
SQL Server 2014
Mission Critical Performance
(Level 300 Deck)

SQL Server 2014
Mission Critical Performance
(Level 300 Deck)

SQL Server 2014
Mission Critical Performance
(Level 300 Deck)

SQL Server 2014
Mission Critical
Performance
Level 300

Our Strategy for In-Memory Computing

8

•

•

•

2012

•

2012

•

SQL Server engine

In-Memory OLTP

12

New high-performance, memory-optimized online

transaction processing (OLTP) engine integrated into

SQL Server and architected for modern hardware

trends

Memory-optimized

table file group

In-Memory OLTP

engine: Memory-

optimized tables &

indexes

Native compiled SPs

& schema

In-Memory OLTP

compiler

Transaction log Data file group

Suitable Application Characteristics

13

SQL Server integration

• Same manageability,

administration, and

development experience

• Integrated queries and

transactions

• Integrated HA and

backup/restore

Main-memory

optimized

• Optimized for in-memory

data

• Indexes (hash and range)

exist only in memory

• No buffer pool

• Stream-based storage for

durability

High concurrency

• Multiversion optimistic

concurrency control with full

ACID support

• Core engine uses lock-free

algorithms

• No lock manager, latches, or

spinlocks

T-SQL compiled to

machine code

• T-SQL compiled to machine

code via C code generator

and Visual C compiler

• Invoking a procedure is just

a DLL entry-point

• Aggressive optimizations at

compile time

Steadily declining memory

price, NVRAM
Many-core processors Stalling CPU clock rate TCO

Hardware trends Business

Hybrid engine and

integrated experience

High-performance data

operations

Frictionless scale-up Efficient, business-logic

processing

B
e
n
e
fi
ts

In
-M

e
m

o
ry

 O
LT

P
 T

e
ch

 P
ill

a
rs

D
ri
ve

rs

In-Memory OLTP Architecture

Main-memory

optimized

• Optimized for in-memory

data

• Indexes (hash and ordered)

exist only in memory

• No buffer pool

• Stream-based storage for

durability

Steadily declining memory

price, NVRAM

Hardware trends

Table constructs
Fixed schema; no ALTER TABLE; must drop/recreate/reload

No LOB data types; row size limited to 8,060

No constraints support (primary key only)

No identity or calculated columns, or CLR

Data and table size considerations
Size of tables = (row size * # of rows)

Size of hash index = (bucket_count * 8 bytes)

Max size SCHEMA_AND_DATA = 512 GB

IO for durability
SCHEMA_ONLY vs. SCHEMA_AND_DATA

Memory-optimized filegroup

Data and delta files

Transaction log

Database recovery

Design Considerations For Memory-optimized Tables

15

High performance data

operations

B
e
n
e
fi
ts

In
-M

e
m

o
ry

 O
LT

P

Te

ch
 P

ill
a
rs

D
ri
ve

rs

Create Table DDL

CREATE TABLE [Customer](

[CustomerID] INT NOT NULL

PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 1000000),

[Name] NVARCHAR(250) NOT NULL

INDEX [IName] HASH WITH (BUCKET_COUNT = 1000000),

[CustomerSince] DATETIME NULL

)

WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);

This table is

memory optimized
This table is durable

Secondary indexes

are specified inline

Hash index

Create Procedure DDL

CREATE PROCEDURE [dbo].[InsertOrder] @id INT, @date DATETIME

WITH

NATIVE_COMPILATION,

SCHEMABINDING,

EXECUTE AS OWNER

AS

BEGIN ATOMIC

WITH

(TRANSACTION

ISOLATION LEVEL = SNAPSHOT,

LANGUAGE = 'us_english')

-- insert T-SQL here

END

This proc is natively

compiled

Native procs must be

schema-bound

Atomic blocks

• Create a transaction

if there is none

• Otherwise, create a

savepoint

Execution context is

required

Session settings are fixed

at create time

High concurrency

• Multiversion optimistic

concurrency control

with full ACID support

• Core engine uses

lock-free algorithms

• No lock manager,

latches, or spinlocks

Many-core processors

Hardware trends

18

Frictionless scale-

up

B
e
n
e
fi
ts

In
-M

e
m

o
ry

 O
LT

P

Te

ch
 P

ill
a
rs

D
ri
ve

rs

Impact of no locks or latches
Write-write conflict: design application for condition with try.catch

Applications dependent on locking; may not be a good candidate

Multiple versions of records
Increases the memory needed by memory-optimized tables

Garbage Collection used to reclaim old versions

Transaction scope
Support for Isolation Levels: Snapshot, Repeatable Read, Serializable

Commit time validation; again must retry logic to deal with failure

High Concurrency Design Considerations

Example: Write Conflict

19

Time Transaction T1 (SNAPSHOT) Transaction T2 (SNAPSHOT)

1 BEGIN

2 BEGIN

3 UPDATE t SET c1=‘bla’ WHERE c2=123

4 UPDATE t SET c1=‘bla’ WHERE

c2=123 (write conflict)

First writer

wins

Guidelines for Usage

20

1. Declare isolation level – no locking hints

2. Use retry logic to handle conflicts and
validation failures

3. Avoid using long-running transactions

T-SQL compiled to

machine code

• T-SQL compiled to

machine code via C code

generator and Visual C

compiler

• Invoking a procedure is

just a DLL entry-point

• Aggressive optimizations

at compile-time

Stalling CPU clock rate

Hardware trends

Design considerations for native compiled stored procedures

21

Efficient business-logic

processing

B
e
n
e
fi
ts

In
-M

e
m

o
ry

 O
LT

P
 T

e
ch

 P
ill

a
rs

D
ri
ve

rs

Native compiled stored

procedures

Non-native compilation

Performance High. Significantly less

instructions to go through

No different than T-SQL

calls in SQL Server today

Migration strategy Application changes;

development overhead

Easier app migration as can

still access memory-

optimized tables

Access to objects Can only interact with

memory-optimized tables

All objects; access for

transactions across memory

optimized and B-tree tables

Support for T-SQL

constructs

Limited T-SQL surface area (limit on

memory-optimized

interaction)

Optimization, stats, and

query plan

Statistics utilized at CREATE

-> Compile time

Statistics updates can be

used to modify plan at

runtime

Flexibility Limited (no ALTER

procedure, compile-time

isolation level)

