

ASP.NET Multi-Tier Windows Azure
Application Using Storage Tables,
Queues, and Blobs
Rick Anderson Tom Dykstra

Summary:

This tutorial series shows how to create a multi-tier ASP.NET MVC 4 web application that uses
Windows Azure Storage tables, queues, and blobs, and how to deploy the application to a Windows
Azure Cloud Service. The tutorials assume that you have no prior experience using Windows Azure.
On completing the series, you'll know how to build a resilient and scalable data-driven web
application and deploy it to the cloud.

Category: Step-by-Step
Applies to: Windows Azure, ASP.NET MVC, Windows Azure Storage Queues, Windows
Azure Storage Tables, Windows Azure Storage Blobs
Source: WindowsAzure.com (.NET Multi-Tier Application Using Storage Tables, Queues,
and Blobs)
E-book publication date: February 2013

http://www.windowsazure.com/en-us/develop/net/tutorials/multi-tier-web-site/1-overview
http://www.windowsazure.com/en-us/develop/net/tutorials/multi-tier-web-site/1-overview

Copyright © 2013 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors
will be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

ASP.NET Multi-Tier Windows Azure

Application Using Storage Tables,

Queues, and Blobs

Contents
Introduction - 1 of 5 .. 5

What You'll Learn .. 5

Front-end overview .. 5

Tutorials in the Series ... 11

Why an Email List Service Application ... 12

Resilient .. 12

Scalable .. 12

Back-end overview ... 12

Windows Azure Tables ... 15

mailinglist table ... 15

message table ... 19

messagearchive table ... 24

Windows Azure Queues ... 24

AzureMailQueue ... 24

AzureMailSubscribeQueue .. 25

Windows Azure Email Service data diagram ... 25

Windows Azure Blobs .. 27

Windows Azure Cloud Service versus Windows Azure Web Site ... 27

Cost ... 30

Authentication and Authorization .. 32

Next steps .. 33

Configuring and Deploying the Windows Azure Email Service application - 2 of 5 34

Set up the development environment ... 34

Set up a free Windows Azure account ... 35

Create a Windows Azure Storage account .. 36

Install Azure Storage Explorer ... 41

Create a Cloud Service ... 43

Download and run the completed solution .. 45

Viewing developer storage in Visual Studio ... 52

Configure the application to use your Windows Azure Storage account 54

The manual method for configuring storage account credentials .. 57

Test the application configured to use your storage account .. 61

Use Azure Storage Explorer to view data entered into your storage account 61

Use Server Explorer to view data entered into your storage account 62

Optional steps to disable Azure Storage Emulator automatic startup 63

Configure the application to use SendGrid ... 64

Create a SendGrid account .. 65

Update SendGrid credentials in worker role properties .. 65

Deploy the Application to Windows Azure ... 66

Implement IP restrictions ... 66

Configure the application to use your storage account when it runs in the cloud 66

Publish the application .. 67

Promote the Application from Staging to Production .. 73

Configure and View Tracing Data ... 75

Add another worker role instance to handle increased load.. 77

Next steps .. 80

Building the web role for the Windows Azure Email Service application - 3 of 5 82

Create the Visual Studio solution ... 82

Create a cloud service project with a web role and a worker role ... 82

Set the page header, menu, and footer ... 86

Run the application locally .. 88

Configure Tracing ... 89

Add code to efficiently handle restarts. ... 90

Update the Storage Client Library NuGet Package .. 91

Add a reference to an SCL 1.7 assembly ... 93

Add code to create tables, queue, and blob container in the Application_Start method 94

Create and test the Mailing List controller and views ... 96

Add the MailingList entity class to the Models folder ... 96

Add the MailingList MVC controller ... 99

Add the MailingList MVC views .. 107

Make MailingList the default controller ... 110

Configure the web role to use your test Windows Azure Storage account 110

Test the application .. 115

Create and test the Subscriber controller and views ... 117

Add the Subscriber entity class to the Models folder ... 117

Add the Subscriber MVC controller ... 119

Add the Subscriber MVC views ... 124

Test the application .. 126

Create and test the Message controller and views .. 127

Add the Message entity class to the Models folder .. 127

Add the Message MVC controller .. 130

Add the Message MVC views .. 135

Test the application .. 140

Create and test the Unsubscribe controller and view .. 141

Add the Unsubscribe view model to the Models folder ... 141

Add the Unsubscribe controller .. 142

Create the MVC views .. 144

Test the application .. 146

(Optional) Build the Alternative Architecture .. 149

Next steps .. 150

Building worker role A (email scheduler) for the Windows Azure Email Service application - 4 of 5 152

Add a reference to the web project ... 152

Add a reference to an SCL 1.7 assembly ... 154

Add the SendEmail model ... 154

Add code that runs when the worker role starts .. 157

Configure the storage connection string .. 172

Testing worker role A ... 173

Next steps .. 178

Building worker role B (email sender) for the Windows Azure Email Service application - 5 of 5 179

Add worker role B project to the solution ... 179

Add a reference to the web project ... 181

Add the Storage Client Library 2.0 NuGet package to the project .. 183

Add SCL 1.7 referenceAdd a reference to an SCL 1.7 assembly ... 184

Add the SendGrid NuGet package to the project .. 184

Add project settings ... 186

Add code that runs when the worker role starts .. 188

Testing Worker Role B ... 203

Next steps .. 203

Acknowledgments .. 204

Introduction - 1 of 5
This tutorial series shows how to create a multi-tier ASP.NET MVC 4 web application that uses

Windows Azure Storage tables, queues, and blobs, and how to deploy the application to a Windows

Azure Cloud Service. The tutorials assume that you have no prior experience using Windows Azure.

On completing the series, you'll know how to build a resilient and scalable data-driven web

application and deploy it to the cloud.

What You'll Learn

In this tutorial series you'll learn the following:

 How to enable your machine for Windows Azure development by installing the Windows Azure

SDK.

 How to create a Visual Studio cloud project with an MVC 4 web role and two worker roles.

 How to publish the cloud project to a Windows Azure Cloud Service.

 How to publish the MVC 4 project to a Windows Azure Web Site if you prefer, and still use the

worker roles in a Cloud Service.

 How to use the Windows Azure Queue storage service for communication between tiers or

between worker roles.

 How to use the Windows Azure Table storage service as a highly scalable data store for

structured, non-relational data.

 How to use the Windows Azure Blob service to store files in the cloud.

 How to view and edit Windows Azure tables, queues, and blobs by using Visual Studio or Azure

Storage Explorer.

 How to use SendGrid to send emails.

 How to configure tracing and view trace data.

 How to scale an application by increasing the number of worker role instances.

Front-end overview

The application that you'll build is an email list service. The front-end of the multi-tier application

includes web pages that administrators of the service use to manage email lists.

There is also a set of pages that administrators use to create messages to be sent to an email list.

Clients of the service are companies that give their customers an opportunity to sign up for a mailing

list on the client web site. For example, an administrator sets up a list for Contoso University History

Department announcements. When a student interested in History Department announcements

clicks a link on the Contoso University web site, Contoso University makes a web service call to the

Windows Azure Email Service application. The service method causes an email to be sent to the

customer. That email contains a hyperlink, and when the recipient clicks the link, a page welcoming

the customer to the History Department Announcements list is displayed.

Every email sent by the service (except the subscribe confirmation) includes a hyperlink that can be

used to unsubscribe. If a recipient clicks the link, a web page asks for confirmation of intent to

unsubscribe.

If the recipient clicks the Confirm button, a page is displayed confirming that the person has been

removed from the list.

Tutorials in the Series

Here is a list of the tutorials with a summary of their contents:

1. Introduction to the Windows Azure Email Service application (this tutorial). An overview of

the application and its architecture.

2. Configuring and Deploying the Windows Azure Email Service application. How to download the

sample application, configure it, test it locally, deploy it, and test it in the cloud.

3. Building the web role for the Windows Azure Email Service application. How to build the MVC 4

components of the application and test them locally.

4. Building worker role A (email scheduler) for the Windows Azure Email Service application. How to

build the back-end component that creates queue work items for sending emails, and test it

locally.

5. Building worker role B (email sender) for the Windows Azure Email Service application. How to

build the back-end component that processes queue work items for sending emails, and test it

locally.

If you just want to download the application and try it out, all you need is the first two tutorials. If

you want to see all the steps that go into building an application like this from scratch, go through

the last three tutorials after you go through the first two.

Why an Email List Service Application

We chose an email list service for this sample application because it is the kind of application that

needs to be resilient and scalable, two features that make it especially appropriate for Windows

Azure.

Resilient

If a server fails while sending out emails to a large list, you want to be able to spin up a new server

easily and quickly, and you want the application to pick up where it left off without losing or

duplicating any emails. A Windows Azure Cloud Service web or worker role instance (a virtual

machine) is automatically replaced if it fails. And Windows Azure Storage queues and tables provide

a means to implement server-to-server communication that can survive a failure without losing work.

Scalable

An email service also must be able to handle spikes in workload, since sometimes you are sending

emails to small lists and sometimes to very large lists. In many hosting environments, you have to

purchase and maintain sufficient hardware to handle the spikes in workload, and you're paying for all

that capacity 100% of the time although you might only use it 5% of the time. With Windows Azure,

you pay only for the amount of computing power that you actually need for only as long as you

need it. To scale up for a large mailing, you just change a configuration setting to increase the

number of servers you have available to process the workload, and this can be done

programmatically. For example, you could configure the application so that if the number of work

items waiting in the queue exceeds a certain number, Windows Azure automatically spins up

additional instances of the worker role that processes those work items.

Back-end overview

The front-end stores email lists and messages to be sent to them in Windows Azure tables. When an

administrator schedules a message to be sent, a table row containing the scheduled date and other

data such as the subject line is added to the message table. A worker role periodically scans the

message table looking for messages that need to be sent (we'll call this worker role A).

When worker role A finds a message needing to be sent, it does the following tasks:

 Gets all the email addresses in the destination email list.

 Puts the information needed to send each email in the message table.

 Creates a queue work item for each email that needs to be sent.

A second worker role (worker role B) polls the queue for work items. When worker role B finds a

work item, it processes the item by sending the email, and then it deletes the work item from the

queue. The following diagram shows these relationships.

No emails are missed if worker role B goes down and has to be restarted, because a queue work item

for an email isn't deleted until after the email has been sent. The back-end also implements table

processing that prevents multiple emails from getting sent in case worker role A goes down and has

to be restarted. In that case, multiple queue work items might be generated for a given destination

email address. But for each destination email address, a row in the message table tracks whether the

email has been sent. Depending on the timing of the restart and email processing, worker A uses this

row to avoid creating a second queue work item, or worker B uses this row to avoid sending a

second email.

Worker role B also polls a subscription queue for work items put there by the Web API service

method for new subscriptions. When it finds one, it sends the confirmation email.

Windows Azure Tables

The Windows Azure Email Service application stores data in Windows Azure Storage tables. Windows

Azure tables are a NoSQL data store, not a relational database like Windows Azure SQL Database.

That makes them a good choice when efficiency and scalability are more important than data

normalization and relational integrity. For example, in this application, one worker role creates a row

every time a queue work item is created, and another one retrieves and updates a row every time an

email is sent, which might become a performance bottleneck if a relational database were used.

Additionally, Windows Azure tables are cheaper than Windows Azure SQL. For more information

about Windows Azure tables, see the resources that are listed at the end of the last tutorial in this

series.

The following sections describe the contents of the Windows Azure tables that are used by the

Windows Azure Email Service application. For a diagram that shows the tables and their

relationships, see the Windows Azure Email Service data diagram later in this page.

mailinglist table

The mailinglist table stores information about mailing lists and the subscribers to mailing lists.

(The Windows Azure table naming convention best practice is to use all lower-case letters.)

http://twitter.com/coolcsh

Administrators use web pages to create and edit mailing lists, and clients and subscribers use a set of

web pages and a service method to subscribe and unsubscribe.

In NoSQL tables, different rows can have different schemas, and this flexibility is commonly used to

make one table store data that would require multiple tables in a relational database. For example, to

store mailing list data in SQL Database you could use three tables: a mailinglist table that stores

information about the list, a subscriber table that stores information about subscribers, and a

mailinglistsubscriber table that associates mailing lists with subscribers and vice versa. In the

NoSQL table in this application, all of those functions are rolled into one table named

mailinglist.

In a Windows Azure table, every row has a partition key and a row key that uniquely identifies the

row. The partition key divides the table up logically into partitions. Within a partition, the row key

uniquely identifies a row. There are no secondary indexes; therefore to make sure that the

application will be scalable, it is important to design your tables so that you can always specify

partition key and row key values in the Where clause of queries.

The partition key for the mailinglist table is the name of the mailing list.

The row key for the mailinglist table can be one of two things: the constant "mailinglist" or the

email address of the subscriber. Rows that have row key "mailinglist" include information about the

mailing list. Rows that have the email address as the row key have information about the subscribers

to the list.

In other words, rows with row key "mailinglist" are equivalent to a mailinglist table in a relational

database. Rows with row key = email address are equivalent to a subscriber table and a

mailinglistsubscriber association table in a relational database.

Making one table serve multiple purposes in this way facilitates better performance. In a relational

database three tables would have to be read, and three sets of rows would have to be sorted and

matched up against each other, which takes time. Here just one table is read and its rows are

automatically returned in partition key and row key order.

The following grid shows row properties for the rows that contain mailing list information (row key =

"MailingList").

Property
Data

Type
Description

PartitionKey String ListName: A unique identifier for the mailing list, for example: contoso1.

The typical use for the table is to retrieve all information for a specific

mailing list, so using the list name is an efficient way to partition the

table.

RowKey String The constant "mailinglist".

Description String
Description of the mailing List, for example: "Contoso University History

Department announcements".

FromEmailAddress String
The "From" email address in the emails sent to this list, for example:

donotreply@contoso.edu.

The following grid shows row properties for the rows that contain subscriber information for the list

(row key = email address).

Property
Data

Type
Description

PartitionKey String
ListName: The name (unique identifier) of the mailing list, for example:

contoso1.

RowKey String
EmailAddress: The subscriber email address, for example:

student1@contoso.edu.

SubscriberGUID String

Generated when the email address is added to a list. Used in subscribe and

unsubscribe links so that it's difficult to subscribe or unsubscribe someone

else's email address.

Some queries for the Subscribe and Unsubscribe web pages specify only

the PartitionKey and this property. Querying a partition without using the

RowKey limits the scalability of the application, because queries will take

longer as mailing list sizes increase. An option for improving scalability is

to add lookup rows that have the SubscriberGUID in the RowKey property.

For example, for each email address one row could have

"email:student1@domain.com" in the RowKey and another row for the

same subscriber could have "guid:6f32b03b-90ed-41a9-b8ac-

c1310c67b66a" in the RowKey. This is simple to implement because atomic

batch transactions on rows within a partition are easy to code. We hope to

implement this in the next release of the sample application. For more

information, see Real World: Designing a Scalable Partitioning Strategy for

http://blogs.msdn.com/b/brian_swan/

Windows Azure Table Storage

Verified Boolean

When the row is initially created for a new subscriber, the value is false. It

changes to true only after the new subscriber clicks the Confirm hyperlink

in the welcome email or an administrator sets it to true. If a message is

sent to a list while the Verified value for one of its subscribers is false, no

email is sent to that subscriber.

The following list shows an example of what data in the table might look like.

Partition Key contoso1

Row Key mailinglist

Description Contoso University History Department announcements

FromEmailAddress donotreply@contoso.edu

Partition Key contoso1

Row Key student1@domain.com

SubscriberGUID 6f32b03b-90ed-41a9-b8ac-c1310c67b66a

Verified true

Partition Key contoso1

Row Key student2@domain.com

SubscriberGUID 01234567-90ed-41a9-b8ac-c1310c67b66a

Verified false

http://blogs.msdn.com/b/brian_swan/

Partition Key fabrikam1

Row Key mailinglist

Description Fabrikam Engineering job postings

FromEmailAddress donotreply@fabrikam.com

Partition Key fabrikam1

Row Key applicant1@domain.com

SubscriberGUID 76543210-90ed-41a9-b8ac-c1310c67b66a

Verified true

message table

The message table stores information about messages that are scheduled to be sent to a mailing

list. Administrators create and edit rows in this table using web pages, and the worker roles use it to

pass information about each email from worker role A to worker role B.

The partition key for the message table is the date the email is scheduled to be sent, in yyyy-mm-dd

format. This optimizes the table for the query that is executed most often against this table, which

selects rows that have ScheduledDate of today or earlier. However, it does creates a potential

performance bottleneck, because Windows Azure Storage tables have a maximum throughput of 500

entities per second for a partition. For each email to be sent, the application writes a message table

row, reads a row, and deletes a row. Therefore the shortest possible time for processing 1,000,000

emails scheduled for a single day is almost two hours, regardless of how many worker roles are

added in order to handle increased loads.

The row key for the message table can be one of two things: the constant "message" plus a unique

key for the message called the MessageRef, or the MessageRef value plus the email address of

the subscriber. Rows that have row key that begins with "message" include information about the

message, such as the mailing list to send it to and when it should be sent. Rows that have the

MessageRef and email address as the row key have all of the information needed to send an email

to that email address.

In relational database terms, rows with row key that begins with "message" are equivalent to a

message table. Rows with row key = MessageRef plus email address are equivalent to a join query

view that contains mailinglist, message, and subscriber information.

The following grid shows row properties for the message table rows that have information about

the message itself.

Property
Data

Type
Description

PartitionKey String The date the message is scheduled to be sent, in yyyy-mm-dd format.

RowKey String

The constant "message" concatenated with the MessageRef value. The

MessageRef is a unique value created by getting the Ticks value from

DateTime.Now when the row is created.

Note: High volume multi-threaded, multi-instance applications should be

prepared to handle duplicate RowKey exceptions when using Ticks. Ticks are

not guaranteed to be unique.

ScheduledDate Date
The date the message is scheduled to be sent. (Same as PartitionKey but

in Date format.)

SubjectLine String The subject line of the email.

ListName String The list that this message is to be sent to.

Status String

 "Pending" -- Worker role A has not yet started to create queue messages to

schedule emails.

 "Queuing" -- Worker role A has started to create queue messages to

schedule emails.

 "Processing" -- Worker role A has created queue work items for all emails in

the list, but not all emails have been sent yet.

 "Completed" -- Worker role B has finished processing all queue work items

(all emails have been sent). Completed rows are archived in the

messagearchive table, as explained later. We hope to make this property

an enum in the next release.

When worker role A creates a queue message for an email to be sent to a list, it creates an email row

in the message table. When worker role B sends the email, it moves the email row to the

messagearchive table and updates the EmailSent property to true. When all of the email rows

for a message in Processing status have been archived, worker role A sets the status to Completed

and moves the message row to the messagearchive table.

The following grid shows row properties for the email rows in the message table.

Property
Data

Type
Description

PartitionKey String The date the message is scheduled to be sent, in yyyy-mm-dd format.

RowKey String
The MessageRef value and the destination email address from the

subscriber row of the mailinglist table.

MessageRef Long Same as the MessageRef component of the RowKey.

ScheduledDate Date
The scheduled date from the message row of the message table.

(Same as PartitionKey but in Date format.)

SubjectLine String The email subject line from the message row of the message table.

ListName String The mailing list name from the mailinglist table.

From

EmailAddress
String

The "from" email address from the mailinglist row of the

mailinglist table.

EmailAddress String
The email address from the subscriber row of the mailinglist

table.

SubscriberGUID String
The subscriber GUID from the subscriber row of the mailinglist

table.

EmailSent Boolean
False means the email has not been sent yet; true means the email has

been sent.

There is redundant data in these rows, which you would typically avoid in a relational database. But

in this case you are trading some of the disadvantages of redundant data for the benefit of greater

processing efficiency and scalability. Because all of the data needed for an email is present in one of

these rows, worker role B only needs to read one row in order to send an email when it pulls a work

item off the queue.

You might wonder where the body of the email comes from. These rows don't have blob references

for the files that contain the body of the email, because that value is derived from the MessageRef

value. For example, if the MessageRef is 634852858215726983, the blobs are named

634852858215726983.htm and 634852858215726983.txt.

The following list shows an example of what data in the table might look like.

Partition Key 2012-10-15

Row Key message634852858215726983

MessageRef 634852858215726983

ScheduledDate 2012-10-15

SubjectLine New lecture series

ListName contoso1

Status Processing

Partition Key 2012-10-15

Row Key 634852858215726983student1@contoso.edu

MessageRef 634852858215726983

ScheduledDate 2012-10-15

SubjectLine New lecture series

ListName contoso1

FromEmailAddress donotreply@contoso.edu

EmailAddress student1@contoso.edu

SubscriberGUID 76543210-90ed-41a9-b8ac-c1310c67b66a

EmailSent true

Partition Key 2012-10-15

Row Key 634852858215726983student2@contoso.edu

MessageRef 634852858215726983

ScheduledDate 2012-10-15

SubjectLine New lecture series

ListName contoso1

FromEmailAddress donotreply@contoso.edu

EmailAddress student2@contoso.edu

SubscriberGUID 12345678-90ed-41a9-b8ac-c1310c679876

EmailSent true

Partition Key 2012-11-15

Row Key message124852858215726999

MessageRef 124852858215726999

ScheduledDate 2012-11-15

SubjectLine New job postings

ListName fabrikam

Status Pending

messagearchive table

One strategy for making sure that queries execute efficiently, especially if you have to search on

fields other than PartitionKey and RowKey, is to limit the size of the table. The query in worker

role A that checks to see if all emails have been sent for a message needs to find email rows in the

message table that have EmailSent = false. The EmailSent value is not in the PartitionKey or

RowKey, so this would not be an efficient query for a message with a large number of email rows.

Therefore, the application moves email rows to the messagearchive table as the emails are sent.

As a result, the query to check if all emails for a message have been sent only has to query the

message table on PartitionKey and RowKey because if it finds any email rows for a message at

all, that means there are unsent messages and the message can't be marked Complete.

The schema of rows in the messagearchive table is identical to that of the message table.

Depending on what you want to do with this archival data, you could limit its size and expense by

reducing the number of properties stored for each row, and by deleting rows older than a certain

age.

Windows Azure Queues

Windows Azure queues facilitate communication between tiers of this multi-tier application, and

between worker roles in the back-end tier. Queues are used to communicate between worker role A

and worker role B in order to make the application scalable. Worker role A could create a row in the

Message table for each email, and worker role B could scan the table for rows representing emails

that haven’t been sent, but you wouldn’t be able to add additional instances of worker role B in

order to divide up the work. The problem with using table rows to coordinate the work between

worker role A and worker role B is that you have no way of ensuring that only one worker role

instance will pick up any given table row for processing. Queues give you that assurance. When a

worker role instance pulls a work item off a queue, the queue service makes sure that no other

worker role instance can pull the same work item. This exclusive lease feature of Windows Azure

queues facilitates sharing a workload among multiple instances of a worker role.

Windows Azure also provides the Service Bus queue service. For more information about Windows

Azure Storage queues and Service Bus queues, see the resources that are listed at the end of the last

tutorial in this series.

The Windows Azure Email Service application uses two queues, named AzureMailQueue and

AzureMailSubscribeQueue.

AzureMailQueue

The AzureMailQueue queue coordinates the sending of emails to email lists. Worker role A places

a work item on the queue for each email to be sent, and worker role B pulls a work item from the

queue and sends the email.

