
spine = 1.76”

Introducing
Microsoft

SQL Server
Code Name “Denali”

SPECIAL EXCERPT
Complete book

available
Spring 2012

®

®

Ross Mistry and Stacia Misner

PREVIEW
CONTENT

PREVIEW CONTENT
This excerpt provides early content from a book currently in
development, and is still in draft, unedited format. See additional notice
below.

This document supports a preliminary release of a software product that may be changed substantially prior to
final commercial release. This document is provided for informational purposes only and Microsoft makes no
warranties, either express or implied, in this document. Information in this document, including URL and other
Internet Web site references, is subject to change without notice. The entire risk of the use or the results from
the use of this document remains with the user. Unless otherwise noted, the companies, organizations,
products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are
fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this document may be
reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express
written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights
covering subject matter in this document. Except as expressly provided in any written license agreement from
Microsoft, the furnishing of this document does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2011 Microsoft Corporation. All rights reserved.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are
trademarks of the Microsoft group of companies. All other marks are property of their respective
owners.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

About the Authors

Ross Mistry is a Principal Enterprise Architect with Microsoft, working out of the Microsoft Technology
Center in Silicon Valley. He designs solutions for Microsoft largest customers and specializes in SQL
Server high availability, appliances, consolidation, virtualization, and private cloud.

Ross is also an author, community champion, and seasoned architect. He has a tremendous amount of
experience designing and deploying technology solutions for Internet startups and fortune 100 organ­
izations located in the Silicon Valley. He is known in the world-wide community for his expertise in SQL
Server, Windows, Exchange, Virtualization, and Private Cloud. Ross frequently speaks at technology
conferences around the world and has published many books, whitepapers, and magazine articles. His
recent books include Introducing SQL Server 2008 R2 (Microsoft Press), Windows Server 2008 R2 Un­
leashed (SAMS) and SQL Server 2008 Management and Administration (SAMS).

You can follow him on Twitter @RossMistry.

Stacia Misner is a consultant, educator, mentor, and author specializing in Business Intelligence solu­
tions since 1999. During that time, she has authored or co-authored multiple books about BI. Stacia
provides consulting and custom education services through Data Inspirations and speaks frequently at
conferences serving the SQL Server community. She writes about her experiences with BI at
blog.datainspirations.com, and tweets as @StaciaMisner.

http:blog.datainspirations.com

CONTENTS
CHAPTER 2

1

SQL Server AlwaysOn: An Integrated Solution...1

High Availability and Disaster Recovery Enhancements

AlwaysOn Availability Groups...3

Understanding Concepts and Terminology ... 4

Configuring Availability Groups.. 9

Monitoring Availability Groups with the Dashboard ..11

Active Secondaries ..12

Read-Only Access to Secondary Replicas..13

Backups on Secondary.. 13

AlwaysOn Failover Cluster Instances (FCI) ..14

Support for Deploying SQL Server Denali on Windows Server Core16

SQL Server Denali Prerequisites for Server Core...17

SQL Server Features Supported on Server Core ...18

SQL Server on Server Core Installation Alternatives..18

Additional High Availability and Disaster Recovery Enhancements.....................................19

Support for Server Message Block ...19

Database Recovery Advisory ..19

Online Operations .. 20

Rolling Upgrade and Patch Management ..20

CHAPTER 6

Integration Services 21

Developer Experience...21

Add New Project Dialog Box..21

General Interface Changes.. 22

Getting Started Window .. 24

SSIS Toolbox ... 24

Shared Connection Managers ...26

Expression Indicators... 26

Undo and Redo ... 27

Package Sort By Name ... 27

Status Indicators.. 27

Control Flow ..27

i

Expression Task ... 28

Execute Package Task... 29

Data Flow ... 29

Sources and Destinations.. 30

Transformations.. 32

Column References.. 32

Collapsible Grouping .. 34

Data Viewer .. 35

Flexible Package Design .. 36

Variables .. 36

Expressions ... 37

Deployment Models ... 38

Supported Deployment Models... 38

Project Deployment Model Features.. 40

Project Deployment Workflow ... 41

Parameters ... 45

Project Parameters... 45

Package Parameters.. 46

Parameter Usage .. 46

Post-Deployment Parameter Values... 48

Integration Services Catalog ... 50

Catalog Creation .. 51

Catalog Properties ... 52

Environment Objects .. 54

Administration .. 57

Validation .. 57

Package Execution... 57

Logging and Troubleshooting Tools .. 58

Security... 61

Package File Format ... 61

Summary .. 61

ii

Chapter 2

High Availability and Disaster
Recovery Enhancements

Microsoft SQL Server Denali delivers significant enhancements to well-known, critical capabilities like
high availability and disaster recovery. These enhancements promise to assist organizations in achiev­
ing the highest mission-critical confidence to date. Server Core support along with breakthrough fea­
tures like AlwaysOn Availability Groups, active secondaries, and key improvements to features such as
failover clustering now offer organizations a range of accommodating options to achieve maximum
application availability and data protection for SQL Server instances and databases within a datacenter
and across datacenters.

With SQL Server’s heavy investment in AlwaysOn, this chapter’s goal is to bring readers up-to-date
with the high availability and disaster recovery capabilities that are fully integrated into SQL Server
Denali.

SQL Server AlwaysOn: An Integrated Solution

Every organization’s success and service reputation is built on ensuring that its data is always accessible
and protected. In the IT world, this means delivering a product that achieves the highest level of avail­
ability and disaster recovery while minimizing data loss and downtime. With the previous versions of
SQL Server, organizations achieved high availability and disaster recovery by using technologies such as
failover clustering, database mirroring, log shipping and peer-to-peer replication. Although organiza­
tions achieved great success with these solutions, they were tasked with combining these native SQL
Server technologies to achieve their business requirements affiliated with Recovery Point Objective
(RPO) and Recovery Time Objective (RTO).

Figure 2-1 illustrates a very common high availability and disaster recovery strategy used by organ­
izations with the previous versions of SQL Server. This strategy includes failover clustering to protect
SQL Server Instances within each datacenter combined with asynchronous database mirroring to pro­
vide disaster recovery capabilities for mission critical databases.

1

FIGURE 2-1 Achieving high availability and disaster recovery with failover clustering combined with
database mirroring in SQL Server 2008 R2.

Likewise, the high availability and disaster recovery deployment for organizations that either re­
quired more than one secondary datacenter or who did not have shared storage incorporated syn­
chronous database mirroring with a witness within the primary datacenter combined with Log Shipping
for moving data to multiple locations. This deployment strategy is illustrated in Figure 2-2.

FIGURE 2-2 Achieving high availability and disaster recovery with database mirroring combined with
Log Shipping in SQL Server 2008 R2.

2

Both Figures 2-1 and 2-2 reveal successful solutions for achieving high availability and disaster re­
covery. However, the approach to these solutions was fragmented instead of seamless which warranted
changes. In addition, with organizations constantly evolving, it was only a matter of time until they
voiced their own concerns and sent out a request for more options and changes.

One concern for many organizations was directed at database mirroring. Database mirroring is a
great way to protect databases; however, the solution is a one-to-one mapping, making multiple sec­
ondaries unattainable. When confronted with this situation, many organizations reverted to Log Ship­
ping as a replacement for database mirroring because it supports multiple secondaries. Unfortunately,
organizations encountered limitations with Log Shipping because it did not provide zero data loss or
automatic failover capability. Concerns were also experienced by organizations working with failover
clustering because they felt that their shared storage devices, such as a SAN, were a single point of
failure. Similarly, many organizations thought that from a cost perspective their investments were not
being used to their full potential. For example, the passive servers in many of these solutions were run­
ning idle. Finally, many organizations wanted to offload reporting and maintenance tasks from the
primary database servers, which was not an easy task to achieve.

SQL has evolved to answer many of these concerns and this includes an integrated solution called
AlwaysOn. AlwaysOn Availability Groups and AlwaysOn Failover Cluster Instances are new features, in­
troduced in SQL Server Denali, that are rich with options and promise the highest level of availability
and disaster recovery to its customers. At a high level, AlwaysOn Availability Groups are used for data­
base protection and offer multi-database failover, multiple secondaries, active secondaries, and inte­
grated HA management. On the other hand, AlwaysOn Failover Cluster Instances are tailored towards
instance-level protection and multi-site clustering and consolidation while consistently providing flexi­
ble failover polices and improved diagnostics.

AlwaysOn Availability Groups

The AlwaysOn Availability Groups provide an enterprise-level alternative to database mirroring and
give organizations the ability to automatically or manually failover a group of databases as a single unit
with support for up to four secondaries. The solution provides zero data loss protection and is flexible.
It can be deployed on local storage or shared storage, and it supports both synchronous and asyn­
chronous data movement. The application failover is very fast, supports automatic page repair, and the
secondary replicas can be leveraged to offload reporting and a number of maintenance tasks such as
backups.

Take a look at Figure 2-3 which simply illustrates an AlwaysOn Availability Group deployment strat­
egy that includes one primary replica and three secondary replicas.

3

FIGURE 2-3 Achieving high availability and disaster recovery with AlwaysOn Availability Groups.

In this figure, synchronous data movement is used to provide high availability within the primary
datacenter and asynchronous data movement is used to provide disaster recovery. Moreover, second­
ary replica 3 and replica 4 are employed to offload reports and backups from the primary replica.

It is now time to carry out a deeper dive on AlwaysOn Availability Groups through a review of the
new concepts and terminology associated with this breakthrough capability.

Understanding Concepts and Terminology
Availability groups are built on top of Windows Failover Clustering and support both shared and
non-shared storage. Depending on an organization’s Recovery Point Objective (RPO) and Recovery
Time Objective (RTO) requirements, availability groups can use either an asynchronous-commit mode
or a synchronous-commit mode to move data between primary and secondary replicas. Availability
groups include built in compression and encryption as well as a support for file-stream replication.
Failover between replicas are either automatic or manual.

When deploying AlwaysOn Availability Groups, the first step is to deploy a Windows Failover Cluster.
This is completed by using the Failover Cluster Manager Snap-In within Windows Server 2008 R2. Once
the Windows Failover Cluster is formed, the remainder of the Availability group configurations is com­
pleted in SQL Server Management Studio. When using the Availability Group Wizards to configure
availability groups, SQL Server Management Studio automatically creates the appropriate services, ap­
plications, and resources in Failover Cluster Manager.

Now that the fundamentals of the AlwaysOn Availability Group has been laid down, the most natu­
ral question that follows is how is an organization’s operations are enhanced with this feature. Unlike

4

database mirroring which supports only one secondary, AlwaysOn Availability Groups support one
primary replica and up to four secondary replicas. Availability groups can also contain more than one
availability database. Equally appealing, it is possible to host more than one availability group within
the solution. As a result, it is possible to group databases with application dependencies together
within an availability group and have all the availability databases seamlessly failover as a single cohe­
sive unit as depicted in Figure 2-4.

FIGURE 2-4 Dedicated availability groups for Finance and HR availability databases.

