.S. datacenter, but does not provide resilience in the case of
connectivity problems between Europe and the U.S. For more information, see “Introducing Geo-
replication for Windows Azure Storage.”

Synchronizing Survey Statistics
While the application data (the survey definitions and the answers submitted by users) is initially
stored in the datacenter where subscriber chose to host the survey, the application copies the data
to the data center where the subscriber’s account is hosted. Figure 10 illustrates the roles and storage
elements in a scenario where the subscriber is based in Europe and has chosen to host a survey in a
U.S. datacenter.

Browser

Tp

Complete
answers

Get survey

Post

Thank You !!

Survey
website Blob Worker

Get

Statistics

Update

Get Save

Blob Worker

U.S. data center European data center

Figure 10
Saving the responses from a survey hosted in a different datacenter

http://blogs.msdn.com/b/windowsazurestorage/archive/2011/09/15/introducing-geo-replication-for-windows-azure-storage.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2011/09/15/introducing-geo-replication-for-windows-azure-storage.aspx

146 chapter five

This scenario is similar to the scenario described earlier in the section
“Writing Directly to Storage” earlier in this chapter, but there is now
an additional worker role. This worker role is responsible for moving
the survey response data from the datacenter where the subscriber
chose to host the survey to the datacenter hosting the subscriber’s
account. This way, the application transfers the survey data between
datacenters only once instead of every time the application needs to
read it; this minimizes the costs associated with this scenario.
In some scenarios, it may make sense to pre-process or summarize the
data in the datacenter where it’s collected and transfer back only the
summarized data to reduce bandwidth costs. For the Surveys applica-
tion, Tailspin decided to move all the data back to the subscriber’s
datacenter. This simplifies the implementation, helps to optimize the
paging feature, ensures that each response is moved between data-
centers only once, and ensures that the subscriber has access to all the
survey data in the local data center.
The sample application does not currently implement this scenario.

When you deploy a Windows Azure application, you
select the sub-region where you want to host the applica-
tion. This sub-region effectively identifies the datacenter
hosting your application. You can also define affinity
groups to ensure that interdependent Windows Azure
applications and storage accounts are grouped together.
This improves performance because Windows Azure
co-locates members of the affinity group in the same
datacenter cluster, and reduces costs because data trans-
fers within the same datacenter do not incur bandwidth
charges. Affinity groups offer a small advantage over
simply selecting the same sub-region for your hosted
services because Windows Azure makes a “best effort”
to optimize the location of those services.

The Surveys application
reads survey response
data when it calculates
the statistics, when a
subscriber browses through
the responses, and when
it exports the data to
Windows Azure SQL
Database.

 147M a ximizing Availability, Scalability, and Elasticity

Autoscaling and Tailspin Surveys
Tailspin plans to use the Autoscaling Application Block to make the
Surveys application elastic. It will configure rules that set the mini-
mum and maximum number of instances for each role type within
Tailspin Surveys. For each role type, the minimum number of instanc-
es will be five, and Tailspin will adjust the maximum as more subscrib-
ers sign up for the service.
Tailspin will also configure dynamic scaling that is based on monitor-
ing key metrics in the Tailspin Surveys application. Initially, it will
create rules based on the CPU usage of the different roles and the
length of the Windows Azure queues that pass messages to the
worker role instances.
Tailspin does not plan to use scheduled rules that adjust the number
of role instances based on time and date. However, it will analyze us-
age of the application to determine whether there are any usage pat-
terns that it can identify in order to preemptively scale the application
at certain times.

For more information about how to add the Autoscaling
Application Block to a Windows Azure application and how to
configure your autoscaling rules, see the “Enterprise Library 5.0
Integration Pack for Windows Azure.”

Inside the Implementation
Now is a good time to walk through some of the code in the Tailspin
Surveys application in more detail. As you go through this section you
may want to download the Visual Studio solution for the Tailspin
Surveys application from http://wag.codeplex.com/.
The Tailspin Surveys application uses a single worker role type to host
two different asynchronous background tasks:
•	 Calculating summary statistics.
•	 Exporting survey response data to SQL Database.

The task that calculates
the summary statistics also
maintains the list of survey
responses that enables
subscribers to page through
responses. Chapter 3, “Choosing
a Multi-Tenant Data
Architecture,” describes this
part of the task. Chapter 3
also describes how the export
to Windows Azure SQL
Database works.

http://msdn.microsoft.com/en-us/library/hh680918(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680918(PandP.50).aspx
http://wag.codeplex.com/

148 chapter five

Saving the Survey Response Data Asynchronously
Before the task in the worker role can calculate the summary statistics, the application must save the
survey response data to blob storage. The following code from the SurveysController class in the
TailSpin.Web.Survey.Public project shows how the application saves the survey responses.

C#
[HttpPost]
public ActionResult Display(string tenant,
 string surveySlug,
 SurveyAnswer contentModel)
{
 var surveyAnswer = CallGetSurveyAndCreateSurveyAnswer(
 this.surveyStore, tenant, surveySlug);

 ...

 for (int i = 0;
 i < surveyAnswer.QuestionAnswers.Count; i++)
 {
 surveyAnswer.QuestionAnswers[i].Answer =
 contentModel.QuestionAnswers[i].Answer;
 }

 if (!this.ModelState.IsValid)
 {
 var model =
 new TenantPageViewData<SurveyAnswer>(surveyAnswer);
 model.Title = surveyAnswer.Title;
 return this.View(model);
 }

 this.surveyAnswerStore.SaveSurveyAnswer(surveyAnswer);

 return this.RedirectToAction("ThankYou");
}

The surveyAnswerStore variable holds a reference to an instance of the SurveyAnswerStore type.
The application uses the Unity Application Block (Unity) to initialize this instance with the correct
IAzureBlob and IAzureQueue instances.

Unity is a lightweight, extensible dependency injection container that supports interception,
constructor injection, property injection, and method call injection. You can use Unity in a variety of
ways to help decouple the components of your applications, to maximize coherence in components,
and to simplify design, implementation, testing, and administration of these applications. For more
information, and to download the application block, see “Unity Application Block.”

http://msdn.microsoft.com/en-us/library/ff647202

 149M a ximizing Availability, Scalability, and Elasticity

The blob container stores the answers to the survey questions, and
the queue maintains a list of new survey answers that haven’t yet been
included in the summary statistics or the list of survey answers.
The SaveSurveyAnswer method writes the survey response data to
the blob storage and puts a message onto a queue. The action
method then immediately returns a “Thank you” message. The fol-
lowing code example shows the SaveSurveyAnswer method in the
SurveyAnswerStore class.

C#
public void SaveSurveyAnswer(SurveyAnswer surveyAnswer)
{
 var tenant = this.tenantStore
 .GetTenant(surveyAnswer.Tenant);
 if (tenant != null)
 {
 var surveyAnswerBlobContainer = this
 .surveyAnswerContainerFactory
 .Create(surveyAnswer.Tenant, surveyAnswer.SlugName);

 surveyAnswer.CreatedOn = DateTime.UtcNow;
 var blobId = Guid.NewGuid().ToString();
 surveyAnswerBlobContainer.Save(blobId, surveyAnswer);

 (SubscriptionKind.Premium.Equals(
 tenant.SubscriptionKind)
 ? this.premiumSurveyAnswerStoredQueue
 : this.standardSurveyAnswerStoredQueue)
 .AddMessage(new SurveyAnswerStoredMessage
 {
 SurveyAnswerBlobId = blobId,
 Tenant = surveyAnswer.Tenant,
 SurveySlugName = surveyAnswer.SlugName
 });
 }
}

Make sure that the storage
connection strings in
your deployment point to
storage in the deployment’s
datacenter. The application
should use local queues
and blob storage to
minimize latency. Also
ensure that you call the
CreateIfNotExist method
of a queue or blob only
once in your storage class
constructor, and not in
every call to store data.
Repeated calls to the
CreateIfNotExist method
will hurt performance.

150 chapter five

This method first locates the blob container for the survey responses.
It then creates a unique blob ID by using a GUID, and saves the blob
to the survey container. Finally, it adds a message to a queue. The ap-
plication uses two queues, one for premium subscribers and one for
standard subscribers, to track new survey responses that must be in-
cluded in the summary statistics and the list of responses for paging
through answers.

Calculating the Summary Statistics
The team at Tailspin decided to implement the asynchronous back-
ground task that calculates the summary statistics from the survey
results by using a merge approach. Each time the task runs it pro-
cesses the survey responses that the application has received since the
last time the task ran. It calculates the new summary statistics by
merging the new results with the old statistics.
Worker role instances, defined in the TailSpin.Workers.Surveys proj-
ect, periodically scan two queues for pending survey answers to pro-
cess. One queue contains a list of unprocessed responses to premium
subscribers’ surveys; the other queue contains the list of unprocessed
responses to standard subscribers’ surveys.
The worker role instances executing this task use an optimistic con-
currency approach when they try to save the new summary statistics.
If one instance detects that another instance updated the statistics
for a particular survey while it was processing a batch of messages, it
does not perform the update for this survey and puts the messages
associated with it back onto the queue for processing again.
The following code example from the UpdatingSurveyResults-
SummaryCommand class shows how the worker role processes each
temporary survey answer and then uses them to recalculate the sum-
mary statistics.

C#
public class UpdatingSurveyResultsSummaryCommand :
 IBatchCommand<SurveyAnswerStoredMessage>
{
 private readonly
 IDictionary<string, TenantSurveyProcessingInfo>
 tenantSurveyProcessingInfoCache;
 private readonly ISurveyAnswerStore surveyAnswerStore;
 private readonly
 ISurveyAnswersSummaryStore surveyAnswersSummaryStore;

It’s possible that the role
could fail after it adds the
survey data to blob storage
but before it adds the
message to the queue. In
this case, the response data
would not be included in
the summary statistics or
the list of responses used
for paging. However, the
response would be included
if the user exported the
survey to Windows Azure
SQL Database. Tailspin
has decided that this is
an acceptable risk in the
Surveys application.

 151M a ximizing Availability, Scalability, and Elasticity

 public UpdatingSurveyResultsSummaryCommand(
 IDictionary<string, TenantSurveyProcessingInfo>
 processingInfoCache,
 ISurveyAnswerStore surveyAnswerStore,
 ISurveyAnswersSummaryStore surveyAnswersSummaryStore)
 {
 this.tenantSurveyProcessingInfoCache =
 processingInfoCache;
 this.surveyAnswerStore = surveyAnswerStore;
 this.surveyAnswersSummaryStore =
 surveyAnswersSummaryStore;
 }

 public void PreRun()
 {
 this.tenantSurveyProcessingInfoCache.Clear();
 }

 public bool Run(SurveyAnswerStoredMessage message)
 {
 if (!message.AppendedToAnswers)
 {
 this.surveyAnswerStore
 .AppendSurveyAnswerIdToAnswersList(
 message.Tenant,
 message.SurveySlugName,
 message.SurveyAnswerBlobId);
 message.AppendedToAnswers = true;
 message.UpdateQueueMessage();
 }

 var surveyAnswer = this.surveyAnswerStore
 .GetSurveyAnswer(
 message.Tenant,
 message.SurveySlugName,
 message.SurveyAnswerBlobId);

 var keyInCache = string.Format(
 CultureInfo.InvariantCulture, "{0}-{1}",
 message.Tenant, message.SurveySlugName);
 TenantSurveyProcessingInfo surveyInfo;

 if (!this.tenantSurveyProcessingInfoCache
 .ContainsKey(keyInCache))
 {
 surveyInfo = new TenantSurveyProcessingInfo(
 message.Tenant, message.SurveySlugName);
 this.tenantSurveyProcessingInfoCache[keyInCache] =
 surveyInfo;
 }

152 chapter five

 else
 {
 surveyInfo =
 this.tenantSurveyProcessingInfoCache[keyInCache];
 }

 surveyInfo.AnswersSummary.AddNewAnswer(surveyAnswer);
 surveyInfo.AnswersMessages.Add(message);

 return false; // Don’t remove the message from the queue
 }

 public void PostRun()
 {
 foreach (var surveyInfo in
 this.tenantSurveyProcessingInfoCache.Values)
 {
 try
 {
 this.surveyAnswersSummaryStore
 .MergeSurveyAnswersSummary(
 surveyInfo.AnswersSummary);

 foreach (var message in surveyInfo.AnswersMessages)
 {
 try
 {
 message.DeleteQueueMessage();
 }
 catch (Exception e)
 {
 TraceHelper.TraceWarning(
 "Error deleting message for '{0-1}': {2}",
 message.Tenant, message.SurveySlugName,
 e.Message);
 }
 }
 }
 catch (Exception e)
 {
 // Do nothing. This leaves the messages in
 // the queue ready for processing next time.
 TraceHelper.TraceWarning(e.Message);
 }
 }
 }
}

 153M a ximizing Availability, Scalability, and Elasticity

The Surveys application uses Unity to initialize an instance of the
UpdatingSurveyResultsSummaryCommand class, and the survey-
AnswerStore and surveyAnswersSummaryStore variables. The
surveyAnswerStore variable is an instance of the SurveyAnswer-
Store type that the Run method uses to read the survey responses
from blob storage.
The surveyAnswersSummaryStore variable is an instance of the
SurveyAnswersSummary type that the PostRun method uses to
write summary data to blob storage. The surveyAnswersSummary-
Cache dictionary holds a SurveyAnswersSummary object for each
survey.
The PreRun method runs before the task reads any messages from
the queue and initializes a temporary cache for the new survey re-
sponse data.
The Run method runs once for each new survey response. It uses the
message from the queue to locate the new survey response, and adds
the survey response to the SurveyAnswersSummary object for the
appropriate survey by calling the AddNewAnswer method. The
AddNewAnswer method updates the summary statistics in the
surveyAnswersSummaryStore instance. The Run method also calls
the AppendSurveyAnswerIdToAnswersList method to update the
list of survey responses that the application uses for paging. The Run
method leaves all the messages in the queue in case the task encoun-
ters an optimistic concurrency when it tries to save the results in the
PostRun method.
The PostRun method runs after the task has invoked the Run method
on each outstanding survey response message in the current batch.
For each survey, it merges the new results with the existing summary
statistics and then it saves the new values back to blob storage. The
EntitiesBlobContainer detects any optimistic concurrency violations
when it tries to save the new summary statistics and raises an excep-
tion. The PostRun method catches these exceptions and leaves the
messages associated with current survey statistics on the queue so
that they will be processed in another batch.
The worker role uses some “plumbing” code developed by Tailspin to
invoke the PreRun, Run, and PostRun methods in the Updating-
SurveyResultsSummaryCommand class on a schedule. Chapter 4,
“Partitioning Multi-Tenant Applications,” describes this plumbing
code in detail as part of the explanation about how Tailspin partitions
the work in a worker role by using different tasks. The following code
example shows how the Surveys application uses the “plumbing” code
in the Run method in the worker role to run the three methods that
comprise the job.

The Run method calls the
UpdateQueueMessage
method on the message
after it has updated the
list of stored survey
responses to prevent a
timeout from occurring
that could cause the
message to be reprocessed.
For more information,
see “CloudQueue.
UpdateMessage Method.”

http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.storageclient.cloudqueue.updatemessage.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.storageclient.cloudqueue.updatemessage.aspx

154 chapter five

C#
var standardQueue = this.container.Resolve
 <IAzureQueue<SurveyAnswerStoredMessage>>
 (SubscriptionKind.Standard.ToString());
var premiumQueue = this.container.Resolve
 <IAzureQueue<SurveyAnswerStoredMessage>>
 (SubscriptionKind.Premium.ToString());

BatchMultipleQueueHandler
 .For(premiumQueue, GetPremiumQueueBatchSize())
 .AndFor(standardQueue, GetStandardQueueBatchSize())
 .Every(TimeSpan.FromSeconds(
 GetSummaryUpdatePollingInterval()))
 .WithLessThanTheseBatchIterationsPerCycle(
 GetMaxBatchIterationsPerCycle())
 .Do(this.container
 .Resolve<UpdatingSurveyResultsSummaryCommand>());

This method first uses Unity to instantiate the UpdatingSurveyResultsSummaryCommand object
that defines the job and the AzureQueue object that holds notifications of new survey responses.
The method then passes these objects as parameters to the For, AndFor, and Do plumbing methods
of the worker role framework. The Every method specifies how frequently the job should run. These
methods cause the plumbing code to invoke the PreRun, Run, and PostRun method in the Updating-
SurveyResultsSummaryCommand class, passing a message from the queue to the Run method.
You should tune the frequency at which these tasks run based on your expected workloads by chang-
ing the value passed to the Every method.

Pessimistic and Optimistic Concurrency Handling
Tailspin uses optimistic concurrency when it saves summary statistics and survey answer lists to blob
storage. The Surveys application enables developers to choose either optimistic or pessimistic concur-
rency when saving blobs. The following code sample from the SurveyAnswersSummaryStore class
shows how the Surveys application uses optimistic concurrency when it saves a survey’s summary
statistics to blob storage.

C#
OptimisticConcurrencyContext context;

var id = string.Format(CultureInfo.InvariantCulture,
 "{0}-{1}", partialSurveyAnswersSummary.Tenant,
 partialSurveyAnswersSummary.SlugName);

var surveyAnswersSummaryInStore = this
 .surveyAnswersSummaryBlobContainer.Get(id, out context);

partialSurveyAnswersSummary
 .MergeWith(surveyAnswersSummaryInStore);

this.surveyAnswersSummaryBlobContainer
 .Save(context, partialSurveyAnswersSummary);

 155M a ximizing Availability, Scalability, and Elasticity

In this example the application uses the Get method to retrieve content to update from a blob. It then
makes the change to the content and calls the Save method to try to save the new content. It passes
in the OptimisticConcurrencyContext object that it received from the Get method. If the Save
method encounters a concurrency violation, it throws an exception and does not save the new blob
content.
The following code samples from the EntitiesBlobContainer class show how it creates a new Optimistic-
ConcurrencyContext object in the DoGet method using an ETag object, and then uses the Optimistic-
ConcurrencyContext object in the DoSave method to create a BlobRequestOptions object that contains
the ETag and an access condition. The content of the BlobRequestOptions object enables the Upload-
Text method to detect a concurrency violation; the method can then throw an exception to notify the
caller of the concurrency violation.