A queue work item contains a comma-delimited string that consists of the scheduled date of the

message (partition key to the message table) and the MessageRef and EmailAddress values

(row key to the message table) values, plus a flag indicating whether the item is created after the

worker role went down and restarted, for example:

2012-10-15,634852858215726983,student1@contoso.edu,0

Worker role B uses these values to look up the row in the message table that contains all of the

information needed to send the email. If the restart flag indicates a restart, worker B makes sure the

email has not already been sent before sending it.

When traffic spikes, the Cloud Service can be reconfigured so that multiple instances of worker role B

are instantiated, and each of them can independently pull work items off the queue.

AzureMailSubscribeQueue

The AzureMailSubscribeQueue queue coordinates the sending of subscription confirmation

emails. In response to a service method call, the service method places a work item on the queue.

Worker role B pulls the work item from the queue and sends the subscription confirmation email.

A queue work item contains the subscriber GUID. This value uniquely identifies an email address and

the list to subscribe it to, which is all that worker role B needs to send a confirmation email. As

explained earlier, this requires a query on a field that is not in the PartitionKey or RowKey, which

is inefficient. To make the application more scalable, the mailinglist table would have to be

restructured to include the subscriber GUID in the RowKey.

Windows Azure Email Service data diagram

The following diagram shows the tables and queues and their relationships.

Windows Azure Blobs

Blobs are "binary large objects." The Windows Azure Blob service provides a means for uploading

and storing files in the cloud. For more information about Windows Azure blobs, see the resources

that are listed at the end of the last tutorial in this series.

Windows Azure Mail Service administrators put the body of an email in HTML form in an .htm file

and in plain text in a .txt file. When they schedule an email, they upload these files in the Create

Message web page, and the ASP.NET MVC controller for the page stores the uploaded file in a

Windows Azure blob.

Blobs are stored in blob containers, much like files are stored in folders. The Windows Azure Mail

Service application uses a single blob container, named azuremailblobcontainer. The name of the

blobs in the container is derived by concatenating the MessageRef value with the file extension, for

example: 634852858215726983.htm and 634852858215726983.txt.

Since both HTML and plain text messages are essentially strings, we could have designed the

application to store the email message body in string properties in the Message table instead of in

blobs. However, there is a 64K limit on the size of a property in a table row, so using a blob avoids

that limitation on email body size. (64K is the maximum total size of the property; after allowing for

encoding overhead, the maximum string size you can store in a property is actually closer to 48k.)

Windows Azure Cloud Service versus Windows Azure Web

Site

When you download the Windows Azure Email Service, it is configured so that the front-end and

back-end all run in a single Windows Azure Cloud Service.

An alternative architecture is to run the front-end in a Windows Azure Web Site.

Keeping all components in a cloud service simplifies configuration and deployment. If you create the

application with the ASP.NET MVC front end in a Windows Azure Web Site, you will have two

deployments, one to the Windows Azure Web Site and one to the Windows Azure Cloud Service. In

addition, Windows Azure Cloud Service web roles provide the following features that are unavailable

in Windows Azure Web Sites:

 Support for custom and wildcard certificates.

 Full control over how IIS is configured. Many IIS features cannot be enabled on Windows

Azure Web sites. With Windows Azure web roles, you can define a startup command that runs the

AppCmd program to modify IIS settings that cannot be configured in your Web.config file. For more

information, see How to Configure IIS Components in Windows Azure and How to Block Specific IP

Addresses from Accessing a Web Role.

 Support for automatically scaling your web application by using the Autoscaling Application

Block.

 The ability to run elevated startup scripts to install applications, modify registry settings,

install performance counters, etc.

http://www.iis.net/learn/get-started/getting-started-with-iis/getting-started-with-appcmdexe
http://msdn.microsoft.com/en-us/library/windowsazure/ee517253.aspx
http://www.windowsazure.com/en-us/develop/net/how-to-guides/autoscaling/
http://www.windowsazure.com/en-us/develop/net/how-to-guides/autoscaling/
http://blogs.msdn.com/b/brunoterkaly/archive/2012/11/08/essential-knowledge-for-windows-azure-storage.aspx
http://blogs.msdn.com/b/brunoterkaly/archive/2012/11/08/essential-knowledge-for-windows-azure-storage.aspx

 Network isolation for use with Windows Azure Connect and Windows Azure Virtual Network.

 Remote desktop access for debugging and advanced diagnostics.

 Rolling upgrades with Virtual IP Swap. This feature swaps the content of your staging and

production deployments.

The alternative architecture might offer some cost benefits, because a Windows Azure Web Site

might be less expensive for similar capacity compared to a web role running in a Cloud Service. Later

tutorials in the series explain implementation details that differ between the two architectures.

For more information about how to choose between Windows Azure Web Sites and Windows Azure

Cloud Services, see Windows Azure Execution Models.

Cost

This section provides a brief overview of costs for running the sample application in Windows Azure,

given rates in effect when the tutorial was published in December of 2012. Before making any

business decisions based on costs, be sure to check current rates on the following web pages:

 Windows Azure Pricing Calculator

 SendGrid Windows Azure

Costs are affected by the number of web and worker role instances you decide to maintain. In order

to qualify for the Azure Cloud Service 99.95% Service Level Agreement (SLA), you must deploy two or

more instances of each role. One of the reasons you must run at least two role instances is because

the virtual machines that run your application are restarted approximately twice per month for

operating system upgrades. (For more information on OS Updates, see Role Instance Restarts Due to

OS Upgrades.)

The work performed by the two worker roles in this sample is not time critical and so does not need

the 99.5% SLA. Therefore, running a single instance of each worker role is feasible so long as one

instance can keep up with the work load. The web role instance is time sensitive, that is, users expect

the web site to not have any down time, so a production application should have at least two

instances of the web role.

The following table shows the costs for the default architecture for the Windows Azure Email Service

sample application assuming a minimal workload. The costs shown are based on using an extra small

(shared) virtual machine size. The default virtual machine size when you create a Visual Studio cloud

project is small, which is about six times more expensive than the extra small size.

Component or
Rate

Cost per

http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx
http://www.windowsazure.com/en-us/develop/net/how-to-guides/queue-service/
http://www.windowsazure.com/en-us/develop/net/how-to-guides/blob-storage/
http://msdn.microsoft.com/en-us/library/windowsazure/hh508997.aspx
http://blogs.msdn.com/b/kwill/archive/2012/09/19/role-instance-restarts-due-to-os-upgrades.aspx
http://sendgrid.com/azure.html/
https://www.windowsazure.com/en-us/support/legal/sla/
http://blogs.msdn.com/b/kwill/archive/2012/09/19/role-instance-restarts-due-to-os-upgrades.aspx
http://blogs.msdn.com/b/kwill/archive/2012/09/19/role-instance-restarts-due-to-os-upgrades.aspx

Service month

Web role 2 instances at $.02/hour for extra small instances $29.00

Worker role A

(schedules emails

to be sent)

1 instance at $.02/hour for an extra small instance $14.50

Worker role B

(sends emails)
1 instance at $.02/hour for an extra small instance $14.50

Windows Azure

storage

transactions

1 million transactions per month at $0.10/million (Each query counts as

a transaction; worker role A continuously queries tables for messages

that need to be sent. The application is also configured to write

diagnostic data to Windows Azure Storage, and each time it does that

is a transaction.)

$0.10

Windows Azure

locally redundant

storage

$2.33 for 25 GB (Includes storage for application tables and diagnostic

data.)
$2.33

Bandwidth 5 GB egress is free Free

SendGrid Windows Azure customers can send 25,000 emails per month for free Free

Total $60.43

As you can see, role instances are a major component of the overall cost. Role instances incur a cost

even if they are stopped; you must delete a role instance to not incur any charges. One cost saving

approach would be to move all the code from worker role A and worker role B into one worker role.

For these tutorials we deliberately chose to implement two worker instances in order to simplify scale

out. The work that worker role B does is coordinated by the Windows Azure Queue service, which

means that you can scale out worker role B simply by increasing the number of role instances.

(Worker role B is the limiting factor for high load conditions.) The work performed by worker role A is

not coordinated by queues, therefore you cannot run multiple instances of worker role A. If the two

worker roles were combined and you wanted to enable scale out, you would need to implement a

mechanism for ensuring that worker role A tasks run in only one instance. (One such mechanism is

provided by CloudFx. See the WorkerRole.cs sample.)

http://www.windowsazure.com/en-us/manage/windows/fundamentals/compute/
http://msdn.microsoft.com/en-us/library/hh680945(v=PandP.50).aspx?fileId=57087&pathId=528472169

It is also possible to move all of the code from the two worker roles into the web role so that

everything runs in the web role. However, performing background tasks in ASP.NET is not supported

or considered robust, and this architecture would complicate scalability. For more information see

The Dangers of Implementing Recurring Background Tasks In ASP.NET. See also How to Combine a

Worker and Web Role in Windows Azure and Combining Multiple Azure Worker Roles into an Azure

Web Role.

Another architecture alternative that would reduce cost is to use the Autoscaling Application Block to

automatically deploy worker roles only during scheduled periods, and delete them when work is

completed. For more information on autoscaling, see the links at the end of the last tutorial in this

series.

Windows Azure in the future might provide a notification mechanism for scheduled reboots, which

would allow you to only spin up an extra web role instance for the reboot time window. You wouldn't

qualify for the 99.95 SLA, but you could reduce your costs by almost half and ensure your web

application remains available during the reboot interval.

Authentication and Authorization

In a production application you would implement an authentication and authorization mechanism

like the ASP.NET membership system for the ASP.NET MVC web front-end, including the ASP.NET

Web API service method. There are also other options, such as using a shared secret, for securing the

Web API service method. Authentication and authorization functionality has been omitted from the

sample application to keep it simple to set up and deploy. (The second tutorial in the series shows

how to implement IP restrictions so that unauthorized persons can't use the application when you

deploy it to the cloud.)

For more information about how to implement authentication and authorization in an ASP.NET MVC

web project, see the following resources:

 Authentication and Authorization in ASP.NET Web API

 Using Forms Authentication

 Music Store Part 7: Membership and Authorization

Note: We planned to include a mechanism for securing the Web API service method by using a

shared secret, but that was not completed in time for the initial release. Therefore the third tutorial

does not show how to build the Web API controller for the subscription process. We hope to include

instructions for implementing a secure subscription process in the next version of this tutorial. Until

then, you can test the application by using the administrator web pages to subscribe email addresses

to lists.

http://blogs.msdn.com/b/daniwang/
http://blogs.msdn.com/b/scothu/
http://blogs.msdn.com/b/scothu/
http://msdn.microsoft.com/en-us/library/windowsazure/ee336279.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee336279.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433059.aspx
http://blogs.msdn.com/b/kwill/archive/2012/09/19/role-instance-restarts-due-to-os-upgrades.aspx
http://msdn.microsoft.com/en-us/library/ff398049(VS.98).aspx
http://www.asp.net/mvc/tutorials/mvc-music-store/mvc-music-store-part-7

Next steps

In the next tutorial, you'll download the sample project, configure your development environment,

configure the project for your environment, and test the project locally and in the cloud. In the

following tutorials you'll see how to build the project from scratch.

For links to additional resources for working with Windows Azure Storage tables, queues, and blobs,

see the end of the last tutorial in this series.

Configuring and Deploying the Windows
Azure Email Service application - 2 of 5
This is the second tutorial in a series of five that show how to build and deploy the Windows Azure

Email Service sample application. For information about the application and the tutorial series, see

the first tutorial in the series.

This tutorial shows how to configure your computer for Azure development and how to deploy the

Windows Azure Email Service application to a Windows Azure Cloud Service by using any of the

following products:

 Visual Studio 2012

 Visual Studio 2012 Express for Web

 Visual Studio 2010

 Visual Web Developer Express 2010.

You can open a Windows Azure account for free, and if you don't already have Visual Studio 2012,

the SDK automatically installs Visual Studio 2012 for Web Express. So you can start developing for

Windows Azure entirely for free.

In this tutorial you'll learn:

 How to set up your computer for Windows Azure development by installing the Windows

Azure SDK.

 How to configure and test the Windows Azure Email Service application on your local

machine.

 How to publish the application to Windows Azure.

 How to view and edit Windows Azure tables, queues, and blobs by using Visual Studio or

Azure Storage Explorer.

 How to configure tracing and view trace data.

 How to scale the application by increasing the number of worker role instances.

Note: To complete this tutorial, you need a Windows Azure account that has the Windows Azure

Web Sites feature enabled. You can create a free trial account and enable preview features in just a

couple of minutes. For details, see Create a Windows Azure account and enable preview features.

Set up the development environment

http://www.windowsazure.com/en-us/develop/net/tutorials/create-a-windows-azure-account/

To start, set up your development environment by installing the Windows Azure SDK for the .NET

Framework.

1. To install the Windows Azure SDK for .NET, click the link that corresponds to the version of Visual

Studio you are using. If you don't have Visual Studio installed yet, use the Visual Studio 2012 link.

Windows Azure SDK for Visual Studio 2010

Windows Azure SDK for Visual Studio 2012

If you don't have Visual Studio installed yet, it will be installed by the link.

2. Warning: Depending on how many of the SDK dependencies you already have on your machine,

installing the SDK could take a long time, from several minutes to a half hour or more.

3. When you are prompted to run or save vwdorvs11azurepack.exe, click Run.

4. In the Web Platform Installer window, click Install and proceed with the installation.

When the installation is complete, you have everything necessary to start developing.

Set up a free Windows Azure account

The next step is to create a Windows Azure account.

http://www.windowsazure.com/en-us/develop/net/how-to-guides/autoscaling/?LinkID=254269&clcid=0x409
http://msdn.microsoft.com/en-us/library/windowsazure/jj154098.aspx?LinkId=254364&clcid=0x409

1. Browse to Windows Azure.

2. Click the Free trial link and follow the instructions.

Create a Windows Azure Storage account

When you run the sample application in Visual Studio, you can access tables, queues, and blobs in

Windows Azure development storage or in a Windows Azure Storage account in the cloud.

Development storage uses a SQL Server Express LocalDB database to emulate the way Windows

Azure Storage works in the cloud. In this tutorial you'll start by using development storage, and then

you'll learn how to configure the application to use a cloud storage account when it runs in Visual

Studio. In this section of the tutorial you create the Windows Azure Storage account that you'll

configure Visual Studio to use later in the tutorial.

1. In your browser, open the Windows Azure Management Portal.

2. In the Windows Azure Management Portal, click Storage, and then click New.

http://msdn.microsoft.com/en-us/library/windowsazure/gg432997.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj156007.aspx
http://www.31a2ba2a-b718-11dc-8314-0800200c9a66.com/2012/02/combining-multiple-azure-worker-roles.html

3. Click Quick Create.

4. In the URL input box, enter a URL prefix.

This prefix plus the text you see under the box will be the unique URL to your storage account. If the

prefix you enter has already been used by someone else, you'll see "The storage name is already in

use" above the text box and you'll have to choose a different prefix.

5. Set the region to the area where you want to deploy the application.

6. Uncheck the Enable Geo-Replication check box.

When geo-replication is enabled for a storage account, the stored content is replicated to a

secondary location to enable failover to that location in case of a major disaster in the primary

location. Geo-replication can incur additional costs. You'll see a warning when you disable geo-

replication because you pay a data transfer charge if you start with it disabled and then decide to

enable it later. You don’t want to disable replication, upload a huge amount of data, and then enable

replication. For test and development accounts, you generally don't want to pay for geo-replication.

For more information, see How To Manage Storage Accounts.

7. Click Create Storage Account.

In the image below, a storage account is created with the URL aestest.core.windows.net.

http://www.windowsazure.com/en-us/manage/services/storage/how-to-manage-a-storage-account/

This step can take several minutes to complete. While you are waiting, you can repeat these steps

and create a production storage account. It's often convenient to have a test storage account to use

for local development, another test storage account for testing in Windows Azure, and a production

storage account.

8. Click the test account that you created in the previous step, and then click the Manage Keys icon.

You'll need the Primary Access Key or Secondary Access Key access key throughout this tutorial.

You can use either one of these keys in a storage connection string.

There are two keys so that you can periodically change the key that you use without causing an

interruption in service to a live application. You regenerate the key that you're not using, then you

can change the connection string in your application to use the regenerated key. If there were only

one key, the application would lose connectivity to the storage account when you regenerated the

key. The keys that are shown in the image are no longer valid because they were regenerated after

the image was captured.

9. Copy one of these keys into your clipboard for use in the next section.

Install Azure Storage Explorer

Azure Storage Explorer is a tool that you can use to query and update Windows Azure storage

tables, queues, and blobs. You will use it throughout these tutorials to verify that data is updated

correctly and to create test data.

1. Install Azure Storage Explorer.

2. Launch Azure Storage Explorer and click Add Account.

3. Enter the name of the test storage account and paste the key that you copied previously.

4. Click Add Storage Account.

http://code.msdn.microsoft.com/windowsazure/CloudFx-Samples-60c3a852/sourcecode

Other tools are also available that work with Windows Azure Storage, for example:

 ClumsyLeaf Software TableXplorer

 Cerebrata Cloud Storage Studio

Create a Cloud Service

1. In your browser, open the Windows Azure Management Portal.

2. Click Cloud Services then click the New icon.

http://www.windowsazure.com/en-us/develop/net/tutorials/multi-tier-web-site/3-web-role/
https://sendgrid.com/credentials?t1=0&t2=6
http://www.asp.net/web-api/overview/security/authentication-and-authorization/authentication-and-authorization-in-aspnet-web-api

3. Click Quick Create.

4. In the URL input box, enter a URL prefix.

Like the storage URL, this URL has to be unique, and you will get an error message if the prefix you

choose is already in use by someone else.

5. Set the region to the area where you want to deploy the application.

You should create the cloud service in the same region that you created the storage account. When

the cloud service and storage account are in different datacenters (different regions), latency will

increase and you will be charged for bandwidth outside the data center. Bandwidth within a data

center is free.

Azure affinity groups provide a mechanism to minimize the distance between resources in a data

center, which can reduce latency. This tutorial does not use affinity groups. For more information, see

How to Create an Affinity Group in Windows Azure.

6. Click Create Cloud Service. In the following image, a cloud service is created with the URL

aescloud.cloudapp.net.

You can move on to the next step without waiting for this step to complete.

Download and run the completed solution

1. Download and unzip the completed solution.

http://msdn.microsoft.com/en-us/library/windowsazure/hh531560.aspx
http://go.microsoft.com/fwlink/

2. Start Visual Studio with elevated permissions. The compute emulator that enables Visual Studio

to run a Windows Azure project locally requires elevated permissions.

3. To keep the download size small, the completed solution is provided without the assemblies or

other content for the installed NuGet packages. When you open and build the solution, NuGet

automatically gets all of the package content. In order for this to work, you have to enable the

NuGet package restore option in Visual Studio. If you haven't already enabled NuGet package

restore, do the following steps.

1. From the Tools menu, click Library Package Manager, and then click Manage NuGet

Packages for Solution.

2. In the lower left corner of the Manage NuGet Packages dialog, click Settings.

3. In the left pane of the Options dialog box, select General under Package Manager.

4. Select Allow NuGet to download missing packages during build.

4. From the File menu choose Open Project, navigate to where you downloaded the solution, and

then open the solution file.

5. In Solution Explorer, make sure that AzureEmailService is selected as the startup project.

6. Press CTRL+F5 to run the application. The application home page appears in your browser.

7. Click Create New.

8. Enter some test data, and then click Create.

9. Create a couple more mailing list entries.

10. Click Subscribers, and then add some subscribers. Set Verified to true.

11. Prepare to add messages by creating a .txt file that contains the body of an email that you want

to send. Then create an .htm file that contains the same text but with some HTML (for example,

make one of the words in the message bold or italicized). You'll use these files in the next step.

12. Click Messages, and then add some messages. Select the files that you created in the previous

step. Don't change the scheduled date which defaults to one week in the future. The application

can't send messages until you configure SendGrid.

The data that you have been entering and viewing is being stored in Windows Azure development

storage. Development storage uses a SQL Server Express LocalDB database to emulate the way

Windows Azure Storage works in the cloud. The application is using development storage because

that is what the project was configured to use when you downloaded it. This setting is stored in

.cscfg files in the AzureEmailService project. The ServiceConfiguration.Local.cscfg file determines

what is used when you run the application locally in Visual Studio, and the

ServiceConfiguration.Cloud.cscfg file determines what is used when you deploy the application to the

cloud. Later you'll see how to configure the application to use the Windows Azure Storage account

that you created earlier.

Viewing developer storage in Visual Studio

The Windows Azure Storage browser in Server Explorer (Database Explorer in Express editions of

Visual Studio) provides a convenient read-only view of Windows Azure Storage resources.

1. From the View menu in Visual Studio, choose Server Explorer (or Database Explorer).

2. Expand the (Development) node underneath the Windows Azure Storage node.

3. Expand Tables to see the tables that you created in the previous steps.

4. Double click the MailingList table.

Notice how the window shows the different schemas in the table. MailingList entities have

Description and FromEmailAddress property, and Subscriber entities have the

Verified property (plus SubscriberGUID which isn't shown because the image isn't wide

enough). The table has columns for all of the properties, and if a given table row is for an entity

that doesn't have a given property, that cell is blank.

You can't use the storage browser in Visual Studio to update or delete Windows Azure Storage

resources. You can use Azure Storage Explorer to update or delete development storage resources.

(To configure Azure Storage Explorer to use development storage, click the Developer Storage

check box in the Add Storage Account dialog box.)

Configure the application to use your Windows Azure

Storage account

Next, you'll see how to configure the application so that it uses your Windows Azure Storage account

when it runs in Visual Studio, instead of development storage. There is a newer way to do this in

Visual Studio that was introduced in version 1.8 of the SDK, and an older way that involves copying

and pasting settings from the Windows Azure management portal. The following steps show the

newer way to configure storage account settings.

1. In Solution Explorer, right-click MvcWebRole under Roles in the AzureEmailService project,

and click Properties.

2. Click the Settings tab. In the Service Configuration drop down box, select Local.

http://blogs.msdn.com/b/windowsazurestorage/archive/2010/11/06/how-to-get-most-out-of-windows-azure-tables.aspx

3. Select the StorageConnectionString entry, and you'll see an ellipsis (...) button at the right end

of the line. Click the ellipsis button to open the Storage Account Connection String dialog box.

4. In the Create Storage Connection String dialog, click Your subscription, and then click

Download Publish Settings.

Visual Studio launches a new instance of your default browser with the URL for the Windows

Azure portal download publish settings page. If you are not logged into the portal, you will be

prompted to log in. Once you are logged in, your browser will prompt you to save the publish

settings. Make a note of where you save the settings.

5. In the Create Storage Connection String dialog, click Import, and then navigate to the publish

settings file that you saved in the previous step.

6. Select the subscription and storage account that you wish to use, and then click OK.

7. Follow the same procedure that you used for the StorageConnectionString connection

string to set the Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString

connection string.

You don't have to download the publish settings file again. When you click the ellipsis for the

Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString connection

string, you'll find that the Create Storage Connection String dialog box remembers your

subscription information. When you click the Your subscription radio button, all you have to do

is select the same Subscription and Account Name that you selected earlier, and then click OK.

8. Follow the same procedure that you used for the two connection strings for the MvcWebRole

role to set the connection strings for the WorkerRoleA role and the workerRoleB role.

The manual method for configuring storage account credentials

The following procedure shows what the manual way to configure storage account settings. If you

used the automatic method that was shown in the previous procedure, you can skip this procedure,

or you can read through it to see what the automatic method did for you behind the scenes.