In addition, as shown in Figure 2-4, there is one primary replica and two secondary replicas with two
availability groups. One of these availability groups is called Finance and it includes all the Finance da­
tabases; the other availability group is called HR and it includes all the Human Resources databases.
The Finance Availability Group can failover independently of the HR availability group and unlike da­
tabase mirroring, all availability databases within an availability group failover as a single unit. Moreo­
ver, organizations can improve their IT efficiency, increase performance, and reduce total cost of own­
ership with better resource utilization of secondary hardware because these secondary replicas can be
leveraged for backups and read-only operations such as reporting and maintenance. This is covered in
the “Active Secondaries” section later in this chapter.

5

Now that you have been introduced to some of the benefits the AlwaysOn Availability Group offers
for an organization’s database, take the time to get a stronger understanding of the AlwaysOn Availa­
bility Group concepts and how the new capability operates. The concepts covered include:

• Availability Replica Roles

• Failover and Synchronization Modes

• Data Synchronization Options

• Connection Mode in Secondaries

• Availability Group Listener

Availability Replica Roles
Each AlwaysOn Availability Group is comprised of a set of two or more failover partners that are re­
ferred to as availability replicas. The availability replicas can consist of either a primary role or a sec­
ondary role. It is worth noting that there can be a maximum of four secondaries and of these four sec­
ondaries only a maximum of two secondaries can be configured in synchronous-commit mode.

The roles affiliated with the availability replicas in AlwaysOn Availability Groups follow the same
principals as the legendary Sith rule of two doctrines in the Star Wars1 saga. In Star Wars, there can
only be two Sith at one time, a master and an apprentice. Similarly, a SQL Server instance in an availa­
bility group can only be a primary replica or a secondary replica. At no time can it be both because the
role swapping is controlled by Windows Server Failover Cluster (WSFC).

Each of the SQL Server instances in the availability group is hosted on either a SQL Server Failover
Cluster Instance (FCI) or a stand-alone instance of SQL Server Denali. Each of these instances resides on
different nodes of a WSFC. WSFC is typically used for providing high availability and disaster recovery
for well-known Microsoft products. As such, availability groups use WSFC as the underlying mechanism
to provide inter-node health detection, failover coordination, primary health detection, and distributed
change notifications for the solution.

Each availability replica hosts a copy of the availability databases in the availability group. Since
there are multiple copies of the databases being hosted on each availability replica, there isn’t a pre­
requisite for utilizing shared storage like there was in the past when deploying traditional SQL Server
Failover Clusters. On the flip side, when using non-shared storage, an organization must keep in mind
that storage requirements increase depending on the number of replicas it plans on hosting.

Failover and Synchronization Modes
When configuring AlwaysOn Availability Groups, database administrators can choose from three
modes to distribute data from the primary to the secondaries. For those of you who are familiar with

Trademark of Lucasfilm Ltd.

6

1

database mirroring, the modes for providing data movement to obtain high availability and disaster
recovery are very similar to the modes in database mirroring. The three modes available when using
the New Availability Group Wizard include:

•	 Automatic failover This synchronous-commit mode supports both automatic failover and
manual failover.

•	 High safety This synchronous-commit mode supports only manual failovers.

•	 High performance This asynchronous-commit mode supports only forced failover with pos­
sible data loss.

Data Synchronization Modes
To move data from the primary replica to the secondary replica, each mode uses either synchro­
nous-commit or asynchronous-commit mode. Give consideration to the following items when selecting
either option:

•	 When using the synchronous-commit mode, a transaction is committed on both replicas to
guarantee transactional consistency. This, however, means increased latency. As such, this op­
tion might not be appropriate for partners who don’t share a high-speed network or reside in
different geographical locations.

•	 The asynchronous-commit mode commits transactions between partners without waiting for
the partner to write the log to disk. This maximizes performance and is well suited for disas­
ter-recovery solutions.

Connection Mode in Secondaries
As indicated earlier, each of the secondaries can be configured to support read-only access for report­
ing or other maintenance tasks such as backups. During the final configuration stage of the AlwaysOn
Availability Groups, database administrators decide on the connection mode for the secondary replicas.
There are three connections modes available:

•	 Disallow connections In the secondary role, this availability replica does not allow any con­
nections.

•	 Allow only read-intent connections In the secondary role, this availability replica allows
only read-intent connections.

•	 Allow all connections In the secondary role, this availability replica allows all connections
for read access, including connections running with older clients.

Availability Group Listeners
The Availability Group Listener provides a way of connecting to an availability group via a virtual net­
work name that is bound to the primary replica. Applications can specify the network name affiliated
with the Availability Group Listener in connection strings. After the availability group fails over from the

7

primary replica to a secondary replica, the network name directs connections to the new primary rep­
lica. The Availability Group Listener concept is very similar to a Virtual SQL Server Name when using
failover clustering; however, with an Availability Group Listener, there is a virtual network name for
each availability group, whereas with SQL Server failover clustering, there is one virtual network name
for the instance.

You can specify your Availability Group Listener preferences when using the Create a New Availabil­
ity Group Wizard in SQL Server Management Studio or you can manually create or modify an Availa­
bility Group Listener after the availability group is created. Alternatively, you can use Transact-SQL to
create or modify the listener. Notice in Figure 2-5 that each Availability Group Listener requires a DNS
name, an IP Address, and a Port such as 1433. Once the Availability Group Listener is created, a server
name and an IP address cluster resource are automatically created within Failover Cluster Manager.
This is certainly a testimony to the availability group’s flexibility and tight integration with SQL Server as
the majority of the configurations are done within SQL Server.

FIGURE 2-5 Specifying Availability Group Listener Properties.

It is worth stating that there is a one-to-one mapping between Availability Group Listeners and
availability groups. This means you can create one Availability Group Listener for each availability
group. However, if more than one availability group exists within a replica, it is possible to have more
than one Availability Group Listener. For example, there are two availability groups shown in Figure
2-6; one is for the Finance availability databases and the other is for the HR availability databases. Each
availability group has its own Availability Group Listener that clients and applications connect to.

8

FIGURE 2-6 Illustrating two Availability Group Listeners within a replica.

Configuring Availability Groups
When creating a new availability group, a database administrator needs to specify an availability group
name such as AvailablityGroupFinance, and then select one or more databases to partake in the availa­
bility group. The next step involves first specifying one or more instances of SQL Server to host sec­
ondary availability replicas and then specifying your Availability Group Listener preference. The final
step is selecting the data synchronization preference and connection mode for the secondary replicas.
These configurations are conducted with the New Availability Group Wizard or with Transact-SQL
PowerShell scripts.

Prerequisites
To deploy AlwaysOn Availability Groups, the following prerequisites must be met:

•	 All computers running SQL Server, including the servers that will reside in the disaster recovery
site, must reside in the same Windows-based domain.

•	 All SQL Server computers must partake in a single Windows Server failover cluster even if the
servers reside in multiple sites.

•	 A Windows Server failover cluster must be formed.

•	 AlwaysOn Availability Groups must be enabled on each server.

•	 All the databases must be in full recovery mode.

•	 A full backup must be conducted on all databases before deployment.

Deployment Examples
Figure 2-7 illustrates the Specify Replicas page in the New Availability Group Wizard. In this example,
there are three SQL Server instances in the availability group called Finance: SQL01\Instance01,
SQL02\Instance01, and SQL03\Instance01. SQL01\Instance01 is configured as the Primary Replica
whereas SQL02\Instance01 and SQL03\Instance01 are configured as secondaries. SQL02\Instance01
and SQL03\Instance01 support Automatic Failover with Synchronous data movement, whereas

9

SQL-03\Instance01 uses Asynchronous-commit availability mode and only supports a forced failover.
Finally, SQL01\Instance01 and SQL02\Instance01 do not allow connections to the secondary.
SQL03\Instance01 only allows read-intent connections. SQL01\Instance01 and SQL02\Instance01 reside
in a primary datacenter for high availability within a site and SQL03\Instance01 can reside in the disas­
ter recovery datacenter and be brought online manually in the event the primary datacenter becomes
unavailable.

FIGURE 2-7 Specifying the SQL Server instances in the availability group.

One thing becomes vividly clear from Figure 2-7 and the preceding example: there are many dif­
ferent deployment configurations available to satisfy any organization’s high availability and disaster
recovery requirements. See Figure 2-8 for additional deployment alternatives.

10

FIGURE 2-8 Additional AlwaysOn Deployment Alternatives.

Monitoring Availability Groups with the Dashboard
Administrators have an opportunity to leverage a new and remarkably intuitive manageability dash­
board in in SQL Server Denali to monitor availability groups. The dashboard, as shown in Figure 2-9
reports the health and status associated with each instance and availability database in the availability
group. Moreover, the dashboard displays the specific replica role of each instance and provides syn­
chronization status. If there is an issue or more information on a specific event is required, a database
administrator can click the Availability Group State, Server Instance name, or health status hyperlinks
for additional information. The dashboard is launched by right-clicking the Availability Groups Folder
and selecting Show Dashboard.

11

FIGURE 2-9 Monitoring availability groups with the dashboard.

Active Secondaries

As indicated earlier, many organizations communicated to the SQL Server team their need to improve
IT efficiency by optimizing their existing hardware investments. Specifically, organizations hoped their
production systems for passive workloads could be used in some other capacity instead of remaining in
an idle state. These same organizations also wanted reporting and maintenance tasks offloaded from
production servers because these tasks negatively impacted production workloads. With SQL Server
Denali, organizations can leverage the AlwaysOn Availability Group capability to configure a secondary
replica, also referred to as Active Secondaries, to provide read-only access to databases affiliated with
an availability group.

All read-only operations on the secondary replicas are supported by row versioning and are auto­
matically mapped to snapshot isolation transaction level, which eliminates reader/writer contention. In
addition, the data in the secondary replicas is near real time. In many circumstances, data latency be­
tween the primary and secondary databases should be within seconds. It is worth noting that the la­
tency of log synchronization impacts data freshness.

For organizations, active secondaries are synonymous with performance optimization on a primary
replica and increases to overall IT efficiency and hardware utilization.

12

Read-Only Access to Secondary Replicas
Recall that when configuring the connection mode for secondary replicas, you can Disallow Connec­
tions, Allow Only Read-Intent Connections, and Allow All Connections. Allow Only Read-Intent Con­
nections and Allow All Connections both provide read-only access to secondary replicas. The Disallow
Connections alternative does not allow read-only access as implied by its name.

Now let’s look at the major differences between Allow Only Read-Intent Connections and Allow All
Connections. The Allow Only Read-Intent Connections option allows connections to the databases in
the secondary replica when the Application Intent connection property is set to Read-only in the SQL
Server Native Client. When using the Allow All Connection settings, all client connections are allowed
independent of the Application Intent property. What is the Application Intent property in the connec­
tion string? The Application Intent property declares the application workload type when connecting to
a server. The possible values are Read-only and Read Write. Commands that try to create or modify
data on the secondary replica will fail.

Backups on Secondary
Backups of availability databases participating in availability groups can be conducted on any of the
replicas. Although backups are still supported on the primary replica, log backups can be conducted on
any of the secondaries. It is worth noting that this is independent of the replication commit mode be­
ing usedsynchronous-commit or asynchronous-commit. Log backups completed on all replicas form
a single log chain, as shown in Figure 2-10.