C#
protected override T DoGet(string objId,
 out OptimisticConcurrencyContext context)
{
 CloudBlob blob = this.Container.GetBlobReference(objId);
 blob.FetchAttributes();
 context = new OptimisticConcurrencyContext
 (blob.Properties.ETag) { ObjectId = objId };
 return new JavaScriptSerializer()
 .Deserialize<T>(blob.DownloadText());
}

protected override void DoSave(
 IConcurrencyControlContext context, T obj)
{
 ...

 if (context is OptimisticConcurrencyContext)
 {
 CloudBlob blob =
 this.Container.GetBlobReference(context.ObjectId);
 blob.Properties.ContentType = "application/json";

 var blobRequestOptions = new BlobRequestOptions()
 {
 AccessCondition =
 (context as OptimisticConcurrencyContext)
 .AccessCondition
 };

 blob.UploadText(
 new JavaScriptSerializer().Serialize(obj),
 Encoding.Default, blobRequestOptions);
 }
 else if (context is PessimisticConcurrencyContext)
 {
 ...
 }
}

156 chapter five

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/library/jj871057.aspx.
For more information about scalability and throttling limits, see the following:
•	 Windows Azure Storage Abstractions and their Scalability Targets
•	 Windows Azure SQL Database Performance and Elasticity Guide
•	 Best Practices for Performance Improvements Using Service Bus Brokered Messaging
For more information about building large-scale applications for Windows Azure, see “Best Practices
for the Design of Large-Scale Services on Windows Azure Cloud Services” on MSDN.
For more information about the CDN, see “Content Delivery Network” on MSDN.
For information about an application that uses the CDN, see the post “EmailTheInternet.com:
Sending and Receiving Email in Windows Azure” on Steve Marx’s blog.
For an episode of Cloud Cover that covers CDN, see “Cloud Cover Episode 4 - CDN” on Channel 9.
For a discussion of how to make your Windows Azure application scalable, see “Real World:
Designing a Scalable Partitioning Strategy for Windows Azure Table Storage.”
For more information about autoscaling in Windows Azure, see “The Autoscaling Application Block.”
For a discussion of approaches to autoscaling in Windows Azure, see “Real World: Dynamically
Scaling a Windows Azure Application.”
For a discussion of approaches to simulating load on a Windows Azure application, see “Real World:
Simulating Load on a Windows Azure Application.”
For more information about the MapReduce algorithm, see the entry for “MapReduce” on
Wikipedia.

http://msdn.microsoft.com/library/jj871057.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-scalability-targets.aspx
http://social.technet.microsoft.com/wiki/contents/articles/3507.windows-azure-sql-database-performance-and-elasticity-guide.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh528527.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj717232.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj717232.aspx
http://msdn.microsoft.com/en-us/library/ee795176.aspx
http://blog.smarx.com/posts/emailtheinternet-com-sending-and-receiving-email-in-windows-azure
http://blog.smarx.com/posts/emailtheinternet-com-sending-and-receiving-email-in-windows-azure
http://channel9.msdn.com/shows/Cloud+Cover/Cloud-Cover-Episode-4-CDN/
http://msdn.microsoft.com/en-us/library/hh508997.aspx
http://msdn.microsoft.com/en-us/library/hh508997.aspx
http://msdn.microsoft.com/en-us/library/hh680892(PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh508980.aspx
http://msdn.microsoft.com/en-us/library/hh508980.aspx
http://msdn.microsoft.com/en-us/library/hh508977.aspx
http://msdn.microsoft.com/en-us/library/hh508977.aspx
http://en.wikipedia.org/wiki/MapReduce

157

This chapter examines topics related to security in multi-tenant applications. It focuses on issues that
are specific to these types of applications, such as authenticating and authorizing different sets of
users that authenticate with different types of identity and through trust relationships. The chapter
also discusses how you can protect individual users’ data, and protect the session tokens they use
when accessing your applications.

Protecting Users’ Data in Multi-Tenant Applications
In a multi-tenant application, tenants expect their data to be isolated from that of other tenants. A
tenant will expect the application to behave as if that tenant is the sole user, and protect every ten-
ant’s private data from any unauthorized access. As tenants, they expect to own their own data and
have control over who has access to it.

Authentication
Your application must determine the identity of a user and verify that the user is a tenant of the ap-
plication before granting access to any private data. It is your responsibility to provide an appropriate
authentication mechanism for your multi-tenant application in Windows Azure, or to enable tenants
to reuse their existing authentication mechanisms.
In a multi-tenant application, tenants may also want to control and manage their own users. For ex-
ample, Adatum might want four of its employees to be able to create surveys using its subscription to
the Tailspin Surveys application.
In addition to defining which of their employees should have access to the application, larger tenants
may also want to use their own authentication mechanism. Their employees will already have a cor-
porate account and, rather than having to remember a new set of credentials, they would like to be
able to reuse their existing corporate credentials with the new multi-tenant web hosted service. You
typically implement this type of scenario by using a claims-based approach that requires you to estab-
lish trust relationships between the parties involved. For more information, see the guide “A Guide to
Claims-Based Identity and Access Control.”

6 Securing Multi-Tenant
Applications

http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx

158 chapter six

Authorization
After your application has authenticated a request, it must authorize access to any resources used
when it services the request. Some of the Windows Azure elements in your application may provide
basic authorization services, but in most multi-tenant application scenarios you must implement the
authorization yourself.
For example, there are no built-in authorization services in Windows Azure web and worker roles. If
certain features implemented in your web and worker roles must be restricted to particular tenants,
your application must perform the authorization based on the authenticated identity of the request.
To access Windows Azure storage services (tables, blobs, and queues), the calling code must know the
storage account key for the specific storage account. Although it is unlikely that each tenant has its
own storage account in a Windows Azure application, it may be the case that certain storage accounts
should only be available to some tenants. Again it is your responsibility to ensure that the application
code uses the correct storage account keys, and that you keep the storage account keys completely
private. There is no reason for a tenant to know the storage account keys in a multi-tenant application
unless the tenant is providing its own storage account.
If a tenant prefers to use a storage account in its own subscription, the tenant must provide you with
the storage account keys so that the application can access the storage. It is then your responsibility
to keep these keys safe on behalf of the tenant.

A person who gains unauthorized access to your Windows Azure account will be able to discover all
of your storage account keys and access all of your data stored in Windows Azure storage. Once
someone gains access to your Windows Azure subscription, there are no limits to what that person
can access.

Windows Azure Service Bus adopts a different approach and provides an authorization service to
manage operations such as sending messages. Windows Azure Access Control (ACS) performs the
authentication either by validating a user name and password directly, or by delegating to an external
identity provider such as the tenant’s Active Directory Federation Services (ADFS). For more informa-
tion, see “Service Bus Authentication and Authorization with the Access Control Service.”

Protecting Sensitive Data
As an additional safeguard in a multi-tenant application you might consider encrypting each tenant’s
data using a tenant specific key. This will help to ensure isolation if you can be sure that the keys used
by each tenant are not revealed to anyone else.

http://msdn.microsoft.com/en-us/library/windowsazure/hh403962

 159Securing Multi-Tenant Applications

You can use certificate based encryption in Windows Azure to strong-
ly encrypt and decrypt data stored in Windows Azure table, blob, and
queue storage; and data stored in Windows Azure SQL Database, SQL
Server, and any other relational or non-relational database.
This section discusses how you decrypt data stored in Windows
Azure from a worker or web role in your application. It does not ad-
dress the scenario where you need to decrypt data stored in Windows
Azure from a location outside of Windows Azure, such as in an on-
premises application.
For sample code that illustrates how to perform encryption and de-
cryption in a web or worker role, see the article “Using Certificate-
Based Encryption in Windows Azure Applications.” That article also de-
scribes how you should manage the private key that enables your web
or worker role to decrypt your data. The important points from the
article about good practices for key management are as follows:
•	 Only a small group of administrators (not developers or testers)

should have access to the Windows Azure subscription that hosts
the production application. These administrators are responsible
for uploading a certificate that includes the private key used for
decryption to the Windows Azure certificate store in the cloud
service that hosts the production application.

•	 Under no circumstances should this certificate be available or
accessible to anyone else because the private key in this certifi-
cate enables you to decrypt the data. You should have secure
processes that ensure this certificate is kept secure.

•	 To enable a web or worker role to use the certificate for decryp-
tion you must add the certificate thumbprint to the service
definition file. Typically, you add this thumbprint to the service
definition file as part of an automated deployment process. Your
application uses the thumbprint to locate the certificate in the
Windows certificate store at runtime.

Following this approach by using the Windows Azure certificate store
to store the certificate has a number of benefits:
•	 If the processes to manage the certificate and the way it is

uploaded to Windows Azure are correctly followed, you minimize
the chance that this certificate will be available to anyone who
might accidentally reveal it or use it maliciously.

•	 There is no need for developers or testers to have access to the
production certificate. They can use a different test certificate.
All you need do to switch from using a test certificate to a
production certificate is to update the thumbprint in the service
definition file.

Certificate based
encryption is a standard
approach to encryption
that uses a key pair. You use
the public key to encrypt
data and the private key
to decrypt data. Typically,
you use X-509 certificates
for these tasks. Encrypting
and decrypting data in
Windows Azure is easy.
The challenge in Windows
Azure is storing your private
key securely.

http://msdn.microsoft.com/en-us/library/hh697511.aspx
http://msdn.microsoft.com/en-us/library/hh697511.aspx

160 chapter six

•	 If someone gains unauthorized access to the Windows Azure subscription that hosts the produc-
tion application, that person cannot gain access to the private key. You cannot export a service
certificate from a Windows Azure cloud service, and when Windows Azure adds the certificate
to the certificate store in the role instance it marks the private key as unavailable for export.

Although this approach protects your private key, there are still some potential vulnerabilities that you
must guard against:
•	 This approach requires you follow suitable procedures that ensure the certificate is kept secure

while it is on-premises.
•	 Although someone who gains unauthorized access to your Windows Azure subscription cannot

access the private key, they can still run code that uses the private key to decrypt any encrypted
data. A malicious user could deploy their own code that reads or modifies encrypted data, or a
developer could write code that accidentally reveals or changes data in a way that the application
is not supposed to do.

In general, the mitigations for these risks are clear auditable procedures for managing and monitoring
your Windows Azure subscription, and testing your code to ensure that it behaves in the expected way.
In other scenarios you might need to encrypt and decrypt data in on-premises applications, but store
and/or share it securely in Windows Azure. For example, one organization wants to store and publish
encrypted data in Windows Azure and allow selected other organizations to download and decrypt
the data. This type of scenario has a different key management problem that you can address using
Windows Azure Trust Services. For more information, see “Learn More about Microsoft Codename Trust
Services.”

Splitting Sensitive Data across Multiple Subscriptions
An additional technique to mitigate the risk that an attacker could discover sensitive data if your
storage account keys are compromised is to split this data across two or more storage accounts. In this
way, the sensitive data is not usable by the attacker unless the attacker gains access to two Windows
Azure storage accounts by discovering two storage account keys.
For example, the credit card data associated with a user includes several pieces of information such as
the user’s name, the credit card number, the three or four digit security number, and the validity dates.
Typically, to make a payment with a credit card, you must have access to all of this information. If you
store the credit card numbers held by your system in one storage account, and the remaining data in
a different storage account, an attacker that compromises one of the storage accounts cannot access
all the information needed to use the credit cards.

http://social.technet.microsoft.com/wiki/contents/articles/7041.learn-more-about-microsoft-codename-trust-services.aspx
http://social.technet.microsoft.com/wiki/contents/articles/7041.learn-more-about-microsoft-codename-trust-services.aspx

 161Securing Multi-Tenant Applications

However, this approach only mitigates the risk that an unauthorized
person gains access to your Windows Azure storage account keys. If
someone gains unauthorized access to your Windows Azure subscrip-
tion, he or she can discover all of the storage account keys in that
subscription. Additionally, if that Windows Azure subscription uses
data from a storage account in a different Windows Azure subscrip-
tion the attacker could also discover that storage account key.

Using Shared Access Signatures
In Windows Azure, knowledge of a storage account key grants full
access to all of the data stored within that storage account. Therefore,
if the code running a web or worker role can read a storage account
key (typically from the service configuration file) it can access all the
tables, blobs, and queues in that Windows Azure storage account.
In many applications, allowing the web and worker roles full access to
data is acceptable; but in a multi-tenant application you may want to
enforce isolation by ensuring that a task or operation can only access a
single tenant’s data. One approach is to use a separate storage account
for each tenant within the same Windows Azure subscription. How-
ever, Windows Azure limits the number of storage accounts that you
can create within a single subscription, which limits the usefulness of
this approach. The alternative is to use Shared Access Signatures (SAS).
A SAS is a unique and hard to guess URL that grants temporary access
to a resource. For example, a SAS might grant read and write access to
a specific blob for the next five minutes. To generate a SAS you must
know the storage account key, but you can use the SAS without
knowledge of the storage account key. Figure 1 shows how a worker
role that acts as a gatekeeper can generate SAS URLs for other web
and worker roles, granting them access to specific resources.

You should regularly change
your storage account keys,
especially for storage
accounts that hold sensitive
data.

Blobs and blob containers
can be configured for
public read-only access so
they can be read without
requiring access to the
storage account key.

162 chapter six

Figure 1
Using SAS to access data in Windows Azure storage

The following list describes the steps in Figure 1 whereby the web role gains access to the contents
of the blob containing Adatum’s data by using a SAS URL:
1. The client browser sends a request to view Adatum’s data.
2. The web role sends a request to the gatekeeper worker role for a SAS URL that will enable read

only access to Adatum’s data. This data might be in table, blob, or queue storage.
3. The gatekeeper worker role uses the storage account key to generate the SAS URL and returns it

to the worker role.
4. The web role uses the SAS URL when it queries for the Adatum data it needs to render the web

page.
5. The web role returns the page to the browser.
There are a number of points to note about this mechanism for accessing data in Windows Azure
storage:
•	 If the web role and the worker role are in the same cloud service they will share the same service

configuration file, which means that the web role could bypass the gatekeeper and access the
storage account directly. In this scenario you are relying on the code in the web role to always
access storage by requesting a SAS URL.

1

2 3

4

5

Storage account

Client
browser

Adatum
data

Fabrikam
data

Contoso
data

Worker role
gatekeeper

Storage
account key

Web role

 163Securing Multi-Tenant Applications

•	 This approach provides for stronger isolation if the web role and
the worker role are in different cloud services or different
Windows Azure subscriptions. In this way you could ensure that
the web role does not have access to the storage account key, and
so it can access the data only by using a SAS.

•	 Without some additional layer of authentication and authoriza-
tion, there is nothing to stop the web role asking for a SAS URL
for any data.

•	 You can create a SAS for an individual blob or a blob container.
For table storage you can create a SAS for a table, or for a set of
entities stored in the table and defined using a range of partition
and row keys.

•	 When you generate a SAS you can specify for how long it remains
valid, and what types of access it supports (such as read, insert,
update, and delete).

For more information see “Creating a Shared Access Signature” on
MSDN and Chapter 5, “Executing Background Tasks,” in the guide
“Moving Applications to the Cloud.”

Goals and Requirements
This section describes the goals and requirements for security that
Tailspin has for the Surveys application.

Authentication and Authorization
The Tailspin Surveys application targets a wide range of subscribers,
from individuals to large enterprises. All subscribers of the Surveys
application will require authentication and authorization services to
control access to their survey definitions and results, but they will
want to implement these services differently.

For more information about this scenario, see Chapter 6,
“Federated Identity with Multiple Partners,” in the guide
“A Guide to Claims-Based Identity and Access Control.”

Privacy
Tailspin wants to ensure that users’ privacy is maintained. The Tailspin
Surveys application should not leave any sensitive data on the client
machine after a user has accessed any of the Tailspin Surveys websites.
The private tenant website uses cookies to track sessions, and Tailspin
wants to continue to use cookies. Therefore it has decided to encrypt
the contents of these cookies in order to protect the privacy of its users.

You can also use a SAS
to expose private blobs
directly to a client. This is
typically used to enhance
the scalability of a solution
by enabling a browser to
display the content of a
private blob. For more
information, see Chapter 5,
“Maximizing Availability,
Scalability, and Elasticity.”

http://msdn.microsoft.com/en-us/library/windowsazure/hh508996.aspx
http://msdn.microsoft.com/en-us/library/ff803365.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://msdn.microsoft.com/en-us/library/hh446524.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx

164 chapter six

Overview of the Solution
This section describes the approach taken by Tailspin to meet the goals
and requirements that relate to security in the Surveys application.

Identity Scenarios in the Surveys Application
Tailspin has identified three different identity scenarios that the Sur-
veys application must support:
•	 Organizations may want to integrate their existing identity

infrastructure and be able to manage access to the Surveys
application themselves in order to include Surveys as a part of the
Single Sign-On (SSO) experience for their employees.

•	 Smaller organizations may require Tailspin to provide a complete
identity system because they are not able to integrate their
existing systems with Tailspin.

•	 Individuals and small organizations may want to re-use an existing
identity, such as their Microsoft account, Open ID credentials, or
an account with other social identity providers.

To support these scenarios Tailspin uses the WS-Federation protocol
to implement identity federation. The following diagrams describe
how the authentication and authorization process works for each of
the three identity scenarios Tailspin identified.

The three scenarios are all claims based and share the same core
identity infrastructure. The only difference is the source of the
original claims.

3

4

2

1

Transform claims

Get token

Get token

Get surveys +
token

Trust

Trust

Federation
provider

Tailspin
tenants
website

Windows Azure Adatum (big company)

Identity provider
(ADFS)

Adatum\ John
Browser

Integrating a Subscribers Own Identity Mechanism

Figure 2
How users at a large enterprise subscriber access the Surveys application

Tailspin uses a claims-based
infrastructure to provide
the flexibility it needs
to support its diverse
subscriber base.