Ad-hoc query patterns

22

Performance Gains

In-Memory

OLTP

Compiler
In-Memory

OLTP

Component

Memory-optimized Table

Filegroup
Data Filegroup

SQL Server.exe

In-Memory OLTP Engine for

Memory_optimized Tables &

Indexes

TDS Handler and Session Management

Natively Compiled

SPs and Schema

Buffer Pool for Tables & Indexes

Proc/Plan cache for ad-hoc T-

SQL and SPs

Client App

Transaction Log

Interpreter for TSQL, query

plans, expressions

Query

Interop

Access Methods

Parser,

Catalog,

Algebrizer,

Optimizer

10-30x more efficient

Reduced log bandwidth

& contention. Log

latency remains

Checkpoints are

background sequential

IO

No improvements in

communication stack,

parameter passing,

result set generation

Key

Existing SQL

Component

Generated .dll

SQL Server integration

• Same manageability,

administration, and

development experience

• Integrated queries and

transactions

• Integrated HA and

backup/restore

TCO

Business

23

Hybrid engine and

integrated experienceB
e
n
e
fi
ts

In
-M

e
m

o
ry

 O
LT

P
 T

e
ch

 P
ill

a
rs

D
ri
ve

rs

In-Memory OLTP component Integration with SQL Server

Memory management Use Resource Governor Pool to control In-

Memory OLTP memory

Query optimization Same SQL Server optimizer

HA/DR Integrate with AlwaysOn FCI/AG

Backup/restore contains memory-

optimized tables (and data if durable)

Monitoring and troubleshooting Integrated catalog views, DMVs,

performance monitor counters, extended

events, and more

Interaction with non-In-Memory

OLTP objects

Supported transaction interaction

(insert…select, JOIN, and more) with non-

In-Memory OLTP objects in database

SQL Server Integration Design Drilldown

24

Integrated Experience

Backup and restore
Full and log backup and restore is supported; piecemeal

restore is supported

Failover clustering
Failover time depends on size of durable memory-optimized

tables

AlwaysOn
Secondary has memory-optimized tables in memory

Failover time is not dependent on size of durable memory-

optimized tables

DMVs, catalog views, performance monitor

counters, XEvents
Monitoring memory, garbage collection activity, and

transaction details

SQL Server Management Studio (SSMS)
Creating, managing, and monitoring tables; databases and

server

25

In-Memory Data Structures

Rows
New row format

Structure of the row is optimized for memory

residency and access

One copy of row

Indexes point to rows, they do not duplicate them

Indexes
Hash index for point lookups

Memory-optimized nonclustered index for range and

ordered scans

Do not exist on disk – recreated during recovery

Memory-optimized Table: Row Format

Row header Payload (table columns)

Begin Ts End Ts StmtId IdxLinkCount

8 bytes 8 bytes 4 bytes 2 bytes

8 bytes * (IdxLinkCount – 1)

Key lookup: B-tree vs. Memory-optimized Table

Matching index record

Hash index

on Name

R1 R2

R3

28

Memory Management

Data resides in memory at all times
Must configure SQL server with sufficient memory to store

memory-optimized tables

Failure to allocate memory will fail transactional workload

at run-time

Integrated with SQL Server memory manager and reacts

to memory pressure where possible

Integration with Resource Governor
“Bind” a database to a resource pool

Mem-opt tables in a database cannot exceed the limit of

the resource pool

Hard limit (80% of phys. memory) to ensure system

remains stable under memory pressure

29

Garbage Collection

Stale Row Versions
• Updates, deletes, and aborted insert operations create row

versions that (eventually) are no longer visible to any

transaction

• Slow down scans of index structures

• Create unused memory that needs to be reclaimed (i.e.

Garbage Collected)

Garbage Collection (GC)
• Analogous to version store cleanup task for disk-based

tables to support Read Committed Snapshot (RCSI)

• System maintains ‘oldest active transaction’ hint

GC Design
• Non-blocking, Cooperative, Efficient, Responsive, Scalable

• A dedicated system thread for GC

• Active transactions work cooperatively and pick up parts of

GC work

Cooperative Garbage Collection

100 200 1 John Smith Kirkland

200 ∞ 1 John Smith Redmond

50 100 1 Jim Spring Kirkland

300 ∞ 1 Ken Stone Boston

TX4: Begin = 210

Oldest Active Hint = 175

31

Durability

Memory-optimized tables can be durable or non-

durable
Default is ‘durable’

Non-durable tables are useful for transient data

Durable tables are persisted in a single memory-

optimized filegroup
Storage used for memory-optimized has a different access

pattern than for disk tables

Filegroup can have multiple containers (volumes)
Additional containers aid in parallel recovery; recovery

happens at the speed of IO

32

On-disk Storage

Filestream is the underlying storage mechanism
Checksums and single-bit correcting ECC on files

Data files
~128MB in size, write 256KB chunks at a time

Stores only the inserted rows (i.e. table content)

Chronologically organized streams of row versions

Delta files
File size is not constant, write 4KB chunks at a time.

Stores IDs of deleted rows

33

Logging for Memory-Optimized Tables

Uses SQL transaction log to store content
Each HK log record contains a log record header followed by

opaque memory optimized-specific log content

All logging for memory-optimized tables is logical
No log records for physical structure modifications.

No index-specific / index-maintenance log records.

No UNDO information is logged

Recovery Models
All three recovery models are supported

34

Backup for Memory-Optimized Tables

Integrated with SQL Database Backup
Memory-Optimized file group is backed up as part SQL Server

database backup

Existing backup scripts work with minimal or no changes

Transaction log backup includes memory-optimized log records

Not supported
Differential backup

35

Recovery for Memory-Optimized Tables

Analysis Phase
Finds the last completed checkpoint

Data Load
Load from set of data/delta files from the last completed checkpoint

Parallel Load by reading data/delta files using 1 thread / file

Redo phase to apply tail of the log
Apply the transaction log from last checkpoint

Concurrent with REDO on disk-based tables

No UNDO phase for memory-optimized tables
Only committed transactions are logged

Myth #1:

Reality

Myth #2:

Reality

Myth #3:

Reality

Myth #4:

Reality

Myth #5:

Reality

41

What’s being delivered

High-performance, memory-optimized OLTP engine integrated

into SQL Server and architected for modern hardware trends

Main benefits

• Optimized for in-memory data up to 20–30 times throughput

• Indexes (hash and range) exist only in memory; no buffer pool,

B-trees

• T-SQL compiled to machine code via C code generator and

Visual C compiler

• Core engine uses lock-free algorithms; no lock manager,

latches, or spinlocks

• Multiversion optimistic concurrency control with full ACID support

• On-ramp existing applications

• Integrated experience with same manageability, administration, and

development experience

In-Memory OLTP summary

In-Memory DW

In-Memory DW

C

1

C

2

C

3

C

5

C

6

C

4
Columnstore
Index
Representation

In-Memory In the Data Warehouse
Data Stored Row-Wise: Heaps, b-Trees, Key-Value

44

• In-Memory ColumnStore

• Both memory and disk

• Built-in to core RDBMS engine

• Customer Benefits:

‐ 10-100x faster

‐ Reduced design effort

‐ Work on customers’ existing hardware

‐ Easy upgrade; Easy deployment

“By using SQL Server 2012 In-Memory

ColumnStore, we were able to extract about

100 million records in 2 or 3 seconds versus

the 30 minutes required previously. “

- Atsuo Nakajima Asst Director, Bank of Nagoya

Traditional Storage Models
Data Stored Row-Wise: Heaps, b-Trees, Key-Value

45

• Relational, dimensional, map reduce

…

In-Memory DW Storage Model
Data Stored Column-wise

46

• Each page stores data from a single column

• Highly compressed

‐ More data fits in memory

• Each column can be accessed independently

‐ Fetch only columns needed

‐ Can dramatically decrease I/O

C1 C2 C3 C5 C6C4

In-Memory DW Index Structure
Row Groups & Segments

47

• A segment contains values for one column for a
set of rows

• Segments for the same set of rows comprise a
row group

• Segments are compressed

• Each segment stored in a separate LOB

• Segment is unit of transfer between disk and
memory

Segments

C1 C2 C3 C5 C6C4

Row

group

In-Memory DW Index
Processing an Example

48

Horizontally Partition
Row Groups

49

Vertical Partition
Segments

50

Compress Each Segment*
Some Compress More than Others

51

*Encoding and reordering not shown

Fetch Only Needed Columns
Segment Elimination

52

Fetch Only Needed Segments
Segment Elimination

53

Batch Mode
Improving CPU Utilization

54

• Biggest advancement in query processing in years!

• Data moves in batch through query plan operators

‐ Minimizes instructions per row

‐ Takes advantage of cache structures

• Highly efficient algorithms

• Better parallelism

Batch Mode Processing
QP Vector Operators

55

• Process ~1000 rows at a time

• Batch stored in vector form

• Optimized to fit in cache

• Vector operators implemented

• Filter, hash join, hash aggregation, …

• Greatly reduced CPU time (7 to 40X)

b
it

m
a
p

 o
f

q
u

a
li
fy

in
g

 r
o

w
s

Column vectors

Batch object

In-Memory DW:
Clustered & Updatable

56

• Fast execution for data warehouse queries

‐ Speedups of 10x and more

• No need for separate base table

‐ Save space

• Data can be inserted, updated or deleted

‐ Simpler management

• Eliminate need for other indexes

‐ Save space and simpler management

• More data types supported

Updatable Columnstore Index

• Table consists of column store and row store

• DML (update, delete, insert) operations leverage delta store

• INSERT Values
• Always lands into delta store

• DELETE
• Logical operation

• Data physically remove after REBUILD operation is performed.

• UPDATE
• DELETE followed by INSERT.

• BULK INSERT
• if batch < 100k, inserts go into delta store, otherwise

columnstore

• SELECT
• Unifies data from Column and Row stores - internal UNION

operation.

• “Tuple mover” converts data into columnar format once
segment is full (1M of rows)

• REORGANIZE statement forces tuple mover to start.

C1 C2 C3 C5 C6C4

C
o

lu
m

n

S
to

re

C1 C2 C3 C5 C6C4

D
e
lt

a
 (

ro
w

)

st
o

re

tu
p

le
 m

o
v
e
r

Comparing Space Savings
101 Million Row Table + Index Space

58

19.7GB

10.9GB

5.0GB
4.0GB

6.9GB

1.8GB

TABLE WITH

CUSTOMARY

INDEXING

TABLE WITH

CUSTOMARY

INDEXING (PAGE

COMPRESSION)

TABLE WITH NO

INDEXING

TABLE WITH NO

INDEXING (PAGE

COMPRESSION)

TABLE WITH

COLUMNSTORE

INDEX

CLUSTERED

COLUMNSTORE

Structure of In-Memory DW
How It Works

59

• CREATE CLUSTERED COLUMNSTORE

‐ Organizes and compresses data into columnstore

• BULK INSERT

‐ Creates new columnstore row groups

• INSERT

‐ Rows are placed in the row store (heap)

‐ When row store is big enough, a new columnstore
row group is created

ColumnStore
Deleted

Bitmap

Row Store

Partition

Structure of In-Memory DW
How It Works (cont'd)

• DELETE

‐ Rows are marked in the deleted bitmap

• UPDATE

‐ Delete plus insert

• Most data is in columnstore format

ColumnStore
Deleted

Bitmap

Row Store

Partition

Batch Mode Processing
What’s New?

61

• SQL Server 2014

‐ Support for all flavors of JOINs

 OUTER JOIN

 Semi-join: IN, NOT IN

‐ UNION ALL

‐ Scalar aggregates

‐ Mixed mode plans

‐ Improvements in bitmaps, spill support, …

Global Batch Aggregation
What’s New?

62

• Replaces a set of three operators in the query plan

‐ Local (partial) batch aggregation

‐ Row aggregation, somewhere above it

‐ Repartition exchanges, somewhere between them

• Improves scenarios with large aggregation output

‐ Process the same data with less memory than local batch aggregation

‐ Better performance than local batch aggregation, example big hash
tables

‐ Removes the need for row mode aggregation in mostly batch query
plans, resulting in less data conversion and better management of
granted memory

Archival Compression
What’s New?

63

• Adds an additional layer of compression on top
of the inherent compression used by columnstore

• Shrink on-disk database sizes by up to 27%

‐ Compression applies per partition and can be set
either during index creation or during rebuild

Enhanced Compression

TPCH 3.1X

TPCDS 2.8X

Customer 1 3.9X

Customer 2 4.3X

** compression measured against raw data file

• sys.partitions

COLUMNSTORE COLUMNSTORE_ARCHIVE

Partitioning ColumnStores
The Basic Mechanism

65

• The motivation is manageability over performance

CREATE TABLE <table> (…) As usual

CREATE CLUSTERED COLUMNSTORE INDEX <name> on <table>

Converts entire table to Columnstore format

BULK INSERT, SELECT INTO

INSERT

UPDATE

DELETE

Insert & Updating Data
Load Sizes

66

• Bulk insert

‐ Creates row groups of 1Million rows, last row group is probably not full

‐ But if <100K rows, will be left in Row Store

• Insert/Update

‐ Collects rows in Row Store

• Tuple Mover

‐ When Row Store reaches 1Million rows, convert to a ColumnStore Row
Group

‐ Runs every 5 minutes by default

‐ Started explicitly by ALTER INDEX <name> ON <table> REORGANIZE

Building Index in ColumnStore
Making Them Fast

67

• Memory resource intensive

‐ Memory requirement related to number of columns, data, DOP

• Unit of parallelism is the segment

‐ Lots of segments, lots of potential parallelism

• Low memory throttles parallelism

‐ Increase the max server memory option

‐ Set REQUEST_MAX_MEMORY_GRANT_PERCENT to 50

‐ Add physical memory to the system

‐ Reduce parallelism: (MAXDOP = 1);