FIGURE 2-10 Forming a single log chain by backing up the transaction logs on multiple secondary replicas.

As a result, the transaction log backups do not all have to be performed on the same replica. This in
no way means that serious thought should not be given to the location of your backups. It is recom­
mended to store all backups in a central location because all transaction log backups are required to
perform a restore in the event of a disaster. Therefore, if a server is no longer availability and it con­

13

tained the backups, you will be negatively affected. In the event of a failure, use the new Database Re­
covery Advisor Wizard; it provides many benefits when conducting restores. For example, if performing
backups on different secondaries, the wizard generates a visual image of a chronological timeline by
stitching together all of the log files based on the Log Sequence Number (LSN).

AlwaysOn Failover Cluster Instances (FCI)

You’ve seen the results of the development efforts in engineering the new AlwaysOn Availability
Groups capability for high availability and disaster recovery, and the creation of active secondaries.
Now you’ll explore the significant enhancements to traditional capabilities like SQL Server failover
clustering that leverages shared storage. The following list itemizes some of the improvements that will
appeal to database administrators looking to gain high availability for their SQL Server instances. Spe­
cifically, this section discusses the following features:

•	 Multi-Subnet Clustering This feature provides a disaster recovery solution in addition to
high availability with new support for multi-subnet failover clustering.

•	 Support for TempDB on Local Disk Another storage level enhancement with failover clus­
tering is associated with TempDB. TempDB no longer has to reside on shared storage as it did
in previous versions of SQL Server. It is now supported on local disks, which results in many
practical benefits for organizations. For example, it is now possible to offload TempDB I/O
from share storage devices like a SAN and leverage fast SSD storage locally within the server
nodes to optimize TempDB workloads, which are typically random I/O.

•	 Flexible Failover Policy Denali introduces improved failure detection for the SQL Server
Failover Cluster Instance (FCI) by adding failure condition-level properties which allow you to
configure a more flexible failover policy.

Note It is also worth mentioning that AlwaysOn Failover Clustering Instances can be combined with
Availability Groups to offer maximum SQL Server instance and database protection.

With the release of Windows Server 2008, new functionality enabled cluster nodes to be connected
over different subnets without the need for a stretch VLAN across networks. The nodes could reside on
different subnets within a datacenter or in another geographical location such as a disaster recovery
site. This concept is commonly referred to as multi-site clustering, multi-subnet clustering, or
stretch-clustering. Unfortunately, the previous versions of SQL Server could not take advantage of this
Windows failover clustering feature. Organizations that wanted to create either a multi-site or mul­
ti-subnet SQL Server failover cluster still had to create a stretch VLAN to expose a single IP address for
failover across sites. This was a complex and challenging task for many organizations. This is no longer
the case because SQL Server Denali supports multi-subnet and multi-site clustering out-of-the-box;
therefore, the need for implementing stretch VLAN technology no longer exists.

14

Figure 2-11 illustrates an example of a SQL Server multi-subnet failover cluster between two subnets
spanning two sites. Notice how each node affiliated with the multi-subnet failover cluster resides on a
different subnet. Node 1 is located in Site 1 and resides on the 192.168.115.0/24 subnet whereas; Node
2 is located in Site 2 and resides on the 192.168.116.0/24 subnet.

FIGURE 2-11 A multi-subnet failover cluster instance example.

For clients and applications to connect to the SQL Server failover cluster, they need two IP addresses
registered to the SQL Server failover cluster resource name in WSFC. For example, imagine your server
name is SQLFCI01 and the IP addresses are 192.168.115.5 and 192.168.116.5. WSFC automatically con­
trols the failover and brings the appropriate IP address online depending on the node that currently
owns the SQL Server resource. Again, if Node 1 is affiliated with the 192.168.115.0/24 subnet and owns
the SQL Server failover cluster then the IP address resource 192.168.115.6 is brought online as shown in
Figure 2-12. Similarly, if a failover occurs and Node 2 owns the SQL Server resource, then IP address
resource 192.165.115.6 is taken offline and the IP address resource 192.168.116.6 is brought online.

15

FIGURE 2-12 Multiple IP addresses affiliated with a multi-subnet failover cluster instance screenshot.

Since there are multiple IP addresses affiliated with the SQL Server failover cluster instance virtual
name, the online address will change automatically when there is a failover. In addition, Windows fail-
over cluster will issue a DNS update immediately after the network name resource name comes online.
The IP address change in DNS might not take effect on clients due to cache settings, therefore, it is
recommended to minimize the client downtime by configuring the HostRecordTTL in DNS to 60 se­
conds.

Support for Deploying SQL Server Denali
on Windows Server Core

Windows Server Core was originally introduced with Windows Server 2008 and saw significant en­
hancements with the release of Windows Server 2008 R2. For those who are unfamiliar with Server
Core, it is an installation option for the Windows Server 2008 and Windows Server 2008 R2 operating
systems. Since Server Core is a minimal deployment of Windows, it is much more secure because its
attack surface is greatly reduced. Server Core does not include a traditional Windows graphical inter­
face and, therefore, is managed via a command prompt or by remote administration tools.

Unfortunately, previous versions of SQL Server did not support the Server Core operating system,
but that has all changed. For the first time, Microsoft SQL Server “Denali” supports Server Core installa­
tions for organizations running Server Core based on Windows Server 2008 R2 with Service Pack 1 or
later.

Why is Server Core so important to SQL Server and how does it positively impact availability? When
running SQL Server Denali on Server Core, operating system patching is drastically reducedby up to

16

60 percent. This translates to higher availability and a reduction in planned downtime for any organiza­
tion’s mission-critical databases and workloads. In addition, surface area attacks are greatly reduced
and overall security of the database platform is strengthened, which again translates to maximum
availability and data protection.

When first introduced, Server Core required the use and knowledge of command line syntax to
manage it. Most IT professionals at this time were accustomed to using a graphical user interface (GUI)
to manage and configure Windows so they had a difficult time embracing Server Core. This impacted
its popularity and, ultimately, its implementation. To ease these challenges, Microsoft introduced
SCONFIG. SCONFIG is an out-of-the-box utility that was introduced with the release of Windows Server
2008 R2 to dramatically ease server configurations. To navigate through the SCONFIG options, you
only need to type one or more numbers to configure server properties as displayed in Figure 2-13.

FIGURE 2-13 SCONFIG utility for configuring server properties in Server Core.

The following sections articulate the SQL Server Denali prerequisites for Server Core, SQL Server
features supported on Server Core, and the installation alternatives.

SQL Server Denali Prerequisites for Server Core
Organizations installing SQL Server Denali on Windows Server 2008 R2 Server Core must meet the fol­
lowing operating system, features, and components prerequisites:

Operating system:

• Windows Server 2008 R2 SP1 64-bit x64 Data Center Server Core

• Windows Server 2008 R2 SP1 64-bit x64 Enterprise Server Core

• Windows Server 2008 R2 SP1 64-bit x64 Standard Server Core

• Windows Server 2008 R2 SP1 64-bit x64 Web Server Core

17

Features and components:

• .NET Framework 2.0 SP2

• .NET Framework 3.5 SP1 Full Profile

• .NET Framework 4 Server Core Profile

• Windows Installer 4.5

• Windows PowerShell 2.0

Once the prerequisites are fulfilled, it important to become familiar with the SQL Server components
supported on Server Core.

SQL Server Features Supported on Server Core
There are numerous SQL Server features that are fully supported on Server Core. They include Database
Engine Services, SQL Server Replication, Full Text Search, Analysis Services, Client Tools Connectivity
and Integration Services. Likewise, Sever Core does not support the many other features including Re­
porting Services, Business Intelligence Development Studio, Client Tools Backward Compatibility, Client
Tools SDK, SQL Server Books Online, Distributed Replay Controller, SQL Client Connectivity SDK, Master
Data Services and Data Quality Services. Some features like Management Tools – Basic, Management
Tools – Complete, Distributed Replay Client and Microsoft Sync Framework are only supported re­
motely. Therefore, these features can be installed on editions of the Windows operating system that are
not Server Core, and then used to remotely connect to a SQL Server instance running on Server Core.

Note To leverage Server Core, it is important to plan your SQL Server installation ahead of time. Give
yourself the opportunity to fully understanding which SQL Server features that are required to support
your mission critical workloads.

SQL Server on Server Core Installation Alternatives
The typical SQL Server Installation Setup Wizard is not supported when installing SQL Server Denali on
Server Core. As a result, there is a need to automate the installation process by either using a com­
mand-line installation, a configuration file, or leveraging the DefaultSetup.ini methodology. Details and
examples for each of these methods can be found in Books Online.

Note When installing SQL Server Denali on Server Core, ensure you use Full Quiet mode by using the
/Q parameter or the Quiet Simple mode by using the /QS parameter.

18

Additional High Availability and Disaster Recovery
Enhancements

This section summarizes some of the new features and enhancements you can expect to see.

Support for Server Message Block
A common movement for organizations in recent years has been towards consolidating databases and
applications onto few serversspecifically, hosting many instances of SQL Server running on a failover
cluster. When using failover clustering for consolidation, the previous versions of SQL Server required a
single drive letter for each SQL Server failover cluster instance. Because there are only 23 drive letters
available, without taking into account reservations, the maximum amount of SQL Server instances
supported on a single failover cluster was 23. Twenty-three instances sounds like an ample amount;
however, the drive letter limitation negatively impacts organizations running powerful servers that have
the compute and memory resources to host more than 23 instances on a single server. Going forward,
SQL Server Denali and failover clustering introduces support for Server Message Block (SMB).

Note Some of you must be thinking you can use mount points to alleviate the drive letter pain point.
When working with previous versions of SQL Server, even with mount points, you require at least one
drive letter for each SQL Server Failover Cluster Instance.

Some of the SQL Server Denali benefits brought about by SMB are, of course, database storage
consolidation and the potential to support more than 23 clustering instances in a single WSFC. To take
advantage of these features, the file servers must be running Windows Server 2008 or later versions of
the operating system.

Database Recovery Advisory
The Database Recovery Advisor is a new feature aimed at optimizing the restore experience for data­
base administrators conducting database recovery tasks. This tool includes a new timeline feature that
provides a visualization of the backup history, as shown in Figure 2-14.

19

FIGURE 2-14 Database Recovery Advisory backup and restore visual timeline.

Online Operations
SQL Server Denali also includes a few enhancements for online operation that reduce downtime during
planned maintenance operations. Line of business (LOB) re-indexing and adding columns with defaults
are now supported.

Rolling Upgrade and Patch Management
All of the new AlwaysOn capabilities reduce application downtime to only a single manual failover by
supporting rolling upgrades and patching of SQL Server. This means a database administrator can ap­
ply a service pack or critical fix to the passive nodes if using a failover cluster or secondary replicas if
using availability groups. Once the installation is complete on all passive nodes or secondaries, a data­
base administrator can conduct a manual failover and then apply the service pack or critical fix to the
node in a FCI or replica. This rolling strategy also applies when upgrading the database platform.