 165Securing Multi-Tenant Applications

In the scenario shown in Figure 2 users at Adatum, a large enterprise
subscriber, authenticate with Adatum’s own identity provider (step 1),
in this case Active Directory Federation Services (ADFS). After suc-
cessfully authenticating an Adatum user, ADFS issues a token. The
client browser forwards the token to the Tailspin federation provider
that trusts tokens issued by Adatum’s ADFS (step 2) and, if necessary,
performs a transformation on the Adatum claims in the token into
claims that Tailspin Surveys recognizes (step 3) before returning a new
token to the client browser. The Tailspin Surveys application trusts
tokens issued by the Tailspin federation provider and uses the claims
in the token to apply authorization rules (step 4).
Users at Adatum will not need to remember separate credentials to
access the Surveys application, and an administrator at Adatum will be
able to configure in Adatum’s own ADFS the list of Adatum users that
can access the Surveys application.

Providing an Identity Mechanism for Small Organizations

All of the token issuing
and passing is handled
automatically through
a sequence of browser
redirects. The user simply
navigates to the Tailspin
Surveys website.

Tailspin
tenants
website

3

4

2

1

Transform
token

Get token
(user password)

Get token

Get surveys +
token

Federation
provider

User
accounts

Trust

Trust
Active directory

Fabrikam\CharlieBrowser

Windows Azure Fabrikam (small company)

Figure 3
How users at a small subscriber access the Surveys application

In the scenario shown in Figure 3 users at Fabrikam, a smaller company,
authenticate with the Tailspin identity provider (step 1) because their
own Active Directory can’t issue tokens that will be understood by the
Tailspin federation provider. If the Tailspin identity provider can validate
the credentials, it returns a token to the client browser that includes
claims such as the user’s identity and the tenant’s identity. The client
browser forwards the token to the Tailspin federation provider that
trusts tokens issued by Tailspin identity provider (step 2) and, if neces-
sary, performs a transformation on the Tailspin identity provider claims
in the token into claims that Tailspin Surveys recognizes (step 3) before
returning a new token to the client browser. The Tailspin Surveys ap-
plication trusts tokens issued by the Tailspin federation provider and
uses the claims in the token to apply authorization rules (step 4).

166 chapter six

Other than the choice of identity provider, this approach is the same as that used for Adatum. The
downside of this approach for Fabrikam users is that they must memorize separate credentials just to
access the Surveys application. Fabrikam users will be prompted for their credentials when they navi-
gate to the Tailspin Surveys application. Tailspin must also provide a way to manage the user accounts
that the Tailspin identity provider uses.
Tailspin plans to implement this scenario by using an ASP.NET membership provider to manage the
user accounts, and use a security token service (STS) that integrates with the membership provider.

For guidance on how to implement this scenario take a look at the thinktecture IdentityServer
project on CodePlex.

Integrating with Social Identity Providers

3

1

4

2

Federation
provider

Tailspin
tenants
website

Transform claims

Windows Azure Mark
working from

home

Windows
account

Trust

Get token

Get surveys
+

token

Authenticate

Trust

Browser

Figure 4
How an individual subscriber accesses the Surveys application

http://thinktecture.github.com/

 167Securing Multi-Tenant Applications

For individual users the process is again very similar. In the scenario shown in Figure 4 the Tailspin
federation provider is configured to trust tokens issued by a third-party identity provider, such as an
identity provider that authenticates a Microsoft account or OpenID credentials. Tailspin plans to use
Windows Azure Access Control to implement this scenario.
When an individual user authenticates with his or her chosen identity provider (step 1), the identity
provider returns a token to the client browser that includes claims such as the user’s identity. The
client browser forwards the token to the Tailspin federation provider that trusts tokens issued by the
third-party provider (step 2) and, if necessary, performs a transformation on the claims in the token
into claims that Tailspin Surveys recognizes (step 3) before returning a new token to the client brows-
er. The Tailspin Surveys application trusts tokens issued by the Tailspin federation provider and uses
the claims in the token to apply authorization rules (step 4). When the user tries to access their sur-
veys, the application will redirect them to their external identity provider for authentication.

For additional guidance on how to implement this scenario, see the chapter “Federated Identity
with Multiple Partners and Windows Azure Access Control Service” in the guide “A Guide to
Claims-Based Identity and Access Control.”

Windows Azure Access Control Service and Windows Azure Active Directory
Although the Tailspin Surveys sample solution uses Windows Identity Foundation (WIF) to implement
a WS-Federation compliant federation provider (see the TailSpin.SimulatedIssuer project in the solu-
tion), a production deployment would use a real federation provider such as Active Directory Federa-
tion Services (ADFS), Windows Azure Access Control, or Windows Azure Active Directory.
Windows Azure Access Control is one element of Windows Azure Active Directory. It enables you to
move authentication and authorization logic out of your code and into a separate cloud-based service.
Access Control can integrate with other standards based identity providers, and can implement a
claims transformation process using declarative rules that convert the claims issued by the tenant’s
issuer, third-party issuer, or Tailspin’s own issuer into claims understood by the Tailspin Surveys ap-
plication. Access Control can also perform the protocol conversion required to support many third-
party issuers.
Windows Azure Active Directory includes the Windows Azure Authentication Library that allows
developers to focus on business logic in their applications, ignore most protocol details, and easily
secure resources without being an expert on security. Windows Azure Active Directory also includes
a REST API that enables programmatic access to Access Control and the Authentication Library.

For more information see “Windows Azure Active Directory.” For more information about using
Access Control see the related patterns & practices “Claims Based Identity & Access Control
Guide.”

http://msdn.microsoft.com/en-us/library/hh446534.aspx
http://msdn.microsoft.com/en-us/library/hh446534.aspx
http://msdn.microsoft.com/en-us/library/hh446534.aspx
http://msdn.microsoft.com/en-us/library/hh446534.aspx
http://msdn.microsoft.com/en-us/library/jj673460.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx

168 chapter six

Configuring Identity Federation for Tenants
When a new tenant subscribes to the Tailspin Surveys service, it has
the option to use its own identity provider instead of Tailspin’s to
authenticate its users when accessing the private tenant web site. In
the sample application code, the Join screen is currently mocked out
to illustrate the information that a tenant would need to provide in
order to establish the federated identity environment described ear-
lier in this chapter.

However, the sample application does allow a Tailspin administrator to add a new federated identity
provider on behalf of a tenant on the Manage screen. Tailspin Surveys then saves the configuration
data in Windows Azure blob storage as part of the tenant configuration information. The following
table describes the information used to configure identity federation for a tenant.

Value Description Example

Identifier Tailspin’s identity provider uses this value to
recognize claims sent from a trusted identity provider.

http://adatum/trust

Sign-in
URL

The address of the tenant’s trusted identity provider. https://localhost/Adatum.SimulatedIssuer.v2/

Thumb-
print

The thumbprint of the certificate used by the tenant’s
identity provider to sign the claims it sends to
Tailspin.

f260042d59e14817984c6183fbc6bfc71baf5462

Admin
Claim Type

The claim type that the tenant uses to identify users
with administrative privileges in their Tailspin Surveys
subscription. This is used to map the tenant’s claim
type to the Tailspin Role claim type.

http://schemas.xmlsoap.org/claims/group

Admin
Claim
Value

The value of the administrator claim type that has
administrative privileges in the tenant’s Tailspin
Surveys subscription. This value is mapped to the
SurveyAdministrator role in Tailspin Surveys.

Marketing Managers

In a real application this screen would enable a tenant to select between the three
identity scenarios supported by Tailspin Surveys. For tenants who chose to use the
Tailspin identity provider you would have a registered members database and each tenant
would be allowed to add and remove members authorized to use the subscription.

 169Securing Multi-Tenant Applications

Encrypting Session Tokens in a Windows Azure Application
The Tailspin Surveys tenant web site uses sessions to maintain the list of questions that a tenant adds
when designing a new survey. The website uses a cookie to track requests that belong to the current
user’s session. Part of Tailspin’s security requirements is that the application should encrypt cookies
so that there is no usable information left on the client machine.
Tailspin plans to use at least two instances of the web role that hosts the tenant website in order to
make the site more available. Therefore, the encryption mechanism that the application uses to en-
crypt the cookies must be web farm friendly. A cookie that one role instance creates and encrypts
must be readable by all other instances.
By default, when you use the Windows Identity Foundation (WIF) framework to manage your iden-
tity infrastructure, it encrypts the contents of the cookies that it sends to the client by using the
Windows Data Protection API (DPAPI). Using DPAPI for cookie encryption is not a workable solution
for an application that has multiple role instances because each role instance will use a different en-
cryption key, and the Windows Azure load balancer could route a request to any instance. You must
use an encryption mechanism such as RSA, which uses a key that two or more instances can share.

Inside the Implementation
Now is a good time to walk through some of the code in the Tailspin Surveys application in more
detail. As you go through this section, you may want to download the Visual Studio solution for the
Tailspin Surveys application from http://wag.codeplex.com/.

http://wag.codeplex.com/

170 chapter six

Using Windows Identity Foundation
Figure 5 will help you to keep track of how the WIF authentication process works as you look at the
detailed description and code samples later in this chapter.

Figure 5
Federation with multiple partners sequence diagram

realm
token()

1
2 3

45

6

7

8

9

Browser
Authentication
Filter Surveys Federation

Authentication
Module

Home Issuer

Redirect

Redirect

ctx = surveys
realm, issuer()

Post

Surveys()

Issue
token

Authorize

Get page

Validate
token

* Everything in this box only occurs
when there is no session, and the user
must be authenticated

For clarity, Figure 5 shows the “logical” sequence, not the “physical”
sequence. Wherever the diagram has an arrow with a Redirect label,
this actually sends a redirect response back to the browser, and the
browser then sends a request to wherever the redirect message
specifies.
The following describes the steps illustrated in Figure 5:
1. The process starts when an unauthenticated user sends a request

for a protected resource; for example the adatum/surveys page.
This invokes a method in the SurveysController class.

The sequence shown in Figure 5 applies to all three authentication
and identity scenarios described earlier in this chapter. In the context
of Figure 5, the Issuer is the Tailspin federation provider, so step 3
includes redirecting to another issuer to handle the authentication.

 171Securing Multi-Tenant Applications

2. The AuthenticateAndAuthorizeTenant attribute that extends the AuthenticateAndAuthorize-
Role attribute and implements the MVC IAuthorizationFilter interface is applied to this control-
ler class. Because the user has not yet been authenticated, this will redirect the user to the
Tailspin federation provider at https://localhost/TailSpin.SimulatedIssuer with the following
query string parameter values:

wa. Wsignin1.0
wtrealm. https://tailspin.com
wctx. https://127.0.0.1:444/survey/adatum
whr. http://adatum/trust
wreply. https://127.0.0.1:444/federationresult

The following code example shows the BuildSignInMessage method in the AuthenticateAnd-
AuthorizeTenantAttribute class that builds the query string.

C#
protected override WSFederationMessage
 BuildSignInMessage(AuthorizationContext context,
 Uri replyUrl)
{
 var tenant =
 (context.Controller as TenantController).Tenant;

 var fam = FederatedAuthentication
 .WSFederationAuthenticationModule;
 var signIn = new SignInRequestMessage
 (new Uri(fam.Issuer), fam.Realm)
 {
 Context = AuthenticateAndAuthorizeRoleAttribute
 .GetReturnUrl(context.RequestContext,
 RequestAppendAttribute.RawUrl,
 null).ToString(),
 HomeRealm = SubscriptionKind.Premium
 .Equals(tenant.SubscriptionKind)
 ? tenant.IssuerIdentifier
 ?? Tailspin.Federation.HomeRealm + "/"
 + (context.Controller
 as TenantController).Tenant.Name
 : Tailspin.Federation.HomeRealm + "/"
 + (context.Controller
 as TenantController).Tenant.Name,
 Reply = replyUrl.ToString()
 };

 return signIn;
}

172 chapter six

3. The Issuer, in this case the Tailspin simulated issuer, authenticates the user and generates a token
with the requested claims. In the Tailspin scenario, the Tailspin federation provider uses the value
of the whr parameter to delegate the authentication to another issuer; in this example, the
Adatum issuer. If necessary, the Tailspin federation issuer can transform the claims it receives
from the issuer into claims that the Tailspin Surveys application understands. The following code
from the FederationSecurityTokenService class shows how the Tailspin simulated issuer trans-
forms the Group claims in the token from the Adatum issuer.

C#
protected override IClaimsIdentity
 GetOutputClaimsIdentity(IClaimsPrincipal principal,
 RequestSecurityToken request,
 Scope scope)
{
 ...

 var input = principal.Identity as ClaimsIdentity;

 var tenant = this.tenantStore.GetTenant
 (input.Claims.First().Issuer);

 ...

 var output = new ClaimsIdentity();

 CopyClaims(input,
 new[] { WSIdentityConstants.ClaimTypes.Name },
 output);
 TransformClaims(input, tenant.ClaimType,
 tenant.ClaimValue, ClaimTypes.Role,
 Tailspin.Roles.SurveyAdministrator, output);
 output.Claims.Add(
 new Claim(Tailspin.ClaimTypes.Tenant,
 tenant.Name));

 return output;
}

This example shows how the claim the tenant identified as granting access to the subscription is
mapped to the Tailspin Role claim with a value of SurveyAdministrator.

4. The Tailspin federation provider then posts the token and the value of the wctx parameter
(https://127.0.0.1:444/survey/adatum) back to the address in the wreply parameter
(https://127.0.0.1:444/federationresult). This address is another MVC controller, which does not
have the AuthenticateAndAuthorizeTenantAttribute attribute applied. The following code
example shows the FederationResult method in the ClaimsAuthenticationController controller.

 173Securing Multi-Tenant Applications

C#
[RequireHttps]
public class ClaimsAuthenticationController
 : Controller
{
 [ValidateInput(false)]
 [HttpPost]
 public ActionResult FederationResult()
 {
 var fam = FederatedAuthentication
 .WSFederationAuthenticationModule;
 if (fam.CanReadSignInResponse(
 System.Web.HttpContext.Current.Request, true))
 {
 string returnUrl = GetReturnUrlFromCtx();
 return this.Redirect(returnUrl);
 }
 return this.RedirectToAction(
 "Index", "OnBoarding");
 }

5. The WS Federation Authentication Module validates the token by calling the CanReadSignIn-
Response method.

6. The ClaimsAuthenticationController controller retrieves the value of the original wctx param-
eter and issues a redirect to that address.

7. This time, when the request for the adatum/surveys page goes through the AuthenticateAnd-
AuthorizeTenantAttribute filter, the user has been authenticated. The following code example
from the AuthenticateAndAuthorizeRoleAttribute class shows how the filter checks whether
the user is authenticated.

C#
public void OnAuthorization(
 AuthorizationContext filterContext)
{
 ...

 if (!filterContext.HttpContext.User
 .Identity.IsAuthenticated)
 {
 AuthenticateUser(filterContext);
 }
 else
 {
 this.AuthorizeUser(filterContext);
 }
 ...
}

174 chapter six

8. The AuthenticateAndAuthorizeTenantAttribute filter then
applies any authorization rules. In the Tailspin Surveys application
the AuthorizeUser method verifies that the user is a member of
one of the roles listed where the AuthenticateAndAuthorize-
Tenant attribute decorates the MVC controller, as shown in the
following code example.

C#
[AuthenticateAndAuthorizeTenant(
 Roles = "Survey Administrator")]
[RequireHttps]
public class SurveysController : TenantController
{
 ...
}

9. Finally, the controller method executes.

Protecting Session Tokens in Windows Azure
The following code example shows how the Surveys application con-
figures the session security token handler to use RSA encryption in-
stead of the default DPAPI encryption. This enables Tailspin to deploy
multiple instances of the web role that can use the shared key.
Before Tailspin deploys the Surveys application to Windows Azure it
must upload the shared encryption key to the Windows Azure cer-
tificate store. Windows Azure stores the key as part of the cloud
service definition, and it is accessible to all the roles and role instanc-
es deployed to the cloud service.

You can create an X-509 certificate that is suitable for use with
the RSA encryption algorithm by using the makecert tool. For
more information, see “How to Create a Certificate for a Role.”
For more information about uploading a key to the Windows
Azure certificate store, see “How to Add a New Certificate to the
Certificate Store.”

An ASP.NET web
application running in an
on-premises web farm
would also need to use
shared key encryption
instead of DPAPI.

http://msdn.microsoft.com/en-us/library/gg432987.aspx
http://msdn.microsoft.com/en-us/library/gg465712.aspx
http://msdn.microsoft.com/en-us/library/gg465712.aspx

 175Securing Multi-Tenant Applications

The following code from the Global.asax file in the Tailspin.Web project shows how the application
loads the certificate it will use for encrypting and decrypting the session cookie from the certificate
store in the cloud service. The application identifies the certificate from the thumbprint in the service-
Certificate element in the Web.config file.

C#
private void OnServiceConfigurationCreated(object sender,
 ServiceConfigurationCreatedEventArgs e)
{
 var sessionTransforms =
 new List<CookieTransform>(
 new CookieTransform[]
 {
 new DeflateCookieTransform(),
 new RsaEncryptionCookieTransform(
 e.ServiceConfiguration.ServiceCertificate),
 new RsaSignatureCookieTransform(
 e.ServiceConfiguration.ServiceCertificate)
 });
 var sessionHandler = new SessionSecurityTokenHandler(
 sessionTransforms.AsReadOnly());
 e.ServiceConfiguration.SecurityTokenHandlers
 .AddOrReplace(sessionHandler);
}

The Application_Start method in the Global.asax.cs file hooks up this event handler to the Federated-
Authentication module.

For more information about the DPAPI, see “Windows Data Protection” on MSDN.