Columnstore enhancements summary

• What’s being delivered

• Clustered and updateable columnstore index

• Columnstore archive option for data compression

• Global batch aggregation

• Main benefits

• Real-time super fast data warehouse engine

• Ability to continue queries while updating without the need to drop and

recreate index or partition switching

• Huge disk space saving due to compression

• Ability to compress data 5–15x using archival per-partition compression

• Better performance and more efficient (less memory) batch query processing

using batch mode rather than row mode

PDW V2

PDW V2

• xVelocity in-memory columnstore in PDW columnstore index as primary data
store in a scale-out MPP Data Warehouse - PDW V2 Appliance

• Updateable clustered index

• Support for bulk load and insert/update/delete

• Extended data types – decimal/numeric for all precision and scale

• Query processing enhancements for more batch mode processing (for
example, Outer/Semi/Antisemi joins, union all, scalar aggregation)

Customer benefits

• Outstanding query performance from in-memory columnstore index

• 600 GB per hour for a single 12-core server

• Significant hardware cost savings due to high compression

• 4–15x compression ratio

• Improved productivity through updateable index

• Ships in PDW V2 appliance and SQL Server 2014

In-Memory Columnstore in PDW V2 & SQL Server 2014

71

One standard node type

Moving from SAN to JBODs

Backup and Landing Zone are now reference architectures, and not in the
basic topology

Scale unit concept

Hardware architecture
Overview

Host 2

Host 1

Host 3

Host 4

JBOD

IB and

Ethernet Direct attached SAS

Hardware architecture
Storage details

.

.

.
.
.

.

JBOD 1

Node 1: Distribution B – file 2

Node 1: Distribution B – file 1

Hot spares

Fabric storage (VHDXs for node)

.

.

.
.
.

.

.

.

.
.
.

.

To take advantage of the fact that we have ~2x the number of spindles, we use more

files per filegroup to better align SQL Server activity to actual disks available and

provide better parallelization of disk IO.

Overall, we expect to see 70 percent higher I/O bandwidth.

V1 V2

Replicated
user data

1 FG per DB,
8 files per FG

1 FG per DB,
16 files per FG

Distributed
user data

1 FG per distribution,
1 file per FG

1 FG per distribution,
2 files per FG

TempDB and
Log

1 FG per DB,
1 file per FG

1 FG per DB,
16 file per FG

Hardware architecture
Comparison with V1: the basic 1-Rack

CONTROL RACK DATA RACK

Control Node

Mgmt. Node

LZ

Backup Node

Estimated total hardware

component list price: $1 million$
Estimated total hardware

component list price: $500,000$

Infiniband

and Ethernet

Fibre Channel

• Pure hardware costs

are ~50 percent lower

• Price per raw TB is

close to 70 percent

lower due to higher

capacity

• 70 percent more disk

I/O bandwidth

RACK 1

Infiniband

and Ethernet

• 128 cores on 8 compute nodes

• 2 TB of RAM on compute

• Up to 168 TB of TempDB

• Up to 1 PB of user data

• 160 cores on 10 compute nodes

• 1.28 TB of RAM on compute

• Up to 30 TB of TempDB

• Up to 150 TB of user data

Hardware architecture
Modular design

Infiniband Switch

Ethernet Switch

Storage

Server
Server

Storage

Server
Server

Storage

Server
Server

Storage

Server
Server

Server
Server

Infiniband Switch

Ethernet Switch

Server
Server

Storage

Server
Server
Server

Storage

Storage

Server
Server
Server

Storage

Storage

Server
Server
Server

Storage

Modular

components

Type 1
Up to 8 servers

Minimum footprint of

2 servers

Type 2
Up to 9 Servers

Minimum footprint of

3 servers

Capacity Scale Unit

Capacity Scale Unit

Base Scale Unit Base Scale Unit

Base Scale Unit Base Scale Unit

Passive Scale Unit Passive Scale UnitServer Server

¼
 R

a
ck

1
5
T
B

 (R
a
w

)

1
/2

 R
a
ck

3
0
T
B

 (R
a
w

)

F
u

ll R
a
ck

6
0
T
B

 (R
a
w

)

1
¼

 R
a
ck

7
5
.5

T
B

(R
a
w

)

3
 R

a
ck

1
8
1
.2

T
B

 (R
a
w

)1
 1

/2
 R

a
ck

9
0
.6

T
B

 (R
a
w

)
2
 R

a
ck

1
2
0
.8

T
B

 (R
a
w

)

HP Configuration

• 2 – 56 compute nodes

• 1 – 7 racks

• 1, 2, or 3 TB drives

• 15.1 – 1268.4 TB raw

• 53 – 6342 TB User data

• Up to 7 spare nodes

available across the entire

appliance

Details

1
/3

 R
a
ck

2
2
.6

T
B

 (R
a
w

)

2
/3

 R
a
ck

4
5
.3

T
B

 (R
a
w

)

F
u

ll R
a
ck

6
7
.9

T
B

 (R
a
w

)

Dell Configuration

• 2 – 54 compute nodes

• 1 – 6 racks

• 1, 2, or 3 TB drives

• 22.65 – 1223.1 TB raw

• 79 – 6116 TB User data

• Up to 6 spare nodes available

across the entire appliance

Details

Hardware architecture
Supported topologies

• 2–56 nodes

• 15 TB–1.3 PB raw

• Up to 6PB user data

• 2–3 node increments

for small topologies DELL Base Active Compute Incr. Spare Total Raw disk: 1TB Raw disk: 3TB Capacity

Quarter-rack 1 0 3 N/A 1 5 22.65 67.95 79-340 TB

2 thirds 1 1 6 100% 1 8 45.3 135.9 159-680 TB

Full rack 1 2 9 50% 1 11 67.95 203.85 238-1019 TB

One and third 2 2 12 33% 2 15 90.6 271.8 317-1359 TB

One and 2 third 2 3 15 25% 2 18 113.25 339.75 396-1699 TB

2 racks 2 4 18 20% 2 21 135.9 407.7 476-2039 TB

2 and a third 3 4 21 17% 3 25 158.55 475.65 555-2378 TB

2 and 2 thirds 3 5 24 14% 3 28 181.2 543.6 634-2718 TB

Three racks 3 6 27 13% 3 31 203.85 611.55 713-3058 TB

Four racks 4 8 36 33% 4 41 271.8 815.4 951-4077 TB

Five racks 5 10 45 25% 5 51 339.75 1019.25 1189-5096 TB

Six racks 6 12 54 20% 6 61 407.7 1223.1 1427-6116 TB

HP Base Active Compute Incr. Spare Total Raw disk: 1TB Raw disk: 3TB Capacity

Quarter-rack 1 0 2 N/A 1 4 15.1 45.3 53-227 TB

Half 1 1 4 100% 1 6 30.2 90.6 106-453 TB

Three-quarters 1 2 6 50% 1 8 45.3 135.9 159-680 TB

Full rack 1 3 8 33% 1 10 60.4 181.2 211-906 TB

One-&-quarter 2 3 10 25% 2 13 75.5 226.5 264-1133 TB

One-&-half 2 4 12 20% 2 15 90.6 271.8 317-1359 TB

Two racks 2 6 16 33% 2 19 120.8 362.4 423-1812 TB

Two and a half 3 7 20 25% 3 24 151 453 529-2265 TB

Three racks 3 9 24 20% 3 28 181.2 543.6 634-2718 TB

Four racks 4 12 32 33% 4 37 241.6 724.8 846-3624 TB

Five racks 5 15 40 25% 5 46 302 906 1057-4530 TB

Six racks 6 18 48 20% 6 55 362.4 1087.2 1268-5436 TB

Seven racks 7 21 56 17% 7 64 422.8 1268.4 1480-6342 TB

Software architecture
Overview

General details
• All hosts run Windows Server 2012 Standard

• All virtual machines run Windows Server 2012 Standard as a

guest operating system

• All fabric and workload activity happens in Hyper-V virtual

machines

• Fabric virtual machines, MAD01, and CTL share one server;