20

Chapter 6

Integration Services
Since its initial release in Microsoft SQL Server 2005, Integration Services has had incremental changes
in subsequent versions of the product. However, those changes were trivial in comparison to the num­
ber of enhancements, performance improvements, and new features introduced in SQL Server
Code-Named “Denali” Integration Services. This product overhaul affects every aspect of Integration
Services, from development to deployment to administration.

Developer Experience

The first change that you notice as you create a new Integration Services project is that Business Intel­
ligence Development Studio (BIDS) is now a Visual Studio 2010 shell. The Visual Studio environment
alone introduces some slight user interface changes from the previous version of BIDS. However, there
are several more significant interface changes of note that are specific to Integration Services. These
enhancements to the interface help you to learn about the package development process if you are
new to Integration Services, and enable you to develop packages more easily if you are already have
experience with Integration Services. If you are already an Integration Services veteran, you will also
notice the enhanced appearance of tasks and data flow components with rounded edges and new
icons.

Add New Project Dialog Box
To start working with Integration Services in BIDs, you create a new project by following the same steps
that you use to perform the same task in earlier releases of Integration Services. From the File menu,
point to New, and then select Project. The Add New Project dialog box displays. In the Installed Tem­
plates list, you can now select the type of Business Intelligence template you want to use and then view
only the templates related to your selection, as shown in Figure 6-1. When you select a template, a de­
scription of the template displays on the right side of the dialog box.

21

FIGURE 6-1 Add New Project dialog box displays installed templates.

There are two templates available for Integration Services projects:

•	 Integration Services Project You use this template to start development with a blank
package to which you add tasks and arrange those tasks into workflows. This template type
was available in previous versions of Integration Services.

•	 Integration Services Import Project Wizard You use this wizard to import a project from
the Integration Services catalog or from a project deployment file. (You learn more about pro­
ject deployment files in the “Deployment Models” section of this chapter.) This option is useful
when you want to use an existing project as a starting point for a new project, or when you
need to make changes to an existing project.

Note The Integration Services Connections Project template from previous versions is no longer

available.

General Interface Changes
After creating a new package, there are several changes visible in the package designer interface, as
you can see in Figure 6-2:

•	 SSIS Toolbox You now work with the SSIS Toolbox to add tasks and data flow components
to a package, rather than the Visual Studio toolbox that you use in earlier versions of Integra­
tion Services. You learn more about this new toolbox in the “SSIS Toolbox” section of this
chapter.

22

•	 Parameters The package designer includes a new tab to open the Parameters window for a
package. Parameters allow you to specify run-time values for package, container, and task
properties or for variables, as you learn in the ”Parameters” section of this chapter.

•	 Variables button This new button on the package designer toolbar provides quick access to
the Variables window. You can also continue to open the window from the SSIS menu or by
right-clicking the package designer and selecting the Variables command.

•	 SSIS Toolbox button This button is also new in the package designer interface and allows
you to open the SSIS Toolbox when it is not visible. As an alternative, you can open the SSIS
Toolbox from the SSIS menu or by right-clicking the package designer and selecting the SSIS
Toolbox command.

•	 Getting Started This new window displays below the Solution Explorer window and provides
access to links to videos and samples that you can use to learn how to work with Integration
Services. This window includes the Always Show In New Project checkbox, which you can clear
if you prefer not to view the window after creating a new project. You learn more about using
this window in the next section, “Getting Started Window.”.

•	 Zoom control Both the control flow and data flow design surface now include a zoom con­
trol in the lower-right corner of the workspace. You can zoom in or out to a maximum size of
500 percent of the normal view or to a minimum size of 10 percent, respectively. As part of the
zoom control, a button allows you to resize the view of the design surface to fit the window.

FIGURE 6-2 Package Designer Interface changes

23

Getting Started Window
As explained in the previous section, the Getting Started window is new to the latest version of Integra­
tion Services. Its purpose is to provide resources to new developers. It will display automatically when
you create a new project unless you clear the checkbox at the bottom of the window. You must use the
Close button in the upper-right corner of the window to remove it from view. Should you want to ac­
cess the window later, you can choose Getting Started on the SSIS menu or right-click the design sur­
face and select Getting Started.

In the Getting Started window, you find several links to videos and Integration Services samples. To
use the links in this window, you must have Internet access. By default, the following topics are
available:

•	 Designing and Tuning for Performance your SSIS Packages in the Enterprise This link
provides access to a series of videos created by the SQL Server Customer Advisory Team
(SQLCAT) that explain perform how to monitor package performance and techniques to apply
during package development to improve performance.

•	 Parameterizing the Execute SQL Task in SSIS This link opens a page from which you can
access a brief video explaining how to work with parameterized SQL statements in Integration
Services.

•	 SQL Server Integration Services Product Samples You can use this link to access the
product samples available on Codeplex, Microsoft’s open source project hosting site. By stud­
ying the package samples available for download, you can learn how to work with various
control flow tasks or data flow components.

•	 Microsoft SQL Server Community Samples: Integration Services Another collection of
sample packages is available for download from Codeplex. Many of these samples demon­
strate the development and use of custom components.

Note Although the videos and samples accessible through these links were developed for previous
versions of Integration Services, the principles remain applicable to the latest version. When opening a
sample project in BIDS, you will be prompted to convert the project.

You can customize the Getting Started window by adding your own links to the SampleSites.xml file
located in the Program Files\Microsoft SQL Server\110\DTS\Binn folder.

SSIS Toolbox
Another new window for the package designer is the SSIS Toolbox. Not only has the overall interface
been improved, but you will find there is also added functionality for arranging items in the toolbox.

24

Interface Improvement
The first thing you notice in the SSIS Toolbox is the updated icons for most items. Furthermore, the SSIS
toolbox includes a description for the item that is currently selected, allowing you to see what it does
without the need to add it first to the design surface. You can continue to use drag-and-drop to place
items on the design surface, or to double-click the item. However, the new behavior when you dou­
ble-click is to add the item to the container that is currently selected, which is a welcome timesaver for
the development process. If no container is selected, the item is added directly to the design surface.

Item Arrangement
At the top of the SSIS Toolbox, you will see two new categories, Favorites and Common, as shown in
Figure 6-3. All categories are populated with items by default, but you can move items into another
category at any time. To do this, right-click the item and select Move To Favorites or Move To Com­
mon. If you are working with control flow items, you have Move To Other as another choice, but if you
are working with data flow items, you can choose Move To Other Sources, Move To Other Transforms,
or Move To Other Destinations. You will not see the option to move an item to the category in which it
already exists, nor are you able to use drag-and-drop to move items manually. If you decide to start
over and return the items to their original locations, select Restore Toolbox Defaults.

FIGURE 6-3 SSIS Toolbox for control flow and data flow.

25

Shared Connection Managers
If you look carefully at the Solution Explorer window, you will notice that the Data Sources and Data
Source Views folders are missing, and have been replaced by a new file and a new folder. The new file is
Project.params, which is used for package parameters and discussed in the “Package Parameters” section
of this chapter. The Connections Manager folder is the new container for connection managers that you
want to share among multiple packages.

To create a shared connection manager, follow these steps:

1.	 Right-click the Connections Manager folder and select New Connection Manager.

2.	 In the Add SSIS Connection Manager dialog box, select the desired connection manager type,
and then click the Add button.

3.	 Supply the required information in the editor for the selected connection manager type, and
then click OK until all dialog boxes are closed.

A file with the CONMGR file extension displays in the Solution Explorer window within the Connec­
tions Manager folder. In addition, the file also appears in the Connections Manager tray in the package
designer in each package contained in the same project. It displays with a bold font to differentiate it
from package connections. If you select the connection manager associated with one package and
change its properties, the change affects the connection manager in all other packages.

If you change your mind about using a shared connection manager, you can convert it to a package
connection. To do this, right-click the connection manager in the Connection Manager tray, and select
Convert To Package Connection. The conversion removes the CONMGR file from the Connections
Manager folder in Solution Explorer and from all other packages. Only the package in which you execute
the conversion contains the connection.

Expression Indicators
The use of expressions in Integration Services allows you as a developer to create a flexible package.
Behavior can change at run-time based on the current evaluation of the expression. For example, a very
common reason to use expressions with a connection manager is to dynamically change connection
strings to accommodate the movement of a package from one environment to another, such as from
development to production. However, earlier versions of Integration Services did not provide an easy
way to determine whether a connection manager relies on an expression. In the latest version, an extra
icon appears above the connection manager icon as a visual cue that the connection manager uses
expressions, as you can see in Figure 6-4.

FIGURE 6-4 A visual cue that the connection manager uses an expression.

This type of expression indicator also appears with other package objects. If you add an expression to
a variable or a task, the expression indicator will appear on that object.

26

Undo and Redo
A minor feature, but one that you will likely appreciate greatly, is the newly added ability to use Undo
and Redo while developing packages in BIDS. You can now make edits in either the control flow or da­
ta flow designer surface, and use Undo to reverse a change or Redo to restore a change that you had
just reversed. This capability also works in the Variables window, and on the Event Handlers and Pa­
rameters tabs. You can also use Undo and Redo when working with project parameters.

To use Undo and Redo, click the respective buttons in the standard toolbar. You can also use the
Ctrl+Z and Ctrl+Y, respectively. Yet another option is to access these commands on the Edit menu.

Note The Undo and Redo actions will not work with changes that you make to the SSIS Toolbox, nor
will they work with shared connection managers.

Package Sort By Name
As you add multiple packages to a project, you might find it useful to see the list of packages in Solu­
tion Explorer display in alphabetical order. In previous versions of Integration Services, the only way to
resort the packages was to close the project and then reopen it. Now you can easily sort the list of
packages without closing the project by right-clicking the SSIS Packages folder, and selecting Sort By
Name.

Status Indicators
After executing a package, the status of each item in the control flow and the data flow displays in the
package designer. In previous versions of Integration Services, the entire item was filled with green to
indicate success or red to indicate failure. However, for people who are color-blind, this use of color
was not helpful for assessing the outcome of package execution. Consequently, the user interface now
displays icons in the upper-right corner of each item to indicate success or failure, as shown in Figure
6-5.

FIGURE 6-5 Item status indicators appear in the upper-right corner.

Control Flow

Apart from the general enhancements to the package designer interface, there are two notable up­
dates for the control flow. The Expression Task is a new item available to easily evaluate an expression
during the package workflow. In addition, the Execute Package task has some changes to make it easi­
er to configure the relationship between a parent package and child package.

27

Expression Task
Many of the developer experience enhancements in Integration Services affect both control flow and
data flow, but there is one new feature that is exclusive to control flow. The Expression Task is new item
available in the SSIS Toolbox when the control flow tab is in focus. The purpose of this task is to make it
easier to assign a dynamic value to a variable.

Rather than use a Script Task to construct a variable value at run-time, you can now add an Expres­
sion Task to the workflow and use the SQL Server Integration Services Expression Language. When you
edit the task, the Expression Builder opens. You start by referencing the variable and including the
equals sign (=) as an assignment operator. Then provide a valid expression that resolves to a single
value with the correct data type for the selected variable. Figure 6-6 illustrates an example of a variable
assignment in an Expression Task.