1. In your browser, open the Windows Azure Management Portal.

2. Click the Storage Tab, and then click the test account that you created in the previous step, and

then click the Manage Keys icon.

http://www.windowsazure.com/en-us/pricing/calculator/

3. Copy the primary or secondary access key.

4. In Solution Explorer, right-click MvcWebRole under Roles in the AzureEmailService project,

and click Properties.

5. Click the Settings tab. In the Service Configuration drop down box, select Local.

6. Select the StorageConnectionString entry, and you'll see an ellipsis (...) button at the right end

of the line. Click the ellipsis button to open the Storage Account Connection String dialog box.

7. In the Create Storage Connection String dialog, select the Manually entered credentials radio

button. Enter the name of your storage account and the primary or secondary access key you

copied from the portal.

8. Click OK.

You can use the same procedure to configure settings for the worker roles, or you can propagate the

web role settings to the worker roles by editing the configuration file. The following steps explain

how to edit the configuration file. (This is still part of the manual method for setting storage

credentials, which you don't have to do if you already propagated the settings to the worker roles by

using the automatic method.)

1. Open the ServiceConfiguration.Local.cscfg file that is located in the AzureEmailService

project.

In the Role element for MvcWebRole you'll see a ConfigurationSettings element that has

the settings that you updated by using the Visual Studio UI.

<Role name="MvcWebRole">

 <Instances count="1" />

 <ConfigurationSettings>

 <Setting

name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString"

value="DefaultEndpointsProtocol=https;AccountName=[name];AccountKey=[Ke

y]" />

 <Setting name="StorageConnectionString"

value="DefaultEndpointsProtocol=https;AccountName=aestest;AccountKey=[K

ey]" />

 </ConfigurationSettings>

 </Role>

In the Role elements for the two worker roles you'll see the same two connection strings.

2. Delete the Setting elements for these two connection strings from the WorkerRoleA and

WorkerRoleB elements, and then copy and paste in their place the Setting elements from the

MvcWebRole element.

For more information on the configuration files, see Configuring a Windows Azure Project

Test the application configured to use your storage account

1. Press CTRL+F5 to run the application. Enter some data by clicking the Mailing Lists, Subscribers,

and Messages links as you did previously in this tutorial.

You can now use either Azure Storage Explorer or Server Explorer to view the data that the

application entered in the Windows Azure tables.

Use Azure Storage Explorer to view data entered into your storage account

1. Open Azure Storage Explorer.

http://haacked.com/archive/2011/10/16/the-dangers-of-implementing-recurring-background-tasks-in-asp-net.aspx

2. Select the storage account that you entered credentials for earlier.

3. Under Storage Type, select Tables.

4. Select the MailingList table, and then click Query to see the data that you entered on the

Mailing List and Subscriber pages of the application.

Use Server Explorer to view data entered into your storage account

1. In Server Explorer (or Database Explorer), right-click Windows Azure Storage and click Add

New Storage Account.

2. Follow the same procedure you used earlier to set up your storage account credentials.

3. Expand the new node under Windows Azure Storage to view data stored in your Windows

Azure storage account.

Optional steps to disable Azure Storage Emulator automatic startup

If you are not using the storage emulator, you can decrease project start-up time and use less local

resources by disabling automatic startup for the Windows Azure storage emulator.

1. In Solution Explorer, right click the AzureEmailService cloud project and select Properties.

2. Select the Development tab.

3. Set Start Windows Azure storage emulator to False.

Note: You should only set this too false if you are not using the storage emulator.

This window also provides a way to change the Service Configuration file that is used when you

run the application locally from Local to Cloud (from ServiceConfiguration.Local.cscfg to

ServiceConfiguration.Cloud.cscfg).

4. In the Windows system tray, right click on the compute emulator icon and click Shutdown

Storage Emulator.

Configure the application to use SendGrid

The sample application uses SendGrid to send emails. In order to send emails by using SendGrid, you

have to set up a SendGrid account, and then you have to update a configuration file with your

SendGrid credentials.

Note: If you don't want to use SendGrid, or can't use SendGrid, you can easily substitute your own

email service. The code that uses SendGrid is isolated in two methods in worker role B. Tutorial 5

explains what you have to change in order to implement a different method of sending emails. If you

want to do that, you can skip this procedure and continue with this tutorial; everything else in the

application will work (web pages, email scheduling, etc.) except for the actual sending of emails.

Create a SendGrid account

1. Follow the instructions in How to Send Email Using SendGrid with Windows Azure to sign up for

a free account.

Update SendGrid credentials in worker role properties

Earlier in the tutorial when you set the storage account credentials for the web role and the two

worker roles, you may have noticed that worker role B had three settings that were not in the web

role or worker role A. You can use that same UI now to configure those three settings (select Cloud

in the Service Configuration drop-down list).

The following steps show an alternative method for setting the properties, by editing the

configuration file.

1. Edit the ServiceConfiguration.Cloud.cscfg file in the AzureEmailService project and enter the

SendGrid user name and password values that you obtained in the previous step into the

WorkerRoleB element that has these settings. The following code shows the WorkerRoleB

element.

2. There is also an AzureMailServiceURL setting. Set this value to the URL that you selected when

you created your Windows Azure Cloud Service, for example: "http://aescloud.cloudapp.net".

By updating the cloud configuration file, you are configuring settings that will be used when the

application runs in the cloud. If you wanted the application to send emails while it runs locally, you

would also have to update the ServiceConfiguration.Local.cscfg file.

http://www.windowsazure.com/en-us/develop/net/how-to-guides/sendgrid-email-service/
http://aescloud.cloudapp.net

Deploy the Application to Windows Azure

To deploy the application you can create a package in Visual Studio and upload it by using the

Windows Azure Management Portal, or you can publish directly from Visual Studio. In this tutorial

you'll use the publish method.

You'll publish the application to the staging environment first, and later you'll promote the staging

deployment to production.

Implement IP restrictions

When you deploy to staging, the application will be publicly accessible to anyone who knows the

URL. Therefore, your first step is to implement IP restrictions to ensure that no unauthorized persons

can use it. In a production application you would implement an authentication and authorization

mechanism like the ASP.NET membership system, but these functions have been omitted from the

sample application to keep it simple to set up, deploy, and test.

1. Open the Web.Release.config file that is located in the root folder of the MvcWebRole project,

and replace the ipAddress attribute value 127.0.0.1 with your IP address. (To see the

Web.Release.config file in Solution Explorer you have to expand the Web.config file.)

You can find your IP address by searching for "Find my IP" with Bing or another search engine.

When the application is published, the transformations specified in the Web.release.config file are

applied, and the IP restriction elements are updated in the web.config file that is deployed to the

cloud. You can view the transformed web.config file in the

AzureEmailService\MvcWebRole\obj\Release\TransformWebConfig\transformed folder after the

package is created.

For information about what you have to do to implement IP restrictions, see the following resource:

How to Block Specific IP Addresses from Accessing a Web Role.

Configure the application to use your storage account when it runs in the

cloud

Earlier in the tutorial when you set the storage account credentials for the web role and the two

worker roles, you set the credentials to use when you run the application locally. Now you need to

set the storage account credentials to use when you run the application in the cloud.

For this test run you'll use the same credentials for the cloud that you have been using for running

locally. If you were deploying a production application, you would typically use a different account

http://code.msdn.microsoft.com/Windows-Azure-Multi-Tier-eadceb36?q=find+my+IP&qs=n&form=QBLH&pq=find+my+ip&sc=8-10&sp=-1&sk=
http://manage.windowsazure.com/

for production than you use for testing. Also a best practice for production would be to use a

different account for the diagnostics connectionString than the storage connection string, but for

this test run you'll use the same account.

You can use the same UI to configure the connection strings (just make sure that you select Cloud in

the Service Configuration drop-down list). As an alternative, you can edit the configuration file, as

explained in the following steps.

1. Open the ServiceConfiguration.Local.cscfg file in the AzureEmailService project, and copy the

Setting elements for StorageConnectionString and

Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString.

2. Open the ServiceConfiguration.Cloud.cscfg file in the AzureEmailService project, and paste the

copied elements into the Configuration Settings element for MvcWebRole,

WorkerRoleA, and WorkerRoleB, replacing the Setting elements that are already there.

3. Verify that the web role and two worker role elements all define the same connection strings.

Publish the application

1. If it is not already open, launch Visual Studio as administrator and open the AzureEmailService

solution.

2. Right-click the AzureEmailService cloud project and select Publish.

The Publish Windows Azure Application dialog appears.

3. If you used the automatic method for importing storage account credentials earlier, your

Windows Azure subscription is in the drop-down list and you can select it and then click Next.

Otherwise, click Sign in to download credentials and follow the instructions in Configure the

application for Windows Azure Storage to download and import your publish settings.

4. In the Common Settings tab, verify the setting in the Cloud Service drop-down list.

5. In the Environment drop-down list, change Production to Staging.

http://www.31a2ba2a-b718-11dc-8314-0800200c9a66.com/2010/12/how-to-combine-worker-and-web-role-in.html#conf4azureStorage
http://www.31a2ba2a-b718-11dc-8314-0800200c9a66.com/2010/12/how-to-combine-worker-and-web-role-in.html#conf4azureStorage

6. Keep the default Release setting for Build configuration and Cloud for Service configuration.

The default settings in the Advanced tab are fine for this tutorial. On the Advanced tab are a

couple of settings that are useful for development and testing. For more information on the

advanced tab, see Publish Windows Azure Application Wizard.

7. Click Next.

8. In the Summary step of the wizard, click the save icon (the diskette icon shown to the right of

the Target profile drop-down list) to save the publish settings.

The next time you publish the application, the saved settings will be used and you won't need to

go through the publish wizard again.

9. Review the settings, then click Publish.

http://azurestorageexplorer.codeplex.com/

The Windows Azure Activity Log window is opened in Visual Studio.

10. Click the right arrow icon to expand the deployment details.

The deployment can take about 5 minutes or more to complete.

11. When the deployment status is complete, click the WebSite URL to launch the application.

12. Enter some data in the Mailing List, Subscriber, and Message web pages to test the application.

Note: Delete the application after you have finished testing it to avoid paying for resources that

you aren't using. If you are using a Windows Azure 90 day free trial account, the three deployed

roles will use up your monthly limit in a couple of weeks. To delete a deployment by using the

Windows Azure management portal, select the cloud service and click DELETE at the bottom of

the page, and then select the production or staging deployment.

http://msdn.microsoft.com/library/windowsazure/hh535756.aspx

13. In the Windows Azure Activity Log in Visual studio, select Open in Server Explorer.

Under Windows Azure Compute in Server Explorer you can monitor the deployment. If you

selected Enable Remote Desktop for all roles in the Publish Windows Azure Application

wizard, you can right click on a role instance and select Connect using Remote Desktop.

Promote the Application from Staging to Production

1. In the Windows Azure Management Portal, click the Cloud Services icon in the left pane, and

then select your cloud service.

2. Click Swap.

3. Click Yes to complete the VIP (virtual IP) swap. This step can take several minutes to complete.

http://manage.windowsazure.com/

4. Click the Cloud Services icon in the left pane, and then select your cloud service.

5. Scroll down the Dashboard tab for the Production deployment to the quick glance section on

the lower right part of the page. Notice that the Site URL has changed from a GUID prefix to the

name of your cloud service.

6. Click link under Site URL or copy and paste it to a browser to test the application in production.

If you haven't changed the storage account settings, the data you entered while testing the

staged version of the application is shown when you run the application in the cloud.

Configure and View Tracing Data

Tracing is an invaluable tool for debugging a cloud application. In this section of the tutorial you'll

see how to view tracing data.

1. Verify that the diagnostics connection string is configured to use your Windows Azure Storage

account and not development storage.

If you followed the instructions earlier in the tutorial, they will be the same. You can verify that

they are the same either using the Visual Studio UI (the Settings tab in Properties for the roles),

or by looking at the ServiceConfiguration.*.cscfg files.

Note: A best practice is to use a different storage account for tracing data than the storage

account used for production data, but for simplicity in this tutorial you have been configuring the

same account for tracing.

2. In Visual Studio, open WorkerRoleA.cs in the WorkerRoleA project, search for

ConfigureDiagnostics, and examine the ConfigureDiagnostics method.

private void ConfigureDiagnostics()

{

 DiagnosticMonitorConfiguration config =

DiagnosticMonitor.GetDefaultInitialConfiguration();

 config.ConfigurationChangePollInterval = TimeSpan.FromMinutes(1d);

 config.Logs.BufferQuotaInMB = 500;

 config.Logs.ScheduledTransferLogLevelFilter = LogLevel.Verbose;

 config.Logs.ScheduledTransferPeriod = TimeSpan.FromMinutes(1d);

DiagnosticMonitor.Start(

 "Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString",

 config);

}

In this code, the DiagnosticMonitor is configured to store up to 500 MB of trace information

(after 500 MB, the oldest data is overwritten) and to store all trace messages (LogLevel.Verbose).

The ScheduledTransferPeriod transfers the trace data to storage every minute. You must

set the ScheduledTransferPeriod to save trace data.

The ConfigureDiagnostics method in each of the worker and web roles configures the trace

listener to record data when you call the Trace API. For more information, see Using Trace in

Windows Azure Cloud Applications

3. In Server Explorer, select WADLogsTable for the storage account that you added previously.

You can enter a WCF Data Services filter to limit the entities displayed. In the following image,

only warning and error messages are displayed.

http://manage.windowsazure.com/
http://manage.windowsazure.com/
http://nuget.org/packages/Microsoft.Experience.CloudFx

Add another worker role instance to handle increased load

There are two approaches to scaling compute resources in Azure roles, by specifying the virtual

machine size and/or by specifying the instance count of running virtual machines.

The virtual machine (VM) size is specified in the vmsize attribute of the WebRole or WorkerRole

element in the ServiceDefinition.csdef file. The default setting is Small which provides you with one

core and 1.75 GB of RAM. For applications that are multi-threaded and use lots of memory, disk, and

bandwidth, you can increase the VM size for increased performance. For example, an ExtraLarge

VM has 8 CPU cores and 14 GB of RAM. Increasing memory, cpu cores, disk, and bandwidth on a

single machine is known as scale up. Good candidates for scale up include ASP.NET web applications

that use asynchronous methods. See Virtual Machine Sizes for a description of the resources

provided by each VM size.

Worker role B in this application is the limiting component under high load because it does the work

of sending emails. (Worker role A just creates queue messages, which is not resource-intensive.)

Because worker role B is not multi-threaded and does not have a large memory footprint, it's not a

good candidate for scale up. Worker role B can scale linearly (that is, nearly double performance

http://msdn.microsoft.com/en-us/library/windowsazure/ee814754.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee814754.aspx
http://www.asp.net/mvc/tutorials/mvc-4/using-asynchronous-methods-in-aspnet-mvc-4
http://msdn.microsoft.com/en-us/library/windowsazure/ee814754.aspx

when you double the instances) by increasing the instance count. Increasing the number of compute

instances is known as scale out. There is a cost for each instance, so you should only scale out when

your application requires it.

You can scale out a web or worker role by updating the setting in the Visual Studio UI or by editing

the ServiceConfiguration.*.cscfg files directly. The instance count is specified in the Configuration tab

of the role Properties window and in the Instances element in the .cscfg files. When you update

the setting, you have to deploy the updated configuration file to make the change take effect.

Alternatively, for transient increases in load, you can change the number of role instances in the

Windows Azure Management Portal. You can also configure the number of instances using the

Windows Azure Management API. Finally, you can use the Autoscaling Application Block to

automatically scale out to meet increased load. For more information on autoscaling, see the links at

the end of the last tutorial in this series.

In this section of the tutorial you'll scale out worker role B by using the management portal, but first

you'll see how it's done in Visual Studio.

To do it in Visual Studio, you would right-click the role under Roles in the cloud project and select

Properties.

You would then select the Configuration tab on the left, and select Cloud in the Service

Configuration drop down.

http://www.bing.com/search

Notice that you can also configure the VM size in this tab.

The following steps explain how to scale out by using the Windows Azure Management Portal.

1. In the Windows Azure Management Portal, select your cloud service, and then click Scale.

2. Increase the number of instances for worker role B, and then click Save.

It can take a few minutes for the new VMs to be provisioned.

3. Select the Instances tab to see your each role instance in your application.

Next steps

You have now seen how to configure, deploy, and scale the completed application. The following

tutorials show how to build the application from scratch. In the next tutorial you'll build the web role.

For links to additional resources for working with Windows Azure Storage tables, queues, and blobs,

see the end of the last tutorial in this series.

Building the web role for the Windows Azure
Email Service application - 3 of 5
This is the third tutorial in a series of five that show how to build and deploy the Windows Azure

Email Service sample application. For information about the application and the tutorial series, see

the first tutorial in the series.

In this tutorial you'll learn:

 How to create a solution that contains a Cloud Service project with a web role and a worker role.

 How to work with Windows Azure tables, blobs, and queues in MVC 4 controllers and views.

 How to handle concurrency conflicts when you are working with Windows Azure tables.

 How to configure a web role or web project to use your Windows Azure Storage account.

Create the Visual Studio solution

You begin by creating a Visual Studio solution with a project for the web front-end and a project for

one of the back-end Windows Azure worker roles. You'll add the second worker role later.

(If you want to run the web UI in a Windows Azure Web Site instead of a Windows Azure Cloud

Service, see the Alternative Architecture section later in this tutorial for changes to these

instructions.)

Create a cloud service project with a web role and a worker role

1. Start Visual Studio 2012 or Visual Studio 2012 for Web Express, with administrative privileges.

The Windows Azure compute emulator which enables you to test your cloud project locally

requires administrative privileges.

2. From the File menu select New Project.

http://manage.windowsazure.com/#alternativearchitecture

3. Expand C# and select Cloud under Installed Templates, and then select Windows Azure Cloud

Service.

4. Name the application AzureEmailService and click OK.

5. In the New Windows Azure Cloud Service dialog box, select ASP.NET MVC 4 Web Role and

click the arrow that points to the right.

6. In the column on the right, hover the pointer over MvcWebRole1, and then click the pencil icon

to change the name of the web role.

7. Enter MvcWebRole as the new name, and then press Enter.

8. Follow the same procedure to add a Worker Role, name it WorkerRoleA, and then click OK.

9. In the New ASP.NET MVC 4 Project dialog box, select the Internet Application template.

10. In the View Engine drop-down list make sure that Razor is selected, and then click OK.

Set the page header, menu, and footer

In this section you update the headers, footers, and menu items that are shown on every page for

the administrator web UI. The application will have three sets of administrator web pages: one for

Mailing Lists, one for Subscribers to mailing lists, and one for Messages.

1. In Solution Explorer, expand the Views\Shared folder and open the _Layout.cshtml file.

2. In the <title> element, change "My ASP.NET MVC Application" to "Windows Azure Email

Service".

3. In the <p> element with class "site-title", change "your logo here" to "Windows Azure Email

Service", and change "Home" to "MailingList".

4. Delete the menu section:

5. Insert a new menu section where the old one was:

<ul id="menu">

 @Html.ActionLink("Mailing Lists", "Index", "MailingList")

 @Html.ActionLink("Messages", "Index", "Message")

 @Html.ActionLink("Subscribers", "Index", "Subscriber")

6. In the <footer> element, change "My ASP.NET MVC Application" to "Windows Azure Email

Service".

Run the application locally

1. Press CTRL+F5 to run the application.

The application home page appears in the default browser.

The application runs in the Windows Azure compute emulator. You can see the compute

emulator icon in the Windows system tray:

Configure Tracing

To enable tracing data to be saved, open the WebRole.cs file and add the following

ConfigureDiagnostics method. Add code that calls the new method in the OnStart method.

private void ConfigureDiagnostics()

{

 DiagnosticMonitorConfiguration config =

DiagnosticMonitor.GetDefaultInitialConfiguration();

 config.Logs.BufferQuotaInMB = 500;

 config.Logs.ScheduledTransferLogLevelFilter = LogLevel.Verbose;

 config.Logs.ScheduledTransferPeriod = TimeSpan.FromMinutes(1d);

 DiagnosticMonitor.Start(

 "Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString",

 config);

}

public override bool OnStart()

{

 ConfigureDiagnostics();

 return base.OnStart();

}

The ConfigureDiagnostics method is explained in the second tutorial.

Add code to efficiently handle restarts.

Windows Azure Cloud Service applications are restarted approximately twice per month for

operating system updates. (For more information on OS updates, see Role Instance Restarts Due to

OS Upgrades.) When a web application is going to be shut down, an OnStop event is raised. The

web role boiler plate created by Visual Studio does not override the OnStop method, so the

application will have only a few seconds to finish processing HTTP requests before it is shut down.

You can add code to override the OnStop method in order to ensure that shutdowns are handled

gracefully.

To handle shutdowns and restarts, open the WebRole.cs file and add the following OnStop method

override.

public override void OnStop()

 {

 Trace.TraceInformation("OnStop called from WebRole");

 var rcCounter = new PerformanceCounter("ASP.NET", "Requests

Current", "");

 while (rcCounter.NextValue() > 0)

 {

http://azurestorageexplorer.codeplex.com/
http://azurestorageexplorer.codeplex.com/

 Trace.TraceInformation("ASP.NET Requests Current = " +

rcCounter.NextValue().ToString());

 System.Threading.Thread.Sleep(1000);

 }

 }

This code requires an additional using statement:

using System.Diagnostics;

The OnStop method has up to 5 minutes to exit before the application is shut down. You could add

a sleep call for 5 minutes to the OnStop method to give your application the maximum amount of

time to process the current requests, but if your application is scaled correctly, it should be able to

process the remaining requests in much less than 5 minutes. It is best to stop as quickly as possible,

so that the application can restart as quickly as possible and continue processing requests.

Once a role is taken off-line by Windows Azure, the load balancer stops sending requests to the role

instance, and after that the OnStop method is called. If you don't have another instance of your role,

no requests will be processed until your role completes shutting down and is restarted (which

typically takes several minutes). That is one reason why the Windows Azure service level agreement

requires you to have at least two instances of each role in order to take advantage of the up-time

guarantee.

In the code shown for the OnStop method, an ASP.NET performance counter is created for

Requests Current. The Requests Current counter value contains the current number of

requests, including those that are queued, currently executing, or waiting to be written to the client.

The Requests Current value is checked every second, and once it falls to zero, the OnStop

method returns. Once OnStop returns, the role shuts down.

Trace data is not saved when called from the OnStop method without performing an On-Demand

Transfer. You can view the OnStop trace information in real time with the dbgview utility from a

remote desktop connection.

Update the Storage Client Library NuGet Package

The API framework that you use to work with Windows Azure Storage tables, queues, and blobs is

the Storage Client Library (SCL). This API is included in a NuGet package in the Cloud Service project

template. However, as of the date this tutorial is being written, the project templates include the 1.7

version of SCL, not the current 2.0 version. Therefore, before you begin writing code you'll update

the NuGet package.

http://msdn.microsoft.com/en-us/library/windowsazure/gg433075.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/gg433075.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

1. In the Visual Studio Tools menu, hover over Library Package Manager, and then click Manage

NuGet Packages for Solution.

2. In the left pane of the Manage NuGet Packages dialog box, select Updates, then scroll down to

the Windows Azure Storage package and click Update.

3. In the Select Projects dialog box, make sure both projects are selected, and then click OK.

4. Accept the license terms to complete installation of the package, and then close the Manage

NuGet Packages dialog box.