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/library/jj871057.aspx.
For more information about the claims-based authentication and authorization model used in the
Surveys application see Chapter 6, “Federated Identity with Multiple Partners,” of the guide “A Guide
to Claims-Based Identity and Access Control.”
For a walkthrough of how to secure an ASP.NET site on Windows Azure with WIF, see “Exercise 1:
Enabling Federated Authentication for ASP.NET applications in Windows Azure” on Channel 9.
For more information about using forms authentication with your Windows Azure application, see
“Real World: ASP.NET Forms-Based Authentication Models for Windows Azure.”

http://msdn.microsoft.com/en-us/library/ms995355.aspx
http://msdn.microsoft.com/library/jj871057.aspx
http://msdn.microsoft.com/en-us/library/hh446524.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://channel9.msdn.com/learn/courses/Azure/IdentityAzure/WIFonWAZLab/Exercise-1-Enabling-Federated-Authentication-for-ASPNET-applications-in-Windows-Azure/
http://channel9.msdn.com/learn/courses/Azure/IdentityAzure/WIFonWAZLab/Exercise-1-Enabling-Federated-Authentication-for-ASPNET-applications-in-Windows-Azure/
http://msdn.microsoft.com/en-us/library/hh508993.aspx

177

7 Managing and Monitoring
Multi-Tenant Applications

This chapter discusses two main areas of concern when you build and
deploy multi-tenant applications. The first is related to application
lifecycle management (ALM) and covers topics such as testing, de-
ployment, management, and monitoring. The second is related spe-
cifically to independent software vendors (ISVs) that are building
multi-tenant applications, and discusses topics such as how to enable
onboarding, customization, and billing for tenants and customers that
use the application.

ALM Considerations for Multi-Tenant
Applications
All applications require a consistent policy for their lifecycle to ensure
that development, testing, deployment, and management are inte-
grated into a reliable and repeatable process. This helps to ensure that
applications work as expected, provide all the required features, and
operate efficiently and reliably.
However, there are some additional considerations for multi-tenant
applications. For example, you may need to implement more granular
management, monitoring, and update procedures based around the
separation for each tenant. This may include backing up individual
tenant’s data separately to minimize security concerns, or being able
to update specific instances of the application that are reserved for
some tenants.

Goals and Requirements
Tailspin’s ALM goals and requirements for the Surveys application en-
compass those that are applicable to most multi-tenant applications.

Managing the application
lifecycle for multi-tenant
applications is usually more
complex than that for
other types of application
because some tasks must be
carried out on a per-tenant
basis.

178 chapter seven

In terms of testability, there are two main areas that must be ad-
dressed: unit testing of application components both during and after
development, and functional testing of the application or sections of
it in a realistic runtime environment. Tailspin must address both of
these areas by designing the application to maximize testability. The
developers at Tailspin want to implement the application in a way that
allows them to use mock objects to simplify unit tests. They also want
to support testing for sections of the application, such as the back-
ground tasks carried out by worker roles, as well as being able to
quickly and easily deploy the application with a test configuration to
a staging platform for functional and acceptance testing.
Tailspin wants to be able to perform as much testing as possible using
the local compute and storage emulators. Of course, Tailspin will still
do a complete test pass in Windows Azure before the final deploy-
ment, but during development it is more convenient to test locally.
This is one of the factors that Tailspin will consider when it makes
technology choices. For example, if Tailspin uses Windows Azure
Caching instead of Windows Azure Shared Caching, it can test the
caching behavior of the application locally. However, if Tailspin
chooses to use SQL Database federations then it cannot test that part
of the application locally.
In addition to the unit tests and functional testing, Tailspin wants to
verify that the Surveys application will scale to meet higher levels of
demand, and to determine what scale units it should use. For example,
how many worker role instances and message queues should there be
for every web role instance when Tailspin scales out the application.
There is little point in performing stress testing using the local com-
pute and storage emulators; you must deploy the application to the
cloud in order to determine how it performs under realistic load
conditions.
When testing is complete, Tailspin’s administrators want to be able to
deploy the application in a way that minimizes the chance of error.
This means that they must implement reliable and repeatable pro-
cesses that apply the correct configuration settings and carry out the
deployment automatically. They also want to be able to update the
application while it is running, and roll back changes if something goes
wrong.
After the application has been successfully deployed, the administra-
tors and operators at Tailspin must be able to manage the application
while it is running. This includes tasks such as backing up data, adjust-
ing configuration settings, managing the number of instances of roles,
handling requests for customization, and more. In a multi-tenant ap-
plication, administrators and operators may also be responsible for all
or part of the onboarding process for trials and new subscribers.

You should check the latest
documentation for both
the compute and storage
emulators to identify any
differences in their behavior
from the Windows Azure
services.

 179M anaging and Monitoring Multi-Tenant Applications

Finally, administrators and operators must be able to monitor the ap-
plication to ensure that it is operating correctly, meeting its SLAs, and
fulfilling business requirements. For a multi-tenant application, admin-
istrators will also want to be able to monitor both the operation and
the runtime costs on a per-tenant basis. Where the application sup-
ports different levels of SLA or feature set for different types of ten-
ants, monitoring requirements can become considerably more compli-
cated. For example, heavy loading on specific instances will often
require the deployment of additional instances to ensure that SLAs
are met. Tasks such as this will typically require some kind of automa-
tion that combines the results of monitoring with the appropriate
management actions.

Overview of the Solution
This section describes the options Tailspin considered for testing,
deploying, managing, and monitoring the Surveys application, and
identifies their chosen solutions.

Testing Strategies
One of the advantages with a multi-tenant application compared to
multiple different application implementations is that there is only a
single code base. Every tenant runs the same core application code,
and so there is only one application and one set of components to
test.
However, because most multi-tenant applications support user cus-
tomization through configuration, the test processes must exercise all
of the configurable options. Unit tests, functional tests, and accep-
tance testing must include passes that exercise every possible combi-
nation of configurable options to ensure that all work correctly and
do not conflict with each other.
If tenants can upload their own components or resources (such as
style sheets and scripts) testing should encompass this to as wide an
extent as possible. While it will not be possible to test every compo-
nent or resource, the tests should ensure that these cannot affect
execution of the core application code, or raise security issues by ex-
posing data or functionality that should not be available.

When testing features that allow users to upload code,
scripts, or style sheets your test process should resemble
that of a malicious user by uploading items that intention-
ally attempt to access data and interfere with execution.
While you cannot expect to cover every eventuality, this
will help to expose possible areas where specific security
measures must be applied.

Procedures for managing
and monitoring multi-
tenant applications and
the data they use must
take into account the
requirements of individual
tenants to maintain security
and to meet SLAs.

180 chapter seven

In terms of test environment requirements, multi-tenant applications
are generally no different from any other application. Developers and
testers run unit tests on local computers and on the build server to
validate individual parts of the application. This includes using the
local Windows Azure compute and storage emulators on the develop-
ment and test computers. The one area that may require additional
test environment capacity is to provide separate resources, such as
databases, to represent multiple tenant resources during testing.
Functional tests are run in a local test environment that mirrors the
Windows Azure runtime environment as closely as possible; or in a
staging environment on Windows Azure. Typically this will use a dif-
ferent subscription from the live environment to ensure that only
administrators and responsible personnel have access to the keys
needed for deployment and access to live services and resources such
as databases.
Acceptance tests occur after final deployment, and the Windows
Azure capability for rolling back changes through a virtual IP swap
allows rapid reversion to a previous version should a failure occur.
Acceptance testing must include testing the application from the us-
er’s perspective, including applying any customizations that are sup-
ported.
Other types of tests such as performance, throughput, and stress test-
ing are carried out as part of the functional tests, and throughout final
testing, to ensure that the application can meet its SLAs.

 Designing to Support Unit Testing
The Surveys application uses Windows Azure table and blob storage,
and the developers at Tailspin were concerned about how this would
affect their unit testing strategy. From a testing perspective, a unit
test should focus on the behavior of a specific class and not on the
interaction of that class with other components in the application.
From the perspective of Windows Azure, any test that depends on
Windows Azure storage requires complex setup and tear-down logic
to make sure that the correct data is available for the test to run.
For both of these reasons, the developers at Tailspin designed the data
access functionality in the Surveys application with testability in
mind, and specifically to make it possible to run unit tests against their
data store classes without a dependency on Windows Azure storage.

Stress testing should
include verifying that any
autoscaling rules add or
remove sufficient resources
to support the level of
demand and control your
costs.

The Surveys application uses the Unity Application Block
to decouple its components and facilitate testing.

 181M anaging and Monitoring Multi-Tenant Applications

The solution adopted by the developers at Tailspin was to wrap the Windows Azure storage compo-
nents in such a way as to facilitate replacing them with mock objects during unit tests, and use the
Unity Application Block to instantiate them. A unit test should be able to instantiate a suitable mock
storage component, use it for the duration of the test, and then discard it. Any integration tests can
continue to use the original data access components to test the functionality of the application.

Unity is a lightweight, extensible dependency injection container that supports intercep-
tion, constructor injection, property injection, and method call injection. You can use Uni-
ty in a variety of ways to help decouple the components of your applications, to maximize
coherence in components, and to simplify design, implementation, testing, and adminis-
tration of these applications. You can learn more about Unity and download the applica-
tion block from “Unity Container.”

Tailspin also wanted to be able to separately unit test the background tasks implemented as Windows
Azure worker roles. Tailspin’s developers created a generic worker role framework for the worker roles
that makes it easy to add and update background task routines, and also supports unit testing.
The worker role framework Tailspin implemented allows individual jobs to override the PreRun, Run,
and PostRun methods to set up, run, and tear down each job. The support in this framework for op-
erators such as For, Do, and Every to execute tasks in a worker also makes it easy to write unit tests
for jobs that will be processed by a worker role. Chapter 4, “Partitioning Multi-Tenant Applications,”
describes the implementation of these operators, and the section “Testing Worker Roles” later in this
chapter illustrates how they facilitate designing unit tests.

Stress Testing and Performance Tuning
Tailspin performed stress testing on the Surveys application running in the cloud in order to uncover
any bottlenecks that limit the application’s scalability, and to understand how to scale out the applica-
tion. Bottlenecks might include limits on the throughput that can be achieved with Windows Azure
storage, limits on the amount of processing that the application can perform with given the available
CPU and memory resources and the algorithms used by the application, and limits on the number of
web requests that the web roles can handle.
After a stress test identified a bottleneck, the team at Tailspin evaluated the available options for re-
moving the bottleneck, made a change to the application, and then re-ran the stress test to verify that
the change had the expected effect on the application.
To perform the stress testing, Tailspin used Visual Studio Load Test running in Windows Azure to
simulate different volumes of survey response submissions to the public Surveys web site. For more
information about how to run load tests in Windows Azure roles that exercise another Windows
Azure application, see Using Visual Studio Load Tests in Windows Azure Roles on MSDN.

http://msdn.microsoft.com/en-us/library/ff647202
http://msdn.microsoft.com/en-us/library/windowsazure/hh674491.aspx

182 chapter seven

Application Deployment and Update Strategies
Multi-tenant application deployment and updating follows the same
process as other types of applications. There should be only one core
code package for the application because all customization for indi-
vidual tenants should be accomplished through just configuration
settings for each tenant. These configuration settings should ideally
be stored in a separate location, such as a database or Windows Azure
storage, and not in the service configuration files. This removes the
requirement to upload different versions of the application.
Where tenants have the ability to upload additional resources, such as
style sheets and logos, these resources should be stored outside of
the application. Therefore, deploying a new application or updating
an existing one will not impact individual tenant’s resources. The up-
dated application will continue to read configuration settings from
the central configuration store and access the tenant’s resources from
the central location where they are stored.
To provide a reliable and repeatable deployment and update experi-
ence, Tailspin uses scripts that run as part of the build process when
deploying to the test environment, and separate scripts accessible
only to administrators that are executed to deploy or update the ap-
plication in the live runtime environment. This prevents the possibil-
ity of errors that could occur when using the Windows Azure Man-
agement Portal.
The scripts modify the settings in the Web.config file that cannot be
stored in the service configuration files, such as the settings for Win-
dows Identity Foundation (WIF) authentication. The scripts also ac-
cept a parameter that defines which of the service configuration files
will be uploaded to Windows Azure during deployment or update.
There are separate service configuration files in the source code proj-
ect for use when deploying to the local and cloud test environments.

See Chapter 3, “Moving to Windows Azure Cloud Services,” of
the guide “Moving Applications to the Cloud” for more details of
this approach to deploying to a local testing environment, a cloud
based staging area, and the live environment.

Application Management Strategies
Windows Azure incorporates several features that are useful for man-
aging applications after deployment. These include the Windows
Azure Management Portal, the Windows Azure Management API, the
Windows Azure PowerShell cmdlets, and many Microsoft and third
party tools and services.

Although you can modify
settings in your Windows
Azure application’s service
configuration file (.cscfg)
on the fly, you cannot
add new settings without
redeploying the role. In a
multi-tenant application,
you typically require new
settings for each tenant.
Therefore, Tailspin chose to
store tenant configuration
data in blob storage and
read it from there whenever
the application needs it.

http://msdn.microsoft.com/en-us/library/ff803371.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx

 183M anaging and Monitoring Multi-Tenant Applications

Administrators can use the Windows Azure Management Portal to
modify configuration settings in the service configuration file while
the application is deployed; and to stop and start roles, change the
number of instances, and see basic runtime information about roles.
All of these tasks can also be accomplished by using the Windows
Azure Management API, and administrators can use a series of Pow-
erShell cmdlets that provide a wide range of methods for interacting
with the API.

You can obtain the Windows Azure PowerShell cmdlets from the
Windows Azure Download Page.

Tailspin uses the Windows Azure PowerShell cmdlets to interact with
the Windows Azure Management API for almost all management
tasks. This provides a reliable and repeatable process for common
tasks that administrators must carry out. However, for some tasks
administrators will use the Windows Azure Management Portal—par-
ticularly for tasks that are not carried out very often.

Reliability and Availability
One of the major concerns for administrators and operators who
manage the application is to ensure that it is available at all times and
is meeting its SLAs. It is very difficult to estimate the workload for a
multi-tenant application because the tenants are unlikely to provide
detailed estimates of usage, and the peaks can occur at various times
if users are located in many different time zones.
Tailspin realized that one of the core factors for meeting SLAs would
be to ensure sufficient instances of the application are running at all
times, while minimizing costs by removing instances when not re-
quired. To achieve this Tailspin will incorporate the Enterprise Library
Autoscaling Application Block into the application to automatically
add or remove role instances based on changes in average load and
usage of the application.
To achieve a base level of reliability Tailspin always ensures that a
minimum of two instances of each role are deployed so that failures,
or reorganization of resources within the Windows Azure datacenter,
will not prevent users from accessing the application.

See Chapter 5, “Maximizing Availability, Scalability, and
Elasticity,” for more information about how Tailspin plans
to use the Enterprise Library Autoscaling Application Block
in Tailspin Surveys.

Tailspin plans to keep
detailed usage information
that it can analyze for
trends. If Tailspin can
identify times of the day,
week, month, or year
when usage is regularly
higher or lower it can
preemptively add or remove
resources. The Autoscaling
Application Block enables
Tailspin to perform this
type of autoscaling in
addition to reactive scaling
based on average load or
usage.

http://www.windowsazure.com/en-us/manage/downloads/

184 chapter seven

Backup and Restore for Data
The most significant changes to administrative and management tasks
for a multi-tenant application when compared to a standard business
application are concerned with the processes used to back up and
restore data. Each tenant’s data will typically be isolated from all oth-
ers through the use of a separate database, table, partition, blob
container, or storage account. It is vital that this isolation is not com-
promised during the backup and restore process.
If the data is held in separate databases, the backup procedures can
simply address each database in turn, and store the backup in separate
files or blobs. However, these files or blobs must also be securely
stored so that only responsible staff and the appropriate tenant can
access them. A tenant must obviously not be able to access a backup
that contains other tenants’ data.
If tenants’ data is stored in separate Windows Azure subscriptions
you must consider whether your responsibility includes backup and
restore processes. One of the reasons that tenants may want to use
their own subscription and account for their data storage is to maxi-
mize security of the data or to meet regulatory limitations (such as on
the location or storage of the data). In most cases, the tenant should
be responsible for backing up and restoring this data.
If all of the tenants’ data is held in shared storage, such as in a shared
database or in a single Windows Azure storage account, specific care
must be taken when designing the backup and restore processes.
While it is possible to create a single backup of the database or stor-
age account, doing so means that administrators must exercise extra
care in storing the backup and when restoring some or all tenants’
data. One solution may be to offer the capability in the application
for tenants to create a backup containing just their own data on de-
mand, and allow them to store it in a location of their choosing.
In the Surveys application, data for each tenant is stored in Windows
Azure tables. Tailspin will implement a mechanism that allows tenants
to back up the data for each tenant separately, and store each tenant’s
backup in a separate Windows Azure storage blob to maintain isola-
tion. For examples illustrating how to backup Windows Azure table
storage, see “Table Storage Backup & Restore for Windows Azure” on
CodePlex, and the blog post “Protecting Your Tables Against Applica-
tion Errors.”

Subscribers who export
their survey data to SQL
Database can use the SQL
Database Import/Export
Service to back up their
data. This service enables
you to export your data
to blob storage and then
optionally download it to
an on-premises location for
safekeeping.

http://tablestoragebackup.codeplex.com/
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/03/protecting-your-tables-against-application-errors.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/03/protecting-your-tables-against-application-errors.aspx

 185M anaging and Monitoring Multi-Tenant Applications

There are several other management-related concerns par-
ticularly applicable to ISVs and software vendors, rather
than to the development of in-house applications and ser-
vices. These include how the application supports on-
boarding and configuration for subscribers, per tenant
customization, and financial goals. These topics are dis-
cussed in more detail in the section “ISV Considerations
for Multi-Tenant Applications” later in this chapter.