FIGURE 6-6 Variable assignment in an Expression Task.

Note The Expression Builder is an interface commonly used with other tasks and data flow compo­
nents. Notice in Figure 6-6 that the list on the left side of the dialog box includes both variables and
parameters. In addition, system variables are now accessible from a separate folder rather than listed
together with user variables.

28

Execute Package Task
The Execute Package task has been updated to include a new property, ReferenceType, which you use
to specify the location of the package to execute. If you select External Reference, you configure the
path to the child package just as you do in earlier versions of Integration Services. If you instead select
Project Reference, you then choose the child package from the drop-down list.

In addition, the Execute Package Task Editor has a new page for parameter bindings, as shown in
Figure 6-7. You use this page to map a parameter from the child package to a parameter value or var­
iable value in the parent package.

FIGURE 6-7 Parameter bindings between a parent package and a child package.

Data Flow

The data flow also has some significant updates. There are some new items, such as the Source and
Destination Assistants and the DQS Cleansing transformation, and there are some improved items such
as the Merge and Merge Join transformation. Some user interface changes have also been made to
simplify the process and help you get your job done faster when designing the data flow.

29

Sources and Destinations
As we explore the changes in the data flow, let’s start with sources and destinations.

Source and Destination Assistants
The Source Assistant and Destination Assistant are two new items available by default in the Favorites
folder of the SSIS Toolbox when working with the data flow designer. These assistants help you easily
create a source or a destination and its corresponding connection manager.

To create a SQL Server source in a data flow task, perform the following steps:

1.	 Add the Source Assistant to the data flow design surface by using drag-and-drop or by dou­
ble-clicking the item in the SSIS Toolbox, which opens the Add New Source dialog box as
shown here.

Note Clear the Show Installed Only checkbox to display the additional available source types
that require installation of a client provider: DB2, SAP BI, Sybase, and Teradata.

2.	 In the Connection Managers list, select an existing connection manager or select <New> to
create a new connection manager, and click OK.

3.	 If you selected the option to create a new connection manager, specify the server name, au­
thentication method, and database for your source data in the Connection Manager dialog
box, and click OK.

The new data source appears on the data flow design surface and the connection manager
appears in the Connection Managers tray. You next need to edit the data source to configure
the data access mode, columns, and error output.

30

Flat File Source
You use the Flat File source extract data from a CSV or TXT file, but there were some data formats that
this source did not previously support without requiring additional steps in the extraction process. For
example, you could not easily use the Flat File source with a file containing a variable number of
columns. Another problem was the inability to use a character that has been designated as a qualifier
as a literal value inside a string. The current version of Integration Services addresses both of these
problems.

•	 Variable columns A file layout with a variable number of columns is also known as a ragged
right delimited file. Although Integration Services supports a ragged right format, a problem
arises when one or more of the rightmost columns do not have values and the column delimit­
ers for the empty columns are omitted from the file. This situation commonly occurs when the
flat file contains data of mixed granularity, such as header and detail transaction records. Alt­
hough a row delimiter exists on each row, Integration Services ignored the row delimiter and
included data from the next row until it processed data for each expected column. Now the Flat
File source correctly recognizes the row delimiter and handles the missing columns as NULL
values.

Note If you expect data in a ragged right format to include a column delimiter for each
missing column, you can disable the new processing behavior by changing the Al­
waysCheckForRowDelimiters property of the Flat File connection manager to False.

•	 Embedded qualifiers Another challenge with the Flat File source in previous versions of Inte­
gration Services was the use of a qualifier character inside a string encapsulated within qualifi­
ers. For example, consider a flat file that contains the names of businesses. If a single quote is
used as a text qualifier but also appears within the string as a literal value, the common practice
is to use another single quote as an escape character, as shown here.

ID,BusinessName

404,'Margie''s Travel'

406, 'Kickstand Sellers’

In the first data row in this example, previous versions of Integration Services would fail to in­
terpret the second apostrophe in the BusinessName string as an escape character, but instead
would process it as the closing text qualifier for the column. As a result, processing of the flat
file returned an error because the next character in the row is not a column delimiter. This
problem is now resolved in the current version of Integration Services with no additional con­
figuration required for the Flat File source.

31

Transformations
Next we turn our attention to transformations.

Merge and Merge Join Transformations
Both the Merge transformation and the Merge Join transformation allow you to collect data from two
inputs and produce a single output of combined results. In earlier versions of Integration Services, the­
se transformations could result in excessive memory consumption by Integration Services when data
arrives from each input at different rates of speed. The current version of Integration Services better
accommodates this situation by introducing a mechanism for these two transformations to better
manage memory pressure in this situation. This memory management mechanism operates automati­
cally with no additional configuration of the transformation necessary.

Note If you develop custom data flow components for use in the data flow and if these components
accept multiple inputs, you can use new methods in the Microsoft.SqlServer.Dts.Pipeline namespace to
provide similar memory pressure management to your custom components. You can learn more about
implementing these methods at “Developing Data Flow Components with Multiple Inputs,” located at
http://msdn.microsoft.com/en-us/library/ff877983(v=sql.110).aspx.

DQS Cleansing Transformation
The DQS Cleansing transformation is a new data flow component that you use in conjunction with Da­
ta Quality Services (DQS). Its purpose is to help you improve the quality of data by using rules that are
established for the applicable knowledge domain. You can create rules to test data for common mis­
spellings in a text field or to ensure that the column length conforms to a standard specification.

To configure the transformation, you select a data quality field schema that contains the rules to
apply and then select the input columns in the data flow to evaluate. In addition, you configure error
handling. However, before you can use the DQS Cleansing transformation, you must first install and
configure DQS on a server and create a knowledge base that stores information used to detect data
anomalies and to correct invalid data, which deserves a dedicated chapter. We explain not only how
DQS works and how to get started with DQS, but also how to use the DQS Cleansing transformation in
Chapter 7, “Data Quality Services.”

Column References
The pipeline architecture of the data flow requires precise mapping between input columns and output
columns of each data flow component that is part of a Data Flow Task. The typical workflow during
data flow development is to begin with one or more sources, and then proceed with the addition of
new components in succession until the pipeline is complete. As you plug each subsequent component
into the pipeline, the package designer configures the new component’s input columns to match the
data type properties and other properties of the associated output columns from the preceding com­
ponent. This collection of columns and related property data is also known as metadata.

32

http://msdn.microsoft.com/en-us/library/ff877983(v=sql.110).aspx

If you later break the path between components to add another transformation to pipeline, the
metadata in some parts of the pipeline could change because the added component can add columns,
remove columns, or change column properties (such as convert a data type). In previous versions of
Integration Services, an error would display in the data flow designer whenever metadata became inva­
lid. On opening a downstream component, the Restore Invalid Column References Editor displayed to
help you correct the column mapping, but the steps to perform in this editor were not always intuitive.
In addition, because of each data flow component’s dependency on access to metadata, it was often
not possible to edit the component without first attaching it to an existing component in the pipeline.

Components without Column References
Now Integration Services makes it easier to work with disconnected components. If you attempt to edit
a transformation or destination that is not connected to a preceding component, a warning message
box displays: ”This component has no available input columns. Do you want to continue editing the
available properties of this component?”

After you click Yes, the component’s editor displays and you can configure the component as
needed. However, the lack of input columns means that you will not be able to fully configure the
component using the basic editor. If the component has an advanced editor, you can manually add
input columns and then complete the component configuration. However, it is usually easier to use the
interface to establish the metadata than to create it manually.

Resolve References Editor
The current version of Integration Services also makes it easier to manage the pipeline metadata if you
need to add or remove components to an existing data flow. The data flow designer will display an er­
ror indicator next to any path that contains unmapped columns. If you right-click the path between
components, you can select Resolve References to open a new editor that allows you to map the out­
put columns to input columns by using a graphical interface, as shown in Figure 6-8.

33

FIGURE 6-8 Resolve References editor for mapping output to input columns.

In the Resolve References editor, you can drag a column from the Unmapped Output Columns list
and add it to the Source list in the Mapped Columns area. Similarly, you can drag a column from the
Unmapped Input Columns to the Destination list to link together the output and input columns. An­
other option is to simply type or paste in the names of the columns to map.

Tip When you have a long list of columns in any of the four groups in the editor, you can type a
string in the filter box below the list to view only those columns matching the criteria that you specify.
For example, if your input columns are based on data extracted from the Sales.SalesOrderDetail table
in the AdventureWork2008R2 database, you can type unit in the filter box to view only the UnitPrice
and UnitPriceDiscount columns.

You can also manually delete a mapping by clicking the Delete Row button to the right of each
mapping. After you have completed the mapping process, you can quickly delete any remaining un­
mapped input columns by selecting the Delete Unmapped Input Columns checkbox at the bottom of
the editor. By eliminating unmapped input columns, you reduce the component’s memory require­
ments during package execution.

Collapsible Grouping
Sometimes the data flow contains too many components to see at one time in the package designer,
depending on your screen size and resolution. Now you can consolidate data flow components into
groups and expand or collapse the groups. A group in the data flow is similar in concept to a sequence

34

container in the control flow, although you cannot use the group to configure a common property for
all components that it contains nor can you use it to set boundaries for a transaction or to set scope for
a variable.

To create a group, follow these steps:

1.	 On the data flow design surface, use your mouse to draw a box around the components that
you want to combine as a group. If you prefer, you can click each component while pressing
the Ctrl key.

2.	 Right-click one of the selected components, and select Group. A group containing the com­
ponents displays in the package designer, as shown below.

3.	 Click the arrow to the right of the group label to collapse the group.

Data Viewer
The only data viewer option available now in Integration Services is the grid view. The histogram, scat­
ter plot, and chart views have been removed.

To use the data viewer, follow these steps:

1.	 Right-click the path and select Enable Data Viewer. All columns in the pipeline are automati­
cally included.

2.	 If instead you want to display a subset of columns, right-click the new Data Viewer icon (a
magnifying glass) on the data flow design surface, and select Edit.

3.	 In the Data Flow Path Editor, select Data Viewer in the list on the left.

4.	 Move columns from the Displayed Columns list to the Unused Columns list as applicable

35

(shown below), and click OK.

Flexible Package Design

During the initial development stages of a package, you might find it easiest to work with hard-coded
values in properties and expressions to ensure that your logic is correct. However, for maximum flexi­
bility, you should use variables. In this section, we review the enhancements for variables and expres­
sions—the cornerstones of flexible package design.

Variables
A common problem for developers when adding a variable to a package has been the scope assign­
ment. If you had inadvertently selected a task in the control flow designer and then added a new vari­
able in the Variables window, the variable was created within the scope of that task and could not be
changed. You were required to delete the variable, clear the task selection on the design surface, and
then add the variable again within the scope of the package.

Integration Services now creates new variables with scope set to the package by default. To change
the variable scope, follow these steps:

1.	 In the Variables window, select the variable to change, then click the Move Variable button in
the Variables toolbar (the second button from the left), as shown here.

36

2. In the Select New Scope dialog box, select the executable to have scope—the package, an
event handler, container, or task—as shown here, and click OK.