5. In WorkerRoleA.cs in the WorkerRoleA project, delete the following using statement because it

is no longer needed:

using Microsoft.WindowsAzure.StorageClient;

The 1.7 version of the SCL includes a LINQ provider that simplifies coding for table queries. As of the

date this tutorial is being written, the 2.0 Table Service Layer (TSL) does not yet have a LINQ provider.

If you want to use LINQ, you still have access to the SCL 1.7 LINQ provider in the

Microsoft.WindowsAzure.Storage.Table.DataServices namespace. The 2.0 TSL was designed to

improve performance, and the 1.7 LINQ provider does not benefit from all of these improvements.

The sample application uses the 2.0 TSL, so it does not use LINQ for queries. For more information

about SCL and TSL 2.0, see the resources at the end of the last tutorial in this series.

Add a reference to an SCL 1.7 assembly

Version 2.0 of the Storage Client Library (SCL) 2.0 does not have everything needed for diagnostics,

so you have to add a reference to a 1.7 assembly.

http://www.windowsazure.com/en-us/develop/net/how-to-guides/autoscaling/

1. Right-click the MvcWebRole project, and choose Add Reference.

2. Click the Browse... button at the bottom of the dialog box.

3. Navigate to the following folder:

C:\Program Files\Microsoft SDKs\Windows Azure\.NET SDK\2012-10\ref

4. Select Microsoft.WindowsAzure.StorageClient.dll, and then click Add.

5. In the Reference Manager dialog box, click OK.

6. Repeat the process for the WorkerRoleA project.

Add code to create tables, queue, and blob container in

the Application_Start method

The web application will use the MailingList table, the Message table, the

azuremailsubscribequeue queue, and the azuremailblobcontainer blob container. You

could create these manually by using a tool such as Azure Storage Explorer, but then you would have

to do that manually every time you started to use the application with a new storage account. In this

section you'll add code that runs when the application starts, checks if the required tables, queues,

and blob containers exist, and creates them if they don't.

You could add this one-time startup code to the OnStart method in the WebRole.cs file, or to the

Global.asax file. For this tutorial you'll initialize Windows Azure Storage in the Global.asax file since

that works with Windows Azure Web Sites as well as Windows Azure Cloud Service web roles.

1. In Solution Explorer, expand Global.asax and then open Global.asax.cs.

2. Add a new CreateTablesQueuesBlobContainers method after the Application_Start

method, and then call the new method from the Application_Start method, as shown in the

following example:

protected void Application_Start()

{

 AreaRegistration.RegisterAllAreas();

 WebApiConfig.Register(GlobalConfiguration.Configuration);

 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);

 RouteConfig.RegisterRoutes(RouteTable.Routes);

 BundleConfig.RegisterBundles(BundleTable.Bundles);

 AuthConfig.RegisterAuth();

 // Verify that all of the tables, queues, and blob containers used

in this application

 // exist, and create any that don't already exist.

 CreateTablesQueuesBlobContainers();

}

private static void CreateTablesQueuesBlobContainers()

{

 var storageAccount =

CloudStorageAccount.Parse(RoleEnvironment.GetConfigurationSettingValue(

"StorageConnectionString"));

 // If this is running in a Windows Azure Web Site (not a Cloud

Service) use the Web.config file:

 // var storageAccount =

CloudStorageAccount.Parse(ConfigurationManager.ConnectionStrings["Stora

geConnectionString"].ConnectionString);

 var tableClient = storageAccount.CreateCloudTableClient();

 var mailingListTable =

tableClient.GetTableReference("MailingList");

 mailingListTable.CreateIfNotExists();

 var messageTable = tableClient.GetTableReference("Message");

 messageTable.CreateIfNotExists();

 var blobClient = storageAccount.CreateCloudBlobClient();

 var blobContainer =

blobClient.GetContainerReference("azuremailblobcontainer");

 blobContainer.CreateIfNotExists();

 var queueClient = storageAccount.CreateCloudQueueClient();

 var subscribeQueue =

queueClient.GetQueueReference("azuremailsubscribequeue");

 subscribeQueue.CreateIfNotExists();

}

3. Right click on the blue squiggly line under RoleEnvironment, select Resolve then select using

Microsoft.WindowsAzure.ServiceRuntime.

4. Right click the blue squiggly line under CloudStorageAccount, select Resolve, and then

select using Microsoft.WindowsAzure.Storage.

5. Alternatively, you can manually add the following using statements:

using Microsoft.WindowsAzure.ServiceRuntime;

using Microsoft.WindowsAzure.Storage;

6. Build the application, which saves the file and verifies that you don't have any compile errors.

In the following sections you build the components of the web application, and you can test them

with development storage or your storage account without having to manually create tables, queues,

or blob container first.

Create and test the Mailing List controller and views

The Mailing List web UI is used by administrators to create, edit and display mailing lists, such as

"Contoso University History Department announcements" and "Fabrikam Engineering job postings".

Add the MailingList entity class to the Models folder

The MailingList entity class is used for the rows in the MailingList table that contain

information about the list, such as its description and the "From" email address for emails sent to the

list.

1. In Solution Explorer, right-click the Models folder in the MVC project, and choose Add

Existing Item.

2. Navigate to the folder where you downloaded the sample application, select the MailingList.cs

file in the Models folder, and click Add.

3. Open MailingList.cs and examine the code.

public class MailingList : TableEntity

{

 public MailingList()

 {

 this.RowKey = "mailinglist";

 }

[Required]

[RegularExpression(@"[\w]+",

 ErrorMessage = @"Only alphanumeric characters and underscore (_) are

allowed.")]

[Display(Name = "List Name")]

public string ListName

{

 get

 {

 return this.PartitionKey;

 }

 set

 {

 this.PartitionKey = value;

 }

}

[Required]

[Display(Name = "'From' Email Address")]

public string FromEmailAddress { get; set; }

public string Description { get; set; }

}

The Windows Azure Storage TSL 2.0 API requires that the entity classes that you use for table

operations derive from TableEntity. This class defines PartitionKey, RowKey, TimeStamp, and

ETag fields. The TimeStamp and ETag properties are used by the system. You'll see how the ETag

property is used for concurrency handling later in the tutorial.

(There is also a DynamicTableEntity class for use when you want to work with table rows as

Dictionary collections of key value pairs instead of by using predefined model classes. For more

information, see Windows Azure Storage Client Library 2.0 Tables Deep Dive.)

The mailinglist table partition key is the list name. In this entity class the partition key value can

be accessed either by using the PartitionKey property (defined in the TableEntity class) or the

ListName property (defined in the MailingList class). The ListName property uses

PartitionKey as its backing variable. Defining the ListName property enables you to use a more

descriptive variable name in code and makes it easier to program the web UI, since formatting and

http://www.windowsazure.com/en-us/develop/net/how-to-guides/autoscaling/
http://go.microsoft.com/fwlink/
http://blogs.msdn.com/b/windowsazurestorage/archive/2012/11/06/windows-azure-storage-client-library-2-0-tables-deep-dive.aspx

validation DataAnnotations attributes can be added to the ListName property, but they can't be

added directly to the PartitionKey property.

The RegularExpression attribute on the ListName property causes MVC to validate user input

to ensure that the list name value entered only contains alphanumeric characters or underscores.

This restriction was implemented in order to keep list names simple so that they can easily be used in

query strings in URLs.

Note: If you wanted the list name format to be less restrictive, you could allow other characters and

URL-encode list names when they are used in query strings. However, certain characters are not

allowed in Windows Azure Table partition keys or row keys, and you would have to exclude at least

those characters. For information about characters that are not allowed or cause problems in the

partition key or row key fields, see Understanding the Table Service Data Model and % Character in

PartitionKey or RowKey.

The MailingList class defines a default constructor that sets RowKey to the hard-coded string

"mailinglist", because all of the mailing list rows in this table have that value as their row key. (For an

explanation of the table structure, see the first tutorial in the series.) Any constant value could have

been chosen for this purpose, as long as it could never be the same as an email address, which is the

row key for the subscriber rows in this table.

The list name and the "from" email address must always be entered when a new MailingList

entity is created, so they have Required attributes.

The Display attributes specify the default caption to be used for a field in the MVC UI.

Add the MailingList MVC controller

1. In Solution Explorer, right-click the Controllers folder in the MVC project, and choose Add

Existing Item.

http://msdn.microsoft.com/en-us/library/windowsazure/dd179338.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2012/05/28/partitionkey-or-rowkey-containing-the-percent-character-causes-some-windows-azure-tables-apis-to-fail.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2012/05/28/partitionkey-or-rowkey-containing-the-percent-character-causes-some-windows-azure-tables-apis-to-fail.aspx

2. Navigate to the folder where you downloaded the sample application, select the

MailingListController.cs file in the Controllers folder, and click Add.

3. Open MailingListController.cs and examine the code.

The default constructor creates a CloudTable object to use for working with the mailinglist

table.

public class MailingListController : Controller

{

 private CloudTable mailingListTable;

public MailingListController()

{

 var storageAccount =

Microsoft.WindowsAzure.Storage.CloudStorageAccount.Parse(RoleEnvironment.G

etConfigurationSettingValue("StorageConnectionString"));

 // If this is running in a Windows Azure Web Site (not a Cloud

Service) use the Web.config file:

 // var storageAccount =

Microsoft.WindowsAzure.Storage.CloudStorageAccount.Parse(ConfigurationMana

ger.ConnectionStrings["StorageConnectionString"].ConnectionString);

 var tableClient = storageAccount.CreateCloudTableClient();

 mailingListTable = tableClient.GetTableReference("mailinglist");

}

The code gets the credentials for your Windows Azure Storage account from the Cloud Service

project settings file in order to make a connection to the storage account. (You'll configure those

settings later in this tutorial, before you test the controller.) If you are going to run the MVC project

in a Windows Azure Web Site, you can get the connection string from the Web.config file instead.

Next is a FindRow method that is called whenever the controller needs to look up a specific mailing

list entry of the MailingList table, for example to edit a mailing list entry. The code retrieves a

single MailingList entity by using the partition key and row key values passed in to it. The rows

that this controller edits are the ones that have "MailingList" as the row key, so "MailingList" could

have been hard-coded for the row key, but specifying both partition key and row key is a pattern

used for the FindRow methods in all of the controllers.

private MailingList FindRow(string partitionKey, string rowKey)

{

 var retrieveOperation =

TableOperation.Retrieve<MailingList>(partitionKey, rowKey);

 var retrievedResult = mailingListTable.Execute(retrieveOperation);

 var mailingList = retrievedResult.Result as MailingList;

 if (mailingList == null)

 {

 throw new Exception("No mailing list found for: " + partitionKey);

 }

return mailingList;

}

It's instructive to compare the FindRow method in the MailingList controller, which returns a

mailing list row, with the FindRow method in the Subscriber controller, which returns a subscriber

row from the same mailinglist table.

private Subscriber FindRow(string partitionKey, string rowKey)

{

 var retrieveOperation =

TableOperation.Retrieve<Subscriber>(partitionKey, rowKey);

 var retrievedResult = mailingListTable.Execute(retrieveOperation);

 var subscriber = retrievedResult.Result as Subscriber;

 if (subscriber == null)

 {

 throw new Exception("No subscriber found for: " + partitionKey +

", " + rowKey);

 }

 return subscriber;

}

The only difference in the two queries is the model type that they pass to the

TableOperation.Retrieve method. The model type specifies the schema (the properties) of the row or

rows that you expect the query to return. A single table may have different schemas in different rows.

Typically you specify the same model type when reading a row that was used to create the row.

The Index page displays all of the mailing list rows, so the query in the Index method returns all

MailingList entities that have "mailinglist" as the row key (the other rows in the table have email

address as the row key, and they contain subscriber information).

var query = new

TableQuery<MailingList>().Where(TableQuery.GenerateFilterCondition("RowKey

", QueryComparisons.Equal, "mailinglist"));

 lists = mailingListTable.ExecuteQuery(query, reqOptions).ToList();

The Index method surrounds this query with code that is designed to handle timeout conditions.

public ActionResult Index()

{

 TableRequestOptions reqOptions = new TableRequestOptions()

 {

 MaximumExecutionTime = TimeSpan.FromSeconds(1.5),

http://www.windowsazure.com/en-us/pricing/free-trial/

 RetryPolicy = new LinearRetry(TimeSpan.FromSeconds(3), 3)

 };

 List<MailingList> lists;

 try

 {

 var query = new

TableQuery<MailingList>().Where(TableQuery.GenerateFilterCondition("RowKey

", QueryComparisons.Equal, "mailinglist"));

 lists = mailingListTable.ExecuteQuery(query, reqOptions).ToList();

 }

 catch (StorageException se)

 {

 ViewBag.errorMessage = "Timeout error, try again. ";

 Trace.TraceError(se.Message);

 return View("Error");

 }

return View(lists);

}

If you don't specify timeout parameters, the API automatically retries three times with exponentially

increasing timeout limits. For a web interface with a user waiting for a page to appear, this could

result in unacceptably long wait times. Therefore, this code specifies linear retries (so the timeout

limit doesn't increase each time) and a timeout limit that is reasonable for the user to wait.

When the user clicks the Create button on the Create page, the MVC model binder creates a

MailingList entity from input entered in the view, and the HttpPost Create method adds the

entity to the table.

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Create(MailingList mailingList)

{

 if (ModelState.IsValid)

 {

 var insertOperation = TableOperation.Insert(mailingList);

 mailingListTable.Execute(insertOperation);

 return RedirectToAction("Index");

 }

return View(mailingList);

}

For the Edit page, the HttpGet Edit method looks up the row, and the HttpPost method

updates the row.

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Edit(string partitionKey, string rowKey, MailingList

editedMailingList)

{

 if (ModelState.IsValid)

 {

 var mailingList = new MailingList();

 UpdateModel(mailingList);

 try

 {

 var replaceOperation = TableOperation.Replace(mailingList);

 mailingListTable.Execute(replaceOperation);

 return RedirectToAction("Index");

 }

 catch (StorageException ex)

 {

 if (ex.RequestInformation.HttpStatusCode == 412)

 {

 // Concurrency error

 var currentMailingList = FindRow(partitionKey, rowKey);

 if (currentMailingList.FromEmailAddress !=

editedMailingList.FromEmailAddress)

 {

 ModelState.AddModelError("FromEmailAddress", "Current

value: " + currentMailingList.FromEmailAddress);

 }

 if (currentMailingList.Description !=

editedMailingList.Description)

 {

 ModelState.AddModelError("Description", "Current

value: " + currentMailingList.Description);

 }

 ModelState.AddModelError(string.Empty, "The record you

attempted to edit "

 + "was modified by another user after you got the

original value. The "

 + "edit operation was canceled and the current values

in the database "

 + "have been displayed. If you still want to edit this

record, click "

 + "the Save button again. Otherwise click the Back to

List hyperlink.");

 ModelState.SetModelValue("ETag", new

ValueProviderResult(currentMailingList.ETag, currentMailingList.ETag,

null));

 }

 else

 {

 throw;

 }

 }

 }

 return View(editedMailingList);

}

The try-catch block handles concurrency errors. A concurrency exception is raised if a user selects a

mailing list for editing, then while the Edit page is displayed in the browser another user edits the

same mailing list. When that happens, the code displays a warning message and indicates which

fields were changed by the other user. The TSL API uses the ETag to check for concurrency conflicts.

Every time a table row is updated, the ETag value is changed. When you get a row to edit, you save

the ETag value, and when you execute an update or delete operation you pass in the ETag value

that you saved. (The Edit view has a hidden field for the ETag value.) If the update operation finds

that the ETag value on the record you are updating is different than the ETag value that you passed

in to the update operation, it raises a concurrency exception. If you don't care about concurrency

conflicts, you can set the ETag field to an asterisk ("*") in the entity that you pass in to the update

operation, and conflicts are ignored.

Note: The HTTP 412 error is not unique to concurrency errors. It can be raised for other errors by the

SCL API.

For the Delete page, the HttpGet Delete method looks up the row in order to display its

contents, and the HttpPost method deletes the MailingList row along with any Subscriber

rows that are associated with it in the MailingList table.

[HttpPost, ActionName("Delete")]

[ValidateAntiForgeryToken]

public ActionResult DeleteConfirmed(string partitionKey)

{

 // Delete all rows for this mailing list, that is,

 // Subscriber rows as well as MailingList rows.

 // Therefore, no need to specify row key.

 var query = new

TableQuery<MailingList>().Where(TableQuery.GenerateFilterCondition("Partit

ionKey", QueryComparisons.Equal, partitionKey));

 var listRows = mailingListTable.ExecuteQuery(query).ToList();

 var batchOperation = new TableBatchOperation();

 int itemsInBatch = 0;

 foreach (MailingList listRow in listRows)

 {

 batchOperation.Delete(listRow);

 itemsInBatch++;

 if (itemsInBatch == 100)

 {

 mailingListTable.ExecuteBatch(batchOperation);

 itemsInBatch = 0;

 batchOperation = new TableBatchOperation();

 }

 }

 if (itemsInBatch > 0)

 {

 mailingListTable.ExecuteBatch(batchOperation);

 }

 return RedirectToAction("Index");

}

In case a large number of subscribers need to be deleted, the code deletes the records in batches.

The transaction cost of deleting one row is the same as deleting 100 rows in a batch. The maximum

number of operations that you can perform in one batch is 100.

Although the loop processes both MailingList rows and Subscriber rows, it reads them all into

the MailingList entity class because the only fields needed for the Delete operation are the

PartitionKey, RowKey, and ETag fields.

Add the MailingList MVC views

1. In Solution Explorer, create a new folder under the Views folder in the MVC project, and name it

MailingList.

2. Right-click the new Views\MailingList folder, and choose Add Existing Item.

3. Navigate to the folder where you downloaded the sample application, select all four of the

.cshtml files in the Views\MailingList folder, and click Add.

4. Open the Edit.cshtml file and examine the code.

@model MvcWebRole.Models.MailingList

 @{

 ViewBag.Title = "Edit Mailing List";

}

 <h2>Edit Mailing List</h2>

 @using (Html.BeginForm()) {

 @Html.AntiForgeryToken()

 @Html.ValidationSummary(true)

 @Html.HiddenFor(model => model.ETag)

 <fieldset>

 <legend>MailingList</legend>

 <div class="editor-label">

 @Html.LabelFor(model => model.ListName)

 </div>

 <div class="editor-field">

 @Html.DisplayFor(model => model.ListName)

 </div>

 <div class="editor-label">

 @Html.LabelFor(model => model.Description)

 </div>

 <div class="editor-field">

 @Html.EditorFor(model => model.Description)

 @Html.ValidationMessageFor(model => model.Description)

 </div>

 <div class="editor-label">

 @Html.LabelFor(model => model.FromEmailAddress)

 </div>

 <div class="editor-field">

 @Html.EditorFor(model => model.FromEmailAddress)

 @Html.ValidationMessageFor(model => model.FromEmailAddress)

 </div>

 <p>

 <input type="submit" value="Save" />

 </p>

 </fieldset>

}

<div>

 @Html.ActionLink("Back to List", "Index")

</div>

@section Scripts {

 @Scripts.Render("~/bundles/jqueryval")

}

This code is typical for MVC views. Notice the hidden field that is included to preserve the ETag

value which is used for handling concurrency conflicts. Notice also that the ListName field has a

DisplayFor helper instead of an EditorFor helper. We didn't enable the Edit page to change

the list name, because that would have required complex code in the controller: the HttpPost

Edit method would have had to delete the existing mailing list row and all associated subscriber

rows, and re-insert them all with the new key value. In a production application you might decide

that the additional complexity is worthwhile. As you'll see later, the Subscriber controller does

allow list name changes, since only one row at a time is affected.

The Create.cshtml and Delete.cshtml code is similar to Edit.cshtml.

5. Open Index.cshtml and examine the code.

@model IEnumerable<MvcWebRole.Models.MailingList>

@{

 ViewBag.Title = "Mailing Lists";

}

<h2>Mailing Lists</h2>

<p>

 @Html.ActionLink("Create New", "Create")

</p>

<table>

 <tr>

 <th>

 @Html.DisplayNameFor(model => model.ListName)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.Description)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.FromEmailAddress)

 </th>

 <th></th>

 </tr>

@foreach (var item in Model) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.ListName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Description)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.FromEmailAddress)

 </td>

 <td>

 @Html.ActionLink("Edit", "Edit", new { PartitionKey =

item.PartitionKey, RowKey=item.RowKey }) |

 @Html.ActionLink("Delete", "Delete", new { PartitionKey =

item.PartitionKey, RowKey=item.RowKey })

 </td>

 </tr>

}

</table>

This code is also typical for MVC views. The Edit and Delete hyperlinks specify partition key and

row key query string parameters in order to identify a specific row. For MailingList entities

only the partition key is actually needed since row key is always "MailingList", but both are kept

so that the MVC view code is consistent across all controllers and views.

Make MailingList the default controller

1. Open Route.config.cs in the App_Start folder.

2. In the line that specifies defaults, change the default controller from "Home" to "MailingList".

routes.MapRoute(

 name: "Default",

 url: "{controller}/{action}/{id}",

defaults: new { controller = "MailingList", action = "Index", id =

UrlParameter.Optional }

Configure the web role to use your test Windows Azure

Storage account

You are going to enter settings for your test storage account, which you will use while running the

project locally. To add a new setting you have to add it for both cloud and local, but you can change

the cloud value later. You'll add the same settings for worker role A later.

(If you want to run the web UI in a Windows Azure Web Site instead of a Windows Azure Cloud

Service, see the Alternative Architecture section later in this tutorial for changes to these

instructions.)

1. In Solution Explorer, right-click MvcWebRole under Roles in the AzureEmailService cloud

project, and then choose Properties.

2. Make sure that All Configurations is selected in the Service Configuration drop-down list.

3. Select the Settings tab and then click Add Setting.

4. Enter "StorageConnectionString" in the Name column.

5. Select Connection String in the Type drop-down list.

6. Click the ellipsis (...) button at the right end of the line to open the Storage Account

Connection String dialog box.

7. In the Create Storage Connection String dialog, click the Your subscription radio button, and

then click the Download Publish Settings link.

Note: If you configured storage settings for tutorial 2 and you're doing this tutorial on the same

machine, you don't have to download the settings again, you just have to click Your

subscription and then choose the correct Subscription and Account Name.

When you click the Download Publish Settings link, Visual Studio launches a new instance of

your default browser with the URL for the Windows Azure Management Portal download publish

settings page. If you are not logged into the portal, you are prompted to log in. Once you are

logged in your browser prompts you to save the publish settings. Make a note of where you save

the settings.

8. In the Create Storage Connection String dialog, click Import, and then navigate to the publish

settings file that you saved in the previous step.

9. Select the subscription and storage account that you wish to use, and then click OK.

10. Follow the same procedure that you used for the StorageConnectionString connection

string to set the Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString

connection string.

You don't have to download the publish settings file again. When you click the ellipsis for the

Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString connection

string, you'll find that the Create Storage Connection String dialog box remembers your

subscription information. When you click the Your subscription radio button, all you have to do

is select the same Subscription and Account Name that you selected earlier, and then click OK.

11. Follow the same procedure that you used for the two connection strings for the MvcWebRole

role to set the connection strings for the WorkerRoleA role.

When you added a new setting with the Add Settings button, the new setting was added to the

XML in the ServiceDefinition.csdf file and in each of the two .cscfg configuration files. The following

XML is added by Visual Studio to the ServiceDefinition.csdf file.

<ConfigurationSettings>

 <Setting name="StorageConnectionString" />

 </ConfigurationSettings>

The following XML is added to each .cscfg configuration file.