Application Monitoring Strategies
Windows Azure incorporates several features that are useful for
monitoring applications. These include the Windows Azure Manage-
ment Portal, the Windows Azure Management API, the Windows
Azure diagnostics mechanism, and many tools and services available
from Microsoft and from third parties. For example, Microsoft System
Center can be used to monitor a Windows Azure application and raise
alerts when significant events occur.
Developers should make use of the Windows Azure diagnostics
mechanism to generate error and trace messages within the applica-
tion code. In addition, administrators can configure Windows Azure
diagnostics to record operating system events and logs, and other
useful information. All of the monitoring information collected by the
diagnostics mechanism can be accessed using a range of tools to view
the Windows Azure tables and blobs where this data is stored, or by
using scripts to download the data for further analysis.
Where tenants can upload resources to customize the application,
administrators can take advantage of Windows Azure endpoint pro-
tection to guard against the occurrence of malicious code such as vi-
ruses and Trojans finding their way onto the server. You can install
endpoint protection into each web and worker role instance in your
application and then configure Windows Azure diagnostics to read
error and warning messages from the Microsoft Antimalware source
in the system event log.

See “Microsoft Endpoint Protection for Windows Azure” on the
Microsoft download site for more information. On this page you
can also download the document “Monitoring Microsoft Endpoint
Protection for Windows Azure,” which describes how to collect
diagnostic data from Windows Azure endpoint protection.

In a multi-tenant
application you must take
special care when dealing
with log files because
diagnostic data can include
tenant specific data. If
you allow tenants to
see log files, perhaps for
troubleshooting purposes,
you must be sure that
diagnostic data is not
shared accidentally with
the wrong tenant. You must
either keep separate logs
for each tenant, or be sure
that you can filter logs by
tenant before sharing them.

http://www.microsoft.com/en-us/download/details.aspx?id=29209

186 chapter seven

Tailspin implements code in the application that writes events to Windows Azure diagnostics by using
a custom helper class and the Windows Azure Diagnostics listener. This includes a range of events and
covers common error situations within the application. A configuration setting in the service configu-
ration file controls the level of event logging, allowing administrators to turn on extended logging
when debugging the application and turn it off during ordinary runtime scenarios.

Inside the Implementation
Now is a good time to walk through some of the code in the Tailspin Surveys application in more
detail. As you go through this section, you may want to download the Visual Studio solution for the
Tailspin Surveys application from http://wag.codeplex.com/.

Unit Testing
Tailspin designed many classes of the Surveys application to support unit testing by taking advantage
of the dependency injection design pattern. This allows mock objects to be used when testing indi-
vidual classes without requiring the complex setup and teardown processes often needed to use the
real objects.
For example, this section describes how the design of the Surveys application supports unit testing of
the SurveyStore class that provides access to Windows Azure table storage. This description focuses
on tests for one specific class, but the application uses the same approach with other store classes.
The following code example shows the IAzureTable interface and the AzureTable class that are at
the heart of the implementation.

C#
public interface IAzureTable<T> :
 IAzureObjectWithRetryPolicyFactory
 where T : TableServiceEntity
{
 IQueryable<T> Query { get; }
 CloudStorageAccount Account { get; }

 void EnsureExist();
 void Add(T obj);
 void Add(IEnumerable<T> objs);
 void AddOrUpdate(T obj);
 void AddOrUpdate(IEnumerable<T> objs);
 void Delete(T obj);
 void Delete(IEnumerable<T> objs);
}

public class AzureTable<T> : AzureStorageWithRetryPolicy,
 IAzureTable<T> where T : TableServiceEntity
{
 private readonly string tableName;
 private readonly CloudStorageAccount account;

 ...

http://wag.codeplex.com/

 187M anaging and Monitoring Multi-Tenant Applications

 public IQueryable<T> Query
 {
 get
 {
 TableServiceContext context = this.CreateContext();
 return context.CreateQuery<T>(this.tableName)
 .AsTableServiceQuery();
 }
 }

 ...

 public void Add(T obj)
 {
 this.Add(new[] { obj });
 }

 public void Add(IEnumerable<T> objs)
 {
 TableServiceContext context = this.CreateContext();

 foreach (var obj in objs)
 {
 context.AddObject(this.tableName, obj);
 }

 var saveChangesOptions = SaveChangesOptions.None;
 if (objs.Distinct(
 new PartitionKeyComparer()).Count() == 1)
 {
 saveChangesOptions = SaveChangesOptions.Batch;
 }

 this.StorageRetryPolicy.ExecuteAction(()
 => context.SaveChanges(saveChangesOptions));
 }

 ...

 private TableServiceContext CreateContext()
 {
 return new TableServiceContext(
 this.account.TableEndpoint.ToString(),
 this.account.Credentials)
 {
 // Retry policy is handled by TFHAB
 RetryPolicy = RetryPolicies.NoRetry()
 };
 }

188 chapter seven

 private class PartitionKeyComparer :
 IEqualityComparer<TableServiceEntity>
 {
 public bool Equals(TableServiceEntity x,
 TableServiceEntity y)
 {
 return string.Compare(x.PartitionKey,
 y.PartitionKey, true,
 System.Globalization.CultureInfo.InvariantCulture)
 == 0;
 }

 public int GetHashCode(TableServiceEntity obj)
 {
 return obj.PartitionKey.GetHashCode();
 }
 }
}

The Add method that takes an IEnumerable parameter should check the number of items
in the batch and the size of the payload before calling the SaveChanges method with the
SaveChangesOptions.Batch option. For more information about batches and Windows Azure
table storage, see “Performing Entity Group Transactions” on MSDN.

The generic interface and class have a type parameter T that derives from the Windows Azure Table-
ServiceEntity type you use to create your own table types. For example, in the Surveys application
the SurveyRow and QuestionRow types derive from the TableServiceEntity class. The IAzureTable
interface defines several operations: the Query method returns an IQueryable collection of the type
T, and the Add, AddOrUpdate, and Delete methods each take a parameter of type T. In the Azure-
Table class the Query method returns a TableServiceQuery object, the Add and AddOrUpdate
methods save the object to table storage, and the Delete method deletes the object from table
storage.
To create a mock object for unit testing, you must instantiate an object that implements the interface
type IAzureTable. The following code example from the SurveyStore class shows the constructor.
Because the constructor takes parameters of type IAzureTable, you can pass in either real or mock
objects that implement this interface.

C#
public SurveyStore(IAzureTable<SurveyRow> surveyTable,
 IAzureTable<QuestionRow> questionTable)
{
 this.surveyTable = surveyTable;
 this.questionTable = questionTable;
}

http://msdn.microsoft.com/en-us/library/dd894038.aspx

 189M anaging and Monitoring Multi-Tenant Applications

This parameterized constructor is invoked in two different scenarios. The Surveys application invokes
it indirectly when the application uses the SurveysController MVC class. The application uses the
Unity dependency injection framework to instantiate MVC controllers. The Surveys application re-
places the standard MVC controller factory with the UnityControllerFactory class in the OnStart
method in both web roles, so when the application requires a new MVC controller instance Unity is
responsible for instantiating that controller. The following code example shows part of the Container-
Bootstrapper class from the TailSpin.Web project that the Unity container uses to determine how to
instantiate objects.

C#
public static void RegisterTypes(IUnityContainer container,
 bool roleInitialization)
{
 var account = CloudConfiguration
 .GetStorageAccount("DataConnectionString");

 container.RegisterInstance(account);

 ...

 var cloudStorageAccountType =
 typeof(Microsoft.WindowsAzure.CloudStorageAccount);
 var retryPolicyFactoryProperty =
 new InjectionProperty("RetryPolicyFactory",
 typeof(IRetryPolicyFactory));

 container
 .RegisterType<IAzureTable<SurveyRow>,
 AzureTable<SurveyRow>>(
 new InjectionConstructor(cloudStorageAccountType,
 AzureConstants.Tables.Surveys),
 readWriteStrategyProperty,
 retryPolicyFactoryProperty)
 .RegisterType<IAzureTable<QuestionRow>,
 AzureTable<QuestionRow>>(
 new InjectionConstructor(cloudStorageAccountType,
 AzureConstants.Tables.Questions),
 retryPolicyFactoryProperty);

 ...

 container.RegisterType<ISurveyStore, SurveyStore>
 (cacheEnabledProperty)...
}

190 chapter seven

When the application requires a new MVC controller instance, Unity is
responsible for creating the controller. The constructor that Unity in-
vokes to create a SurveysController instance takes a number of param-
eters including a SurveyStore object. The third call to the Register-
Type method in the previous sample defines how Unity instantiates a
SurveyStore object to pass to the SurveysController constructor. The
first two calls to the RegisterType method in the previous sample de-
fine the rules that tell the Unity container how to instantiate the two
IAzureTable instances that it must pass to the SurveyStore construc-
tor shown earlier.
In the second usage scenario for the parameterized SurveyStore con-
structor, you create unit tests for the SurveyStore class by directly
invoking the constructor and passing in mock objects created using
the Moq mocking library. The following code example shows a unit
test method that uses the constructor in this way.

C#
[TestMethod]
public void GetSurveyByTenantAndSlugNameReturnsTenant
 NameFromPartitionKey()
{
 string expectedRowKey = string.Format(
 CultureInfo.InvariantCulture, "{0}_{1}", "tenant",
 "slug-name");
 var surveyRow = new SurveyRow { RowKey = expectedRowKey,
 PartitionKey = “tenant” };
 var surveyRowsForTheQuery = new[] { surveyRow };
 var mock = new Mock<IAzureTable<SurveyRow>>();
 mock.SetupGet(t => t.Query).Returns(
 surveyRowsForTheQuery.AsQueryable());
 mock.Setup(t => t.GetRetryPolicyFactoryInstance())
 .Returns(new DefaultRetryPolicyFactory());
 var store = new SurveyStore(
 mock.Object, default(IAzureTable<QuestionRow>));

 var survey = store.GetSurveyByTenantAndSlugName(
 "tenant", "slug-name", false);

 Assert.AreEqual("tenant", survey.Tenant);
}

To see how the web
role uses Unity when it
instantiates MVC controllers,
examine the code in the
Global.asax file that creates
a UnityControllerFactory
instance.

 191M anaging and Monitoring Multi-Tenant Applications

The test creates a mock IAzureTable<SurveyRow> instance, uses it to instantiate a SurveyStore
object, invokes the GetSurveyByTenantAndSlugName method, and checks the result. It performs
this test without touching Windows Azure table storage.
The Surveys application uses a similar approach to enable unit testing of the other store components
that use Windows Azure blob and table storage.

Testing Worker Roles
Tailspin also considered how to implement background tests in worker roles so as to minimize the
effort required for unit testing. The implementation of the “plumbing” code in the worker role, and
the use of Unity, makes it possible to run unit tests on the worker role components using mock ob-
jects instead of Windows Azure queues and blobs. The following code from the BatchProcessing-
QueueHandlerFixture class shows two example unit tests.

C#
[TestMethod]
public void ForCreatesHandlerForGivenQueue()
{
 var mockQueue = new Mock<IAzureQueue<StubMessage>>();

 var queueHandler = BatchProcessingQueueHandler
 .For(mockQueue.Object, 1);

 Assert.IsInstanceOfType(queueHandler,
 typeof(BatchMultipleQueueHandler<MessageStub>));
}

[TestMethod]
public void DoRunsGivenCommandForEachMessage()
{
 var message1 = new MessageStub();
 var message2 = new MessageStub();
 var mockQueue = new Mock<IAzureQueue<MessageStub>>();
 var queue = new Queue<IEnumerable<MessageStub>>();
 queue.Enqueue(new[] { message1, message2 });
 mockQueue.Setup(q => q.GetMessages(32))
 .Returns(() => queue.Count > 0 ?
 queue.Dequeue() : new MessageStub[] { });
 var command = new Mock<IBatchCommand<MessageStub>>();
 var queueHandler = new
 BatchProcessingQueueHandlerStub(mockQueue.Object);

 queueHandler.Do(command.Object);

 command.Verify(c => c.Run(It.IsAny<MessageStub>()),
 Times.Exactly(2));
 command.Verify(c => c.Run(message1));
 command.Verify(c => c.Run(message2));
}

192 chapter seven

public class MessageStub : AzureQueueMessage
{
}

public class CloudQueueMessageStub : CloudQueueMessage
{
 public CloudQueueMessageStub(string content)
 : base(content)
 {
 this.DequeueCount = 6;
 }
}

private class BatchProcessingQueueHandlerStub :
 BatchProcessingQueueHandler<StubMessage>
{
 public BatchProcessingQueueHandlerStub(
 IAzureQueue<StubMessage> queue) : base(queue)
 {
 }

 public override void Do(
 IBatchCommand<StubMessage> batchCommand)
 {
 this.Cycle(batchCommand);
 }
}

The ForCreateHandlerForGivenQueue unit test verifies that the static For method instantiates a
BatchProcessingQueueHandler correctly by using a mock queue. The DoRunsGivenCommand-
ForEachMessage unit test verifies that the Do method causes the command to be executed against
every message in the queue by using mock queue and command objects.

 193M anaging and Monitoring Multi-Tenant Applications

Testing Multi-Tenant Features and Tenant Isolation
The developers at Tailspin included tests to verify that the application preserves the isolation of
tenants. The following code sample shows a test in the SurveysControllerFixture class that verifies
that the private tenant web site uses the correct tenant details when a tenant chooses to export
survey data to a SQL Database instance.

C#
[TestMethod]
public void ExportGetsTheTenantInformationAndPutsInModel()
{
 var tenant = new Tenant();

 var mockTenantStore = new Mock<ITenantStore>();
 var mockSurveyAnswerStore = new Mock<ISurveyAnswerStore>();
 mockTenantStore.Setup(
 r => r.GetTenant(It.IsAny<string>())).Returns(tenant);
 mockSurveyAnswerStore.Setup(
 r => r.GetFirstSurveyAnswerId(It.IsAny<string>(),
 It.IsAny<string>())).Returns(string.Empty);

 using (var controller = new SurveysController(
 null, mockSurveyAnswerStore.Object, null,
 mockTenantStore.Object, null))
 {
 controller.Tenant = tenant;

 var result =
 controller.ExportResponses(string.Empty) as ViewResult;

 var model = result.ViewData.Model
 as TenantPageViewData<ExportResponseModel>;

 Assert.AreSame(tenant, model.ContentModel.Tenant);
 }
}

194 chapter seven

Performance and Stress Testing
The test team at Tailspin conducted a set of high volume stress tests
in order to determine the expected throughput with a given number
of role and queue instances, and to understand how to scale the ap-
plication to meet higher levels of demand. This section focuses on the
specific results of stress testing the Surveys application. However,
most of the factors will be relevant to the majority of Windows Azure
applications.
During the stress testing exercise, the team identified a number of
issues with the code that limited the scalability of the application and,
as a result, the developers proposed a number of changes to overcome
these limitations.

Optimistic and Pessimistic Concurrency Control
The application saves the survey summary statistics data and the list
of survey responses to blob storage. A worker role collects the data,
processes it, and writes it back to blob storage. When more than one
worker role instance is running they could try to write to the same
blob simultaneously, and so the application must use either an opti-
mistic or a pessimistic approach to managing concurrent access issues.
As part of the stress testing, Tailspin evaluated both optimistic and
pessimistic concurrency approaches when the application writes to
these blobs to determine which approach enabled the highest
throughput. With a heavily loaded system, and running three worker
role instances, the test team saw approximately one optimistic con-
currency exception per 2,000 saved survey responses. Therefore,
Tailspin decided to use the optimistic concurrency approach when the
application writes to these blobs.

Maintaining a List of Survey Answers
To support paging through survey answers in the order they were re-
ceived by the system, and exporting to a SQL Database instance, the
application maintains a list of survey responses for each survey in a
blob. Chapter 3, “Choosing a Multi-Tenant Data Architecture,” de-
scribes this mechanism in detail.
However, stress testing revealed that this can lead to a bottleneck in
the system as the number of survey responses for a survey grows. Ev-
ery time the system saves a new set of survey responses, it must read
the whole list of existing responses from blob storage, append the new
answers to the list, and then save the list back to blob storage.

Often, the only
way you can make
a sensible choice
between optimistic and
pessimistic concurrency
is by testing the
application to the
limits, counting failures,
and measuring actual
performance under
realistic conditions with
realistic data.

The results we got from
our stress tests may be
specific to the Surveys
application, but the
factors involved and
our solutions are likely
to be relevant to the
majority of Windows
Azure applications.

 195M anaging and Monitoring Multi-Tenant Applications

The developers at Tailspin plan to address this problem by introducing
a paging mechanism, so that it uses multiple blobs to store the list of
survey responses for each survey. Each blob will hold a list of survey
responses, but once the list reaches a certain size the application will
create a new list. In this way, the size of the list that the application is
currently writing to will never grow beyond a fixed size.
This will also require some changes in the logic that enables paging
through survey responses in the UI and reading survey responses for
export to SQL Database.

Azure Queues Throughput
According to the information in the post “Windows Azure Storage
Abstractions and their Scalability Targets” on the Windows Azure Stor-
age Team blog, a Windows Azure queue has a performance target of
processing 500 messages per second. The Tailspin Surveys application
uses two queues to deliver survey responses from the public web site
to the worker role for processing (one for responses to surveys pub-
lished by tenants with a standard subscription, and one for responses
to surveys published by tenants with a premium subscription). It’s
possible, with a high volume of users responding to surveys, that the
number of messages that these queues need to process could exceed
500 per second.
Tailspin plans to partition these queues, and modify the application to
work with multiple instances of these queues in order to support
higher rates of throughput. For example, the web role could use a
round-robin approach to write messages to the multiple queue in-
stances in turn and the worker role could use a separate thread to
handle each of the queue instances. However, care is required in de-
signing this kind of feature to ensure an appropriate number of queue
instances are available when you scale the application (either manu-
ally or automatically) and the number of role instances changes.