Expressions
The expression enhancements in this release address a problem with expression size limitations and in­
troduce new functions in the SQL Server Integration Services Expression Language.

Expression Result Length
Prior to the current version of Integration Services, if an expression result had a data type of DT_WSTR
or DT_STR, any characters above a 4000-character limit would be truncated. Furthermore, if an expres­
sion contained an intermediate step that evaluated a result exceeding this 4000-character limit, the in­
termediate result would similarly be truncated. This limitation is now removed.

New Functions

The SQL Server Integration Services Expression Language now has three new functions that are
useful for string manipulation:

•	 LEFT You can now more easily return the leftmost portion of a string rather than use the
SUBSTRING function.

LEFT(character_expression,number)

•	 TOKEN This function allows you to return a substring by using delimiters to separate a string
into tokens and then specifying which occurrence to return.

TOKEN(character_expression, delimiter_string, occurrence)

•	 TOKENCOUNT This function uses delimiters to separate a string into tokens and then re­
turns the count of tokens found within the string.

TOKENCOUNT(character_expression, delimiter_string)

37

Deployment Models

Up to now in this chapter, we have explored the changes to the package development process in BIDS,
which have been substantial. Another major change to Integration Services is the concept of deploy­
ment models.

Supported Deployment Models
The latest version of Integration Services supports two deployment models:

•	 Legacy deployment model The legacy deployment model, as its name suggests, is the de­
ployment model used in previous versions of Integration Services in which the unit of deploy­
ment is an individual package stored as a DTSX file. A package can be deployed to the file sys­
tem or to the MSDB database in a SQL Server database instance. Although packages can be de­
ployed as a group and dependencies can exist between packages, there is no unifying object in
Integration Services that identifies a set of related packages deployed using the legacy model.
To modify properties of package tasks at run-time, which is important when running a package
in different environments such as development or production, you use configurations saved as
DTSCONFIG files on the file system. You use either the DTExec or the DTExecUI utilities to exe­
cute a package on the Integration Services server, providing arguments on the command-line
or in the graphical interface when you want to override package property values at run-time
manually or by using configurations.

•	 Project deployment model With this deployment model type, the unit of deployment is a
project, stored as an ISPAC file, which in turn is a collection of packages and parameters. You
deploy the project to the Integration Services Catalog, which we describe in a separate section
of this chapter. Instead of configurations, you use parameters (as described later in the “Param­
eters” section) to assign values to package properties at run-time. Before executing a package,
you must create an execution object in the catalog and optionally assign parameter values or
environment references to the execution object. When ready, you start the execution object by
using a graphical interface in SQL Server Management Studio by executing a stored procedure
or by running managed code.

38

In addition to the characteristics described above, there are additional differences between the legacy
deployment model and the project deployment model. Table 6-1 compares these differences.

TABLE 6-1 Deployment Model Comparison

Characteristic Legacy Deployment Model Project Deployment Model

Unit of deployment Package Project

Deployment location File system or MSDB database Integration Services catalog

Run-time property value
assignment

Configurations Parameters

Environment-specific
values for use in property
values

Configurations Environment variables

Package validation Just before execution using:
DTExec
Managed code

Independent of execution using:
SQL Server Management Studio interface
Stored procedure
Managed code

Package execution DTExec
DTExecUI

SQL Server Management Studio interface
Stored procedure
Managed code

Logging Configure log provider or
implement custom logging

No configuration required

Scheduling SQL Server Agent job SQL Server Agent job

CLR integration Not required Required

When you create a new project in BIDS, the project is by default established as a project deployment
model. You can use the Convert To Legacy Deployment Model command on the Project menu (or from
the context menu when you right-click the project in Solution Explorer) to switch to the legacy de­
ployment model. The conversion works only if your project is compatible with the legacy deployment
model. For example, it cannot use features that are exclusive to the project deployment model, such as
parameters. After conversion, Solution Explore displays an additional label after the project name to
indicate the project is now configured as a legacy deployment model, as shown in Figure 6-9. Notice all
that the Parameters node is removed from the project while the Data Sources folder is added to the
project.

FIGURE 6-9 Legacy deployment model.

39

FIGURE 6-9 Legacy deployment model.

Tip You can reverse the process by using the Project menu, or the project’s context menu in Solution
Explorer, to convert a legacy deployment model project to a project deployment model.

Project Deployment Model Features
In this section, we provide an overview of the project deployment model features to help you under­
stand how you use these features in combination to manage deployed projects. Later in this chapter,
we explain each of these features in more detail and provide links to additional information available
online.

Although you can continue to work with the legacy deployment model if you prefer, the primary
advantage of using the new project deployment model is the improvement in package management
across in multiple environments. For example, a package is commonly developed on one server, then
tested on a separate server, and eventually implemented on a production server. With the legacy de­
ployment model, there are a variety of techniques that you can use to provide connection strings for
the correct environment at run-time, each of which requires you to create at least one configuration
file and optionally maintain SQL Server tables or environment variables. Although this approach is
flexible, it can also be confusing and prone to error. The project deployment model continues to sepa­
rate run-time values from the packages, but uses object collections in the Integration Services catalog
to store these values and to define relationships between packages and these object collections known
as parameters, environments, and environment variables.

•	 Catalog The catalog is a dedicated database that stores packages and related configuration
information accessed at package run-time. You can manage package configuration and execu­
tion by using the catalog’s stored procedures and views or by using the graphical interface in
SQL Server Management Studio.

•	 Parameters As Table 6-1 shows, the project deployment model relies on parameters to
change task properties during package execution. Parameters can be created within a project
scope or within a package scope. When you create parameters within a project scope, you use
apply a common set of parameter values across all the packages contained in the project. You
can then use parameters in expressions or tasks, much the same way that you use variables.

•	 Environments Each environment is a container of variables that you associate with a package
at run-time. You can create multiple environments to use with a single package, but the pack­
age can only use variables from one environment during execution. For example, you can cre­

40

ate environments for development, test, and production, and then execute a package using one
of the applicable environments.

•	 Environment variables An environment variable contains a literal value that Integration Ser­
vices assigns to a parameter during package execution. After deploying a project, you can asso­
ciate a parameter with an environment variable. The value of the environment variable resolves
during package execution.

Project Deployment Workflow
The project deployment workflow includes not only the process of converting design-time objects in
BIDS into database objects stored in the Integration Services catalog, but also the process of retrieving
database objects from the catalog to update a package design or to use an existing package as a tem­
plate for a new package. To add a project to the catalog or to retrieve a project from the catalog, you
use a project deployment file which has an ISPAC file extension. There are four stages of the project
deployment workflow in which the ISPAC file plays a role: build, deploy, import, and convert. In this
section, we review each of these stages.

Build
When you use the project deployment model for packages, you use BIDS to develop one or more
packages as part of an Integration Services project. In preparation for deployment to the catalog, which
serves as a centralized repository for packages and related objects, you build the Integrations Services
project in BIDS to produce an ISPAC file, as shown in Figure 6-10. The ISPAC file is the project deploy­
ment file that contains project information, all packages in the Integration Services project, and pa­
rameters.

41

FIGURE 6-10 Project deployment workflow.

Before performing the build, there are two additional tasks that might be necessary:

•	 Identify entry-point package If one of the packages in the project is the package that trig­
gers the execution of the other packages in the project, directly or indirectly, you should flag
that package as entry-point package. You can do this by right-clicking the package in Solution
Explorer and selecting Entry-point Package. An administrator uses this flag to identify the
package to start when a package contains multiple projects.

•	 Create project and package parameters You use project-level or package-level parameters
to provide values for use in tasks or expressions at run-time, which you learn more about how
to do later in this chapter in the “Parameters” section. In BIDS, you assign parameter values to
use as a default. You also mark a parameter as required, which prevents a package from exe­
cuting until you assign a value to the variable.

During the development process in BIDS, you commonly execute a task or an entire package within
BIDS to test results before deploying the project. BIDS creates an ISPAC file to hold the information
required to execute the package and stores it in the bin folder for the Integration Services project.
When you finish development and want to prepare the ISPAC file for deployment, use the Build menu
or press F5.

Deploy
The deployment process uses the ISPAC file to create database objects in the catalog for the project,
packages, and parameters, as shown in Figure 6-11. To do this, you use the Integration Services De­
ployment Wizard which prompts you for the project to deploy and the project to create or update as

42

part of the deployment. You can also provide literal values or specify environment variables as default
parameter values for the current project version. These parameter values that you provide in the wizard
are stored in the catalog as server defaults for the project, and override the default parameter values
stored in the package.

FIGURE 6-11 Deployment of the ISPAC file to the catalog.

You can launch the wizard from within BIDS by right-clicking the project in Solution Explorer, and
selecting Deploy. However, if you have an ISPAC file saved to the file system, you can double-click the
file to launch the wizard.

Import
When you want to update a package that has already been deployed or to use it as basis for a new
package, you can import a project into BIDs from the catalog or from an ISPAC file, as shown in Figure
6-12. To import a project, you use the Integration Services Import Project Wizard which is available in
the template list when you create a new project in BIDS.

FIGURE 6-12 Import a project from the catalog or an ISPAC file.

Convert
If you have legacy packages and configuration files, you can convert them to the latest version of Inte­
gration Services, as shown in Figure 6-13. The Integration Services Project Conversion Wizard is availa­
ble in both BIDS and in SQL Server Management Studio. Another option is to use the Integration Ser­
vices Package Upgrade Wizard available on the Tools page of the SQL Server Installation Center.

43

FIGURE 6-13 Convert existing DTSX files and configurations to an ISPAC file.

Note You can use the Conversion Wizard to migrate packages created using SQL Server 2005 Inte­
gration Services and later. If you use SQL Server Management Studio, the original DTSX files are not
modified, but used only as a source to produce the ISPAC file containing the upgraded packages.

In BIDS, open a legacy project, right-click the project in Solution Explorer, and select Convert To
Project Deployment Model. The wizard upgrades the DTPROJ file for the project and the DTSX files for
the packages.

The behavior of the wizard is different in SQL Server Management Studio. There you right-click the
Projects node of the Integration Services catalog in Object Explorer, and select Import Packages. The
wizard prompts you for a destination location and produces an ISPAC file for the new project and the
upgraded packages.

Regardless of which method you use to convert packages, there are some common steps that occur
as packages are upgraded:

•	 Update Execute Package tasks If a legacy package contains an Execute Package task, the
wizard changes the external reference to a DTSX file to a project reference to a package con­
tained within the same project. The child package must be in the same legacy project that you
are converting and must be selected for conversion in the wizard.

•	 Create parameters If a legacy package uses a configuration, you can choose to convert the
configuration to parameters. You can add configurations belonging to other projects to include
them in the conversion process. Additionally, you can choose to remove configurations from
the upgraded packages. The wizard uses the configurations to prompt you for properties to
convert to parameters and also requires you to specify project scope or package scope for each
parameter.

•	 Configure parameters The Conversion Wizard allows you to specify a server value for each
parameter and whether to require the parameter at run-time.