lower overhead costs especially for small topologies

• PDW Agent runs on all hosts and all virtual machines; collects

appliance health data on fabric and workload

• DWConfig and Admin Console continue to exist mostly

unchanged; minor extensions to expose host level information

• Windows Storage Spaces handles mirroring and spares;

enables use of lower cost DAS (JBODs) rather than SAN

• Provisioning based on virtual machines cuts down time and

complexity for setup and other maintenance tasks

PDW workload details
• SQL Server 2012 Enterprise Edition (PDW build) is used on

control node and compute nodes for PDW workload

Host 2

Host 1

Host 3

Host 4

JBOD

IB &

Ethernet

Direct attached SAS

CTL VMM

Compute 1

Compute 2

• Window Server 2012

• DMS Core

• SQL Server 2012

• Similar layout relative to V1, but more files per filegroup

to take advantage of larger number of spindles in parallel

• Window Server 2012

• PDW engine

• DMS Manager

• SQL Server

• Shell DBs just as in

AU3+

FAB

AD

MAD

01

Two high-level changes in the high-
availability/failover story for SQL Server PDW
• We are more directly involved in maintaining HA for storage

• We use virtual machine migration to move workload nodes to
new hosts after hardware failure

Storage details
• Storage Spaces manages the physical disks on the JBOD(s)

• 33 logical mirrored drives

• 4 hot spares

• CSV allows all nodes to access the LUNs on the JBOD as long as at
least one of the two nodes attached to the JBOD is active

Failover details
• One cluster across the whole appliance

• Virtual machines are automatically migrated on host failure

• Affinity and anti-affinity maps enforce rules

• Failback continues to be through CSS use of Windows Failover
Cluster Manager

Software architecture
High availability changes

Host 2

Host 1

Host 3

Host 4

JBOD

IB and

Ethernet Direct attached SAS

CTL FAB

AD

MAD

01
VMM

Compute 1

Compute 2

Windows Server Failover Cluster

Windows Server

Storage Spaces

Windows Server

Clustered Shared Volumes

Software architecture
Replacing nodes

Host 2

Host 1

Host 3

Host 4

JBOD

IB &

Ethernet

Direct attached SAS

CTL FAB

AD

MAD

01
VMM

Compute 1

Compute 2

• Any addition to the appliance has to be in the form of one or more
standard scale units

• IHV owns installation and cabling of new scale units

• Software provisioning consists of three phases:

• Bare metal provisioning of new nodes

• Provisioning of workload virtual machines and “hooking up” to
other workload virtual machines

• Redistribution of data

• CSS logs into PDW AD virtual machine and kicks off Add Unit action,
which kicks off bare metal provisioning (which is online)

• When BMP completes, the next step takes the appliance offline and
completes steps 2 and 3

• Data redistribution cannot be guaranteed to be workable in every
situation

• Tool to test ahead of time whether it will work

• Step 2 will block if it cannot guarantee success

• CSS may have to help prepare user data

• Deleting old data

• Partition switching from largest tables

• CRTAS to move data off appliance temporarily

Software architecture
Adding capacity: scaling from 2–56 nodes

Host 2

Host 1

Host 3

Host 4

JBOD

IB &

Ethernet

Direct attached SAS

Host 5

Host 6

JBOD

IB &

Ethernet

Direct attached SAS

Compute 3

Compute 4

CTL
FAB

AD

MAD

01 VMM

Compute 1

Compute 2

Column segment
• A segment contains values from one column for a set of rows.

• Segments for the same set of rows comprise a row group.

• Segments are compressed.

• Each segment is stored in a separate LOB.

• A segment is a unit of transfer between disk and memory.

Tables are stored as segments of columns rather than rows.

For data warehouse queries, this often has significant performance
benefits.

In-Memory DW in PDW
Columnstore terminology

C1 C2 C3 C5 C6C4

Row group

Column segment

C1 C2 C3 C5 C6C4

C
o

lu
m

n
st

o
re

C1 C2 C3 C5 C6C4

…

D
el

ta
 (

ro
w

)
st

o
re

• Table consists of columnstore and row store

• DML (update, delete, insert) operations done against delta store

• “Tuple Mover” converts data into columnar format once segment
is full (1M of rows)

• Tuple Mover can be forced by executing REORGANIZE statement

• INSERT Values

• Always lands into delta store

• DELETE

• logical operation does not physically remove row until REBUILD
is performed

• UPDATE

• DELETE followed by INSERT

• BULK INSERT

• if batch is less than 1M, inserts go into delta store (otherwise
columnstore)

• SELECT

• Unifies data from column and row stores for internal UNION
operation

In-Memory DW in PDW
New design: Delta Store

CREATE TABLE user_db.dbo.user_table (C1 int, C2 varchar(20))

WITH (DISTRIBUTION = HASH (id), CLUSTERED
COLUMNSTORE INDEX)

DROP INDEX index_name ON [database_name . [schema]

. | schema .] table_name [;]

Dropping a columnstore index creates a row store table.

Supporting CLUSTERED COLUMNSTORE indexes
• Columnstore is the preferred storage engine in PDW

• No secondary (columnstore or rowstore) indexes are supported

Functionality supported
• Create < permanent_or_temp > Table

• CTAS < permanent_or_temp > Table

• Alter Table ADD/DROP/ALTER COLUMN

• Alter Table REBUILD/REORGANIZE, partition switching

• Full DML (Insert, Update, Delete, Select)

• Truncate table

• Same functionality as row store, such as create/update statistics,
PDW cost model, etc.