<Setting name="StorageConnectionString"

 value="DefaultEndpointsProtocol=https;

 AccountName=azuremailstorage;

 AccountKey=[your account key]" />

You can manually add settings to the ServiceDefinition.csdf file and the two .cscfg configuration files,

but using the properties editor has the following advantages for connection strings:

 You only add the new setting in one place, and the correct setting XML is added to all three files.

 The correct XML is generated for the three settings files. The ServiceDefinition.csdf file defines

settings that must be in each .cscfg configuration file. If the ServiceDefinition.csdf file and the two

.cscfg configuration files settings are inconsistent, you can get the following error message from

Visual Studio: "The current service model is out of sync. Make sure both the service configuration

and definition files are valid."

If you get this error, the properties editor will not work until you resolve the inconsistency problem.

Test the application

1. Run the project by pressing CTRL+F5.

2. Use the Create function to add some mailing lists, and try the Edit and Delete functions to make

sure they work.

Create and test the Subscriber controller and views

The Subscriber web UI is used by administrators to add new subscribers to a mailing list, and to edit,

display, and delete existing subscribers.

Add the Subscriber entity class to the Models folder

The Subscriber entity class is used for the rows in the MailingList table that contain

information about subscribers to a list. These rows contain information such as the person's email

address and whether the address is verified.

1. In Solution Explorer, right-click the Models folder in the MVC project, and choose Add Existing

Item.

2. Navigate to the folder where you downloaded the sample application, select the Subscriber.cs file

in the Models folder, and click Add.

3. Open Subscriber.cs and examine the code.

public class Subscriber : TableEntity

 {

 [Required]

 public string ListName

 {

 get

 {

 return this.PartitionKey;

 }

 set

 {

 this.PartitionKey = value;

 }

 }

 [Required]

 [Display(Name = "Email Address")]

 public string EmailAddress

 {

 get

 {

 return this.RowKey;

 }

 set

 {

 this.RowKey = value;

 }

 }

 public string SubscriberGUID { get; set; }

 public bool? Verified { get; set; }

}

Like the MailingList entity class, the Subscriber entity class is used to read and write rows

in the mailinglist table. Subscriber rows use the email address instead of the constant

"mailinglist" for the row key. (For an explanation of the table structure, see the first tutorial in the

series.) Therefore an EmailAddress property is defined that uses the RowKey property as its

backing field, the same way that ListName uses PartitionKey as its backing field. As

explained earlier, this enables you to put formatting and validation DataAnnotations attributes

on the properties.

The SubscriberGUID value is generated when a Subscriber entity is created. It is used in

subscribe and unsubscribe links to help ensure that only authorized persons can subscribe or

unsubscribe email addresses.

When a row is initially created for a new subscriber, the Verified value is false. The

Verified value changes to true only after the new subscriber clicks the Confirm hyperlink in

the welcome email. If a message is sent to a list while a subscriber has Verified = false, no

email is sent to that subscriber.

The Verified property in the Subscriber entity is defined as nullable. When you specify that

a query should return Subscriber entities, it is possible that some of the retrieved rows might

not have a Verified property. Therefore the Subscriber entity defines its Verified

property as nullable so that it can more accurately reflect the actual content of a row if table

rows that don't have a Verified property are returned by a query. You might be accustomed to

working with SQL Server tables, in which every row of a table has the same schema. In a

Windows Azure Storage table, each row is just a collection of properties, and each row can have

a different set of properties. For example, in the Windows Azure Email Service sample

application, rows that have "MailingList" as the row key don't have a Verified property. If a

query returns a table row that doesn't have a Verified property, when the Subscriber entity

class is instantiated, the Verified property in the entity object will be null. If the property were

not nullable, you would get the same value of false for rows that have Verified = false

and for rows that don't have a Verified property at all. Therefore, a best practice for working

with Windows Azure Tables is to make each property of an entity class nullable in order to

accurately read rows that were created by using different entity classes or different versions of

the current entity class.

Add the Subscriber MVC controller

1. In Solution Explorer, right-click the Controllers folder in the MVC project, and choose Add

Existing Item.

2. Navigate to the folder where you downloaded the sample application, select the

SubscriberController.cs file in the Controllers folder, and click Add. (Make sure that you get

Subscriber.cs and not Subscribe.cs; you'll add Subscribe.cs later.)

3. Open SubscriberController.cs and examine the code.

Most of the code in this controller is similar to what you saw in the MailingList controller.

Even the table name is the same because subscriber information is kept in the MailingList

table. After the FindRow method you see a GetListNames method. This method gets the data

for a drop-down list on the Create and Edit pages, from which you can select the mailing list to

subscribe an email address to.

private List<MailingList> GetListNames()

{

 var query = (new

TableQuery<MailingList>().Where(TableQuery.GenerateFilterCondition("Row

Key", QueryComparisons.Equal, "mailinglist")));

 var lists = mailingListTable.ExecuteQuery(query).ToList();

 return lists;

}

This is the same query you saw in the MailingList controller. For the drop-down list you want

rows that have information about mailing lists, so you select only those that have RowKey =

"mailinglist".

For the method that retrieves data for the Index page, you want rows that have subscriber

information, so you select all rows that do not have RowKey = "MailingList".

public ActionResult Index()

{

 var query = (new

TableQuery<Subscriber>().Where(TableQuery.GenerateFilterCondition("RowK

ey", QueryComparisons.NotEqual, "mailinglist")));

 var subscribers = mailingListTable.ExecuteQuery(query).ToList();

 return View(subscribers);

}

Notice that the query specifies that data will be read into Subscriber objects (by specifying

<Subscriber>) but the data will be read from the mailinglist table.

Note: The number of subscribers could grow to be too large to handle this way in a single query.

In a future release of the tutorial we hope to implement paging functionality and show how to

handle continuation tokens. You need to handle continuation tokens when you execute queries

that would return more than 1,000 rows: Windows Azure returns 1,000 rows and a continuation

token that you use to execute another query that starts where the previous one left off. For more

information about large result sets and continuation tokens, see How to get most out of

Windows Azure Tables.

In the HttpGet Create method, you set up data for the drop-down list; and in the HttpPost

method, you set default values before saving the new entity.

public ActionResult Create()

{

 var lists = GetListNames();

 ViewBag.ListName = new SelectList(lists, "ListName",

"Description");

 var model = new Subscriber() { Verified = false };

 return View(model);

}

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Create(Subscriber subscriber)

{

 if (ModelState.IsValid)

 {

 subscriber.SubscriberGUID = Guid.NewGuid().ToString();

 if (subscriber.Verified.HasValue == false)

 {

 subscriber.Verified = false;

 }

 var insertOperation = TableOperation.Insert(subscriber);

 mailingListTable.Execute(insertOperation);

 return RedirectToAction("Index");

}

var lists = GetListNames();

http://msdn.microsoft.com/en-us/library/windowsazure/ff683669.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ff683669.aspx

ViewBag.ListName = new SelectList(lists, "ListName", "Description",

subscriber.ListName);

return View(subscriber);

}

The HttpPost Edit page is more complex than what you saw in the MailingList controller

because the Subscriber page enables you to change the list name or email address, both of

which are key fields. If the user changes one of these fields, you have to delete the existing

record and add a new one instead of updating the existing record. The following code shows the

part of the edit method that handles the different procedures for key versus non-key changes:

if (ModelState.IsValid)

 {

 try

 {

 UpdateModel(editedSubscriber, string.Empty, null,

excludeProperties);

 if (editedSubscriber.PartitionKey == partitionKey &&

editedSubscriber.RowKey == rowKey)

 {

 //Keys didn't change -- Update the row

 var replaceOperation =

TableOperation.Replace(editedSubscriber);

 mailingListTable.Execute(replaceOperation);

 }

 else

 {

 // Keys changed, delete the old record and insert the

new one.

 if (editedSubscriber.PartitionKey != partitionKey)

 {

 // PartitionKey changed, can't do delete/insert in

a batch.

 var deleteOperation = TableOperation.Delete(new

Subscriber { PartitionKey = partitionKey, RowKey = rowKey, ETag =

editedSubscriber.ETag });

 mailingListTable.Execute(deleteOperation);

 var insertOperation =

TableOperation.Insert(editedSubscriber);

 mailingListTable.Execute(insertOperation);

 }

 else

 {

 // RowKey changed, do delete/insert in a batch.

 var batchOperation = new TableBatchOperation();

 batchOperation.Delete(new Subscriber { PartitionKey

= partitionKey, RowKey = rowKey, ETag = editedSubscriber.ETag });

 batchOperation.Insert(editedSubscriber);

 mailingListTable.ExecuteBatch(batchOperation);

 }

 }

 return RedirectToAction("Index");

The parameters that the MVC model binder passes to the Edit method include the original list

name and email address values (in the partitionKey and rowKey parameters) and the values

entered by the user (in the listName and emailAddress parameters):

public ActionResult Edit(string partitionKey, string rowKey, string

listName, string emailAddress)

The parameters passed to the UpdateModel method exclude PartitionKey and RowKey

properties from model binding:

var excludeProperties = new string[] { "PartitionKey", "RowKey" };

The reason for this is that the ListName and EmailAddress properties use PartitionKey

and RowKey as their backing properties, and the user might have changed one of these values.

When the model binder updates the model by setting the ListName property, the

PartitionKey property is automatically updated. If the model binder were to update the

PartitionKey property with that property's original value after updating the ListName

property, it would overwrite the new value that was set by the ListName property. The

EmailAddress property automatically updates the RowKey property in the same way.

After updating the editedSubscriber model object, the code then determines whether the

partition key or row key was changed. If either key value changed, the existing subscriber row has

to be deleted and a new one inserted. If only the row key changed, the deletion and insertion

can be done in an atomic batch transaction.

Notice that the code creates a new entity to pass in to the Delete operation:

// RowKey changed, do delete/insert in a batch.

 var batchOperation = new TableBatchOperation();

 batchOperation.Delete(new Subscriber { PartitionKey = partitionKey,

RowKey = rowKey, ETag = editedSubscriber.ETag });

 batchOperation.Insert(editedSubscriber);

 mailingListTable.ExecuteBatch(batchOperation);

Entities that you pass in to operations in a batch must be distinct entities. For example, you can't

create a Subscriber entity, pass it in to a Delete operation, then change a value in the same

Subscriber entity and pass it in to an Insert operation. If you did that, the state of the entity

after the property change would be in effect for both the Delete and the Insert operation.

Note: Operations in a batch must all be on the same partition. Because a change to the list name

changes the partition key, it can't be done in a transaction.

Add the Subscriber MVC views

1. In Solution Explorer, create a new folder under the Views folder in the MVC project, and name it

Subscriber.

2. Right-click the new Views\Subscriber folder, and choose Add Existing Item.

3. Navigate to the folder where you downloaded the sample application, select all five of the

.cshtml files in the Views\Subscriber folder, and click Add.

4. Open the Edit.cshtml file and examine the code.

@model MvcWebRole.Models.Subscriber

@{

 ViewBag.Title = "Edit Subscriber";

}

<h2>Edit Subscriber</h2>

@using (Html.BeginForm()) {

 @Html.AntiForgeryToken()

 @Html.ValidationSummary(true)

 @Html.HiddenFor(model => model.SubscriberGUID)

 @Html.HiddenFor(model => model.ETag)

 <fieldset>

 <legend>Subscriber</legend>

 <div class="display-label">

 @Html.DisplayNameFor(model => model.ListName)

 </div>

 <div class="editor-field">

 @Html.DropDownList("ListName", String.Empty)

 @Html.ValidationMessageFor(model => model.ListName)

 </div>

 <div class="editor-label">

 @Html.LabelFor(model => model.EmailAddress)

 </div>

 <div class="editor-field">

 @Html.EditorFor(model => model.EmailAddress)

 @Html.ValidationMessageFor(model => model.EmailAddress)

 </div>

 <div class="editor-label">

 @Html.LabelFor(model => model.Verified)

 </div>

 <div class="display-field">

 @Html.EditorFor(model => model.Verified)

 </div>

 <p>

 <input type="submit" value="Save" />

 </p>

 </fieldset>

}

<div>

 @Html.ActionLink("Back to List", "Index")

</div>

@section Scripts {

 @Scripts.Render("~/bundles/jqueryval")

}

This code is similar to what you saw earlier for the MailingListEdit view. The

SubscriberGUID value is not shown, so the value is not automatically provided in a form field

for the HttpPost controller method. Therefore, a hidden field is included in order to preserve

this value.

The other views contain code that is similar to what you already saw for the MailingList

controller.

Test the application

1. Run the project by pressing CTRL+F5, and then click Subscribers.

2. Use the Create function to add some mailing lists, and try the Edit and Delete functions to make

sure they work.

Create and test the Message controller and views

The Message web UI is used by administrators to create, edit, and display information about

messages that are scheduled to be sent to mailing lists.

Add the Message entity class to the Models folder

The Message entity class is used for the rows in the Message table that contain information about a

message that is scheduled to be sent to a list. These rows include information such as the subject

line, the list to send a message to, and the scheduled date to send it.

1. In Solution Explorer, right-click the Models folder in the MVC project, and choose Add Existing

Item.

2. Navigate to the folder where you downloaded the sample application, select the Message.cs file

in the Models folder, and click Add.

3. Open Message.cs and examine the code.

public class Message : TableEntity

{

 private DateTime? _scheduledDate;

 private long _messageRef;

public Message()

{

 this.MessageRef = DateTime.Now.Ticks;

 this.Status = "Pending";

}

[Required]

[Display(Name = "Scheduled Date")]

// DataType.Date shows Date only (not time) and allows easy hook-up of

jQuery DatePicker

[DataType(DataType.Date)]

public DateTime? ScheduledDate

{

 get

 {

 return _scheduledDate;

 }

 set

 {

 _scheduledDate = value;

 this.PartitionKey = value.Value.ToString("yyyy-MM-dd");

 }

}

public long MessageRef

{

 get

 {

 return _messageRef;

 }

 set

 {

 _messageRef = value;

 this.RowKey = "message" + value.ToString();

 }

}

[Required]

[Display(Name = "List Name")]

public string ListName { get; set; }

[Required]

[Display(Name = "Subject Line")]

public string SubjectLine { get; set; }

// Pending, Queuing, Processing, Complete

public string Status { get; set; }

}

The Message class defines a default constructor that sets the MessageRef property to a unique

value for the message. Since this value is part of the row key, the setter for the MessageRef

property automatically sets the RowKey property also. The MessageRef property setter

concatenates the "message" literal and the MessageRef value and puts that in the RowKey

property.

The MessageRef value is created by getting the Ticks value from DateTime.Now. This

ensures that by default when displaying messages in the web UI they will be displayed in the

order in which they were created for a given scheduled date (ScheduledDate is the partition

key). You could use a GUID to make message rows unique, but then the default retrieval order

would be random.

The default constructor also sets default status of Pending for new message rows.

For more information about the Message table structure, see the first tutorial in the series.

Add the Message MVC controller

1. In Solution Explorer, right-click the Controllers folder in the MVC project, and choose Add

Existing Item.

2. Navigate to the folder where you downloaded the sample application, select the

MessageController.cs file in the Controllers folder, and click Add.

3. Open MessageController.cs and examine the code.

Most of the code in this controller is similar to what you saw in the Subscriber controller.

What is new here is code for working with blobs. For each message, the HTML and plain text

content of the email is uploaded in the form of .htm and .txt files and stored in blobs.

Blobs are stored in blob containers. The Windows Azure Email Service application stores all of its

blobs in a single blob container named "azuremailblobcontainer", and code in the controller

constructor gets a reference to this blob container:

public class MessageController : Controller

{

 private TableServiceContext serviceContext;

 private static CloudBlobContainer blobContainer;

 public MessageController()

{

 var storageAccount =

CloudStorageAccount.Parse(RoleEnvironment.GetConfigurationSettingValue(

"StorageConnectionString"));

 // If this is running in a Windows Azure Web Site (not a Cloud

Service) use the Web.config file:

 // var storageAccount =

CloudStorageAccount.Parse(ConfigurationManager.ConnectionStrings["Stora

geConnectionString"].ConnectionString);

 // Get context object for working with tables and a reference to

the blob container.

 var tableClient = storageAccount.CreateCloudTableClient();

serviceContext = tableClient.GetTableServiceContext();

 var blobClient = storageAccount.CreateCloudBlobClient();

 blobContainer =

blobClient.GetContainerReference("azuremailblobcontainer");

}

For each file that a user selects to upload, the MVC view provides an HttpPostedFile object

that contains information about the file. When the user creates a new message, the

HttpPostedFile object is used to save the file to a blob. When the user edits a message, the

user can choose to upload a replacement file or leave the blob unchanged.

The controller includes a method that the HttpPost Create and HttpPost Edit methods

call to save a blob:

private void SaveBlob(string blobName, HttpPostedFileBase

httpPostedFile)

{

 // Retrieve reference to a blob.

 CloudBlockBlob blob =

blobContainer.GetBlockBlobReference(blobName);

 // Create the blob or overwrite the existing blob by uploading a

local file.

 using (var fileStream = httpPostedFile.InputStream)

 {

 blob.UploadFromStream(fileStream);

 }

}

The HttpPost Create method saves the two blobs and then adds the Message table row.

Blobs are named by concatenating the MessageRef value with the file name extension ".htm" or

".txt".

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Create(Message message, HttpPostedFileBase file,

HttpPostedFileBase txtFile)

{

 if (file == null)

 {

 ModelState.AddModelError(string.Empty, "Please provide an HTML

file path");

 }

if (txtFile == null)

{

 ModelState.AddModelError(string.Empty, "Please provide a Text file

path");

}

if (ModelState.IsValid)

{

 SaveBlob(message.MessageRef + ".htm", file);

 SaveBlob(message.MessageRef + ".txt", txtFile);

 var insertOperation = TableOperation.Insert(message);

 messageTable.Execute(insertOperation);

 return RedirectToAction("Index");

}

var lists = GetListNames();

ViewBag.ListName = new SelectList(lists, "ListName", "Description");

return View(message);

}

The HttpGet Edit method validates that the retrieved message is in Pending status so that

the user can't change a message once worker role B has begun processing it. Similar code is in

the HttpPost Edit method and the Delete and DeleteConfirmed methods.

public ActionResult Edit(string partitionKey, string rowKey)

{

 var message = FindRow(partitionKey, rowKey);

 if (message.Status != "Pending")

 {

 throw new Exception("Message can't be edited because it isn't

in Pending status.");

 }

var lists = GetListNames();

ViewBag.ListName = new SelectList(lists, "ListName", "Description",

message.ListName);

return View(message);

}

In the HttpPost Edit method, the code saves a new blob only if the user chose to upload a

new file. The following code omits the concurrency handling part of the method, which is the

same as what you saw earlier for the MailingList controller.

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Edit(string partitionKey, string rowKey, Message

editedMsg,

 DateTime scheduledDate, HttpPostedFileBase httpFile,

HttpPostedFileBase txtFile)

{

 if (ModelState.IsValid)

 {

 var excludePropLst = new List<string>();

 excludePropLst.Add("PartitionKey");

 excludePropLst.Add("RowKey");

 if (httpFile == null)

 {

 // They didn't enter a path or navigate to a file, so don't

update the file.

 excludePropLst.Add("HtmlPath");

 }

 else

 {

 // They DID enter a path or navigate to a file, assume it's

changed.

 SaveBlob(editedMsg.MessageRef + ".htm", httpFile);

 }

 if (txtFile == null)

 {

 excludePropLst.Add("TextPath");

 }

 else

 {

 SaveBlob(editedMsg.MessageRef + ".txt", txtFile);

 }

 string[] excludeProperties = excludePropLst.ToArray();

 try

 {

 UpdateModel(editedMsg, string.Empty, null, excludeProperties);

 if (editedMsg.PartitionKey == partitionKey)

 {

 // Keys didn't change -- update the row.

 var replaceOperation = TableOperation.Replace(editedMsg);

 messageTable.Execute(replaceOperation);

 }

 else

 {

 // Partition key changed -- delete and insert the row.

 // (Partition key has scheduled date which may be changed;

 // row key has MessageRef which does not change.)

 var deleteOperation = TableOperation.Delete(new Message {

PartitionKey = partitionKey, RowKey = rowKey, ETag = editedMsg.ETag });

 messageTable.Execute(deleteOperation);

 var insertOperation = TableOperation.Insert(editedMsg);

 messageTable.Execute(insertOperation);

 }

 return RedirectToAction("Index");

 }

If the scheduled date is changed, the partition key is changed, and a row has to be deleted and

inserted. This can't be done in a transaction because it affects more than one partition.

The HttpPost Delete method deletes the blobs when it deletes the row in the table:

[HttpPost, ActionName("Delete")]

public ActionResult DeleteConfirmed(String partitionKey, string rowKey)

{

 // Get the row again to make sure it's still in Pending status.

 var message = FindRow(partitionKey, rowKey);

 if (message.Status != "Pending")

 {

 throw new Exception("Message can't be deleted because it isn't

in Pending status.");

 }

DeleteBlob(message.MessageRef + ".htm");

DeleteBlob(message.MessageRef + ".txt");

var deleteOperation = TableOperation.Delete(message);

messageTable.Execute(deleteOperation);

return RedirectToAction("Index");

}

private void DeleteBlob(string blobName)

{

 var blob = blobContainer.GetBlockBlobReference(blobName);

 blob.Delete();

}

Add the Message MVC views

1. In Solution Explorer, create a new folder under the Views folder in the MVC project, and name it

Message.

2. Right-click the new Views\Message folder, and choose Add Existing Item.

3. Navigate to the folder where you downloaded the sample application, select all five of the

.cshtml files in the Views\Message folder, and click Add.

4. Open the Edit.cshtml file and examine the code.

@model MvcWebRole.Models.Message

@{

 ViewBag.Title = "Edit Message";

}

<h2>Edit Message</h2>

@using (Html.BeginForm("Edit", "Message", FormMethod.Post, new {

enctype = "multipart/form-data" }))

{

 @Html.AntiForgeryToken()

 @Html.ValidationSummary(true)

 @Html.HiddenFor(model => model.ETag)

 <fieldset>

 <legend>Message</legend>

 @Html.HiddenFor(model => model.MessageRef)

 @Html.HiddenFor(model => model.PartitionKey)

 @Html.HiddenFor(model => model.RowKey)

 <div class="editor-label">

 @Html.LabelFor(model => model.ListName, "MailingList")

 </div>

 <div class="editor-field">

 @Html.DropDownList("ListName", String.Empty)

 @Html.ValidationMessageFor(model => model.ListName)

 </div>

 <div class="editor-label">

 @Html.LabelFor(model => model.SubjectLine)

 </div>

 <div class="editor-field">

 @Html.EditorFor(model => model.SubjectLine)

 @Html.ValidationMessageFor(model => model.SubjectLine)

 </div>

 <div class="editor-label">

 HTML Path: Leave blank to keep current HTML File.

 </div>

 <div class="editor-field">

 <input type="file" name="file" />

 </div>

 <div class="editor-label">

 Text Path: Leave blank to keep current Text File.

 </div>

 <div class="editor-field">

 <input type="file" name="TxtFile" />

 </div>

 <div class="editor-label">

 @Html.LabelFor(model => model.ScheduledDate)

 </div>

 <div class="editor-field">

 @Html.EditorFor(model => model.ScheduledDate)

 @Html.ValidationMessageFor(model => model.ScheduledDate)

 </div>

 <div class="display-label">

 @Html.DisplayNameFor(model => model.Status)

 </div>

 <div class="editor-field">

 @Html.EditorFor(model => model.Status)

 </div>

 <p>

 <input type="submit" value="Save" />

 </p>

 </fieldset>

}

<div>

 @Html.ActionLink("Back to List", "Index")

</div>

@section Scripts {

 @Scripts.Render("~/bundles/jqueryval")

}

The HttpPost Edit method needs the partition key and row key, so the code provides these

in hidden fields. The hidden fields were not needed in the Subscriber controller because (a)

the ListName and EmailAddress properties in the Subscriber model update the

PartitionKey and RowKey properties, and (b) the ListName and EmailAddress properties

were included with EditorFor helpers in the Edit view. When the MVC model binder for the

Subscriber model updates the ListName property, the PartitionKey property is

automatically updated, and when the MVC model binder updates the EmailAddress property

in the Subscriber model, the RowKey property is automatically updated. In the Message

model, the fields that map to partition key and row key are not editable fields, so they don't get

set that way.

A hidden field is also included for the MessageRef property. This is the same value as the

partition key, but it is included in order to enable better code clarity in the HttpPost Edit

method. Including the MessageRef hidden field enables the code in the HttpPost Edit

method to refer to the MessageRef value by that name when it constructs file names for the

blobs.

5. Open the Index.cshtml file and examine the code.

@model IEnumerable<MvcWebRole.Models.Message>

@{

 ViewBag.Title = "Messages";

}

<h2>Messages</h2>

<p>

 @Html.ActionLink("Create New", "Create")

</p>

<table>

 <tr>

 <th>

 @Html.DisplayNameFor(model => model.ListName)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.SubjectLine)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.ScheduledDate)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.Status)

 </th>

 <th></th>

 </tr>

 @foreach (var item in Model)

 {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.ListName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.SubjectLine)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.ScheduledDate)

 </td>

 <td>

 @item.Status

 </td>

 <td>

 @if (item.Status == "Pending")

 {

 @Html.ActionLink("Edit", "Edit", new { PartitionKey

= item.PartitionKey, RowKey = item.RowKey }) @: |

 @Html.ActionLink("Delete", "Delete", new {

PartitionKey = item.PartitionKey, RowKey = item.RowKey }) @: |

 }

 @Html.ActionLink("Details", "Details", new {

PartitionKey = item.PartitionKey, RowKey = item.RowKey })

 </td>

 </tr>

 }

</table>

A difference here from the other Index views is that the Edit and Delete links are shown only for

messages that are in Pending status:

@if (item.Status == "Pending")

{

 @Html.ActionLink("Edit", "Edit", new { PartitionKey =

item.PartitionKey, RowKey = item.RowKey }) @: |

 @Html.ActionLink("Delete", "Delete", new { PartitionKey =

item.PartitionKey, RowKey = item.RowKey }) @: |

}

This helps prevent the user from making changes to a message after worker role A has begun to

process it.

The other views contain code that is similar to the Edit view or the other views you saw for the

other controllers.

Test the application

1. Run the project by pressing CTRL+F5, then click Messages.

2. Use the Create function to add some mailing lists, and try the Edit and Delete functions to make

sure they work.

Create and test the Unsubscribe controller and view

Next, you'll implement the UI for the unsubscribe process.

Note: This tutorial only builds the controller for the unsubscribe process, not the subscribe process.

As was explained in the first tutorial, the UI and service method for the subscription process have

been left out until we implement appropriate security for the service method. Until then, you can use

the Subscriber administrator pages to subscribe email addresses to lists.

Add the Unsubscribe view model to the Models folder

The UnsubscribeVM view model is used to pass data between the Unsubscribe controller and its

view.

1. In Solution Explorer, right-click the Models folder in the MVC project, and choose Add

Existing Item.

2. Navigate to the folder where you downloaded the sample application, select the

UnsubscribeVM.cs file in the Models folder, and click Add.

3. Open UnsubscribeVM.cs and examine the code.

public class UnsubscribeVM

{

 public string EmailAddress { get; set; }

 public string ListName { get; set; }

 public string ListDescription { get; set; }

 public string SubscriberGUID { get; set; }

 public bool? Confirmed { get; set; }

}

Unsubscribe links contain the SubscriberGUID. That value is used to get the email address, list

name, and list description from the MailingList table. The view displays the email address and

the description of the list that is to be unsubscribed from, and it displays a Confirm button that

the user must click to complete the unsubscription process.

Add the Unsubscribe controller

1. In Solution Explorer, right-click the Controllers folder in the MVC project, and choose Add

Existing Item.

2. Navigate to the folder where you downloaded the sample application, select the

UnsubscribeController.cs file in the Controllers folder, and click Add.

3. Open UnsubscribeController.cs and examine the code.

This controller has an HttpGet Index method that displays the initial unsubscribe page, and

an HttpPost Index method that processes the Confirm or Cancel button.

The HttpGet Index method uses the GUID and list name in the query string to get the

MailingList table row for the subscriber. Then it puts all the information needed by the view

into the view model and displays the Unsubscribe page. It sets the Confirmed property to null

in order to tell the view to display the initial version of the Unsubscribe page.

public ActionResult Index(string id, string listName)

 {

 if (string.IsNullOrEmpty(id) == true ||

string.IsNullOrEmpty(listName))

 {

 ViewBag.errorMessage = "Empty subscriber ID or list name.";

 return View("Error");

 }

 string filter = TableQuery.CombineFilters(

 TableQuery.GenerateFilterCondition("PartitionKey",

QueryComparisons.Equal, listName),

 TableOperators.And,

 TableQuery.GenerateFilterCondition("SubscriberGUID",

QueryComparisons.Equal, id));

 var query = new TableQuery<Subscriber>().Where(filter);

 var subscriber =

mailingListTable.ExecuteQuery(query).ToList().Single();

 if (subscriber == null)

 {

 ViewBag.Message = "You are already unsubscribed";

 return View("Message");

 }

 var unsubscribeVM = new UnsubscribeVM();

 unsubscribeVM.EmailAddress = MaskEmail(subscriber.EmailAddress);

 unsubscribeVM.ListDescription = FindRow(subscriber.ListName,

"mailinglist").Description;

 unsubscribeVM.SubscriberGUID = id;

 unsubscribeVM.Confirmed = null;

 return View(unsubscribeVM);

 }

Note: The SubscriberGUID is not in the partition key or row key, so the performance of this query

will degrade as partition size (the number of email addresses in a mailing list) increases. For more

information about alternatives to make this query more scalable, see the first tutorial in the

series.

The HttpPost Index method again uses the GUID and list name to get the subscriber

information and populates the view model properties. Then, if the Confirm button was clicked, it

deletes the subscriber row in the MailingList table. If the Confirm button was pressed it also

sets the Confirm property to true, otherwise it sets the Confirm property to false. The

value of the Confirm property is what tells the view to display the confirmed or canceled

version of the Unsubscribe page.

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Index(string subscriberGUID, string listName,

string action)

{

 string filter = TableQuery.CombineFilters(

 TableQuery.GenerateFilterCondition("PartitionKey",

QueryComparisons.Equal, listName),

 TableOperators.And,

 TableQuery.GenerateFilterCondition("SubscriberGUID",

QueryComparisons.Equal, subscriberGUID));

 var query = new TableQuery<Subscriber>().Where(filter);

 var subscriber =

mailingListTable.ExecuteQuery(query).ToList().Single();

var unsubscribeVM = new UnsubscribeVM();

unsubscribeVM.EmailAddress = MaskEmail(subscriber.EmailAddress);

unsubscribeVM.ListDescription = FindRow(subscriber.ListName,

"mailinglist").Description;

unsubscribeVM.SubscriberGUID = subscriberGUID;

unsubscribeVM.Confirmed = false;

if (action == "Confirm")

{

 unsubscribeVM.Confirmed = true;

 var deleteOperation = TableOperation.Delete(subscriber);

 mailingListTable.Execute(deleteOperation);

}

return View(unsubscribeVM);

}

Create the MVC views

1. In Solution Explorer, create a new folder under the Views folder in the MVC project, and name it

Unsubscribe.

2. Right-click the new Views\Unsubscribe folder, and choose Add Existing Item.

3. Navigate to the folder where you downloaded the sample application, select the Index.cshtml file

in the Views\Unsubscribe folder, and click Add.

4. Open the Index.cshtml file and examine the code.

@model MvcWebRole.Models.UnsubscribeVM

@{

 ViewBag.Title = "Unsubscribe";

 Layout = null;

}

<h2>Email List Subscription Service</h2>

@using (Html.BeginForm()) {

 @Html.AntiForgeryToken()

 @Html.ValidationSummary(true)

 <fieldset>

 <legend>Unsubscribe from Mailing List</legend>

 @Html.HiddenFor(model => model.SubscriberGUID)

 @Html.HiddenFor(model => model.EmailAddress)

 @Html.HiddenFor(model => model.ListName)

 @if (Model.Confirmed == null) {

 <p>

 Do you want to unsubscribe @Html.DisplayFor(model =>

model.EmailAddress) from: @Html.DisplayFor(model =>

model.ListDescription)?

 </p>

 <p>

 <input type="submit" value="Confirm" name="action"/>

 <input type="submit" value="Cancel" name="action"/>

 </p>

 }

 @if (Model.Confirmed == false) {

 <p>

 @Html.DisplayFor(model => model.EmailAddress) will NOT

be unsubscribed from: @Html.DisplayFor(model => model.ListDescription).

 </p>

 }

 @if (Model.Confirmed == true) {

 <p>

 @Html.DisplayFor(model => model.EmailAddress) has been

unsubscribed from: @Html.DisplayFor(model => model.ListDescription).

 </p>

 }

 </fieldset>

}

@section Scripts {

 @Scripts.Render("~/bundles/jqueryval")

}

The Layout = null line specifies that the _Layout.cshtml file should not be used to display this

page. The Unsubscribe page displays a very simple UI without the headers and footers that are

used for the administrator pages.

In the body of the page, the Confirmed property determines what will be displayed on the

page: Confirm and Cancel buttons if the property is null, unsubscribe-confirmed message if the

property is true, unsubscribe-canceled message if the property is false.

Test the application

1. Run the project by pressing CTRL-F5, and then click Subscribers.

2. Click Create and create a new subscriber for any mailing list that you created when you were

testing earlier.

Leave the browser window open on the SubscribersIndex page.

3. Open Azure Storage Explorer, and then select your test storage account.

4. Click Tables under Storage Type, select the MailingList table, and then click Query.

5. Double-click the subscriber row that you added.

6. In the Edit Entity dialog box, select and copy the SubscriberGUID value.

7. Switch back to your browser window. In the address bar of the browser, change "Subscriber" in

the URL to "unsubscribe?ID=[guidvalue]&listName=[listname]" where [guidvalue] is the GUID

that you copied from Azure Storage Explorer, and [listname] is the name of the mailing list. For

example:

http://127.0.0.1/unsubscribe?ID=b7860242-7c2f-48fb-9d27-

d18908ddc9aa&listName=contoso1

The version of the Unsubscribe page that asks for confirmation is displayed:

8. Click Confirm and you see confirmation that the email address has been unsubscribed.

9. Go back to the SubscribersIndex page to verify that the subscriber row is no longer there.

(Optional) Build the Alternative Architecture

The following changes to the instructions apply if you want to build the alternative architecture --

that is, running the web UI in a Windows Azure Web Site instead of a Windows Azure Cloud Service

web role.

 When you create the solution, create the ASP.NET MVC 4 Web Application project first, and

then add to the solution a Windows Azure Cloud Service project with a worker role.

 Store the Windows Azure Storage connection string in the Web.config file instead of the cloud

service settings file. (This only works for Windows Azure Web Sites. If you try to use the

Web.config file for the storage connection string in a Windows Azure Cloud Service web role,

you'll get an HTTP 500 error.)

Add a new connection string named StorageConnectionString to the Web.config file, as

shown in the following example:

<connectionStrings>

 <add name="DefaultConnection" connectionString="Data

Source=(LocalDb)\v11.0;Initial Catalog=aspnet-MvcWebRole-

20121010185535;Integrated

Security=SSPI;AttachDBFilename=|DataDirectory|\aspnet-MvcWebRole-

20121010185535.mdf" providerName="System.Data.SqlClient" />

 <add name="StorageConnectionString"

connectionString="DefaultEndpointsProtocol=https;AccountName=[accountna

me];AccountKey=[primarykey]" />

 </connectionStrings>

Get the values for the connection string from the Windows Azure management portal: select the

Storage tab and your storage account, and then click Manage keys at the bottom of the page.

 Wherever you see

RoleEnvironment.GetConfigurationSettingValue("StorageConnectionString")

in the code, replace it with

ConfigurationManager.ConnectionStrings["StorageConnectionString"].Conne

ctionString.

Next steps

As explained in the first tutorial in the series, we are not showing how to build the subscribe process

in detail in this tutorial until we implement a shared secret to secure the ASP.NET Web API service

method. However, the IP restriction also protects the service method and you can add the subscribe

functionality by copying the following files from the downloaded project.

For the ASP.NET Web API service method:

 Controllers\SubscribeAPI.cs

http://www.cerebrata.com/Products/CloudStorageStudio/Details.aspx

For the web page that subscribers get when they click on the Confirm link in the email that is

generated by the service method:

 Models\SubscribeVM.cs

 Controllers\SubscribeController.cs

 Views\Subscribe\Index.cshtml

In the next tutorial you'll configure and program worker role A, the worker role that schedules emails.

For links to additional resources for working with Windows Azure Storage tables, queues, and blobs,

see the end of the last tutorial in this series.

Building worker role A (email scheduler) for
the Windows Azure Email Service
application - 4 of 5
This is the fourth tutorial in a series of five that show how to build and deploy the Windows Azure

Email Service sample application. For information about the application and the tutorial series, see

the first tutorial in the series.

In this tutorial you'll learn:

 How to query and update Windows Azure Storage tables.

 How to add work items to a queue for processing by another worker role.

 How to handle planned shut-downs by overriding the OnStop method.

 How to handle unplanned shut-downs by making sure that no emails are missed and no

duplicate emails are sent.

 How to test a worker role that uses Windows Azure Storage tables, by using Azure Storage

Explorer.

You already created the worker role A project when you created the cloud service project. So all you

have to do now is program the worker role and configure it to use your Windows Azure Storage

account.

Add a reference to the web project

You need a reference to the web project because that is where the entity classes are defined. You'll

use the same entity classes in worker role B to read and write data in the Windows Azure tables that

the application uses.

Note: In a production application you wouldn't set a reference to a web project from a worker role

project, because this results in referencing a number of dependent assemblies that you don't want or

need in the worker role. Normally you would keep shared model classes in a class library project, and

both web and worker role projects would reference the class library project. To keep the solution

structure simple, model classes are stored in the web project for this tutorial.

1. Right-click the WorkerRoleA project, and choose Add Reference.

2. In Reference Manager, add a reference to the MvcWebRole project (or to the web application

project if you are running the web UI in a Windows Azure Web Site), then click OK.

Add a reference to an SCL 1.7 assembly

Version 2.0 of the Storage Client Library (SCL) 2.0 does not have everything needed for diagnostics,

so you have to add a reference to one of the 1.7 assemblies. You already did this if you followed the

steps in the previous tutorial, but the instructions are included here in case you missed that step.

1. Right-click the WorkerRoleA project, and choose Add Reference.

2. Click the Browse... button at the bottom of the dialog box.

3. Navigate to the following folder:

C:\Program Files\Microsoft SDKs\Windows Azure\.NET SDK\2012-10\ref

4. Select Microsoft.WindowsAzure.StorageClient.dll, and then click Add.

5. In the Reference Manager dialog box, click OK.

Add the SendEmail model

Worker role A creates the SendEmail rows in the Message table, and worker Role B reads those

rows in order to get the information it needs for sending emails. The following image shows a subset

of properties for two Message rows and three SendEmail rows in the Message table.

These rows in the Message table serve several purposes:

 They provide all of the information that worker role B needs in order to send a single email.

 They track whether an email has been sent, in order to prevent duplicates from being sent in

case a worker role restarts after a failure.

 They make it possible for worker role A to determine when all emails for a message have been

sent, so that it can be marked as Complete.

For reading and writing the SendEmail rows, a model class is required. Since it must be accessible

to both worker role A and worker role B, and since all of the other model classes are defined in the

web project, it makes sense to define this one in the web project also.

1. In Solution Explorer, right-click the Models folder in the web project and choose Add Existing

Item.

2. Navigate to the folder where you downloaded the sample application, select the SendEmail.cs file

in the web project Models folder, and click Add.

3. Open SendEmail.cs and examine the code.

public class SendEmail : TableEntity

{

 public long MessageRef { get; set; }

 public string EmailAddress { get; set; }

 public DateTime? ScheduledDate { get; set; }

 public String FromEmailAddress { get; set; }

 public string SubjectLine { get; set; }

 public bool? EmailSent { get; set; }

 public string SubscriberGUID { get; set; }

 public string ListName { get; set; }

}

The code here is similar to the other model classes, except that no DataAnnotations attributes

are included because there is no UI associated with this model -- it is not used in an MVC

controller.

Add code that runs when the worker role starts

1. In the WorkerRoleA project, open WorkerRole.cs and examine the code.

public class WorkerRole : RoleEntryPoint

{

 public override void Run()

 {

 // This is a sample worker implementation. Replace with your

logic.

 Trace.WriteLine("WorkerRole1 entry point called",

"Information");

 while (true)

 {

 Thread.Sleep(10000);

 Trace.WriteLine("Working", "Information");

 }

}

public override bool OnStart()

{

 // Set the maximum number of concurrent connections

 ServicePointManager.DefaultConnectionLimit = 12;

 // For information on handling configuration changes

 // see the MSDN topic at

http://go.microsoft.com/fwlink/?LinkId=166357.

 return base.OnStart();

}

}

This is the default template code for the worker role. There is an OnStart method in which you

can put initialization code that runs only when an instance of the worker role starts, and a Run

method that is called after the OnStart method completes. You'll replace this code with your

own initialization and run code.

2. Delete WorkerRole.cs, then right-click the WorkerRoleA project, and choose Add Existing Item.

3. Navigate to the folder where you downloaded the sample application, select the WorkerRoleA.cs

file in the WorkerRoleA project, and click Add.

4. Open WorkerRoleA.cs and examine the code.

The OnStart method initializes the context objects that you need in order to work with Windows

Azure Storage entities. It also makes sure that all of the tables, queues, and blob containers that

you'll be using in the Run method exist. The code that performs these tasks is similar to what you

saw earlier in the MVC controller constructors. You'll configure the connection string that this

method uses later.

public override bool OnStart()

{

 ServicePointManager.DefaultConnectionLimit =

Environment.ProcessorCount;

ConfigureDiagnostics();

Trace.TraceInformation("Initializing storage account in WorkerA");

var storageAccount =

CloudStorageAccount.Parse(RoleEnvironment.GetConfigurationSettingValue("St

orageConnectionString"));

CloudQueueClient queueClient = storageAccount.CreateCloudQueueClient();

sendEmailQueue = queueClient.GetQueueReference("azuremailqueue");

var tableClient = storageAccount.CreateCloudTableClient();

mailingListTable = tableClient.GetTableReference("mailinglist");

messageTable = tableClient.GetTableReference("message");

messagearchiveTable = tableClient.GetTableReference("messagearchive");

// Create if not exists for queue, blob container, SentEmail table.

sendEmailQueue.CreateIfNotExists();

messageTable.CreateIfNotExists();

mailingListTable.CreateIfNotExists();

messagearchiveTable.CreateIfNotExists();

return base.OnStart();

}

You may have seen earlier documentation on working with Windows Azure Storage that shows the

initialization code in a loop that checks for transport errors. This is no longer necessary because the

API now has a built-in retry mechanism that absorbs transient network failures for up to 3 additional

attempts.

The ConfigureDiagnostics method that the OnStart method calls sets up tracing so that you

will be able to see the output from Trace.Information and Trace.Error methods. This

method is explained in the second tutorial.

The OnStop method sets the global variable onStopCalled to true, then it waits for the Run

method to set the global variable returnedFromRunMethod to true, which signals it is ready to do

a clean shutdown.

public override void OnStop()

{

 onStopCalled = true;

 while (returnedFromRunMethod == false)

 {

 System.Threading.Thread.Sleep(1000);

 }

}

The OnStop method is called when the worker role is shutting down for one of the following

reasons:

o Windows Azure needs to reboot the virtual machine (the web role or worker role instance) or the

physical machine that hosts the virtual machine.

o You stopped your cloud service by using the Stop button on the Windows Azure Management

Portal.

o You deployed an update to your cloud service project.

The Run method monitors the variable onStopCalled and stops pulling any new work items to

process when that variable changes to true. This coordination between the OnStop and Run

methods enables a graceful shutdown of the worker process.

Windows Azure periodically installs operating system updates in order to ensure that the platform is

secure, reliable, and performs well. These updates typically require the machines that host your cloud

service to shut down and reboot. For more information, see Role Instance Restarts Due to OS

Upgrades.

The Run method performs two functions:

o Scans the message table looking for messages scheduled to be sent today or earlier, for which

queue work items haven't been created yet.

o Scans the message table looking for messages that have a status indicating that all of the queue

work items were created but not all of the emails have been sent yet. If it finds one, it scans

http://msdn.microsoft.com/en-us/library/windowsazure/microsoft.windowsazure.storage.table.dynamictableentity.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/microsoft.windowsazure.storage.table.dynamictableentity.aspx

SendEmail rows for that message to see if all emails were sent, and if they were, it updates the

status to Completed and archives the message row.

The method also checks the global variable onStopCalled. When the variable is true, the method

stops pulling new work items to process, and it returns when already-started tasks are completed.

public override void Run()

{

 Trace.TraceInformation("WorkerRoleA entering Run()");

 while (true)

 {

 try

 {

 var tomorrow = DateTime.Today.AddDays(1.0).ToString("yyyy-MM-

dd");

 // If OnStop has been called, return to do a graceful

shutdown.

 if (onStopCalled == true)

 {

 Trace.TraceInformation("onStopCalled WorkerRoleB");

 returnedFromRunMethod = true;

 return;

 }

 // Retrieve all messages that are scheduled for tomorrow or

earlier

 // and are in Pending or Queuing status.

 string typeAndDateFilter = TableQuery.CombineFilters(

 TableQuery.GenerateFilterCondition("RowKey",

QueryComparisons.GreaterThan, "message"),

 TableOperators.And,

 TableQuery.GenerateFilterCondition("PartitionKey",

QueryComparisons.LessThan, tomorrow));

 var query = (new

TableQuery<Message>().Where(typeAndDateFilter));

 var messagesToProcess =

messageTable.ExecuteQuery(query).ToList();

 TableOperation replaceOperation;

 // Process each message (queue emails to be sent).

 foreach (Message messageToProcess in messagesToProcess)

 {

 string restartFlag = "0";

 // If the message is already in Queuing status,

 // set flag to indicate this is a restart.

 if (messageToProcess.Status == "Queuing")

 {

 restartFlag = "1";

 }

 // If the message is in Pending status, change

 // it to Queuing.

 if (messageToProcess.Status == "Pending")

 {

 messageToProcess.Status = "Queuing";

 replaceOperation =

TableOperation.Replace(messageToProcess);

 messageTable.Execute(replaceOperation);

 }

 // If the message is in Queuing status,

 // process it and change it to Processing status;

 // otherwise it's already in processing status, and

 // in that case check if processing is complete.

 if (messageToProcess.Status == "Queuing")

 {

 ProcessMessage(messageToProcess, restartFlag);

 messageToProcess.Status = "Processing";

 replaceOperation =

TableOperation.Replace(messageToProcess);

 messageTable.Execute(replaceOperation);

 }

 else

 {

 CheckAndArchiveIfComplete(messageToProcess);

 }

 }

 // Sleep for one minute to minimize query costs.

 System.Threading.Thread.Sleep(1000 * 60);

 }

 catch (Exception ex)

 {

 string err = ex.Message;

 if (ex.InnerException != null)

 {

 err += " Inner Exception: " + ex.InnerException.Message;

 }

 Trace.TraceError(err);

 // Don't fill up Trace storage if we have a bug in queue process

loop.

 System.Threading.Thread.Sleep(1000 * 60);

 }

}

}

Notice that all of the work is done in an infinite loop in a while block, and all of the code in the

while block is wrapped in a try-catch block to prevent an unhandled exception. If an unhandled

exception occurs, Windows Azure will raise the UnhandledException event, the worker process is

terminated, and the role is taken offline. The worker role will be restarted by Windows Azure, but this

takes several minutes. The try block calls TraceError to record the error and then sleeps for 60

seconds so that if the error is persistent the error message won't be repeated too many times. In a

production application you might send an email to an administrator in the try block.

The Run method processes a query for message rows in the message table that have scheduled

date before tomorrow:

// Retrieve all messages that are scheduled for tomorrow or earlier

 // and are in Pending or Queuing status.

 string typeAndDateFilter = TableQuery.CombineFilters(

 TableQuery.GenerateFilterCondition("RowKey",

QueryComparisons.GreaterThan, "message"),

 TableOperators.And,

 TableQuery.GenerateFilterCondition("PartitionKey",

QueryComparisons.LessThan, tomorrow));

 var query = (new

TableQuery<Message>().Where(typeAndDateFilter));

http://msdn.microsoft.com/en-us/library/system.appdomain.unhandledexception.aspx

 var messagesToProcess =

messageTable.ExecuteQuery(query).ToList();

Note: One of the benefits of moving message rows to the messagearchive table after they are

processed is that this query only needs to specify PartitionKey and RowKey as search criteria. If

we did not archive processed rows, the query would also have to specify a non-key field (Status)

and would have to search through more rows. The table size would increases, and the query would

take longer and could start getting continuation tokens.

If a message is in Pending status, processing has not yet begun; if it is in Queuing status,

processing did begin earlier but was interrupted before all queue messages were created. In that

case an additional check has to be done in worker role B when it is sending each email to make sure

the email hasn't already been sent. That is the purpose of the restartFlag variable.

string restartFlag = "0";

 if (messageToProcess.Status == "Queuing")

 {

 restartFlag = "1";

 }

Next, the code sets message rows that are in Pending status to Queuing. Then, for those rows

plus any that were already in Queuing status, it calls the ProcessMessage method to create the

queue work items to send emails for the message.

if (messageToProcess.Status == "Pending")

 {

 messageToProcess.Status = "Queuing";

 replaceOperation =

TableOperation.Replace(messageToProcess);

 messageTable.Execute(replaceOperation);

 }

 if (messageToProcess.Status == "Queuing")

 {

 ProcessMessage(messageToProcess, restartFlag);

 messageToProcess.Status = "Processing";

 replaceOperation =

TableOperation.Replace(messageToProcess);

 messageTable.Execute(replaceOperation);

 }

 else

 {

 CheckAndArchiveIfComplete(messageToProcess);

 }

After processing a message in Queuing status the code sets the Message row status to

Processing. Rows in the message table that are not in Pending or Queuing status are already in

Processing status, and for those rows the code calls a method that checks if all of the emails for

the message were sent. If all emails have been sent, the message row is archived.

After processing all records retrieved by the query, the code sleeps for one minute.

// Sleep for one minute to minimize query costs.

 System.Threading.Thread.Sleep(1000*60);

There is a minimal charge for every Windows Azure Storage query, even if it doesn't return any data,

so continuously re-scanning would unnecessarily add to your Windows Azure expenses. As this

tutorial is being written, the cost is $0.10 per million transactions (a query counts as a transaction), so

the sleep time could be made much less than a minute and the cost of scanning the tables for

messages to be sent would still be minimal. For more information about pricing, see the first tutorial.

Note on threading and optimal CPU utilization: There are two tasks in the Run method (queuing

emails and checking for completed messages), and they run sequentially in a single thread. A small

virtual machine (VM) has 1.75 GB RAM and only one CPU, so it's probably OK to run these tasks

sequentially with a single thread. Suppose your application needed more memory than the small VM

provided to run efficiently. A medium VM provides 3.5 GB RAM and 2 CPU's, but this application

would only use one CPU, because it's single threaded. To take advantage of all the CPUs, you would

need to create a worker thread for each CPU. Even so, a single CPU is not fully utilized by one thread.

When a thread makes network or I/O calls, the thread must wait for the I/O or network call to

complete, and while it waits, it's not doing useful work. If the Run method was implemented using

two threads, when one thread was waiting for a network or I/O operation to complete, the other

thread could be doing useful work.

The ProcessMessage method gets all of the email addresses for the destination email list, and

creates a queue work item for each email address. As it creates queue work items, it also creates

SendEmail rows in the Message table. These rows provide worker role B with the information it

needs to send emails and includes an EmailSent property that tracks whether each email has been

sent.

private void ProcessMessage(Message messageToProcess, string restartFlag)

{

 // Get Mailing List info to get the "From" email address.

 var retrieveOperation =

TableOperation.Retrieve<MailingList>(messageToProcess.ListName,

"mailinglist");

 var retrievedResult = mailingListTable.Execute(retrieveOperation);

 var mailingList = retrievedResult.Result as MailingList;

 if (mailingList == null)

 {

 Trace.TraceError("Mailing list not found: " +

messageToProcess.ListName + " for message: " +

messageToProcess.MessageRef);

 return;

 }

 // Get email addresses for this Mailing List.

 string filter = TableQuery.CombineFilters(

 TableQuery.GenerateFilterCondition("PartitionKey",

QueryComparisons.Equal, messageToProcess.ListName),

 TableOperators.And,

 TableQuery.GenerateFilterCondition("RowKey",

QueryComparisons.NotEqual, "mailinglist"));

 var query = new TableQuery<Subscriber>().Where(filter);

 var subscribers = mailingListTable.ExecuteQuery(query).ToList();

foreach (Subscriber subscriber in subscribers)

{

 // Verify that the subscriber email address has been verified.

 if (subscriber.Verified == false)

 {

 Trace.TraceInformation("Subscriber " + subscriber.EmailAddress + "

not Verified, so not queuing ");

 continue;

 }

 // Create a SendEmail entity for this email.

 var sendEmailRow = new SendEmail

 {

 PartitionKey = messageToProcess.PartitionKey,

 RowKey = messageToProcess.MessageRef.ToString() +

subscriber.EmailAddress,

 EmailAddress = subscriber.EmailAddress,

 EmailSent = false,

 MessageRef = messageToProcess.MessageRef,

 ScheduledDate = messageToProcess.ScheduledDate,

 FromEmailAddress = mailingList.FromEmailAddress,

 SubjectLine = messageToProcess.SubjectLine,

 SubscriberGUID = subscriber.SubscriberGUID,

 ListName = mailingList.ListName

 };

 // When we try to add the entity to the SendEmail table,

 // an exception might happen if this worker role went

 // down after processing some of the email addresses and then

restarted.

 // In that case the row might already be present, so we do an Upsert

operation.

 try

 {

 var upsertOperation =

TableOperation.InsertOrReplace(sendEmailRow);

 messageTable.Execute(upsertOperation);

 }

 catch (Exception ex)

 {

 string err = "Error creating SendEmail row: " + ex.Message;

 if (ex.InnerException != null)

 {

 err += " Inner Exception: " + ex.InnerException;

 }

 Trace.TraceError(err);

 }

 // Create the queue message.

 string queueMessageString =

 sendEmailRow.PartitionKey + "," +

 sendEmailRow.RowKey + "," +

 restartFlag;

 var queueMessage = new CloudQueueMessage(queueMessageString);

 sendEmailQueue.AddMessage(queueMessage);

}

Trace.TraceInformation("ProcessMessage end PK: "

 + messageToProcess.PartitionKey);

}

The code first gets the mailing list row from the mailinglist table for the destination mailing list.

This row has the "from" email address which needs to be provided to worker role B for sending

emails.

// Get Mailing List info to get the "From" email address.

 var retrieveOperation =

TableOperation.Retrieve<MailingList>(messageToProcess.ListName,

"mailinglist");

 var retrievedResult = mailingListTable.Execute(retrieveOperation);

 var mailingList = retrievedResult.Result as MailingList;

 if (mailingList == null)

 {

 Trace.TraceError("Mailing list not found: " +

messageToProcess.ListName + " for message: " +

messageToProcess.MessageRef);

 return;

 }

Then it queries the mailinglist table for all of the subscriber rows for the destination mailing list.

// Get email addresses for this Mailing List.

 string filter = TableQuery.CombineFilters(

 TableQuery.GenerateFilterCondition("PartitionKey",

QueryComparisons.Equal, messageToProcess.ListName),

 TableOperators.And,

 TableQuery.GenerateFilterCondition("RowKey",

QueryComparisons.NotEqual, "mailinglist"));

 var query = new TableQuery<Subscriber>().Where(filter);

 var subscribers = mailingListTable.ExecuteQuery(query).ToList();

In the loop that processes the query results, the code begins by checking if the subscriber email

address is verified, and, if not, no email is queued.

// Verify that the subscriber email address has been verified.

 if (subscriber.Verified == false)

 {

 Trace.TraceInformation("Subscriber " + subscriber.EmailAddress

+ " not Verified, so not queuing ");

 continue;

 }

Next, the code creates a SendEmail row in the message table. This row contains the information

that worker role B will use to send an email. The row is created with the EmailSent property set to

false.

// Create a SendEmail entity for this email.

 var sendEmailRow = new SendEmail

 {

 PartitionKey = messageToProcess.PartitionKey,

 RowKey = messageToProcess.MessageRef.ToString() +

subscriber.EmailAddress,

 EmailAddress = subscriber.EmailAddress,

 EmailSent = false,

 MessageRef = messageToProcess.MessageRef,

 ScheduledDate = messageToProcess.ScheduledDate,

 FromEmailAddress = mailingList.FromEmailAddress,

 SubjectLine = messageToProcess.SubjectLine,

 SubscriberGUID = subscriber.SubscriberGUID,

 ListName = mailingList.ListName

 };

 try

 {

 var upsertOperation =

TableOperation.InsertOrReplace(sendEmailRow);

 messageTable.Execute(upsertOperation);

 }

 catch (Exception ex)

 {

 string err = "Error creating SendEmail row: " + ex.Message;

 if (ex.InnerException != null)

 {

 err += " Inner Exception: " + ex.InnerException;

 }

 Trace.TraceError(err);

 }

The code uses an "upsert" operation because the row might already exist if worker role A is

restarting after a failure.

The last task to be done for each email address is to create the queue work item that will trigger

worker role B to send an email. The queue work item contains the partition key and row key value of

the SendEmail row that was just created, plus the restart flag that was set earlier. The SendEmail

row contains all of the information that worker role B needs in order to send an email.

// Create the queue message.

 string queueMessageString =

 sendEmailRow.PartitionKey + "," +

 sendEmailRow.RowKey + "," +

 restartFlag;

 var queueMessage = new CloudQueueMessage(queueMessageString);

 sendEmailQueue.AddMessage(queueMessage);

The CheckAndUpdateStatusIfComplete method checks messages that are in Processing status

to see if all emails have been sent. If it finds no unsent emails, it updates the row status to

Completed and archives the row.

private void CheckAndArchiveIfComplete(Message messageToCheck)

{

 // Get the list of emails to be sent for this message: all SendEmail

rows

 // for this message.

 string pkrkFilter = TableQuery.CombineFilters(

 TableQuery.GenerateFilterCondition("PartitionKey",

QueryComparisons.Equal, messageToCheck.PartitionKey),

 TableOperators.And,

 TableQuery.GenerateFilterCondition("RowKey",

QueryComparisons.LessThan, "message"));

 var query = new TableQuery<SendEmail>().Where(pkrkFilter);

 var emailToBeSent = messageTable.ExecuteQuery(query).FirstOrDefault();

if (emailToBeSent != null)

{

 return;

}

// All emails have been sent; copy the message row to the archive table.

// Insert the message row in the messagearchive table

var messageToDelete = new Message { PartitionKey =

messageToCheck.PartitionKey, RowKey = messageToCheck.RowKey, ETag = "*" };

messageToCheck.Status = "Complete";

var insertOrReplaceOperation =

TableOperation.InsertOrReplace(messageToCheck);

messagearchiveTable.Execute(insertOrReplaceOperation);

// Delete the message row from the message table.

var deleteOperation = TableOperation.Delete(messageToDelete);

messageTable.Execute(deleteOperation);

}

Configure the storage connection string

If you didn't already configure the storage account credentials for worker role A when you did that

for the web role, do it now.

1. In Solution Explorer, right-click WorkerRoleA under Roles in the AzureEmailService cloud

project, and then choose Properties.

2. Make sure that All Configurations is selected in the Service Configuration drop-down list.

3. Select the Settings tab and then click Add Setting.

4. Enter StorageConnectionString in the Name column.

5. Select Connection String in the Type drop-down list.

6. Click the ellipsis (...) at the right end of the line to create a new connection string.

7. In the Storage Account Connection String dialog box, click Your subscription.

8. Choose the correct Subscription and Account name, and then click OK.

9. Set the diagnostics connection string. You can use the same storage account for the diagnostics

connection string, but a best practice is to use a different storage account for trace (diagnostics)

information.

Testing worker role A

1. Run the application by pressing F5.

2. Use the administrator web pages to create a mailing list and create subscribers to the mailing list.

Set the Verified property to true for at least one of the subscribers, and set the email address

to an address that you can receive mail at.

No emails will be sent until you implement worker role B, but you'll use the same test data for

testing worker role B.

3. Create a message to be sent to the mailing list you created, and set the scheduled date to today

or a date in the past.

4. In a little over a minute (because of the one minute sleep time in the Run method), refresh the

Messages web page and you see the status change to Processing. (You might see it change to

Queuing first, but chances are it will go from Queuing to Processing so quickly that you won't

see Queuing.)

5. Open Azure Storage Explorer and select your test storage account.

6. In Azure Storage Explorer, under Storage Type select Queues and then select azuremailqueue.

You see one queue message for each verified subscriber in your destination email list.

7. Double-click a queue message, and then in the Message Detail dialog box select the Message

tab.

You see the contents of the queue message: the partition key (date of 2012-12-14), the row key

(the MessageRef value and the email address), and the restart flag, delimited by a comma.

8. Close the Message Detail dialog box.

9. Under Storage Type, select Tables, and then select the Message table.

10. Click Query to see all of the rows in the table.

You see the message you scheduled, with "Message" in the row key, followed by a row for each

verified subscriber, with the email address in the row key.

11. Double-click a row that has an email address in the row key, to see the contents of the

SendEmail row that worker role A created.

Next steps

You have now built worker role A and verified that it creates the queue messages and table rows that

worker role B needs in order to send emails. In the next tutorial, you'll build and test worker role B.

For links to additional resources for working with Windows Azure Storage tables, queues, and blobs,

see the end of the last tutorial in this series.

Building worker role B (email sender) for the
Windows Azure Email Service application - 5
of 5
This is the fifth tutorial in a series of five that show how to build and deploy the Windows Azure

Email Service sample application. For information about the application and the tutorial series, see

the first tutorial in the series.

In this tutorial you'll learn:

 How to add a worker role to a cloud service project.

 How to poll a queue and process work items from the queue.

 How to send emails by using SendGrid.

 How to handle planned shut-downs by overriding the OnStop method.

 How to handle unplanned shut-downs by making sure that no duplicate emails are sent.

Add worker role B project to the solution

1. In Solution Explorer, right-click the cloud service project, and choose New Worker Role Project.

2. In the Add New Role Project dialog box, select C#, select Worker Role, name the project

WorkerRoleB, and click Add.

Add a reference to the web project

You need a reference to the web project because that is where the entity classes are defined. You'll

use the entity classes in worker role B to read and write data in the Windows Azure tables that the

application uses.

1. Right-click the WorkerRoleB project, and choose Add Reference.

2. In Reference Manager, add a reference to the MvcWebRole project (or to the web application

project if you are running the web UI in a Windows Azure Web Site).

Add the Storage Client Library 2.0 NuGet package to the

project

When you added the project, it didn't automatically get the updated version of the Storage Client

Library NuGet package. Instead, it got the old 1.7 version of the package since that is what is

included in the project template. Now the solution has two versions of the Windows Azure Storage

NuGet package: the 2.0 version in the MvcWebRole and WorkerRoleA projects, and the 1.7 version in

the WorkerRoleB project. You need to uninstall the 1.7 version and install the 2.0 version in the

WorkerRoleB project.

1. From the Tools menu choose Library Package Manager and then Manage NuGet Packages

for Solution.

2. With Installed Packages selected in the left pane, scroll down until you get to the Windows

Azure Storage package.

You'll see the package listed twice, once for the 1.7 version and once for the 2.0 version.

3. Select the 1.7 version of the package and click Manage.

The check boxes for MvcWebRole and WorkerRoleB are cleared, and the check box for

WorkerRoleB is selected.

4. Clear the check box for WorkerRoleB, and then click OK.

5. When you are asked if you want to uninstall dependent packages, click No.

When the uninstall finishes you have only the 2.0 version of the package in the NuGet dialog

box.

6. Click Manage for the 2.0 version of the package.

The check boxes for MvcWebRole and WorkerRoleA are selected, and the check box for

WorkerRoleA is cleared.

7. Select the check box for WorkerRoleA, and then click OK.

Add SCL 1.7 referenceAdd a reference to an SCL 1.7

assembly

Version 2.0 of the Storage Client Library (SCL) does not have everything needed for diagnostics, so

you have to add a reference to one of the 1.7 assemblies, as you did earlier for the other two

projects.

1. Right-click the WorkerRoleB project, and choose Add Reference.

2. Click the Browse... button at the bottom of the dialog box.

3. Navigate to the following folder:

C:\Program Files\Microsoft SDKs\Windows Azure\.NET SDK\2012-10\ref

4. Select Microsoft.WindowsAzure.StorageClient.dll, and then click Add.

5. In the Reference Manager dialog box, click OK.

Add the SendGrid NuGet package to the project

To send email by using SendGrid, you need to install the SendGrid NuGet package.

1. In Solution Explorer, right-click the WorkerRoleB project and choose Manage NuGet Packages.

2. In the Manage NuGet Packages dialog box, select the Online tab, enter "sendgrid" in the search

box, and press Enter.

3. Click Install on the Sendgrid package.

4. Close the dialog box.

Add project settings

Like worker role A, worker role B needs storage account credentials to work with tables, queues, and

blobs. In addition, in order to send email, the worker role needs to have credentials to embed in calls

to the SendGrid service. And in order to construct an unsubscribe link to include in emails that it

sends, the worker role needs to know the URL of the application. These values are stored in project

settings.

For storage account credentials, the procedure is the same as what you saw in the third tutorial.

1. In Solution Explorer, under Roles in the cloud project, right-click WorkerRoleB and choose

Properties.

2. Select the Settings tab.

3. Make sure that All Configurations is selected in the Service Configuration drop-down list.

4. Select the Settings tab and then click Add Setting.

5. Enter "StorageConnectionString" in the Name column.

6. Select Connection String in the Type drop-down list.

7. Click the ellipsis (...) button at the right end of the line to open the Storage Account

Connection String dialog box.

8. In the Create Storage Connection String dialog, click the Your subscription radio button.

9. Choose the same Subscription and Account name that you chose for the web role and worker

role A.

10. Follow the same procedure to configure settings for the

Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString connection string.

Next, you create and configure the three new settings that are only used by worker role B.

1. In the Settings tab of the Properties window, Click Add Setting, and then add three new

settings of type String:

o Name: SendGridUserName, Value: the SendGrid user name that you established in the

second tutorial.

o Name: SendGridPassword, Value: the SendGrid password.

o Name: AzureMailServiceURL, Value: the base URL that the application will have when you

deploy it, for example: http://sampleurl.cloudapp.net.

http://sampleurl.cloudapp.net

Add code that runs when the worker role starts

1. In the WorkerRoleB project, delete WorkerRole.cs.

2. Right-click the WorkerRoleB project, and choose Add Existing Item.

3. Navigate to the folder where you downloaded the sample application, select the WorkerRoleB.cs

file in the WorkerRoleB project, and click Add.

4. Open WorkerRoleB.cs and examine the code.

As you already saw in worker role A, the OnStart method initializes the context classes that you

need in order to work with Windows Azure storage entities. It also makes sure that all of the tables,

queues, and blob containers you need in the Run method exist.

The difference compared to worker role A is the addition of the blob container and the subscribe

queue among the resources to create if they don't already exist. You'll use the blob container to get

the files that contain the HTML and plain text for the email body. The subscribe queue is used for

sending subscription confirmation emails.

public override bool OnStart()

{

 ServicePointManager.DefaultConnectionLimit =

Environment.ProcessorCount;

// Read storage account configuration settings

ConfigureDiagnostics();

Trace.TraceInformation("Initializing storage account in worker role B");

var storageAccount =

CloudStorageAccount.Parse(RoleEnvironment.GetConfigurationSettingValue("St

orageConnectionString"));

// Initialize queue storage

Trace.TraceInformation("Creating queue client.");

CloudQueueClient queueClient = storageAccount.CreateCloudQueueClient();

this.sendEmailQueue = queueClient.GetQueueReference("azuremailqueue");

this.subscribeQueue =

queueClient.GetQueueReference("azuremailsubscribequeue");

// Initialize blob storage

CloudBlobClient blobClient = storageAccount.CreateCloudBlobClient();

this.blobContainer =

blobClient.GetContainerReference("azuremailblobcontainer");

// Initialize table storage

var tableClient = storageAccount.CreateCloudTableClient();

tableServiceContext = tableClient.GetDataServiceContext();

Trace.TraceInformation("WorkerB: Creating blob container, queue, tables,

if they don't exist.");

this.blobContainer.CreateIfNotExists();

this.sendEmailQueue.CreateIfNotExists();

this.subscribeQueue.CreateIfNotExists();

var messageTable = tableClient.GetTableReference("Message");

messageTable.CreateIfNotExists();

var mailingListTable = tableClient.GetTableReference("MailingList");

mailingListTable.CreateIfNotExists();

return base.OnStart();

}

The Run method processes work items from two queues: the queue used for messages sent to email

lists (work items created by worker role A), and the queue used for subscription confirmation emails

(work items created by the subscribe API method in the MvcWebRole project).

public override void Run()

{

 CloudQueueMessage msg = null;

Trace.TraceInformation("WorkerRoleB start of Run()");

while (true)

{

 try

 {

 bool messageFound = false;

 // If OnStop has been called, return to do a graceful shutdown.

 if (onStopCalled == true)

 {

 Trace.TraceInformation("onStopCalled WorkerRoleB");

 returnedFromRunMethod = true;

 return;

 }

 // Retrieve and process a new message from the send-email-to-list

queue.

 msg = sendEmailQueue.GetMessage();

 if (msg != null)

 {

 ProcessQueueMessage(msg);

 messageFound = true;

 }

 // Retrieve and process a new message from the subscribe queue.

 msg = subscribeQueue.GetMessage();

 if (msg != null)

 {

 ProcessSubscribeQueueMessage(msg);

 messageFound = true;

 }

 if (messageFound == false)

 {

 System.Threading.Thread.Sleep(1000 * 60);

 }

 }

 catch (Exception ex)

 {

 string err = ex.Message;

 if (ex.InnerException != null)

 {

 err += " Inner Exception: " + ex.InnerException.Message;

 }

 if (msg != null)

 {

 err += " Last queue message retrieved: " + msg.AsString;

 }

 Trace.TraceError(err);

 // Don't fill up Trace storage if we have a bug in either process

loop.