44

Parameters

As we explain in the previous section, parameters are the replacement for configurations in legacy
packages, but only when you use the project deployment model. The purpose of configurations was to
provide a way to change values in a package at run-time without requiring you to open the package
and make the change directly. You can establish project-level parameters to assign a value to one or
more properties across multiple packages, or you can have a package-level parameter when you need
to assign a value to properties within a single package.

Project Parameters
A project parameter shares its values with all packages within the same project. To create a project pa­
rameter in BIDS, follow these steps:

1.	 In Solution Explorer, double-click Project.params.

2.	 Click the Add Parameter button on the toolbar in the Project.params window.

3.	 Type a name for the parameter in the Name text box, select a data type, and specify a value
for the parameter as shown here. The parameter value that you supply here is known as the
design default value.

Note The parameter value is a design-time value that can be overwritten during or after
deployment to the catalog.

4.	 Save the file.

Optionally, you can configure the following properties for each parameter:

•	 Sensitive By default, this property is to False. If you change it to True, the parameter value is
encrypted when you deploy the project to the catalog. If anyone attempts to view the param­
eter value in SQL Server Management Studio or by accessing Transact-SQL views, the parame­
ter value will display as NULL. This setting is important when you use a parameter to set a
connection string property and the value contains specific credentials.

45

•	 Required By default, this property is also set to False. When the value is True, you must con­
figure a parameter value during or after deployment before you can execute the package. The
Integration Services engine will ignore the parameter default value that you specify on this
screen when the Required property is True and deploy the package to the catalog.

•	 Description This property is optional, but allows you to provide documentation to an ad­
ministrator responsible for managing packages deployed to the catalog.

Package Parameters
Package parameters apply only to the package in which they are created and cannot be shared with
other packages. The center tab in the package designer allows you to access the Parameters window
for your package. The interface for working with package parameters is identical to the project param­
eters interface.

Parameter Usage
After creating project or package parameters, you are ready to implement the parameters in your
package much like you implement variables. That is, anywhere you can use variables in expressions for
tasks, data flow components, or connection managers, you can also use parameters.

As one example, you can reference a parameter in expressions, as shown in Figure 6-14. Notice the
parameter appears in the Variables and Parameters list in the top left pane of the Expression Builder.
You can drag the parameter to the Expression text box and use it alone or as part of a more complex
expression. When you click the Evaluate Expression button, you can see the expression result based on
the design default value for the parameter.

46

FIGURE 6-14 Parameter usage in an expression.

Note This expression uses a project parameter which has a prefix of $Project. To create an expression
that uses a package parameter, the parameter prefix is $Package.

You can also directly set a task property by right-clicking the task and selecting Parameterize on the
context menu. The Parameterize dialog box displays as shown in Figure 6-15. You select a property,
and then choose whether to create a new parameter or use an existing parameter. If you create a new
parameter, you specify values for each of the properties that you access in the Parameters window.
Additionally, you must specify whether to create the parameter within package scope or project scope.

47

FIGURE 6-15 Parameterize task dialog box.

Post-Deployment Parameter Values
The design default values that you set for each parameter in BIDS are typically used only to supply a
value for testing within the BIDS environment. You can replace these values during deployment by
specifying server default values when you use the Deployment Wizard or by configuring execution
values when creating an execution object for deployed projects.

Figure 6-16 illustrates the stage at which you create each type of parameter value. If a parameter
has no execution value, the Integration Services engine will use the server default value when executing
the package. Similarly, if there is no server default value, package execution uses the design default
value. However, if a parameter is marked as required, then you must provide either a server default
value or an execution value.

FIGURE 6-16 Parameter values by stage.

48

Note A package will fail when the Integration Services engine cannot resolve a parameter value. For
this reason, it is recommended to validate projects and packages as described in the “Validation” sec­
tion of this chapter.

Server Default Values
Server default values can be literal values or environment variable references (explained later in this
chapter), which in turn are literal values. To configure server defaults in SQL Server Management Stu­
dio, you right-click the project or package in the Integration Services node in Object Explorer, select
Configure, and change the Value property of the parameter, as shown in Figure 6-17. This server de­
fault value will persist even if you make changes to the design default value in BIDS and redeploy the
project.

FIGURE 6-17 Server default value configuration.

Execution Parameter Values
The execution parameter value applies only to a specific execution of a package and overrides all other
values. You must explicitly set the execution parameter value by using the cata­
log.set_execution_parameter_value stored procedure. There is no interface available in SQL Server
Management Studio to set an execution parameter value.

set_execution_parameter_value [@execution_id = execution_id

, [@object_type =] object_type

, [@parameter_name =] parameter_name

, [@parameter_value =] parameter_value

49

To use this stored procedure, you must supply the following arguments:

•	 execution_id You must obtain the execution_id for the instance of the execution. You can
use the catalog.executions view to locate the applicable execution_id.

•	 object_type The object type specifies whether you are setting a project parameter or a
package parameter. Use a value of 20 for a project parameter and a value of 30 for a package
parameter.

•	 parameter_name The name of the parameter must match the parameter stored in the cata­
log.

•	 parameter_value Here you provide the value to use as the execution parameter value.

Integration Services Catalog

The Integration Services catalog is a new feature to support the centralization of storage and admin­
istration of packages and related configuration information. Each SQL Server instance can host only
one catalog. When you deploy a project using the project deployment model, the project and its
components are added to the catalog and optionally placed in a folder that you specify in the De­
ployment Wizard. Each folder (or the root level if you choose not to use folders) organizes its contents
into two groups—projects and environments, as shown in Figure 6-18.

FIGURE 6-18 Catalog database objects.

50

Catalog Creation
Installation of Integration Services on a server does not automatically create the catalog. To do this,
follow these steps:

1.	 In SQL Server Management Studio, connect to the SQL Server instance, right-click the

Integration Services folder in Object Explorer, and select Create Catalog.

2.	 In the Create Catalog dialog box, select the Enable CLR Integration checkbox. This feature is
required to manage Integration Services functionality.

3.	 Optionally, you can select the Scan For Automatic Execution Of Integration Services Stored
Procedure At SQL Server Startup checkbox. This stored procedure performs a cleanup opera­
tion when the service restarts and adjusts the status of packages that were executing when the
service stopped.

4.	 Notice that the catalog database name cannot be changed from SSISDB, as shown below so
the final step is to provide a strong password, and then click OK. The password creates a data­
base master key that Integration Services uses to encrypt sensitive data stored in the catalog.

After you create the catalog, you will see it appear twice as the SSISDB database in Object Explorer.
It displays under both the Databases node as well as the Integration Services node. In the Databases
node, you can interact with it as you would any other database, using the interface to explore database
objects. You use the Integration Services node to perform administrative tasks.

Note In most cases, there are two options available for performing administrative tasks with the cata­
log. You can use the graphical interface by opening the applicable dialog box for a selected catalog
object, or you can use Transact-SQL views and stored procedures to view and modify object proper­
ties. For more information about the Tranact-SQL application programming interface (API), see
http://msdn.microsoft.com/en-us/library/ff878003(v=SQL.110).aspx.

51

http://msdn.microsoft.com/en-us/library/ff878003(v=SQL.110).aspx

Catalog Properties
The catalog has several configurable properties. To access these properties, right-click SSISDB under
the Integration Services node, and select Properties. The Catalog Properties dialog box, as shown in
Figure 6-19, displays several properties.

FIGURE 6-19 Catalog Properties dialog box.

Encryption
Notice in Figure 6-19 that the default encryption algorithm is AES_256. If you put the SSISDB database
in single-user mode, you can choose one of the other encryption algorithms available:

• DES

• TRIPLE_DES

• TRIPLE_DES_3KEY

• DESX

• AES_128

• AES_192

Integration Services uses encryption to protect sensitive parameter values. When anyone uses the
SQL Server Management Studio interface or the Transact-SQL API to query the catalog, the parameter
value will display only a NULL value.

52

Operations
Operations include activities such as package execution, project deployment, and project validation, to
name a few. Integration Services stores information about these operations in tables in the catalog. You
can use the Transact-SQL API to monitor operations, or you can right-click the SSISDB database on the
Integration Services node in Object Explorer and select Active Operations. The Active Operations dialog
box displays the operation identifier, its type, name, the operation start time, and the caller of the op­
eration. You can select an operation and click the Stop button to end the operation.

Periodically, older data should be purged from these tables to keep the catalog from growing un­
necessarily large. By configuring the catalog properties, you can control the frequency of the SQL
Server Agent job that purges the stale data by specifying how many days of data to retain. If you pre­
fer, you can disable the job.

Project Versioning
Each time you redeploy a project with the same name to the same folder, the previous version remains
in the catalog until ten versions are retained. If necessary, you can restore a previous version by fol­
lowing these steps:

1.	 In Object Explorer, locate the project under the SSISDB node.

2.	 Right-click the project and select Versions.

3.	 In the Project Versions dialog box, shown here, select the version to restore and click the Re­
store To Selected Version button.

4.	 Click Yes to confirm, click OK to close the information message box. Notice the selected ver­
sion is now flagged as the current version, and that the other version remains available as an
option for restoring.

You can modify the maximum number of versions to retain by updating the applicable catalog

53

property. If you increase this number above the default value of ten, you should continually monitor
the size of the catalog database to ensure that it does not grow too large. To manage the size of the
catalog, you can also decide whether to remove older versions periodically with a SQL Server agent job.

Environment Objects
After you deploy projects to the catalog, you can create environments to work in tandem with param­
eters to change parameter values at execution time. An environment is a collection of environment
variables. Each environment variable contains a value to assign to a parameter. To connect an envi­
ronment to a project, you use an environment reference. Figure 6-20 illustrates the relationship be­
tween parameters, environments, environment variables, and environment references.

FIGURE 6-20 Environment objects in the catalog.

Environments
One convention that you might use is to create one environment for each server that you will use for
package execution. For example, you might have one environment for development, one for testing,
and one for production. To create a new environment using the SQL Server Management Studio inter­
face, follow these steps:

1.	 In Object Explorer, expand the SSISDB node, and locate the Environments folder that corre­
sponds to the Projects folder containing your project.

2.	 Right-click the Environments folder and select Create Environment.

3.	 In the Create Environment dialog box, type a name, optionally type a description, and click OK.

Environment Variables
For each environment, you can create a collection of environment variables. The properties that you

54

configure for an environment variable are the same ones that you configure for a parameter, which is
understandable when you consider that you use the environment variable to replace the parameter
value at run-time. To create an environment variable, follow these steps:

1.	 In Object Explorer, locate the environment under the SSISDB node.

2.	 Right-click the environment and select Properties to open the Environment Properties dialog
box.

3.	 Click Variables to display the list of existing environment variables, if any, as shown below.

4.	 On an empty row, type a name for the environment variable in the Name text box, select a
data Type, type a Description (optional), type a Value for the environment variable, select the
Sensitive checkbox if you want the value to be encrypted in the catalog. Continue adding en­
vironment variables on this page and click OK when finished.

5.	 Repeat this process by adding the same set of environment variables to other environments
that you intend to use with the same project.

Environment References
To connect environment variable to a parameter, you create an environment reference. There are two
types of environment references—relative and absolute. When you create a relative environment ref­
erence, the parent folder for the environment folder must also be the parent folder for the project
folder. If you later move the package to another without also moving the environment, the package
execution will fail. An alternative is to use an absolute reference which maintains the relationship be­
tween the environment and the project without requiring them to have the same parent folder.

The environment reference is a property of the project. To create an environment reference, follow
these steps:

1.	 In Object Explorer, locate the project under the SSISDB node.

55

2.	 Right-click the project and select Configure to open the Configure <Project> dialog box.

3.	 Click References to display the list of existing environment references, if any.

4.	 Click the Add button and select an environment in the Browse Environments dialog box. Use
the Local Folder node for a relative environment reference or use the SSISDB node for an ab­
solute environment reference.

5.	 Click OK twice to create the reference. Repeat steps 4 and 5 to add reference for all other ap­
plicable environments.

6.	 In the Configure <Project> dialog box, click Parameters to switch to the parameters page.

7.	 Click the ellipsis button to the right of the Value text box to display the Set Parameter Value
dialog box, select the Use Environment Variable option, and select the applicable variable in
the drop-down list, as shown below.

8. Click OK twice.

56

You can create multiple references for a project, but only one environment will be active during
package execution. At that time, Integration Services will evaluate the environment variable based on
the environment associated with the current execution instance as explained in the next section.

Administration

After the development and deployment processes are complete, it’s time to become familiar with the
administration tasks that enable operations on the server to keep running.

Validation
Before executing packages, you can use validation to verify that projects and packages are likely to run
successfully, especially if you have configured parameters to use environment variables. The validation
process ensures that server default values exist for required parameters, that environment references
are valid, and that data types for parameters are consistent between project and package configura­
tions and their corresponding environment variables, to name a few of the validation checks.

To perform the validation, right-click the project or package in the catalog, click Validate, and select
the environments to include in the validation: all, none, or a specific environment. Validation occurs
asynchronously, so the Validation dialog box closes while the validation processes. You can open the
Integration Services Dashboard report to check the results of validation. Your other options are to
right-click the SSISDB node in Object Explorer and select Active Operations or to use of the Trans-
act-SQL API to monitor an executing package.

Package Execution
After deploying a project to the catalog and optionally configuring parameters and environment ref­
erences, you are ready to prepare your packages for execution. This step requires you to create a SQL
Server object called an execution. An execution is a unique combination of a package and its corre­
sponding parameter values, whether the values are server defaults or environment references. To con­
figure and start an execution instance, follow these steps:

1. In Object Explorer, locate the entry-point package under the SSISDB node.

2. Right-click the project and select Run to open the Run Package dialog box, shown below.

57

3.	 Here you have two choices. You can either click the ellipsis button to the right of the Value
and specify a literal execution value for the parameter, or you can select the Environment
checkbox at the bottom of the dialog box and select an environment in the corresponding
drop-down list.

You can continue configuring the execution instance by updating properties on the Connections
Manager tab and by overriding property values and configuring logging on the Advanced tab. For
more information about the options available in this dialog box, see
http://msdn.microsoft.com/en-us/library/hh231080(v=SQL.110).aspx.

When you click OK to close the Run Package dialog box, the package execution begins. Because
package execution occurs asynchronously, the dialog box does not need to stay open during execu­
tion. You can use the Integration Services Dashboard report to monitor the execution status, or
right-click the SSISDB node and select Active Operations. Another option is the use of the Transact-SQL
API to monitor an executing package.

More often, you will schedule package execution by creating a Transact-SQL script that starts execu­
tion and save the script to a file that you can then schedule using a SQL Server agent job. You add a
job step using the Operating System (CmdExec) step type and then configure the step to use the
sqlcmd.exe utility and pass the package execution script to the utility as an argument. You run the job
using the SQL Server Agent service account or a proxy account. Whichever account you use, it must
have permissions to create and start executions.

Logging and Troubleshooting Tools
Now that Integration Services centralizes package storage and executions on the server and has access
to information generated by operations, server-based logging is supported and operations reports are
available in SQL Server Management Studio to help you monitor activity on the server and trouble­
shoot problems when they occur.

58

http://msdn.microsoft.com/en-us/library/hh231080(v=SQL.110).aspx

Package Execution Logs
In legacy Integration Services packages, there are two options you can use to obtain logs during pack­
age execution. One option is to configure log providers within each package and associate log provid­
ers with executables within the package. The other option is to use a combination of Execute SQL
statements or script components to implement a custom logging solution. Either way, the steps neces­
sary to enable logging are tedious in legacy packages.

With no configuration required, Integration Services stores package execution data in the [cata­
log].[excecutions] table. The most important columns in this table include the start and end times of
package execution as well as the status. However, the logging mechanism also captures information
related to the Integration Services environment such as physical memory, the page file size, and availa­
ble CPUs. Other tables provide access to parameter values used during execution, the duration of each
executable within a package, and messages generated during package execution. You can easily write
ad hoc queries to explore package logs or build your own custom reports using Reporting Services for
ongoing monitoring of the log files.

Note For a thorough walkthrough of the various tables in which package execution log data is stored,
see “SSIS Logging in Denali,” a blog post by Jamie Thomson at
http://sqlblog.com/blogs/jamie_thomson/archive/2011/07/16/ssis-logging-in-denali.aspx.

Data Taps
A data tap is similar in concept to a data viewer, except that it captures data at a specified point in the
pipeline during package execution outside of BIDS. The captured data is stored in a CSV file which you
can review after package execution completes. No changes to your package are necessary to use this
feature.

Reports
Before you build custom reports from the package execution log tables, review the built-in reports now
available in SQL Server Management Studio for Integration Services. These reports provide information
on package execution results for the past 24 hours (as shown in Figure 6-24), performance, and error
messages from failed package executions. Hyperlinks in each report allow you to drill through from
summary to detailed information to help you diagnose package execution problems.

59

http://sqlblog.com/blogs/jamie_thomson/archive/2011/07/16/ssis-logging-in-denali.aspx

FIGURE 6-24 Integration Services Operations Dashboad.

To view the reports, you right-click the SSISDB node in Object explorer, point to Reports, point to
Standard Reports, and then choose from the following list of reports:

• Integration Services Dashboard

• All Executions

• All Validations

• All Operations

• Connections

60

Security
Packages and related objects are stored securely in the catalog using encryption. Only members of the
new SQL Server database role ssis_admin or members of the existing sysadmin role have permissions to
all objects in the catalog. Members of these roles can perform operations such as creating the catalog,
creating folders in the catalog, and executing stored procedures, to name a few.

Members of the administrative roles delegate administrative permissions to users who need to
manage a specific folder. Delegation is useful when you do not want to give these users access to the
higher privileged roles. To give a user folder-level access, you grant the MAN­
AGE_OBJECT_PERMISSIONS permission to the user.

For general permissions management, open the Properties dialog box for a folder (or any other se-
curable object) and go to the Permissions page. On that page, you can select a security principal by
name and then set explicit Grant or Deny permissions as appropriate. You can use this method to se­
cure folders, projects, environments, and operations.

Package File Format

Although legacy packages stored as DTSX files are formatted as XML, their structure is not compatible
with differencing tools and source control systems that you might use to compare packages. In the
current version of Integration Services, the package file format is pretty-printed, with properties for­
matted as attributes rather than as elements. Moreover, attributes are listed alphabetically and attrib­
utes configured with default values have been eliminated. Collectively, these changes not only help you
more easily locate information in the file, but you can more easily compare packages with automated
tools and more reliably merge packages that have no conflicting changes.

Another significant change to the package file format is the replacement of the meaningless nu­
meric lineage identifiers with a refid attribute with a text value that represents the path to the refer­
enced object. For example, a refid for the first input column of an Aggregate transformation in a data
flow task called Data Flow Task in a package called Package looks like this:

Package\Data Flow Task\Aggregate.Inputs[Aggregate Input 1].Columns[LineTotal]

Last, annotations are no longer stored as binary streams. Instead, they appear in the XML file as
clear text. With better access to annotations in the file, the more likely that annotations can be pro­
grammatically extracted from a package for documentation purposes.

Summary

As you have seen through this chapter, Integration Services has benefited from many changes, large
and small. Changes in the developer experience will enable faster development times and allow new
developers to come up to speed more quickly. Perhaps the biggest change is the introduction of the

61

project deployment model to simplify changes to package values at run-time. A side benefit of the
project deployment model is the catalog which captures information about packages, validations, and
execution results in tables that you can query through views or by using built-in reports. This access to
information gives you greater visibility into Integration Services than was possible in previous versions
without extensive customization. If you’re not ready to take advantage of these features, you can con­
tinue to manage packages using the legacy deployment model, but you will be missing out on a lot of
helpful management features.

62

	Cover
	Copyright
	About the Authors
	Contents
	Chapter 2: High Availability and Disaster Recovery Enhancements
	SQL Server AlwaysOn: An Integrated Solution
	AlwaysOn Availability Groups
	Understanding Concepts and Terminology
	Availability Replica Roles
	Failover and Synchronization Modes
	Data Synchronization Modes
	Connection Mode in Secondaries
	Availability Group Listeners

	Configuring Availability Groups
	Prerequisites
	Deployment Examples

	Monitoring Availability Groups with the Dashboard

	Active Secondaries
	Read-Only Access to Secondary Replicas
	Backups on Secondary

	AlwaysOn Failover Cluster Instances (FCI)
	Support for Deploying SQL Server Denali on Windows Server Core
	SQL Server Denali Prerequisites for Server Core
	SQL Server Features Supported on Server Core
	SQL Server on Server Core Installation Alternatives

	Additional High Availability and Disaster Recovery Enhancements
	Support for Server Message Block
	Database Recovery Advisory
	Online Operations
	Rolling Upgrade and Patch Management

	Chapter 6: Integration Services
	Developer Experience
	Add New Project Dialog Box
	General Interface Changes
	Getting Started Window
	SSIS Toolbox
	Interface Improvement
	Item Arrangement

	Shared Connection Managers
	Expression Indicators
	Undo and Redo
	Package Sort By Name
	Status Indicators

	Control Flow
	Expression Task
	Execute Package Task

	Data Flow
	Sources and Destinations
	Source and Destination Assistants
	Flat File Source

	Transformations
	Merge and Merge Join Transformations
	DQS Cleansing Transformation

	Column References
	Components without Column References
	Resolve References Editor

	Collapsible Grouping
	Data Viewer

	Flexible Package Design
	Variables
	Expressions
	Expression Result Length
	New Functions

	Deployment Models
	Supported Deployment Models
	Project Deployment Model Features
	Project Deployment Workflow
	Build
	Deploy
	Import
	Convert

	Parameters
	Project Parameters
	Package Parameters
	Parameter Usage
	Post-Deployment Parameter Values
	Server Default Values
	Execution Parameter Values

	Integration Services Catalog
	Catalog Creation
	Catalog Properties
	Encryption
	Operations
	Project Versioning

	Environment Objects
	Environments
	Environment Variables
	Environment References

	Administration
	Validation
	Package Execution
	Logging and Troubleshooting Tools
	Package Execution Logs
	Data Taps
	Reports

	Security

	Package File Format
	Summary