• All existing PDW data types supported fully

Note: non-clustered columnstore indexes (e.g. Apollo2) not
supported

In-Memory DW in PDW
Supported functionality

Dramatic performance increases

Improved compression on disk and in backups

Preserved appliance model

Better memory management

In-Memory DW in PDW
Break-through performance

First-class support for Microsoft BI

Improved third-party support

Much broader compatibility with existing ETL and reporting scripts

Looks just like normal SQL Server

T-SQL compatibility improvements
Better support for Microsoft and third-party tools

SSD Bufferpool
Extension

SSD Bufferpool
Extension

SSD Buffer Pool Extension and scale up

• What’s being delivered

• Use of non-volatile drives (SSD) to extend buffer pool

• NUMA-Aware large page and BUF array allocation

• Main benefits

• BP extension for SSDs

• Improve OLTP query performance with no application changes

• No risk of data loss (using clean pages only)

• Easy configuration optimized for OLTP workloads on commodity servers (32 GB RAM)

• Scalability improvements for systems with more than eight sockets

Example:

ALTER SERVER CONFIGURATION

SET BUFFER POOL EXTENSION ON

(FILENAME = 'F:\SSDCACHE\EXAMPLE.BPE‘,

SIZE = 50 GB)

Ease of Use

-- View Buffer Pool Extension Details to see if it is enabled or not

SELECT * FROM sys.dm_os_buffer_pool_extension_configuration

GO

-- Monitor Buffer Pool Extension usage to see if any data or index page(s) are in Buffer Pool or not

-- (last column of the query result)

SELECT * FROM sys.dm_os_buffer_descriptors

GO

-- Disable Buffer Pool Extension is very easy

ALTER SERVER CONFIGURATION SET BUFFER POOL EXTENSION OFF

GO

DMVs

XEvents

Troubleshooting options

• Extension page writes/sec

• Extension page reads/sec

• Extension outstanding IO counter

• Extension page evictions/sec

• Extension allocated pages

• Extension free pages

• Extension page unreferenced time

• Extension in use as percentage on buffer pool level

Performance counters

Buffer Pool Manager

Data

Files

Relational

Engine
Protocol

Layer

Storage Engine Buffer Pool

Optimizer

Cmd

Parser

Query

Execut

or
SNI

Transaction

Manager

Access

Methods

Buffer

Manager

Transaction Log

Plan Cache

Data Cache

TDS

Query Plan Result Sets

R
e
su

ltsD
a
ta

GetPage D

TDS

Read

I/O
Write

I/O

CommandQuery Tree

Cached Pages

IOPS offload to Storage Class Memory (SCM) in memory hierarchy

Enhanced Query
Processing

Enhanced Query
Processing

Query processing enhancements

• What’s being delivered

• New cardinality estimator

• Incremental statistics for partition

• Parallel SELECT INTO

• Main benefits

• Better query performance:

• Better choice of query plans

• Faster and more frequent statistics refresh on partition level

• Consistent query performance

• Better supportability using two steps (decision making and execution) to enable better query plan

troubleshooting

• Loading speed into table improved significantly using parallel operation

Security Enhancements

Security Enhancements

Separation of duties enhancement
• Four new permissions

• CONNECT ANY DATABASE (server scope)

• IMPERSONATE ANY LOGIN (server scope)

• SELECT ALL USER SECURABLES (server scope)

• ALTER ANY DATABASE EVEN SESSION (database scope)

• Main benefit

• Greater role separation to restrict multiple DBA roles

• Ability to create new roles for database administrators who are not sysadmin (super user)

• Ability to create new roles for users or apps with specific purposes

Best Practices for Separation of Duties

Example Roles for Separation of Duties

Example (cont’d)

Backup Encryption

T-SQL BACKUP/RESTORE

ENCRYPTION
(
ALGORITHM = <Algorithm_name> ,
{ SERVER CERTIFICATE = <Encryptor_Name> |
SERVER ASYMMETRIC KEY = <Encryptor_Name> }

);

T-SQL Views

backup_set_id name key_algorithm encryptor_thumbprint encryptor_type

3 Full Backup NULL NULL NULL

4 Full Backup aes_256 0x00B1BD62DAA0196 CERTIFICATE

media_set_id
is_password_protecte

d
is_compressed is_encrypted

3 0 1 0

4 0 1 1

Additional Details

Better Together

Better Together

Better together

Better scaling with Windows Server

Increased virtual processor and memory
Enables SQL Server virtual machine to use up to 64 virtual

processors and 1 TB of memory

Increased logical processor and memory
Enables SQL Server to use up to 640 logical processors

and 4 TB of memory

Increased cluster node scalability
Supports SQL Server clusters up to 64 nodes

Increased virtual machine density
Up to 8,000 SQL Server virtual machines per cluster

Support for up to 320 logical processors and 4 TB of memory

Better performance with Windows Server

Support for NUMA

QoS – Network Bandwidth Enforcing

Windows NIC Teaming

Non-Uniform Memory Access (NUMA)

support in a virtual machine

• Projects NUMA topology onto a virtual machine

• Enables guest operating systems and applications to

make intelligent NUMA decisions

• Aligns guest NUMA nodes with host resources

NUMA: Hyper-V host support

Guest NUMA topology by default matches host NUMA

topology

Features
• Establishes a bandwidth floor

• Assigns specified bandwidth for each type of traffic

• Helps to ensure fair sharing when there is no

congestion

• Can exceed quota when there is no congestion

Two mechanisms
• Enhanced packet scheduler (software)

• Network adapter with DCB support (hardware)

Quality of Service

Relative minimum bandwidth Strict minimum bandwidth

Bandwidth oversubscription

Cluster-Aware Updating (CAU)

Windows Server Core

Dynamic Quorum

Better availability with Windows Server

Online OnlineUpdating …

Online

Online VHDX resize (Windows Server 2012 R2)

Cluster-Aware Updating

Updating Run

orchestration

Admin

Apply updates on

this cluster

Node n

Draining

the node
Resuming and

failback

.

.

.

Node 1

Windows Server

failover cluster

. . .

Windows

update

• Eliminates downtime associated with cluster
updating

• Simplifies cluster updates through configurable
automation

• Transparent to users and hosted applications

• Extensible to install even non-Windows software
updates through custom plug-ins

SMB support

ReFS support (SQL Server 2014)

Better storage with Windows Server

Fibre Channel support

Tiered Storage Spaces (Windows Server 2012 R2)

http://download.microsoft.com/download/8/0/F/80FCCBEF-BC4D-4B84-950B-07FBE31022B4/ESG-Lab-Validation-Windows-Server-Storage.pdf