Synchronous and Asynchronous Calls to Windows Azure Storage
The stress tests indicated that synchronously writing first to blob
storage and then synchronously posting a message to a queue took up
a significant portion of execution time in the web role. Typically, you
can improve the throughput when you write to Windows Azure stor-
age by using asynchronous calls to avoid blocking the application
while the I/O operation completes. For example, if you need to write
to storage and send a message to a queue you can initiate both op-
erations asynchronously.

Sometimes performance
bottlenecks aren’t the fault
of your bad code, they
are limitations of services
or systems you rely on. In
this case you must either
live with the limits, or
redesign your code to find
a workaround. But take
care that the additional
complexity you introduce
does not have a greater
impact on your application’s
performance than the
limitation you originally
encountered.

http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-scalability-targets.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-azure-storage-abstractions-and-their-scalability-targets.aspx

196 chapter seven

However, there are some issues that would make it difficult to convert
these into asynchronous write operations in the Surveys application.
For example, the web role must finish writing a survey response to
blob storage before it sends a message to the queue that instructs the
worker role to process it. Performing the writes to blob storage and
the queue concurrently by using asynchronous code could result in
errors if writing to the blob fails, or if the message arrives in the
worker role before the web role finishes writing the survey response
to storage.
Tailspin also considered whether it should use asynchronous calls
when the application saves summary statistics and answer lists to
blob storage. These write operations take place as part of the process-
ing cycle in the worker role that consists of reading the blob data,
making changes to that blob data, and then writing the data back to
blob storage.
The application uses an optimistic concurrency approach that checks
the data in the blob hasn’t changed between the time it was read and
the time that the application attempts to write it back. If the applica-
tion used an asynchronous call to write the data back to blob storage,
it’s possible that the read operation in the next cycle will start before
the previous write operation is complete—increasing the likelihood
of an optimistic concurrency exception occurring.
Tailspin decided not to use asynchronous calls when the application
writes summary statistics data and survey answer response lists to
blob storage.

Additional Performance Tuning Options
Further performance tuning options that Tailspin will consider and
test include:
•	 Turning off Nagling. For more information, see the post “Nagle’s

Algorithm is Not Friendly towards Small Requests” on the Windows
Azure Storage Team blog.

•	 Setting a connection limit. For more information, see the post
“Understanding MaxServicePointIdleTime and DefaultConnection-
Limit” on the Http Client Protocol blog.

•	 Turning off proxy detection in the system.NET section of the
web.config file when running in the cloud. See “<proxy> Element
(Network Settings)” for details.

Just because you can do
things asynchronously and
concurrently doesn’t always
mean that you should. Some
processes in an application
need to be performed
in a predetermined or
controlled order, or must
finish before the next task
starts. This is particularly
the case if you need to
check for an error before
starting the next process.

http://blogs.msdn.com/b/windowsazurestorage/archive/2010/06/25/nagle-s-algorithm-is-not-friendly-towards-small-requests.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/06/25/nagle-s-algorithm-is-not-friendly-towards-small-requests.aspx
http://blogs.msdn.com/b/jpsanders/archive/2009/05/20/understanding-maxservicepointidletime-and-defaultconnectionlimit.aspx
http://blogs.msdn.com/b/jpsanders/archive/2009/05/20/understanding-maxservicepointidletime-and-defaultconnectionlimit.aspx
http://msdn.microsoft.com/en-us/library/sa91de1e(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/sa91de1e(v=vs.100).aspx

 197M anaging and Monitoring Multi-Tenant Applications

Managing the Surveys Application
Tailspin stores all the configuration data used to manage tenants of the Surveys application in blob
storage. The private web site, defined in the Tailspin.Web project, includes a set of pages that are only
available to Tailspin administrators for managing Tailspin Surveys tenants.
The sample application currently enables Tailspin administrators to add new tenants and update the
details of existing tenants. It does not currently enable administrators to delete tenants.
The “Subscribers list” screen shows the Tailspin administrator a list of the current tenants in the
Tailspin Surveys application. A Tailspin administrator can edit the details of existing subscribers from
the subscribers list screen and add a new subscriber on the “Add a new subscriber” screen.
Tailspin plans to implement a process to enable administrators to remove a subscriber. A Delete hy-
perlink on the subscribers list screen will trigger this process, and must perform the following steps:
•	 Delete the tenant blob that contains the subscriber’s configuration data from the tenants blob

container.
•	 Delete all of the subscriber’s survey questions from the Questions table and survey headers from

the Surveys table. In the case of the Surveys table, each subscriber’s surveys are stored on a
separate partition. In the case of the Questions table, the partition key is a combination of the
subscriber name and survey name: the delete process must find all of the partitions where the
partition key starts with the subscriber’s ID.

•	 Delete all the blob containers that contain the subscriber’s survey answers (every survey has its
own blob container for storing survey responses). The subscriber’s ID is part of the container
name.

•	 Delete all the blobs in the surveyanswerssummaries and surveyanswerslists blob containers
that belong to the subscriber (every survey will have its own blob in each of these containers).
The subscriber’s ID is part of the blob names.

•	 Delete any data used for customizing the subscriber’s surveys such as logos in the logos blob
container.

•	 If the subscription includes a SQL Database, de-provision the database.
•	 Delete the subscriber’s configuration data and survey definitions from the cache.
•	 If the subscriber uses the Tailspin identity provider, delete any accounts belonging to the sub-

scriber from the store used by the identity provider.
Some of the actions in the previous list can be performed quickly and Tailspin plans to perform these
actions synchronously when the administrator has confirmed that the subscriber must be deleted.
These actions are to delete the cached data, to delete the data from the Surveys table, and to delete
the subscriber’s configuration data from the tenants blob container. When these items have been
deleted the subscriber will not be able to access the private tenant site, and the subscriber’s surveys
will not be listed on the public site.
Tailspin can delete a subscriber’s configuration data from blob storage quickly because the subscriber’s
ID is the name of the blob, it can delete the entries from the Surveys table quickly because all the
subscriber’s surveys are stored in the same partition, and it can delete the cached data quickly because
the application uses a separate cache region for each tenant.

198 chapter seven

The remaining actions, which may take longer to perform, can be
performed asynchronously. Deleting a subscriber’s entries in the
Questions table may take time because the entries span multiple
partitions and therefore the process must scan then entire table to
locate all the entries to delete. Deleting the subscriber’s blobs from
the surveyanswerssummaries and surveyanswerslists blob contain-
ers may take time because the process must iterate over all the blobs
in the container to identify which ones belong to the subscriber.

Monitoring the Surveys Application
Tailspin uses Windows Azure diagnostics to collect information from
the Surveys application at runtime. Tailspin administrators can then
monitor these log files for any unexpected events or behavior. For
example, the administrators can monitor the messages from the Tran-
sient Fault Handling Application Block to identify if there are any
changes in Windows Azure that are affecting how the application is
using Windows Azure storage or SQL Database. These types of retries
will happen from time to time, which is why Tailspin uses the Tran-
sient Fault Handling Application Block. However, if the administrators
see a large number of retries occurring they can take steps to investi-
gate the status of the Windows Azure services or other dependent
services.
The AzureTable, AzureQueue, and AzureBlobContainer classes in
the application all inherit from the AzureObjectWithRetryPolicy-
Factory class that specifies the message that the application writes to
the Windows Azure logs when the block detects a transient fault. The
following code sample shows the AzureObjectWithRetryPolicy-
Factory class.

C#
public abstract class AzureObjectWithRetryPolicyFactory
 : IAzureObjectWithRetryPolicyFactory
{
 public IRetryPolicyFactory RetryPolicyFactory { get; set; }

 public virtual IRetryPolicyFactory
 GetRetryPolicyFactoryInstance()
 {
 return this.RetryPolicyFactory
 ?? new DefaultRetryPolicyFactory();
 }

Tailspin can quickly delete some
subscriber data and disable
access for that subscriber. It can
delete all of the remaining data
later to free up storage space.

 199M anaging and Monitoring Multi-Tenant Applications

 protected virtual void RetryPolicyTrace(object sender,
 RetryingEventArgs args)
 {
 var msg = string.Format(
 "Retry - Count:{0}, Delay:{1}, Exception:{2}",
 args.CurrentRetryCount,
 args.Delay,
 args.LastException);
 TraceHelper.TraceInformation(msg);
 }
}

ISV Considerations for Multi-Tenant
Applications
Questions such as how to handle the onboarding process for new
subscribers, how to manage per user customization, and how to imple-
ment billing are relevant to both single tenant and multi-tenant archi-
tectures. However, they require some special consideration in a multi-
tenant model.

Goals and Requirements
Tailspin’s goals and requirements for supporting tenants and custom-
ers that pay to use the Surveys application encompass those that are
applicable to most multi-tenant applications created by ISVs.
When a new subscriber signs up for a multi-tenant application, the
application must undergo configuration and other changes to enable
the new account. The onboarding process must typically be auto-
mated, and it touches many components of the application. Tailspin
wants to automate as much of this process as possible to simplify the
onboarding process for new subscribers, and to minimize the costs
associated with setting up a new subscriber.
It is common for ISVs to offer different levels of subscription, such as
standard and premium subscriptions, which may vary in terms of func-
tionality, support, and service level (for example, guaranteed avail-
ability and response times). This can make both the onboarding and
the daily operation more complex to manage. Tailspin intends to offer
different levels of service, and so must consider how this will affect
the design of the application.

The onboarding process
touches many components
in your applications.

200 chapter seven

Another common feature of multi-tenant applications is enabling
subscribers to customize parts of the application for their customers,
such as the appearance of the UI or the availability of specific features
and capabilities. The amount of customization required will vary for
different scenarios and different types of application, and it is an-
other factor that can have a large impact on the complexity of design-
ing and managing multi-tenant applications. Tailspin intends to offer
some levels of UI customization to tenants, but will limit this to simple
changes such as style sheets and logos. Tailspin also wants to enable
premium subscribers to add metadata, such as a product ID or an
owner, to survey definitions. Premium subscribers will be able to use
this contextual data as links to other data within their own systems
Finally, ISVs will need to be able to bill tenants based on their usage of
the application. While Windows Azure does provide billing informa-
tion for an application, calculating the costs for each tenant is less easy
to achieve. Tailspin wants to be able to bill tenants at different rates
based on both usage and the type of subscription that tenant has.

Overview of the Solution
This section describes the options Tailspin considered for managing
individual tenants in the Surveys application, and identifies the solu-
tions Tailspin chose.

Onboarding for Trials and New Subscribers
For Tailspin, the key issue related to onboarding is how much of the
process should it automate. Building a system that handles self-service
sign up is complex, but it does make it easier for potential subscribers
to try out the system. The self-service onboarding process must in-
clude a number of steps, including the following:
•	 Validate the tenant. Tailspin must ensure that paying subscribers

have a valid payment method such as a credit card.
•	 Create any tenant specific configuration settings. It should be

possible to create (and change) tenant configuration values
without restarting any part of the application. For Tailspin
Surveys, tenant configuration values are stored in Windows
Azure blob storage using one blob per tenant. This includes all
of the information that the Tailspin federation provider needs to
establish a trust relationship with the tenant’s identity provider.
If the tenant has chosen to use the Tailspin identity provider, the
application will also need to add user accounts to the member-
ship database. In addition, the Surveys application will use the
tenant configuration data when it adds tenant identifiers to data
collected at runtime by logging mechanisms, and when it per-
forms any tenant specific backup operations.

ISVs will typically want to
allow tenants to customize
the application, but this
can add complexity to the
solution and may increase
security concerns if not
properly controlled.

 201M anaging and Monitoring Multi-Tenant Applications

•	 Provision any tenant specific resources. Tenants with premium
subscriptions can choose to have their own SQL Database server
to store their exported data. The SQL Database Management
REST API enables you to create server instances. If you need to
provision any other Windows Azure resources, such as storage
accounts or cloud services, you can use the Windows Azure
Service Management API.

•	 Notify Tailspin administrators of any additional steps that must
be completed on behalf of the tenant. Tailspin does not antici-
pate the need for any manual steps for its administrators as part
of the onboarding process.

•	 Notify the subscriber of any additional steps that it must take.
For example, Tailspin Surveys subscribers can use a custom DNS
name to access their surveys.

•	 Notify the subscriber of any applicable terms and conditions
including the SLA for the subscription type.

For more information about using the Windows Azure Service
Management REST APIs, see “Windows Azure Service
Management REST API Reference” and “Management REST API
Reference (SQL Database).”

Configuring Subscribers
Tailspin chose to store all of the configuration data for each tenant in
Windows Azure blob storage. Tailspin uses one blob per tenant and
uses the JSON serializer to write the Tenant object to the blob. Almost
all of the tenant configuration data is stored in this way, making it easy
for Tailspin to manage the details of its subscribers. The only excep-
tions to storing tenant configuration data in blobs in the tenants blob
container are that tenant logos are stored in the logos blob container,
and those tenants who use the Tailspin identity provider store their
users account details in the identity provider’s membership database.

Supporting Per Tenant Customization
Tailspin Surveys includes three ways that subscribers can customize
the application.
Each tenant can customize the UI seen by survey respondents to add
tenant specific branding. Initially, each tenant will be able to upload a
logo that displays on every survey page. Tailspin also plans to enable
tenants to use CSS style sheets to further customize the UI. The ap-
plication enables this UI customization by allowing subscribers to
upload the necessary files to Windows Azure blob storage. Enabling
support for custom CSS style sheets is more complex than for logos
because a poorly designed style sheet could make the surveys unread-
able; Tailspin plans to develop some validation and filtering functional-
ity to minimize this risk.

We limit the types of
custom CSS style selectors
we accept to prevent the
UI from being rendered
unusable, and to protect the
application from malicious
attack or other unexpected
side effects.

http://msdn.microsoft.com/en-us/library/ee460799.aspx
http://msdn.microsoft.com/en-us/library/ee460799.aspx
http://msdn.microsoft.com/en-us/library/gg715283.aspx
http://msdn.microsoft.com/en-us/library/gg715283.aspx

202 chapter seven

Premium tenants can add their own custom metadata to their surveys
to enable linking with their own applications and services. The appli-
cation uses a custom schema for each tenant to store this additional
data in table storage. It also uses a custom assembly for each tenant
that takes advantage of this feature, which enables the tenant to save
and view this custom data in the private tenant web site. For more
information about how Tailspin implemented this feature see the sec-
tion “Accessing Custom Data Associated with a Survey” in Chapter 3,
“Choosing a Multi-Tenant Data Architecture.”
Subscribers can also customize how to authenticate with Tailspin
Surveys. They can choose to use their own identity provider, Tailspin’s
identity provider, or a third party identity provider. This configuration
data is stored in the tenant blob. For more information about how the
different authentication schemes work see Chapter 6, “Securing
Multi-Tenant Applications.”

Financial Goals and Billing Subscribers
Tailspin developed the Surveys application as a commercial service
from which it hopes to make a profit. The revenue from the applica-
tion will come from tenants who sign up for one of the paid services.
The costs can be broken down into the following categories:
•	 Tailspin incurred costs during the project to develop the Surveys

application. These costs included developer salaries, software
licenses, hardware, and training.

•	 Tailspin incurs ongoing management costs. These costs include
administrator salaries, bug fixing, and developing enhancements.

•	 Tailspin incurs running costs. Windows Azure bills Tailspin
monthly for the resources it consumes, such as web and worker
role usage, data transfer, and data storage.

The costs associated with the first two categories may be difficult to
identify, especially because some of the items may be associated with
other projects and applications; for example, an administrator may be
responsible for multiple applications. The costs in the third category
are very easy for Tailspin to identify from the monthly billing state-
ments. If the application consumes a significant quantity of Windows
Azure resources, these running costs may be the most significant
costs associated with the application.
The revenue that Tailspin receives from its tenants should be suffi-
cient to generate a suitable return on investment, enabling Tailspin to
recoup its initial investment costs and generate a surplus.
Tailspin evaluated two alternative pricing strategies for the Tailspin
Surveys application. The first is to charge subscribers a fixed monthly
amount for the package they subscribe to, the second is to charge
subscribers based on their resource consumption.

Enabling tenants to
extensively customize
the application can add
considerably to your
development, test, and
administration costs.

 203M anaging and Monitoring Multi-Tenant Applications

Charging subscribers a fixed monthly fee has the following advan-
tages and disadvantages:
•	 Subscribers know in advance what their costs will be every

month.
•	 Tailspin knows, based on subscriber numbers, what its income will

be every month.
•	 There is a risk for Tailspin that, if it doesn’t sign up enough

subscribers, it won’t cover its costs.
•	 For Tailspin, implementing such a billing scheme is relatively

straightforward.
•	 It may be perceived as unfair, with some users effectively subsi-

dizing others depending on their usage pattern.
•	 Tailspin must set limits that prevent subscribers from using

resources excessively. With no limits in place, Tailspin may face
unexpectedly large bills at the end of a month, or the perfor-
mance of the application may suffer.

Charging subscribers based on their monthly resource usage has the
following advantages and disadvantages:
•	 Tailspin can pass on its Windows Azure running costs to its

tenants, plus a percentage to ensure that it always covers its
monthly running costs.

•	 Subscribers cannot predict their monthly costs so easily.
•	 Subscribers may want to set a cap on their potential monthly

costs, or receive notifications if they exceed a particular amount.
•	 Tailspin must ensure full transparency in the way that it calculates

subscribers’ monthly bills.
•	 Tailspin must add suitable monitoring to the application to

accurately capture each subscriber’s usage.
•	 This approach may be viewed as fairer because there is no cross

subsidization between tenants.
•	 This approach is more complex to implement.
Tailspin opted for the first approach, where subscribers pay a fixed
monthly fee for their subscription. Subscribers prefer this approach
because their costs are predictable, and Tailspin prefers it because it
can implement it relatively easily.

Windows Azure Marketplace can provide you with a channel for
marketing your hosted service. It can also provide billing services
to collect payments from subscribers. For more information, see
Windows Azure Marketplace on MSDN.

Using the Autoscaling
Application Block is
not just a great way
to scale applications
automatically—it can
also be used to set upper
limits on your use of cloud
resources.

http://msdn.microsoft.com/en-us/library/gg315539.aspx

204 chapter seven

Tailspin will set different monthly limits for the different subscription levels. Initially, Tailspin plans to
implement the following restrictions on subscribers:
•	 It will set different limits for premium and standard subscribers on the number of surveys they

can have active at any one time. Tailspin can enforce this by checking how many surveys the
subscriber currently has active whenever the subscriber tries to publish a new survey.

•	 It will set different limits on the duration of a survey. Tailspin can enforce this by recording, as
part of the survey definition, when the subscriber published the survey. The application can
check whether the maximum duration that a survey can be available for has been reached
whenever it loads the list of available surveys for a subscriber.

Tailspin will also consider placing different limits on the maximum number of responses that can be
collected for the different subscription levels. This will require the application to track the number of
survey responses each tenant and survey receives and notify the subscriber when it is approaching the
limit. The application already collects this data as part of the summary statistics it calculates.
Tailspin will monitor the application to see if any subscriber surveys result in poor performance for
other users. If this occurs, it will investigate additional ways to limit the way that subscribers can
consume resources.
The sample application does not currently impose any limits on the different types of subscriber.

Inside the Implementation
Now is a good time to walk through some of the code in the Tailspin Surveys application in more
detail. As you go through this section, you may want to download the Visual Studio solution for the
Tailspin Surveys application from http://wag.codeplex.com/.

Onboarding for Trials and New Subscribers
The following sections describe how Tailspin handles onboarding for new subscribers. The onboarding
process collects the information described in this section and then persists it to blob storage using
one blob per tenant. The web and worker roles in the Tailspin Surveys application use the tenant in-
formation in blob storage to configure the application dynamically at runtime.

Basic Subscription Information
The following table describes the basic information that every subscriber provides when they sign up
for the Surveys service.

Information Example Notes

Subscriber
Name

Adatum Ltd. The commercial name of the subscriber. The application uses this as part of custom-
ization of the subscriber’s pages on the Surveys websites. The Subscriber can also
provide a corporate logo.

Subscriber
Alias

adatum A unique alias used within the application to identify the subscriber. For example,
it forms part of the URL for the subscriber’s web pages.

The application generates a value based on the subscriber name, but it allows the
subscriber to override this suggestion.

Subscription
Type

Trial, Individual,
Standard,
Premium

The subscription type determines the feature set available to the subscriber and may
affect what additional onboarding information must be collected from the subscriber.

Payment
Details

Credit card
details

Apart from a trial subscription, all other subscription types are paid subscriptions.
The application uses a third-party solution to handle credit card payments.

http://wag.codeplex.com/

 205M anaging and Monitoring Multi-Tenant Applications

Apart from credit card details, all this information is stored in Windows Azure storage; it is used
throughout the onboarding process and while the subscription is active.

Authentication and Authorization Information
Chapter 6 of this guide, “Securing Multi-Tenant Applications,” describes the three alternatives for
managing access to the application. Each of these alternatives requires different information from the
subscriber as part of the onboarding process. For example, the Standard subscription type uses a social
identity provider to authenticate a user’s Microsoft or Google account credentials, and the Premium
subscription type can use either the subscriber’s own identity provider or Tailspin’s identity provider.

Provisioning a Trust Relationship with the Subscriber’s Identity Provider
One of the features of the Premium subscription type is integration with the subscriber’s identity
provider. The onboarding process collects the information needed to configure the trust relationship
between subscriber’s Security Token Service (STS) and the Tailspin federation provider (FP) STS. The
following table describes this information.

Information Example Notes

Subscriber
Federation
Metadata URL

https://login.adatum.net/FederationMetadata/2007-06/
FederationMetadata.xml

This should be a public endpoint.
An alternative is to enable the
subscriber to manually upload
this data.

Administrator
identifier (email
or Security
Account Manager
Account Name)

john@adatum.com The Surveys application creates a
rule in its FP to map this identifier
to the administrator role in the
Surveys application.

User identifier
claim type

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name This is the claim type that the
subscriber’s STS will issue to
identify a user.

Thumbprint of
subscriber’s
token signing key

d2316c731b39683b743109278c81e2684523d17e The federation provider STS
compares this to the thumbprint
of the certificate included in the
security token sent by the
subscriber’s STS. If they match,
the Tailspin federation provider
can trust the security token.

Claims transfor-
mation rules

Group:Domain Users => Role:Survey Creator These rules map a subscriber’s
claim types to claim types
understood by the Surveys
application.

206 chapter seven

The sample code includes the Tailspin.SimulatedIssuer project, which includes a simple federation
provider that manages the federation with Tailspin’s subscribers. This federation provider reads the
information it needs from the tenant’s configuration data in blob storage. The following code sample
from the FederationSecurityTokenService class in the Tailspin.SimulatedIssuer project shows how
this simple federation provider uses the tenant information to perform the claims transformation from
the tenant’s claim into a claim that the Tailspin Surveys application recognizes.

C#
protected override IClaimsIdentity GetOutputClaimsIdentity(
 IClaimsPrincipal principal,
 RequestSecurityToken request,
 Scope scope)
{
 if (principal == null)
 {
 throw new InvalidRequestException(
 "The caller's principal is null.");
 }

 var input = principal.Identity as ClaimsIdentity;

 var tenant = this.tenantStore.GetTenant(
 input.Claims.First().Issuer);
 if (tenant == null)
 {
 throw new InvalidOperationException(
 "Issuer not trusted.");
 }

 var output = new ClaimsIdentity();

 CopyClaims(input,
 new[] { WSIdentityConstants.ClaimTypes.Name },
 output);
 TransformClaims(input, tenant.ClaimType,
 tenant.ClaimValue, ClaimTypes.Role,
 Tailspin.Roles.SurveyAdministrator,
 output);
 output.Claims.Add(new Claim(Tailspin.ClaimTypes.Tenant,
 tenant.Name));

 return output;
}

 207M anaging and Monitoring Multi-Tenant Applications

The following code sample from the TenantStoreBasedIssuerNameRegistry in the Tailspin.Simulated-
Issuer project shows how the Tailspin federation provider verifies that a security token is from a
trusted source. It compares the subscriber’s thumbprint stored in the tenant configuration data with
the thumbprint of the signing certificate in the security token received from the tenant’s STS.

C#
public override string GetIssuerName(
 SecurityToken securityToken)
{
 if (securityToken is X509SecurityToken)
 {
 string thumbprint = (securityToken as X509SecurityToken)
 .Certificate.Thumbprint;
 foreach (
 var tenantName in this.tenantStore.GetTenantNames())
 {
 var tenant = this.tenantStore.GetTenant(tenantName);
 if (tenant.IssuerThumbPrint.Equals(thumbprint,
 System.StringComparison.InvariantCultureIgnoreCase))
 {
 return tenant.Name;
 }
 }
 return null;
 }
 else
 {
 throw new InvalidSecurityTokenException(
 "Empty or wrong securityToken argument");
 }
}

In the future Tailspin could decide to use ADFS, Windows Azure Access Control, or a different custom
STS as its federation provider STS. As part of the onboarding process, the Surveys application would
have to programmatically create the trust relationship between the Tailspin federation provider STS
and the subscriber’s identity provider, and programmatically add any claims transformation rules to
the Tailspin federation provider.

For more information about using claims and trust relationships see the section “Setup and Physical
Deployment” in Chapter 5, “Federated Identity with Windows Azure Access Control Service,” of “A
Guide to Claims-Based Identity and Access Control.”

http://msdn.microsoft.com/en-us/library/hh446535.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx

208 chapter seven

Provisioning Authentication and Authorization for Basic
Subscribers
Subscribers to the Standard subscription type cannot integrate the
Surveys application with their own STS. Instead, they define their
own users in the Surveys application. During the onboarding process
they provide details for the administrator account that will have full
access to everything in their account, including billing information.
They can later define additional users as members of the Survey Cre-
ator role, who can only create surveys and analyze the results.

Provisioning Authentication and Authorization for Individual
Subscribers
Individual subscribers use a third-party social identity such as a Micro-
soft account, Open ID credentials, or Google ID credentials to au-
thenticate with the Surveys application. During the onboarding pro-
cess they must provide details of the identity they will use. This
identity has administrator rights for the account and is the only
identity that can be used to access the account.

Geo-location Information
During the onboarding process, the subscriber selects the geographic
location where the Surveys application will host its account. The list
of available locations is a subset, chosen by Tailspin, of the locations
where there are currently Windows Azure data centers. This geo-
graphic location identifies the location of the Subscriber website in-
stance that the subscriber will use, and where the application stores
data associated with the account. It is also the default location for
hosting the subscriber’s surveys, although the subscriber can opt to
host individual surveys in alternate geographical locations. For more
information about how Tailspin plans to implement this behavior, see
Chapter 5, “Maximizing Availability, Scalability, and Elasticity.” Cur-
rently, the sample application allows a subscriber to select a hosting
location, saves this in the tenant configuration, but does not use it.

Database Information
During the sign-up process, a subscriber can also opt to provision a
Windows Azure SQL Database instance to store and analyze its sur-
vey data. The application creates this database on a SQL Database
server in the same geographical location as the subscriber’s account.
The application uses the subscriber alias to generate the database
name and the database user name. The application also generates a
random password. The application saves the database connection
string in Windows Azure storage, together with the other subscriber
account data.

You could automatically
suggest a location based
on the user’s IP address by
using a service such as the
IPInfoDB IP Location XML
API.

http://ipinfodb.com/ip_location_api.php
http://ipinfodb.com/ip_location_api.php

 209M anaging and Monitoring Multi-Tenant Applications

At the time of writing, there is a soft limit of 150 databases per SQL Database server. Tailspin could
monitor manually how many databases are created on each SQL Database server, and then add new
server instances as required. Alternatively, Tailspin could automate this process using the SQL Data-
base Management REST API. For more information, see “Operations on Windows Azure SQL Database
Servers.”

The Windows Azure SQL Database instance is owned and paid for by Tailspin. Tailspin charges
subscribers for this service. For more information about how the Surveys application uses Windows
Azure SQL Database see the section “Implementing the Data Export” in Chapter 3, “Choosing a
Multi-Tenant Data Architecture,” of this guide.

Customizing the Surveys Application for Each Subscriber
A common feature of multi-tenant applications is enabling subscribers to customize features of the
application for their subscribers, such as the appearance of the application and the availability of se-
lected UI features and functionality.

How Tailspin Allows Subscribers to Customize the User Interface
The current version of the Surveys application enables subscribers to customize the appearance of
their pages by using a custom logo image. Subscribers can upload an image to their account, and the
Surveys application saves the image as part of the subscriber’s account data in blob storage. The ap-
plication can then display the image on pages in the public and private web sites.
The current solution allows a subscriber to upload a single image to a public blob container named
logos. As part of the upload process, the application adds the URL for the logo image to the tenant’s
blob data stored in the blob container named tenants. The following code sample from the Tenant-
Store class shows how the application saves the subscriber’s logo image to blob store and then updates
the tenant’s configuration data with the URL of the image:

C#
public void UploadLogo(string tenant, byte[] logo)
{
 this.logosBlobContainer.Save(tenant, logo);

 var tenantToUpdate =
 this.tenantBlobContainer.Get(tenant);
 tenantToUpdate.Logo =
 this.logosBlobContainer.GetUri(tenant).ToString();

 this.SaveTenant(tenantToUpdate);
}

Tailspin plans to extend the customization options available to subscribers in future versions of the
application. These planned extensions, which are not included in the sample, will enable subscribers
to customize the appearance of their survey pages to follow corporate branding by using cascading
style sheets (CSS) technology.

http://msdn.microsoft.com/en-us/library/gg715271.aspx
http://msdn.microsoft.com/en-us/library/gg715271.aspx

210 chapter seven

Tailspin is concerned about the security implications of allowing subscribers to upload custom .css
files, and plans to limit the CSS features that the site will support. To do this, Tailspin plans to provide
a UI where subscribers can provide custom definitions for a predefined list of CSS selectors that are
applied to the HTML elements used to display the survey page and its questions. The Surveys applica-
tion will store these custom CSS selector definitions as part of each tenant’s configuration data, en-
abling each subscriber to customize its surveys using its own style. The following code sample shows
a selection of the CSS selectors that the application currently uses and that could, potentially, be
overridden using this approach.

CSS
#surveyTitle
{
 ...
}
#surveyTitle h1
{
 ...
}

#surveyForm
{
 ...
}

#surveyForm ol
{
 ...
}

#surveyForm ol li
{
 ...
}

#surveyForm .option input[type="radio"]
{
 ...
}

.stars span span
{
 ...
}

.stars span.rating-over
{
 ...
}

.stars span.rating
{
 ...
}

 211M anaging and Monitoring Multi-Tenant Applications

The Surveys application will construct a custom style sheet dynami-
cally at runtime using the custom definitions saved by the subscriber,
and link to it in the HTML pages. The following code sample shows
how the Survey Display page in the public site might apply the custom
CSS selectors defined by the Adatum subscriber.

HTML
<head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8" />
 <meta http-equiv=”X-UA-Compatible” content=”IE=8” />
 <title>Tailspin - Survey #1</title>
 <link href="/Content/styles/baseStyle.css"
 rel="stylesheet" type="text/css" media="screen" />
 <link href="/Utility/DynamicStyle.aspx?TenantID=adatum"
 rel="stylesheet" type="text/css" media="screen" />

</head>

The page imports the custom styles generated by the DynamicStyle.
aspx page after the default styles so that any customizations defined
by the subscriber override the base styles.
Tailspin will implement a scanning mechanism to verify that the CSS
customizations provided by the tenants do not include any of the CSS
features that the Surveys site does not support, or that could compro-
mise the application’s security.

Cascading style sheets
behaviors are one feature
that the Surveys site will
not support.

212 chapter seven

Billing Subscribers in the Surveys Application
Tailspin plans to bill each subscriber a fixed monthly fee to use the
Surveys application. Subscribers will be able to subscribe to one of
several packages, such as those outlined in the following table.

Subscription
type

User accounts Maximum
survey duration

Maximum
active surveys

Trial A single user account linked
to a social identity provider,
such as Windows Live or
OpenID.

5 days 1

Basic A single user account linked
to a social identity provider,
such as Windows Live or
OpenID.

14 days 1

Standard Up to five user accounts
provided by the Surveys
application.

28 days 10

Premium Unlimited user accounts
linked from the subscriber’s
own identity provider.

56 days 20

The advantage of this approach is simplicity for both Tailspin and the
subscribers, because the monthly charge is fixed for each subscriber.
Tailspin must undertake some market research to estimate the num-
ber of monthly subscribers at each level so that it can set appropriate
charges for each subscription level.
In the future Tailspin wants to be able to offer extensions to the basic
subscription types. For example, Tailspin wants to enable subscribers
to extend the duration of a survey beyond the current maximum, or
increase the number of active surveys beyond the current maximum.
To do this, Tailspin will need to be able to capture usage metrics from
the application to help it calculate any additional charges incurred by
a subscriber.

At the time of writing, the best approach to capturing usage
metrics is via logging. Several log files are useful. You can use the
Internet Information Services (IIS) logs to determine which tenant
generated the web role traffic. Your application can write custom
messages to the WADLogsTable in response to events such as a
survey being completed. The sys.bandwidth_usage view in the
master database of each Windows Azure SQL Database server
shows bandwidth consumption by database.

Tailspin must have good
estimates of expected usage
to be able to estimate costs,
revenue, and profit.

 213M anaging and Monitoring Multi-Tenant Applications

More Information
All links in this book are accessible from the book’s online bibliography available at:
http://msdn.microsoft.com/library/jj871057.aspx.
For more information about ALM and Windows Azure, see the articles listed at “Testing, Managing,
Monitoring and Optimizing Windows Azure Applications” on MSDN.
For information about creating custom performance counters, see “Real World: Creating Custom
Performance Counters for Windows Azure Applications with PowerShell.”
For a discussion of how to ensure business continuity with Windows Azure applications, see
“Business Continuity for Windows Azure.”
For information about the SQL Database Import/Export Service, see “How to: Import and Export a
Database (Windows Azure SQL Database).”
For a useful collection of links and resources related to testing Windows Azure applications, see
“Testing Applications in Windows Azure.”
For more information about monitoring your Windows Azure application, including how to use
Microsoft System Center Operations Manager, see “Troubleshooting in Windows Azure.”
For information about the differences between the local compute and storage emulators and the
Windows Azure services, see Differences Between the Storage Emulator and Windows Azure Storage
Services and Differences Between the Compute Emulator and Windows Azure.

http://msdn.microsoft.com/library/jj871057.aspx
http://msdn.microsoft.com/en-us/library/hh674492.aspx
http://msdn.microsoft.com/en-us/library/hh674492.aspx
http://msdn.microsoft.com/en-us/library/hh508994.aspx
http://msdn.microsoft.com/en-us/library/hh508994.aspx
http://msdn.microsoft.com/en-us/library/hh873027.aspx
http://msdn.microsoft.com/en-us/library/hh335292.aspx
http://msdn.microsoft.com/en-us/library/hh335292.aspx
http://social.technet.microsoft.com/wiki/contents/articles/5394.testing-applications-in-windows-azure.aspx
http://www.windowsazure.com/en-us/develop/net/best-practices/troubleshooting/
http://msdn.microsoft.com/en-us/library/gg433135.aspx
http://msdn.microsoft.com/en-us/library/gg433135.aspx
http://msdn.microsoft.com/en-us/library/gg432960.aspx

215

affinity group. A named grouping that is in a single data center. It can include all the components
associated with an application, such as storage, Windows Azure SQL Database instances, and roles.
ASP.NET MVC. A framework for developing web applications. It is based on the Model-View-
Controller architectural design pattern.
autoscaling. Automatically scaling an application based on a schedule or on metrics collected from
the environment.
claim. A statement about a subject; for example, a name, identity, key, group, permission, or
capability made by one subject about itself or another subject. Claims are given one or more values
and then packaged in security tokens that are distributed by the issuer.
cloud. A set of interconnected servers located in one or more data centers.
cloud service. Windows Azure environment where you host your application’s web and worker
roles. Formally referred to as a hosted service.
code near. When an application and its associated database(s) are both in the cloud.
code far. When an application is on-premises and its associated database(s) are in the cloud.
compute emulator. The Windows Azure compute emulator enables you to run, test, debug, and
fine-tune your application before you deploy it as a hosted service to Windows Azure. See also:
storage emulator.
Content Delivery Network (CDN). A system composed of multiple servers that contain copies of
data. These servers are located in different geographical areas so that users can access the copy that
is closest to them.
continuation token. A technique, supported by Windows Azure table storage, which enables a
client to page through records. In response to a query, a server returns a page of records and a
continuation token. If the client submits the continuation token back to the server, the server
delivers the next page of records.
elasticity. A property of a system that describes its ability to scale in and out dynamically.
Enterprise Library. A collection of reusable software components (application blocks) designed to
assist software developers with common enterprise development cross-cutting concerns (such as
logging, validation, data access, exception handling, and many others).

Glossary

216 glossary

entity group transaction (EGT). A transaction with ACID properties across multiple entities stored
in the same Windows Azure table partition.
federation. In Windows Azure SQL Database, a federation is a way to scale out horizontally by
using additional servers. Also known as sharding.
federation provider. A special case of a Security Token Service (STS) that typically trusts a third-
party identity provider. The federation provider may transform the claims in the token from the
third-party identity provider into a format acceptable to your application.
horizontal scalability. The ability to add more servers that are copies of existing servers.
hosted service. Spaces where applications are deployed.
idempotent operation. An operation that can be performed multiple times without changing the
result. An example is setting a variable.
identity provider. Typically, a separate system that is responsible for determining the identity of a
user. An application trusts an identity provider to perform this task. The identity provider passes
information about the user in the form of a token. An identity provider is a special case of a Security
Token Service (STS).
Infrastructure as a Service (IaaS). A collection of infrastructure services such as storage, computing
resources, and network that you can rent from an external partner.
lease. An exclusive write lock on a blob that lasts until the lease expires.
mock. A mock object is used in a test to simulate a real object. They are useful when it is impractical
to use the real object in the test.
optimistic concurrency. A concurrency control method that assumes that multiple changes to data
can complete without affecting each other; therefore, there is no need to lock the data resources.
Optimistic concurrency assumes that concurrency violations occur infrequently and simply disallows
any updates or deletions that cause a concurrency violation.
Platform as a Service (Paas). A collection of platform services that you can rent from an external
partner that enable you to deploy and run your application without the need to manage any
infrastructure.
poison message. A message that contains malformed data that causes the queue processor to throw
an exception. The result is that the message isn’t processed, stays in the queue, and the next
attempt to process it once again fails.
Representational State Transfer (REST). An architectural style for retrieving information from
websites. A resource is the source of specific information. Each resource is identified by a global
identifier, such as a Uniform Resource Identifier (URI) in HTTP. The representation is the actual
document that conveys the information.
role. A web or worker role to deploy to Windows Azure.
role instance. A running instance of a web or worker role in Windows Azure.
secure sockets layer (SSL). A cryptographic protocol that uses public key cryptography to secure
communication over the internet, for example using the HTTPS protocol.
Security Token Service (STS). A service that issues claims in the form of tokens. An application
may be configured to trust the tokens issued by a specific STS.

 217glossary

service configuration file. Sets values for the service that can be configured while the hosted
service is running. The values you can specify in the service configuration file include the number of
instances that you want to deploy for each role, the values for the configuration parameters that
you established in the service definition file, and the thumbprints for any SSL certificates associated
with the service.
service definition file. Defines the roles that comprise a service, optional local storage resources,
configuration settings, and certificates for SSL endpoints.
service level agreement (SLA). The formal definition of the level of service that a service provider
undertakes to deliver to the customer. For example, specifying the number of hours that a service
will be available for every month.
service package. Packages the role binaries and service definition file for publication to the
Windows Azure Cloud Services.
sharding. See federation.
shared access signatures (SAS). A special URL that can be used to gain temporary access to data in
Windows Azure table, queue, blob, and blob storage. By generating a SAS URL and giving it to a
client, you can grant the client temporary and limited access to data.
snapshot. A read-only copy of a blob.
Storage Emulator. The Windows Azure storage emulator provides local instances of the blob,
queue, and table services that are available in Windows Azure. If you are building an application that
uses storage services, you can test locally by using the storage emulator.
throttling. The behavior of a Windows Azure service when it restricts the throughput from one
client application in order to ensure that other client applications can continue to use the service.
transient faults. Error conditions that can occur in a distributed environment and that often
disappear when you retry the operation. These are often caused by transient problems with the
network.
vertical scalability. The ability to increase a computer’s resources, such as memory or CPUs.
Web role. An interactive application that runs in the Windows Azure environment. A web role can
be implemented with any technology that works with Internet Information Services (IIS) 7. See
Windows Azure Cloud Services.
Windows Azure. Microsoft’s platform for cloud-based computing. It is provided as a service over
the Internet using either the PaaS or IaaS approaches. It includes a computing environment, the
ability to run virtual machines, Windows Azure storage, and management services.
Windows Azure Cloud Services. Web and worker roles in the Windows Azure environment that
enable you to adopt the PaaS approach.
Windows Azure Management Portal. A web-based administrative console for creating and
managing your Windows Azure hosted services, including Cloud Services, SQL Database, storage,
Virtual Machines, Virtual Networks, and Web Sites.
Windows Azure SQL Database. A relational database management system (RDBMS) in the cloud.
Windows Azure SQL Database is independent of the storage that is a part of Windows Azure. It is
based on SQL Server and can store structured, semi-structured, and unstructured data.

218 glossary

Windows Azure storage. Consists of blobs, tables, drives, and queues. It is accessible with HTTP/
HTTPS requests. It is distinct from Windows Azure SQL Database.
Windows Azure Traffic Manager. A Windows Azure service that enables you to control how
Windows Azure routes traffic to your cloud services.
Windows Azure Virtual Machine. Virtual machines in the Windows Azure environment that
enable you to adopt the IaaS approach.
Windows Azure Virtual Network. Windows Azure service that enables you to create secure
site-to-site connectivity, as well as protected private virtual networks in the cloud.
Windows Azure Web Sites. A Windows Azure service that enables you to quickly and easily
deploy websites that use client and server side scripting and databases to the cloud.
Worker role. Performs batch processes and background tasks in the Windows Azure environment.
Worker roles can make outbound calls and open endpoints for incoming calls. Worker roles
typically use queues to communicate with Web roles. See Windows Azure Cloud Services.

 219

Index

A
acknowledgments, xviii-xxi

applications

architecture, 14

authentication and authorization, 19

code bases, 20

costs management, 26

CQRS pattern, 20

customizing, 22-23

engineering costs, 26

financial considerations, 24-26

fixed monthly fee plans, 25-26

geo-location, 19

legal and regulatory environment, 19

life cycle management, 20-22

monitoring, 21

multiple multi-tenant instances, 17

pay-per-use plans, 25

provider’s perspective, 10-11

resource limitations and throttling, 18

scalability, 15-18

SLAs, 19

stability, 14-15

tenant’s perspective, 9-10

third-party components, 21

trials and new subscribers, 22

updates, 21

URL schemes, 23-24

vs. single-tenant model, 11-12

Windows Azure, 9-27

architecture, 29-69

applications, 14

comparing paging solutions, 52-53

custom data associated with a survey, 56-62

custom field writing to the Surveys table, 57-61

custom fields from the Surveys table, 61-62

data architectures, 32-42

data architectures scalability, 38-42

data export implementing, 64-66

Display method, 67

exporting survey data to SQL Database, 43-44

extensibility, 36-38, 43

goals and requirements, 42-44

Html.DisplayFor element, 68

Html.EditorFor element, 67

inside the implementation, 55-68

new custom fields, 48

ordered list of Survey responses, 62

paging implementation, 62-64

paging through survey results, 43

paging with blob storage, 53

paging with table storage, 52-53

partitioning to isolate tenant data, 32-35

questions display, 66-67

220 index

Questions table, 47

saving user-defined fields in a new survey, 58

scalability, 43

shared access signatures, 35

solution overview, 44-54

SQL Database design, 53-54

storage accounts, 44

storage availability, 31-32

store classes, 55-56

summary statistics displaying, 68

Survey answer storing, 50-51

Survey answer summaries, 51-52

survey definition storing, 45-48

SurveyAnswer object, 50

SurveyAnswersSummaryStore class, 55

SurveyAnswerStore class, 55

Surveys data model, 44-52

Surveys table, 46

Surveys table structure in Windows Azure SQL
Database, 54

SurveysController class, 63-64, 67

SurveySqlStore class, 55, 65

SurveyStore class, 55

SurveyTransferMessage class, 64-65

SurveyTransferStore class, 55

tenant’s custom fields, 56-57

tenant’s data isolation, 42

tenant’s data storing, 49

TenantStore class, 56

Windows Azure blob storage, 30

Windows Azure data storage, 29-32

Windows Azure SQL Database, 30-31

Windows Azure table storage, 29-30

audience, xiii

authentication and authorization, 19

See also security

automation, 11

availability, 10

availability, scalability, and elasticity, 113-156

access control for the blob containers, 141

Autoscaling Application Block, 147

availability in multi-tenant applications, 113-114

background task types, 121

blob vs. table storage, 136

caching, 115

caching policy, 143

CDN configuring and storing the content, 141-142

configuring URLs to access the content, 142

Content Delivery Network (CDN), 116, 140-141

delayed write pattern, 128-129

elasticity, 115, 126

execution model, 120-121

geo-location, 125-126

goals and requirements, 123-126

impact on other parts of the system, 135-136

inside the implementation, 147-156

large messages, 130-131

MapReduce algorithm, 123

minimizing storage transactions, 135

multiple worker role instances, 122

option comparison, 132-134

pessimistic and optimistic concurrency
handling, 154-155

saving response data, 123-124

saving the response data asynchronously, 148-150

scalability, 126

scalability in multi-tenant applications, 114-116

Shared Access Signatures (SAS), 116

solution overview, 127-147

SQL Database Federation, 115

summary statistics, 124-125

summary statistics calculation, 150-154

 221index

summary statistics options, 137-138

summary statistics scalability, 139

survey response saving options, 127-136

synchronizing survey statistics, 145-146

Tailspin surveys in multiple locations, 144-145

triggers background tasks, 119-120

UI responsiveness when saving survey
responses, 134

Windows Azure applications with worker
roles, 117-123

Windows Azure Caching, 139

worker role scenarios, 118-119

worker role tasks, 131-132

writing directly to storage, 127-128

B
Bharath See cloud specialist role (Bharath)

billing, 10

C
cloud specialist role (Bharath), xvi

code bases, 20

costs, 10

management, 26

CQRS pattern, 20

custom data, 56-62

custom fields

new, 48

to the Surveys table, 57-61

from the Surveys table, 61-62

customizability, 10

D
data architecture, 32-42

scalability, 38-42

data export implementing, 64-66

Display method, 67

E
elasticity See availability, scalability, and elasticity

engineering costs, 26

extensibility, 36-38, 43

F
financial considerations, 24-26

fixed monthly fee plans, 25-26

foreword, xi

G
geo-location, 19

glossary, 215-218

goals and requirements, 42-44

guide structure, xiv-xv

H
Html.DisplayFor element, 68

Html.EditorFor element, 67

I
isolation, 9

IT professional role (Poe), xvii

J
Jana See software architect role (Jana)

L
legal and regulatory environment, 19

life cycle management, 20-22

M
maintainability, 11

managing and monitoring, 177-213

additional performance tuning options, 196

ALM considerations, 177-199

application management strategies, 182-185

application monitoring strategies, 185-186

authentication and authorization

222 index

SurveysControllerFixture class, 193

SurveyStore class, 188, 190

synchronous and asynchronous calls to Windows
Azure storage, 195-196

TenantStoreBasedIssuerNameRegistry class, 207

testing strategies, 179-181

trust relationship with the subscriber’s identity
provider, 205-207

UI customizing, 209-211

unit testing, 186-191

unit testing support, 180-181

worker roles testing, 191-192

Markus See senior software developer role (Markus)

monitoring, 11

applications, 21

more information, xvi

multi-tenant applications See applications

multi-tenant applications partitioning See partitioning

multi-tenant applications securing See security

multi-tenant architecture See architecture

multiple multi-tenant instances, 17

multiple service levels, 11

N
new custom fields, 48

O
ordered list of Survey responses, 62

P
paging

with blob storage, 53

implementation, 62-64

solutions, 52-53

with table storage, 52-53

through survey results, 43

partitioning, 71-111

AppRoutes class, 99

BatchMultipleQueueHandler class, 92-97

basic subscribers, 208

individual subscribers, 208

information, 205

Azure queues throughput, 195

AzureObjectWithRetryPolicyFactory
class, 198-199

AzureTable class, 186-188

backup and restore for data, 184-185

basic subscription information, 204-205

BatchProcessingQueueHandlerFixture
class, 191-192

ContainerBootstrapper class, 189

CSS style sheets, 201

database information, 208-209

deployment and update strategies, 182

FederationSecurityTokenService class, 206

financial goals and billing subscribers, 202-203

geo-location information, 208

goals and requirements, 177-179

IAzureTable interface, 186-188

inside the implementation, 186-199, 204-212

ISV considerations, 199-212

multi-tenant features and tenant isolation, 193

onboarding for trials and new subscribers, 204

optimistic and pessimistic concurrency control, 194

per tenant customization, 201-202

performance and stress testing, 194-196

performance tuning, 181

reliability and availability, 183

solution overview, 200-204

stress testing, 181

subscriber billing, 212

subscriber configuring, 201

survey answers list, 194-195

Surveys application

customizing, 209-211

managing, 197-198

monitoring, 198-199

 223index

cached tenant data, 89-90

caches, 80-81

caching frequently used data, 108-111

cost, 88

DNS names, certificates, and SSL in the Surveys
application, 85-87

goals and requirements, 81-83

http://tailspin.cloudapp.net, 87

https://tailspin.cloudapp.net, 86

identifying the tenant in a web role, 74-78

identifying the tenant in a worker role, 77-78

inside the implementation, 90-111

isolate tenant data, 32-35

isolation, 81

key plumbing types, 92

multi-instance, multi-tenant mode, 71

multi-instance, single-tenant model, 71

MVC routing tables, 97-100

performance, 89

premium subscriptions, 82

prioritizing work in a worker role, 90-97

queues, 78-80

queues and worker roles partitioning, 84

RegisterArea method, 100

robustness, 89

scalability, 81-82, 89

security, 89

ServiceDefinition.csdef file, 101

session management, 102-108

session state, 87-88

session state provider in the TailSpin.Web
application, 107-108

simplicity, 88

single instance, multi-tenant model, 71

solution overview, 84-90

SSL, 76

survey designing, 83

Surveys application accessing, 82

surveys in different regions, 87

tenant isolation in web roles, 84-85

TenantCacheHelper class, 108-111

user experience, 89

web or worker role partitioning, 73-78

web roles in Tailspin surveys, 100-102

Windows Azure application partitioning, 71-81

Windows Azure Caching cache configuring, 106-107

pay-per-use plans, 25

Poe See IT professional role (Poe)

preface, xiii-xvii

profitability, 10

provisioning, 11

Q
questions display, 66-67

Questions table, 47

R
regulatory compliance, 10

relevance, xiv

requirements, xv-xvi

resources, xvi

limitations and throttling, 18

roles See cloud specialist role (Bharath); IT professional role
(Poe); senior software developer role (Markus);
software architect role (Jana); who’s who

S
scalability, 10

See also availability, scalability, and elasticity

applications, 15-18

architecture, 43

security, 157-175

authentication, 157, 163

authorization, 158, 163

goals and requirements, 163

identity federation for tenants, 168

identity mechanism for small organizations, 165-166

224 index

privacy, 163

sensitive data, 158-159

session token protecting in Windows Azure, 174-175

session tokens encrypting in a Windows Azure
application, 169

Shared Access Signatures (SAS), 161-163

social identity providers, 166-167

splitting sensitive data across multiple
subscriptions, 160-161

subscriber’s own identity mechanism, 164-165

Surveys application scenarios, 164-168

Windows Azure Access Control, 167

Windows Azure Active Directory, 167

Windows Identity Foundation (WIF), 170-174

security See multi-tenant applications securing

senior software developer role (Markus), xvii

shared access signatures, 35

single-tenant model, 11-12

SLAs, 19

software architect role (Jana), xvii

SQL Database design, 53-54

SQL Database Federation, 115

stability, 14-15

storage

accounts, 44

availability, 31-32

store classes, 55-56

structure, xiv-xv

summary statistics displaying, 68

survey data export to SQL Database, 43-44

survey definition storing, 45-48

SurveyAnswer object, 50

SurveyAnswersSummaryStore class, 55

SurveyAnswerStore class, 55

Surveys application, 5

answer storing, 50-51

answer summaries, 51-52

described, 2-3

Surveys data model, 44-52

Surveys table, 46

Surveys table structure in Windows Azure SQL
Database, 54

SurveysController class, 63-64, 67

SurveySqlStore class, 55, 65

SurveyStore class, 55

SurveyTransferMessage class, 64-65

SurveyTransferStore class, 55

system requirements, xv-xvi

T
Tailspin scenario, 1-7

topic areas, 6

target audience, xiii

tenants

custom fields, 56-57

data isolation, 42

data storing, 49

perspective, 9-10

TenantStore class, 56

terminology, 215-218

third-party components, 21

trials and new subscribers, 22

U
updates, 21

URL schemes, 23-24

user-defined fields in a new survey, 58

W
who’s who, xvi-xvii

Windows Azure

applications, 9-27

blob storage, 30

data storage, 29-32

Windows Azure SQL Database, 30-31