 System.Threading.Thread.Sleep(1000 * 60);

 }

}

}

This code runs in an infinite loop until the worker role is shut down. If a work item is found in the

main queue, the code processes it and then checks the subscribe queue.

// Retrieve and process a new message from the send-email-to-list queue.

 msg = this.sendEmailQueue.GetMessage();

 if (msg != null)

 {

 ProcessQueueMessage(msg);

 messageFound = true;

 }

 // Retrieve and process a new message from the subscribe queue.

 msg = this.subscribeQueue.GetMessage();

 if (msg != null)

 {

 ProcessSubscribeQueueMessage(msg);

 messageFound = true;

 }

If nothing is waiting in either queue, the code sleeps 60 seconds before continuing with the loop.

if (messageFound == false)

 {

 System.Threading.Thread.Sleep(1000 * 60);

 }

The purpose of the sleep time is to minimize Windows Azure Storage transaction costs, as explained

in the previous tutorial.

When a queue item is pulled from the queue by the GetMessage method, that queue item becomes

invisible for 30 seconds to all other worker and web roles accessing the queue. This is what ensures

that only one worker role instance will pick up any given queue message for processing. You can

explicitly set this exclusive lease time (the time the queue item is invisible) by passing a visibility

timeout parameter to the GetMessage method. If the worker role could take more than 30 seconds

http://msdn.microsoft.com/en-us/library/windowsazure/jj154098.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.storage.table.dataservices.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.storage.table.dataservices.aspx

to process a queue message, you should increase the exclusive lease time to prevent other role

instances from processing the same message.

On the other hand, you don't want to set the exclusive lease time to an excessively large value. For

example, if the exclusive lease time is set to 48 hours and your worker role unexpectedly shuts down

after dequeuing a message, another worker role would not be able to process the message for 48

hours. The exclusive lease maximum is 7 days.

The GetMessages method (notice the "s" at the end of the name) can be used to pull up to 32

messages from the queue in one call. Each queue access incurs a small transaction cost, and the

transaction cost is the same whether 32 messages are returned or zero messages are returned. The

following code fetches up to 32 messages in one call and then processes them.

foreach (CloudQueueMessage msg in sendEmailQueue.GetMessages(32))

{

 ProcessQueueMessage(msg);

 messageFound = true;

}

When using GetMessages to remove multiple messages, be sure the visibility timeout gives your

application enough time to process all the messages. Once the visibility timeout expires, other role

instances can access the message, and once they do, the first instance will not be able to delete the

message when it finishes processing the work item.

The Run method calls ProcessQueueMessage when it finds a work item in the main queue:

private void ProcessQueueMessage(CloudQueueMessage msg)

{

 // Log and delete if this is a "poison" queue message (repeatedly

processed

 // and always causes an error that prevents processing from

completing).

 // Production applications should move the "poison" message to a "dead

message"

 // queue for analysis rather than deleting the message.

 if (msg.DequeueCount > 5)

 {

 Trace.TraceError("Deleting poison message: message {0} Role

Instance {1}.",

 msg.ToString(), GetRoleInstance());

 sendEmailQueue.DeleteMessage(msg);

http://www.windowsazure.com/

 return;

 }

 // Parse message retrieved from queue.

 // Example: 2012-01-01,0123456789email@domain.com,0

 var messageParts = msg.AsString.Split(new char[] { ',' });

 var partitionKey = messageParts[0];

 var rowKey = messageParts[1];

 var restartFlag = messageParts[2];

 Trace.TraceInformation("ProcessQueueMessage start: partitionKey {0}

rowKey {1} Role Instance {2}.",

 partitionKey, rowKey, GetRoleInstance());

 // If this is a restart, verify that the email hasn't already been

sent.

 if (restartFlag == "1")

 {

 var retrieveOperationForRestart =

TableOperation.Retrieve<SendEmail>(partitionKey, rowKey);

 var retrievedResultForRestart =

messagearchiveTable.Execute(retrieveOperationForRestart);

 var messagearchiveRow = retrievedResultForRestart.Result as

SendEmail;

 if (messagearchiveRow != null)

 {

 // SendEmail row is in archive, so email is already sent.

 // If there's a SendEmail Row in message table, delete it,

 // and delete the queue message.

 Trace.TraceInformation("Email already sent: partitionKey=" +

partitionKey + " rowKey= " + rowKey);

 var deleteOperation = TableOperation.Delete(new SendEmail {

PartitionKey = partitionKey, RowKey = rowKey, ETag = "*" });

 try

 {

 messageTable.Execute(deleteOperation);

 }

 catch

 {

 }

 sendEmailQueue.DeleteMessage(msg);

 return;

 }

 }

 // Get the row in the Message table that has data we need

to send the email.

 var retrieveOperation =

TableOperation.Retrieve<SendEmail>(partitionKey, rowKey);

 var retrievedResult = messageTable.Execute(retrieveOperation);

 var emailRowInMessageTable = retrievedResult.Result as SendEmail;

 if (emailRowInMessageTable == null)

 {

 Trace.TraceError("SendEmail row not found: partitionKey {0}

rowKey {1} Role Instance {2}.",

 partitionKey, rowKey, GetRoleInstance());

 return;

 }

 // Derive blob names from the MessageRef.

 var htmlMessageBodyRef = emailRowInMessageTable.MessageRef + ".htm";

 var textMessageBodyRef = emailRowInMessageTable.MessageRef + ".txt";

 // If the email hasn't already been sent, send email and archive the

table row.

 if (emailRowInMessageTable.EmailSent != true)

 {

 SendEmailToList(emailRowInMessageTable, htmlMessageBodyRef,

textMessageBodyRef);

 var emailRowToDelete = new SendEmail { PartitionKey = partitionKey,

RowKey = rowKey, ETag = "*" };

 emailRowInMessageTable.EmailSent = true;

 var upsertOperation =

TableOperation.InsertOrReplace(emailRowInMessageTable);

 messagearchiveTable.Execute(upsertOperation);

 var deleteOperation = TableOperation.Delete(emailRowToDelete);

 messageTable.Execute(deleteOperation);

}

// Delete the queue message.

sendEmailQueue.DeleteMessage(msg);

Trace.TraceInformation("ProcessQueueMessage complete: partitionKey {0}

rowKey {1} Role Instance {2}.",

 partitionKey, rowKey, GetRoleInstance());

}

Poison messages are those that cause the application to throw an exception when they are

processed. If a message has been pulled from the queue more than five times, we assume that it

cannot be processed and remove it from the queue so that we don't keep trying to process it.

Production applications should consider moving the poison message to a "dead message" queue for

analysis rather than deleting the message.

The code parses the queue message into the partition key and row key needed to retrieve the

SendEmail row, and a restart flag.

var messageParts = msg.AsString.Split(new char[] { ',' });

 var partitionKey = messageParts[0];

 var rowKey = messageParts[1];

 var restartFlag = messageParts[2];

If processing for this message has been restarted after an unexpected shut down, the code checks

the messagearchive table to determine if this email has already been sent. If it has already been

sent, the code deletes the SendEmail row if it exists and deletes the queue message.

if (restartFlag == "1")

 {

 var retrieveOperationForRestart =

TableOperation.Retrieve<SendEmail>(partitionKey, rowKey);

 var retrievedResultForRestart =

messagearchiveTable.Execute(retrieveOperationForRestart);

 var messagearchiveRow = retrievedResultForRestart.Result as

SendEmail;

 if (messagearchiveRow != null)

 {

 Trace.TraceInformation("Email already sent: partitionKey=" +

partitionKey + " rowKey= " + rowKey);

 var deleteOperation = TableOperation.Delete(new SendEmail {

PartitionKey = partitionKey, RowKey = rowKey, ETag = "*" });

 try

 {

 messageTable.Execute(deleteOperation);

 }

 catch

 {

 }

 sendEmailQueue.DeleteMessage(msg);

 return;

 }

 }

Next, we get the SendEmail row from the message table. This row has all of the information

needed to send the email, except for the blobs that contain the HTML and plain text body of the

email.

var retrieveOperation = TableOperation.Retrieve<SendEmail>(partitionKey,

rowKey);

 var retrievedResult = messageTable.Execute(retrieveOperation);

 var emailRowInMessageTable = retrievedResult.Result as SendEmail;

 if (emailRowInMessageTable == null)

 {

 Trace.TraceError("SendEmail row not found: partitionKey {0}

rowKey {1} Role Instance {2}.",

 partitionKey, rowKey, GetRoleInstance());

 return;

 }

Then the code sends the email and archives the SendEmail row.

if (emailRowInMessageTable.EmailSent != true)

 {

 SendEmailToList(emailRowInMessageTable, htmlMessageBodyRef,

textMessageBodyRef);

 var emailRowToDelete = new SendEmail { PartitionKey = partitionKey,

RowKey = rowKey, ETag = "*" };

 emailRowInMessageTable.EmailSent = true;

 var upsertOperation =

TableOperation.InsertOrReplace(emailRowInMessageTable);

 messagearchiveTable.Execute(upsertOperation);

 var deleteOperation = TableOperation.Delete(emailRowToDelete);

 messageTable.Execute(deleteOperation);

}

Moving the row to the messagearchive table can't be done in a transaction because it affects

multiple tables.

Finally, if everything else is successful, the queue message is deleted.

sendEmailQueue.DeleteMessage(msg);

The actual work of sending the email by using SendGrid is done by the SendEmailToList method.

If you want to use a different service than SendGrid, all you have to do is change the code in this

method.

Note: If you have invalid credentials in the project settings, the call to SendGrid will fail but the

application will not get any indication of the failure. If you use SendGrid in a production application,

consider setting up separate credentials for the web API in order to avoid causing silent failures

when an administrator changes his or her SendGrid user account password. For more information,

see SendGrid MultiAuth - Multiple Account Credentials. You can set up credentials at

https://sendgrid.com/credentials.

private void SendEmailToList(string emailAddress, string fromEmailAddress,

string subjectLine,

 string htmlMessageBodyRef, string textMessageBodyRef)

{

 var email = SendGrid.GenerateInstance();

 email.From = new MailAddress(fromEmailAddress);

 email.AddTo(emailAddress);

 email.Html = GetBlobText(htmlMessageBodyRef);

 email.Text = GetBlobText(textMessageBodyRef);

 email.Subject = subjectLine;

 var credentials = new

NetworkCredential(RoleEnvironment.GetConfigurationSettingValue("SendGridUs

erName"),

 RoleEnvironment.GetConfigurationSettingValue("SendGridPassword"));

 var transportREST = REST.GetInstance(credentials);

 transportREST.Deliver(email);

http://clumsyleaf.com/products/tablexplorer
https://sendgrid.com/credentials

}

private string GetBlobText(string blogRef)

{

 var blob = blobContainer.GetBlockBlobReference(blogRef);

 blob.FetchAttributes();

 var blobSize = blob.Properties.Length;

 using (var memoryStream = new MemoryStream((int)blobSize))

 {

 blob.DownloadToStream(memoryStream);

 return

System.Text.Encoding.UTF8.GetString(memoryStream.ToArray());

 }

}

In the GetBlobText method, the code gets the blob size and then uses that value to initialize the

MemoryStream object for performance reasons. If you don't provide the size, what the

MemoryStream does is allocate 256 bytes, then when the download exceeds that, it allocates 512

more bytes, and so on, doubling the amount allocated each time. For a large blob this process would

be inefficient compared to allocating the correct amount at the start of the download.

The Run method calls ProcessSubscribeQueueMessage when it finds a work item in the

subscribe queue:

private void ProcessSubscribeQueueMessage(CloudQueueMessage msg)

{

 // Log and delete if this is a "poison" queue message (repeatedly

processed

 // and always causes an error that prevents processing from

completing).

 // Production applications should move the "poison" message to a "dead

message"

 // queue for analysis rather than deleting the message.

 if (msg.DequeueCount > 5)

 {

 Trace.TraceError("Deleting poison subscribe message: message

{0}.",

 msg.AsString, GetRoleInstance());

 subscribeQueue.DeleteMessage(msg);

 return;

 }

 // Parse message retrieved from queue. Message consists of

 // subscriber GUID and list name.

 // Example: 57ab4c4b-d564-40e3-9a3f-81835b3e102e,contoso1

 var messageParts = msg.AsString.Split(new char[] { ',' });

 var subscriberGUID = messageParts[0];

 var listName = messageParts[1];

 Trace.TraceInformation("ProcessSubscribeQueueMessage start:

subscriber GUID {0} listName {1} Role Instance {2}.",

 subscriberGUID, listName, GetRoleInstance());

 // Get subscriber info.

 string filter = TableQuery.CombineFilters(

 TableQuery.GenerateFilterCondition("PartitionKey",

QueryComparisons.Equal, listName),

 TableOperators.And,

 TableQuery.GenerateFilterCondition("SubscriberGUID",

QueryComparisons.Equal, subscriberGUID));

 var query = new TableQuery<Subscriber>().Where(filter);

 var subscriber =

mailingListTable.ExecuteQuery(query).ToList().Single();

 // Get mailing list info.

 var retrieveOperation =

TableOperation.Retrieve<MailingList>(subscriber.ListName, "mailinglist");

 var retrievedResult = mailingListTable.Execute(retrieveOperation);

 var mailingList = retrievedResult.Result as MailingList;

SendSubscribeEmail(subscriberGUID, subscriber, mailingList);

subscribeQueue.DeleteMessage(msg);

Trace.TraceInformation("ProcessSubscribeQueueMessage complete: subscriber

GUID {0} Role Instance {1}.",

 subscriberGUID, GetRoleInstance());

}

This method performs the following tasks:

o If the message is a "poison" message, logs and deletes it.

o Gets the subscriber GUID from the queue message.

o Uses the GUID to get subscriber information from the MailingList table.

o Sends a confirmation email to the new subscriber.

o Deletes the queue message.

As with emails sent to lists, the actual sending of the email is in a separate method, making it easy

for you to change to a different email service if you want to do that.

private static void SendSubscribeEmail(string subscriberGUID, Subscriber

subscriber, MailingList mailingList)

{

 var email = SendGrid.GenerateInstance();

 email.From = new MailAddress(mailingList.FromEmailAddress);

 email.AddTo(subscriber.EmailAddress);

 string subscribeURL =

RoleEnvironment.GetConfigurationSettingValue("AzureMailServiceURL") +

 "/subscribe?id=" + subscriberGUID + "&listName=" +

subscriber.ListName;

 email.Html = String.Format("<p>Click the link below to subscribe to

{0}. " +

 "If you don't confirm your subscription, you won't be subscribed

to the list.</p>" +

 "Confirm Subscription",

mailingList.Description, subscribeURL);

 email.Text = String.Format("Copy and paste the following URL into your

browser in order to subscribe to {0}. " +

 "If you don't confirm your subscription, you won't be subscribed

to the list.\n" +

 "{1}", mailingList.Description, subscribeURL);

 email.Subject = "Subscribe to " + mailingList.Description;

 var credentials = new

NetworkCredential(RoleEnvironment.GetConfigurationSettingValue("SendGridUs

erName"),

RoleEnvironment.GetConfigurationSettingValue("SendGridPassword"));

 var transportREST = REST.GetInstance(credentials);

 transportREST.Deliver(email);

}

Testing Worker Role B

1. Run the application by pressing F5.

2. Go to the Messages page to see the message you created to test worker role A. After a minute

or so, refresh the web page and you will see that the row has disappeared from the list because it

has been archived.

3. Check the email inbox where you expect to get the email. Note that there might be delays in the

sending of emails by SendGrid or delivery to your email client, so you might have to wait a while

to see the email. You might need to check your junk mail folder also.

Next steps

You have now built the Windows Azure Email Service application from scratch, and what you have is

the same as the completed project that you downloaded. To deploy to the cloud, test in the cloud,

and promote to production, you can use the same procedures that you saw in the second tutorial. If

you chose to build the alternative architecture, see the Windows Azure Web Sites getting started

tutorial for information about how to deploy the MVC project to a Windows Azure Web Site.

To learn more about Windows Azure storage, see the following resource:

 Essential Knowledge for Windows Azure Storage (Bruno Terkaly's blog)

To learn more about the Windows Azure Table service, see the following resources:

 Essential Knowledge for Windows Azure Table Storage (Bruno Terkaly's blog)

 How to get the most out of Windows Azure Tables (Windows Azure Storage team blog)

 How to use the Table Storage Service in .NET

 Windows Azure Storage Client Library 2.0 Tables Deep Dive (Windows Azure Storage team blog)

 Real World: Designing a Scalable Partitioning Strategy for Windows Azure Table Storage

To learn more about the Windows Azure Queue service and Windows Azure Service Bus queues, see

the following resources:

 Windows Azure Queues and Windows Azure Service Bus Queues - Compared and Contrasted

 How to use the Queue Storage Service in .NET

To learn more about the Windows Azure Blob service, see the following resource:

 How to use the Windows Azure Blob Storage Service in .NET

http://msdn.microsoft.com/en-us/library/windowsazure/ee741827.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee741827.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/hh508997.aspx
http://blogs.msdn.com/b/brunoterkaly/archive/2012/11/08/essential-knowledge-for-azure-table-storage.aspx
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/11/06/how-to-get-most-out-of-windows-azure-tables.aspx
http://www.windowsazure.com/en-us/develop/net/how-to-guides/table-services/
http://msdn.microsoft.com/en-us/library/windowsazure/microsoft.windowsazure.storage.table.tableoperation.retrieve.aspx
http://manage.windowsazure.com/
http://msdn.microsoft.com/en-us/library/windowsazure/ee405486.aspx
http://www.windowsazure.com/en-us/develop/net/tutorials/multi-tier-web-site/2-download-and-run/
http://blogs.msdn.com/b/windowsazure/archive/2012/10/24/using-trace-in-windows-azure-cloud-applications-1.aspx

To learn more about autoscaling Windows Azure Cloud Service roles, see the following resources:

 How to Use the Autoscaling Application Block

 Autoscaling and Windows Azure

 Building Elastic, Autoscalable Solutions with Windows Azure (MSDN channel 9 video)

Acknowledgments

These tutorials and the sample application were written by Rick Anderson and Tom Dykstra. We

would like to thank the following people for their assistance:

 Barry Dorrans (Twitter @blowdart)

 Cory Fowler (Twitter @SyntaxC4)

 Joe Giardino

 Don Glover

 Jai Haridas

 Scott Hunter (Twitter: @coolcsh)

 Brian Swan

 Daniel Wang

 The members of the Developer Advisory Council who provided feedback:

o Damir Arh

o Jean-Luc Boucho

o Carlos dos Santos

o Mike Douglas

o Robert Fite

o Gianni Rosa Gallina

o Fabien Lavocat

o Karl Ots

o Carlos-Alejandro Perez

o Sunao Tomita

o Perez Jones Tsisah

o Michiel van Otegem

http://blogs.msdn.com/b/windowsazurestorage/archive/2012/11/06/windows-azure-storage-client-library-2-0-tables-deep-dive.aspx
https://twitter.com/SyntaxC4
http://channel9.msdn.com/Events/WindowsAzureConf/2012/B04
http://blogs.msdn.com/b/rickandy/
https://twitter.com/blowdart
http://manage.windowsazure.com/
http://www.windowsazure.com/en-us/develop/net/tutorials/get-started
http://msdn.microsoft.com/en-us/library/windowsazure/ee758454.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/microsoft.windowsazure.storageclient.cloudqueue.getmessages.aspx
http://support.sendgrid.com/entries/21658978-sendgrid-multiauth-multiple-account-credentials
http://blog.syntaxc4.net/
http://blogs.msdn.com/b/windowsazurestorage/

	Cover
	Contents
	Introduction - 1 of 5
	What You'll Learn
	Front-end overview
	Tutorials in the Series
	Why an Email List Service Application
	Resilient
	Scalable

	Back-end overview
	Windows Azure Tables
	mailinglist table
	message table
	messagearchive table

	Windows Azure Queues
	AzureMailQueue
	AzureMailSubscribeQueue

	Windows Azure Email Service data diagram
	Windows Azure Blobs
	Windows Azure Cloud Service versus Windows Azure Web Site
	Cost
	Authentication and Authorization
	Next steps

	Configuring and Deploying the Windows Azure Email Service application - 2 of 5
	Set up the development environment
	Set up a free Windows Azure account
	Create a Windows Azure Storage account
	Install Azure Storage Explorer
	Create a Cloud Service
	Download and run the completed solution
	Viewing developer storage in Visual Studio
	Configure the application to use your Windows Azure Storage account
	The manual method for configuring storage account credentials
	Test the application configured to use your storage account
	Use Azure Storage Explorer to view data entered into your storage account
	Use Server Explorer to view data entered into your storage account
	Optional steps to disable Azure Storage Emulator automatic startup

	Configure the application to use SendGrid
	Create a SendGrid account
	Update SendGrid credentials in worker role properties

	Deploy the Application to Windows Azure
	Implement IP restrictions
	Configure the application to use your storage account when it runs in the cloud
	Publish the application

	Promote the Application from Staging to Production
	Configure and View Tracing Data
	Add another worker role instance to handle increased load
	Next steps

	Building the web role for the Windows Azure Email Service application - 3 of 5
	Create the Visual Studio solution
	Create a cloud service project with a web role and a worker role
	Set the page header, menu, and footer
	Run the application locally

	Configure Tracing
	Add code to efficiently handle restarts
	Update the Storage Client Library NuGet Package
	Add a reference to an SCL 1.7 assembly
	Add code to create tables, queue, and blob container in the Application_Start method
	Create and test the Mailing List controller and views
	Add the MailingList entity class to the Models folder
	Add the MailingList MVC controller
	Add the MailingList MVC views
	Make MailingList the default controller

	Configure the web role to use your test Windows Azure Storage account
	Test the application

	Create and test the Subscriber controller and views
	Add the Subscriber entity class to the Models folder
	Add the Subscriber MVC controller
	Add the Subscriber MVC views
	Test the application

	Create and test the Message controller and views
	Add the Message entity class to the Models folder
	Add the Message MVC controller
	Add the Message MVC views
	Test the application

	Create and test the Unsubscribe controller and view
	Add the Unsubscribe view model to the Models folder
	Add the Unsubscribe controller
	Create the MVC views
	Test the application

	(Optional) Build the Alternative Architecture
	Next steps

	Building worker role A (email scheduler) for the Windows Azure Email Service application - 4 of 5
	Add a reference to the web project
	Add a reference to an SCL 1.7 assembly
	Add the SendEmail model
	Add code that runs when the worker role starts
	Configure the storage connection string
	Testing worker role A
	Next steps

	Building worker role B (email sender) for the Windows Azure Email Service application - 5 of 5
	Add worker role B project to the solution
	Add a reference to the web project
	Add the Storage Client Library 2.0 NuGet package to the project
	Add SCL 1.7 referenceAdd a reference to an SCL 1.7 assembly
	Add the SendGrid NuGet package to the project
	Add project settings
	Add code that runs when the worker role starts

	Testing Worker Role B
	Next steps

	Acknowledgments