Cold DataHot Data

Reads/Writes
Accumulates
Data Activity

SMB support for SQL Server and Hyper-V

•

•

•

•

Better management with System Center

Data Protection Manager

Operations Manager and Advisor

• Proactive and reactive monitoring of SQL Server instances

• Early detection and problem resolution of SQL Server issues using

agent-based operations that perform continuous server scanning

Virtual Machine Manager and App Controller

• Creation and management of a private cloud based on SQL Server

virtual machines

• Deployment of SQL Server virtual machine across private and public

cloud environments

Call to Action
Learn more at

http://www.microsoft.com/
SQLServerPrivateCloud

BENEFITS
o Faster time to market

- Automation without compromising control

o Reduce administration overhead

o Business units can request

resources on demand

BENEFITS
o Make IT strategic by

mapping consumption to

business priorities

o Get a centralized view of

total resource consumption

across the enterprise

BENEFITS
o Greater agility

- Handle peak load scenarios faster

- Scale to mission-critical workloads

o Dynamic infrastructure
- Scale to efficiently meet demand

- High availability across multiple data centers

BENEFITS
o Reduce capital expenses

- Standardize and consolidate

o Reduce operational expenses
- Improve hardware utilization

- Manage IT infrastructure efficiently

o Green IT
- Reduce space and power needs

C
O

N
S
O

LI
D

A
T
E STEPS TOOLS OR FEATURES

Discover database
sprawl and
capacity planning

Microsoft® Assessment and
Planning (MAP) Toolkit

Consolidation
options

SQL Server Upgrade Advisor

SQL Server Migration Assistant
(SSMA)

Physical to virtual
migration

System Center Virtual Machine
Manager

Setup for high
availability

SQL Server AlwaysOn Failover
Clustering and Availability Group
Windows Server Core, Dynamic
Quorum, ReFS support

Setup for disaster
recovery

SQL Server AlwaysOn
Hyper-V Live Migration

Scale virtual machines
(CPU, memory,
storage, network)

In-Memory OLTP, SSD buffer pool
extension, Columnstore, Resource
Governor, Hyper-V scale,
Dynamic Memory, online VHDX,
Tiered Storage, SMB support, NIC
teaming & QoS

Load balance virtual
machines

System Center Virtual Machine
Manager

Create database
virtual machine
templates

SQL Server Sysprep

System Center Virtual Machine
Manager

Build automation Windows Azure Pack for
Windows Server, System Center
Service Manager, Orchestrator,
App Controller

Measure usage
- Assign cost
- Map usage to
business units

Windows Azure Pack for
Windows Server, System Center
Service Manager

Charge back and
reporting

Windows Azure Pack for
Windows Server, SQL Server
Analysis Services OLAP cubes and
Excel PowerPivot, Power View

M A N A G E T H R O U G H A S I N G L E PA N E O F G L A S S

D
E
P

LO
Y STEPS TOOLS OR FEATURES

D
R

IV
E STEPS TOOLS OR FEATURES

S
C

A
LE

STEPS TOOLS OR FEATURES

Resource Pooling
Consolidate databases

Elasticity
Scale resources efficiently

Self Service
Deploy resources on demand

Usage Based
Optimize IT to business priorities

For additional information go to http://www.microsoft.com/sqlserver Follow us on http://www.facebook.com/sqlserver Follow us on http://twitter.com/SQLServer Follow us on http://www.youtube.com/sqlserver 2013 Microsoft Corporation. All rights reserved.

Virtualize and
manage instances

Windows Server Hyper-V™

System Center Virtual Machine
Manager and App Controller

Resource
Governor

Resource
Governor

• Ability to differentiate workloads

• Ability to monitor resource usage per group

• Limit controls to enable throttled execution or prevent/minimize
probability of “run-aways”

• Prioritize workloads

• Provide predictable execution of workloads

• Specify resource boundaries between workloads

Resource Governor goals

Resource Governor components

Complete Resource Governance

• What’s being delivered

• Add max/min IOPS per volume to Resource Governor pools

• Add DMVs and perfcounters for IO statistics per pool per volume

• Update SSMS Intellisense for new T-SQL

• Update SMO and DOM for new T-SQL and objects

• Main benefits

• Better isolation (CPU, memory, and IO) for multitenant workloads

• Guarantee performance in private cloud and hosters scenario

Resource Pools

CREATE RESOURCE POOL pool_name

[WITH

([MIN_CPU_PERCENT = value]

[[,] MAX_CPU_PERCENT = value]

[[,] CAP_CPU_PERCENT = value]

[[,] AFFINITY {SCHEDULER = AUTO |

(Scheduler_range_spec) | NUMANODE =

(NUMA_node_range_spec)}]

[[,] MIN_MEMORY_PERCENT = value]

[[,] MAX_MEMORY_PERCENT = value]

[[,] MIN_IOPS_PER_VOLUME = value]

[[,] MAX_IOPS_PER_VOLUME = value])

]

• Minimums across all resource pools can not exceed 100 percent

• Non-shared portion provides minimums

• Shared portion provides maximums

• Pools can define min/max for CPU/Memory/IOPS

Resource Pools

• Create workload groups

• Create function to classify requests into workload group

• Register the classification function in the previous step with the
Resource Governor

• Enable Resource Governor

• Monitor resource consumption for each workload group

• Use monitor to establish pools

• Assign workload group to pool

Steps to implement Resource Governor

• Scenario 1: I just got a new version of SQL Server and would like to make
use of resource governor. How can I use it in my environment?

• Scenario 2 (based on Scenario 1): Based on monitoring results I would like
to see an event any time a query in the ad-hoc group (groupAdhoc) runs
longer than 30 seconds.

• Scenario 3 (based on Scenario 2): I want to further restrict the ad-hoc
group so it does not exceed 50 percent of CPU usage when all requests
are cumulated.

Resource Governor scenarios

• System views

• DMVs

• New performance counters

• XEvents

Monitoring Resource Governor

• System views

• DMVs

• New performance counters

• XEvents

Monitoring Resource Governor

Sysprep

Sysprep

Support SQL Server
images in Azure
Gallery
Provide quick and flexible SQL Server
provisioning for IaaS scenarios

Support SQL Server configuration as part of
the provisioning process

Need to be faster than full installation

Remove limitations that currently exist

This has been long
requested by customers

Sysprep: Why invest?

VM OS

Selection

CREATE VIRTUAL MACHINE

VM OS Selection

SQL Server 2012 Web Edition Service Pack
1 (64-bit) on Windows Server 2008 R2
Service Pack 2. This image contains the
full version of SQL Server, including all
components except Distributed Replay,
Always On, and Clustering capabilities.
Some SQL Server components require
additional setup and configuration before
use. Medium is the minimum
recommended size for this image. To
evaluate advanced SQL Server 2012
capabilities, Large or Extra-Large sizes are
recommended.

Microsoft SQL Server 2012 Standard ...

Microsoft SQL Server 2012 Evaluatio ...

Microsoft SQL Server 2008 R2 Web E...

Microsoft SQL Server 2012 Web Editi...

Microsoft SQL Server 2008 R2 Standa...

1 2 3

Sysprep enhancements

• Sysprep support for:
• Database engine

• Reporting Services

• Analysis Services

• Integration Services

• Management Tools (SSMS)

• Other shared features

• Performance

improvements

• Delivered in SQL Server 2012

SP1 CU2

Sysprep for SQL Server cluster

• What’s being delivered

• Extensions to SQL Server Sysprep functionality to support image-based deployment of clustered

SQL Server instances

• Main benefit

• Supports full automation of SQL Server Failover Cluster deployment scenarios

• Reduces deployment times for SQL Server Failover Clusters

• Combined together, these features enable customers to automate the provisioning of SQL Server

Failover Clusters both on-premises and through IaaS

• Built on top of SQL Server 2012 SP1 CU2 Sysprep enhancements

AlwaysOn
Enhancements

AlwaysOn
Enhancements

AlwaysOn in SQL Server 2014

• What’s being delivered

• Increase number of secondaries from four to eight

• Increase availability of readable secondaries

• Support for Windows Server 2012 CSV

• Enhanced diagnostics

• Main benefits

• Further scale out read workloads across (possibly geo-distributed) replicas

• Use readable secondaries despite network failures (important in geo-distributed environments)

• Improve SAN storage utilization

• Avoid drive letter limitation (max 24 drives) via CSV paths

• Increase resiliency of storage failover

• Ease troubleshooting

Description

• Increase number of secondaries (4–8)

• Max number of sync secondaries is still two

Increase number of Availability Group secondaries

Reason

• Customers want to use readable secondaries

• One technology to configure and manage

• Many times faster than replication

• Customers are asking for more database replicas (4–8)

• To reduce query latency (large-scale environments)

• To scale out read workloads

Description

Allow FCI customers to configure CSV paths for system and user databases

Support for Windows Server Cluster Shared Volumes

Reason

• Avoid drive letter limitation on SAN (max 24 drives)

• Improves SAN storage utilization and management

• Increased resiliency of storage failover (abstraction of temporary disk-level

failures)

• Migration of SQL Server customers using PolyServe (to be discontinued in 2013)

Description

Allow FCI customers to configure CSV paths for system and user databases

Support for Windows Server Cluster Shared Volumes

Reason

• Avoid drive letter limitation on SAN (max 24 drives)

• Improves SAN storage utilization and management

• Increased resiliency of storage failover (abstraction of temporary disk-level

failures)

• Migration of SQL Server customers using PolyServe (to be discontinued in 2013)

Managed Lock Priority

Managed Lock Priority

Partition SWITCH
Short Sch-M lock on the source and

target tables

Online Index Rebuild
Short table S and Sch-M lock

Blocking transactions need to be

completed before DDL

SWITCH/OIR will block new

transactions

Workload slow down or timeouts

Impact to Tier1 mission-critical OLTP

workloads

Blocking by online DDL operations Concurrency and throughput affected

Manage Lock Priority

Managed Lock Priority Options

Blocking user

transactions killed

Immediately or

specified wait time

MAX_DURATION* =n

minutes]

Wait for blockers

MAX_DURATION*

Regular lock queue

Kill all blockers Switch to normal queue

Wait for blockers

MAX_DURATION*

Terminates DDL

(SWITCH/OIR)

Exit DDL after wait

*If no blockers, lock granted immediately and the DDL

statement will complete successfully

Managed Lock Priority Details

PARTITION SWITCH
Sch-M lock (source and destination)

Blocking by user transactions

Killed at source and destination tables

ONLINE INDEX REBUILD
MAX_DURATION applies to every lock request

Time reset for every S & Sch-M lock

Only Sch-M lock conflict for read only workloads

Benefits
Managed by DBA for both partition switch and online index rebuild

Lock request placed in lower priority queue

Decision to wait or kill self or blockers

Executed immediately if no blockers

ALTER TABLE stgtab SWITCH PARTITION 1 TO parttab

PARTITION 1

WITH (WAIT_AT_LOW_PRIORITY (MAX_DURATION=

60 minutes,

ABORT_AFTER_WAIT=BLOCKERS))

ALTER INDEX clidx ON parttable REBUILD

WITH (ONLINE=ON (WAIT_AT_LOW_PRIORITY

(MAX_DURATION= 300,

ABORT_AFTER_WAIT=SELF)))

Examples

<low_priority_lock_wait>::=

{

WAIT_AT_LOW_PRIORITY (MAX_DURATION =

<time>[MINUTES],

ABORT_AFTER_WAIT = { NONE | SELF | BLOCKERS })

}

NONE - current behavior

SELF - abort DDL

BLOCKERS – abort user blockers

Syntax

Managed Lock Priority Syntax
New clause in existing T-SQL DDL for ALTER TABLE and

ALTER INDEX

Abort session diagnostics

Deadlock diagnostics in

deadlock graph

sys.dm_tran_locks

“request_status” extensions

LOW_PRIORITY_CONVERT,

LOW_PRIORITY_WAIT, or

ABORT_BLOCKERS

sys.dm_os_wait_stats

“wait_type” extensions

…LOW_PRIORITY and

..ABORT_BLOCKERS

Errorlog DMV extensions

lock_request_priority_state

process_killed_by_abort_bloc

kers

ddl_with_wait_at_low_priority

Extended Events

Diagnostics

Single Partition
Online Index Rebuild

Single Partition
Online Index Rebuild

Rebuild online - entire index for a

partitioned table

Rebuild offline - a selected

partition
Table locked exclusively (with Sch-

M lock) for the entire duration

Timeouts, Workload slow down

affects availability

Heavy resource usage – CPU, Disk,

Memory

Transaction log bloat

Impact to mission-critical

workloads

Rebuild active partitions Concurrency and throughput affected

Single Partition Online Index Rebuild

Benefits

• One or more partitionsGranularity

• Table accessible for DML and query operations

• Short term locks beginning and end of the index rebuildAccessibility

• Use Managed Lock Priority with SPOIRLock Priority

• Reduced down time for mission critical workloadsAvailability

• CPU, memory and disk space

• Log space usage reducedResource savings

Syntax

ALTER INDEX clidx ON part_table REBUILD

PARTITION= 3

WITH (ONLINE=ON

(WAIT_AT_LOW_PRIORITY

(MAX_DURATION= 300,

ABORT_AFTER_WAIT=NONE)))

Example

<single_partition_rebuild_index_option> ::=

{

…. | ONLINE = { ON [(<low_priority_lock_wait>)] | OFF

}

}

<low_priority_lock_wait>::=

{

WAIT_AT_LOW_PRIORITY (MAX_DURATION =

<time>[MINUTES],

ABORT_AFTER_WAIT = { NONE | SELF | BLOCKERS })

}

Syntax

Error 155 removed

'ONLINE' is now a

recognized ALTER

INDEX REBUILD

PARTITION option

Shows partition info

OIR for partition #4 - OIR

DDL plan shows

-- Constant

Scan(VALUES:(((4))))

Error Message Query Plan

sqlserver.progress_report_onl

ine_index_operation

Two new data fields

partition_number: ordinary

number of the partition

being built

partition_id : ID of the

partition being built

Extended Event

Diagnostics

Complete and consistent data platform

Call to action

Download SQL Server 2014 CTP2

www.microsoft.com/sqlserver

http://www.microsoft.com/sqlserver

© 2013 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other

countries. The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond

to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date

of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION

