The Entity Framework 4.0 and
ASPNET Web Forms:

Getting Started

Tom Dykstra

Step-by-Step

Microsoft

The Entity Framework 4.0 and
ASP.NET Web Forms: Getting Started

Tom Dykstra

Summary: In this book, you'll learn the basics of using Entity Framework Database First
to display and edit data in an ASP.NET Web Forms application.

Category: Step-By-Step

Applies to: ASP.NET 4.0, ASP.NET Web Forms, Entity Framework 4.0, Visual Studio 2010
Source: ASP.NET site (link to source content)

E-book publication date: June 2012

Microsoft

http://www.asp.net/web-forms/tutorials/getting-started-with-ef�

Copyright © 2012 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author's views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents

INEFOAUCTION cooorrti it e e e bbbt 7
Creating the Web APPIICAtION.. ... esecieceieceiieesiecsisecssesesesesssesssesssesesssesesesesssesassesssesesesssessesecsssnsens 8
Creating the Database. ... sese et esese sttt b se bbb 11
Creating the Entity Framework Data MOGEl.........crcncineceieceinesesesesesieesisesssessesissesssssessssesssenens 14
Exploring the Entity Framework Data MOELccnecinceeceinsersecsseesisecsssesesessessssessssssesssnesssens 20

The EntityDataSouUrCe CONTIOL ... c.creiceiecrieceineceiesesesieesseecssssesesesesesesesssssesesesesssssesesessessssesssssessssssessessessssessssnesess 28
Adding and Configuring the EntityDataSource CONTIOlo.eeeerceemnereeeeeeeesssseseesssssesesssseseessssssesssnene 28
Configuring Database RUIES O AlIOW DEIETION.......c.rveeereeeereeeeeseeeessseseessssesessssseesssssesessssssessssssesssssssessessenns 33
Using a GridView Control to Read and Update ENItiescc.ovvrermceinecenecemnecrinecsiecesiecesesesesesecsssnesesens 37
Revising EntityDataSource Control Markup to Improve Performanceecenreeeeneeeessnne. 41
Displaying Data from a Navigation PrOPEItY ... eureimereessseeesssssseessseseesssssesesssssssssssssssssssssssssssnese 43
Using a DetailsView Control t0 INSEIrt ENTITIEScc.vrevceiceiireceinererineceiecesieeesieseseseesssnessssesesssssesssnsesssnesssens 45
Displaying Data in @ Drop-DOWN LiST......cc.niucrceiceieceinseriecsiseessisessenesesssssesssnessssnessssssessenesesssessssnessssnesssens 46

Filtering, Ordering, and GroUPING Data.......couccecrcrecriecsiesesieesiesisessseesesessssssssesssenssssenesessssessssnessssnssesssessenss 50
Using the EntityDataSource "Where" Property tO Filter Data.......ccocecnrcnecrieceineserinsecseecssssecesons 51
Using the EntityDataSource "OrderBy" Property to Order Datacowoenmeeennreennreenerenereonesessesesssessssseseens 52
Using a Control Parameter to Set the "Where" PrOPErtY ... cccenecmnecssesesssessesesesssessssnesssons 53
Using the EntityDataSource "GroupBy" Property t0 Group Data......c..coovvrerrrennreenneeineeenneeenneeessseessssesssseseseons 57
Using the QueryExtender Control for Filtering and Orderingcooceeeeeeeeeeneeeeesneseesssseeessssseesssnseseeses 59
Using the "Like" Operator tO FIltEr Data ... siessessssesesssssssssssssssssesssssssssssssssssssssssssssssssessns 62

WOrking With REIGEA DAtaeveereeerieerieiieriise e riteseese sttt sttt ssss s ssss bbb st ss s ss s ss s snns 64
Displaying and Updating Related Entities in @ GridView CONrol.......cccenecenrcrneceineceseseseseesenes 65
Displaying Related Entities in @ Separate CONTIOL........cc.crermceineceieceireerinecsiesessseeeseesesssessssnesesssesessseseses 70
Using the EntityDataSource "Selected” Event to Display Related Data.........ccovwemceneceneceneecrinneceinecenons 76

Working with Related Data, CONTINUE...........cocireiceiecrieceiieeesisssesisssesssesssssesesssesssssesssssesssssesessssssssssesssssssesssnecses 80
Adding an Entity with a Relationship to an EXisting ENtityc..c.cooevrrenrinnrennienniseessesesiesesesesssesssssesessenens 81
Working with Many-to-Many RelatioNSNIPS ... stssssesssnses 84

Implementing Table-per-Hierarchy INNEITANCE. ...ttt ss st sesssssssssssssssens 91
Table-per-Hierarchy versus Table-per-Type INNErtaNCe ...t ssssssssessenes 91
Adding INStructor and STUAENT ENTIHIES ...t ssese st sssssssss st ssss st ssnees 92

Mapping Instructor and Student Entities to the Person Table..........cnccncnecenecssnecenone 97

Using the Instructor and STUAENT ENTITIESovcceuceirrernecneceieceineresiecsiessssecssieseseseesssessseesesssesesssseesssnesssens 99
USING STOr@A PrOCEAUIES......uceeerceverceriecetseeeisecsiiesesesssesissesssssesssssesesesesessses bt eseseseses sttt eses s et sesse st ssessesens 106
Creating Stored Procedures in the Database.........cco.oeereeieennreenerineeise e issesissesssesssssssssesssssssssssssssssssssnses 106
Adding the Stored Procedures to the Data MOdEl...........cccencenecrneceiesesnseesisesesisecsssesesessesisees 110
MapPiNg the STOred PrOCEAUIES.........cvcerercereceieceieesesesssesiessssesssssesssesesessss st ssssesssesesesesesessssesssssesssenecsss 111
Using Insert, Update, and Delete StOred ProCEAUIESrenereneeennreereseiseseesesssssesssesssssessssssssssssssssssssanees 116
USING SelECt StOr@A PrOCEAUIES oottt sssse sttt ss s ss s ssssssasesssnees 117
Using Dynamic Data Functionality to Format and Validate Data........cccc.ccoonreenrennrenneenesiseseseeeesssesessssesssseeens 119
Using DynamicField and DynamicControl CONTIOISoo.orrererenereneeeseeesseessseess e ssssssssesssssssssssssssessanens 119
Adding Metadata to the Data MOMEl........cncrcceieesieesisssesisecsssesssisessissessssssesssessssssssssssesss 124
The ObjectDataSOoUICE CONTIOL ... ssiseesesesese s s sissee st sttt sbss st sbee bt enessens 129
Business LOGiC aNd REPOSITOIY ClaSSES........urereeeieeeerereereeessssssssssesssesssssessessaness 129
Updating the Database and the Data MOdEL..........ese ettt sssssssesss st ssssnees 131
Adding a Relationship t0 the Database ...t sssse st st ssssssssans 131
Adding @ View 10 the Dat@abase........ccoc ettt ss st st sssssssssssesssse st ssssesssssssnns 134
Updating the Data IMOEL ...ttt ss st ssse st ssse st s ss st st ss st ss s sssssasessaness 135
Using a Repository Class and an ObjectDataSource CONtIOl.........correneeeneennreernseersseesssesssessssssseesssesenees 140
Adding Insert and Delete FUNCHIONAIILY ...t ssssessssssssesssssssanens 144
The ALtaCh METNOM.........cciveceicicieeeie it ssesessissesssees bbbt snesesbenesens 146
The SaveChanges METNOM. ...t sttt sttt ss s ss s ss et seeas 147
Retrieving Instructor Names to Select When INSErting.......coccooemreeonreenerennseenseeenssessesesessesesennes 147
Creating a Page for Inserting Departments...........ccoocoveveeneveonerennnes 147
Adding Update Functionality........c.ccoevemreermrrernruene. 151
Adding a Business Logic Layer and Unit Tests 156
Creating a Repository Interface 156
Creating a Business-Logic Class 158
Creating a Unit-Test Project and Repository Implementation 163
Creating Unit Tests 166
Adding Business Logic to Make a Test Pass 169
Handling ObjectDataSource EXCEPTIONSccccvceucemircemeesereseerisesessessssseesessessssessssnesesssssesssessessesssssessssnesess 173
SOIING ANA FITEING . civererieciiiceiiecrireeciieceiie st cesssesese s ssse bbb b bbbttt 178

Adding the Ability to SOrt GridVIEW COIUMNS.........ccovremrerecrirecrecemiesesiesesiseessseessssessseesesesssesssessssnessssnesess 178

AdAING @ SEACN BOXu..cuuurirerrericiicirieceiietereresesieesiees s sssesesesesesessssesssssesssessesesesesesessssssesssessessssssesesesssesssssessssnesess 181
Adding a Details Column for EACh Grid ROWc.ceeurceeereeseeseesssseeesssseseesssesessssesessssssssssssssssssssssessssssnns 184
HaNAING CONCUITENCY .c.ouevuurcriieerieeriereeceiieeesesseesissessaseessssesesesesesesese sttt st eseses st sttt se st ssisessens 187
CONCUITENCY CONFIICES...cvveurireeeereeeieee et seeese st sss s sss st s 188
Pessimistic CONCUITENCY (LOCKING) c.uuucvvumrerirceimcerieeiisesiecsssneeesesessiseesissesssssesssesssssssessssnsssssessssssesssessssnsssenseses 188
OPLIMISTIC CONCUITENCY .oovevverieverceiceieneeiseeeseesesisesssssesssesesssssesssesese st sssses s st st se st st ssesss i ssssessissesssenesessnnes 189
Detecting CoONCUITENCY CONTHTLS w.ovvuuuurreeeeerreeeiereeeseeeesseeeeeeseseessssese s sss s sssss s essssesesss s sssss s ssssssessesssnnnes 190
Handling Optimistic Concurrency Without a Tracking Property ... 191
Enabling Concurrency Tracking in the Data MOdel..........ccccinciecinececernsesieessisseesiessssnsessineses 191
Handling Concurrency EXCePtions iN the DAL......nceinecsiecsisecsssssesisessssssessisesssenesssssesssensesss 192
Handling Concurrency Exceptions in the Presentation Layer ... ccemecseceineesssesssseens 193
Testing Optimistic Concurrency in the DepartMeNnts PAgEcoovoeeemreenrinneeseeesesessesesssesssesssssssssssssssenns 195
Handling Optimistic Concurrency Using @ Tracking PrOPerty........cecencemeeesiecsiecssenessssnesssenseses 197
Adding OfficeAssignment Stored Procedures to the Data Modelcc..oorreennecceenneeceenneeceeseeeeeenns 197
Adding OfficeAssignment Methods t0 the DALiiniensssiss 201
Adding OfficeAssignment Methods t0 the BLL..........rieniniensssissnsss 203
Creating an OfficeAssigNMENts WED Page.......oovrrereereeieeeisesesseessesss s sssssssssssssssssssssssssssssssssssnns 204
Testing Optimistic Concurrency in the OfficeAsSIgNMENtS Page........coovvvrvermriermniennsieisnnsssssssssssssssnsssnnens 206
Handling Concurrency with the EntityDataSource CONrol..........ccerneceecemneeessecessecsens 207
Maximizing Performance.. . . . 212
Efficiently Loading Related Data .. . et 213
Managing View State 215
Using The NoTracking Merge Option 217
Pre-Compiling LINQ Queries 217
Examining Queries Sent to the Database 221
Pre-Generating Views 228
What's New in the Entity Framework 4 236
Foreign-Key Associations 236
Executing User-Defined SQL Commands . . 238
MOAEI-FIrSt DEVEIOPMENT......coumrevercrimciiieeeieeceieeseriecsisesesesesesesesesesesessssesssssesasese st seseseses st ssesesesessessssessssssssnsens 240
POCO SUPPOIT ..ottt sssee s esase s ettt et 252

COAE-FIrSt DEVEIOPMENTcvurrriceiirerirecricerineceieeseseserisecssesssssesesesesesssesssee s s ebesesese st sesessssssssesene

More Information

Introduction

The application you'll be building in these tutorials is a simple university website.

CONTOSO UNIVERSITY

Horme About Students Courses Instructors Departments

WELCOME TO CONTOSO UNIVERSITY!

Users can view and update student, course, and instructor information. A few of the screens you'll create are
shown below.

STUDENT LIST

ID Name EnrollmentDate
Edit Celete 3 Pegeoy Justice Q71,2001
Edit Delete & “an Li Q12002

Edit Delete 7 Laura Marman Q71,2002

ADD NEW STUDENTS

First
Mame

Last Mame

Enrallment
Date

Insert Cancel

http://i1.asp.net/umbraco-beta-media/2575925/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image03_2.png�
http://i1.asp.net/umbraco-beta-media/2575937/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image30.png�
http://i1.asp.net/umbraco-beta-media/2575949/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image37.png�

COURSES BY DEPARTMENT
Select a Department|Engineering El

CourselD Title Credits
1050 Chemistry 4
1061 Physics 4

COURSES BY NAME

Enter a course narme Search |

Department CourselD Title Cradits

Economics 4041 Macroeconormics 3

Econormics 4022 Microeconomics 3
INSTRUCTORS

ID Name Hire Date Office Assignment

Edit Select 1 Abercrombie, Kim 37111995 17 Smith COURSE DETALS

Edit Select 4 Fakhouri, Fadi 8/6/2002 29 Adams ID 2030

Edit Select 5 Harui, Roger 7/1/1998 37 Williams Title Poetry

Edit Select 18 Zheng, Roger 2/12/2004 143 Smith Credits 2

Edit Select 25 Kapoor, Candace 1/15/2001 57 Adams Department English

Edit Select 27 Serrano, Stacy 6/1/1999 271 Williams Location

Edit Select 21 Stewart, Jasmine 10/12/1937 131 Smith URL http:/fwranw fineart
Edit Select 32 XU, Kristen Fr2a52001 203 wWilliams

Edit Select 34 Van Houten, Roger 12/7/2000 213 Smith STUDENT GRADES

|E| MName |Grade
COURSES TAUGHT |2_|E=arzdukas, Gytis |3.50
ID Title Department |3_|Ju5tice, Peggy |4.UU

Select 2030 Poetry English

Creating the Web Application

To start the tutorial, open Visual Studio and then create a new ASP.NET Web Application Project using the
ASP.NET Web Application template:

http://i1.asp.net/umbraco-beta-media/2575961/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image31.png�
http://i1.asp.net/umbraco-beta-media/2575973/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image32.png�

Mewe Project

Recent Termplates

Installed Templates

Wisual Basic

4 Vizual C#
Wiindows
Wieh
Office
Cloud
Reporting
SharePoint

Silosarliakt

Online Termplates

Marme:
Location;
Solution:

Solution napne:

[.NET Frarmework 4 ']Sl:ur‘t by [Default

» ‘*ﬁ A5P.MET Web Application “isual CH
=ch SEPMET BAWVC 2 Wieb Applica,. Misual CH
H A5PMET Ermnpty Meb Applica,.Visual C#
=ch ASPMET MWC 2 Empty Web.., Yisual C#

i (.‘.#ﬁ?, ASPMET Dywnarnic Data Entiti,. Visual C#

Corntosolniversity

~ Type: Visuall

&, project for
Wireh user intd

oy

- | Browse,.,

[Create newy salution

]

Contosolniversity

Create directo
[] &dd to sourcH

This template creates a web application project that already includes a style sheet and master pages:

http://i1.asp.net/umbraco-beta-media/2575985/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image01_2.png�

Solution Explorer * B X

= HE e
.L% ContosoUniversity
> [=d Properties
» [+3] References
4 | Account
SEE ChangePassword.aspx
. [ChangePasswordSucces
. [Login.aspx
SNEE Register.aspx
[=p Weh, config
3 App_Data
4 [Scripts
3] jquery-L4.1-vsdoc.js
3] jquery-14.1)s
2] jquery-1L4.Lrnins
4 [Shyles
A Site.css
s E-l.-'lhu:uut.aspx
. | Default.aspe
s ﬂ] Global.asax
[SiteMaster
s [Web.config

Open the Site.Master file and change "My ASP.NET Application" to “Contoso University”.

<h1>
Contoso University
</h1>

Find the Menu control named NavigationMenu and replace it with the following markup, which adds menu

items for the pages you'll be creating.

<asp:MenuID="NavigationMenu"runat="server"CssClass="menu"EnableViewState="false"
IncludeStyleBlock="false"Orientation="Horizontal">

<Items>

<asp:MenuItemNavigateUrl="/Default.aspx"Text="Home"/>
<asp:MenuItemNavigateUrl="/About.aspx"Text="About"/>

10

http://i1.asp.net/umbraco-beta-media/2575997/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image02_2.png�

<asp:MenuItemNavigateUrl="/Students.aspx"Text="Students">
<asp:MenuItemNavigateUrl="/StudentsAdd.aspx"Text="Add Students"/>
</asp:MenuItem>

<asp:MenuItemNavigateUrl="/Courses.aspx"Text="Courses">
<asp:MenuItemNavigateUrl="/CoursesAdd.aspx"Text="Add Courses"/>
</asp:MenuItem>
<asp:MenuItemNavigateUrl="/Instructors.aspx"Text="Instructors">
<asp:MenuItemNavigateUrl="/InstructorsCourses.aspx"Text="Course Assignments"/>
<asp:MenuItemNavigateUrl="/0fficeAssignments.aspx"Text="0ffice Assignments"/>
</asp:MenuItem>
<asp:MenuItemNavigateUrl="/Departments.aspx"Text="Departments">
<asp:MenuItemNavigateUrl="/DepartmentsAdd.aspx"Text="Add Departments"/>
</asp:MenuItem>

</Items>

</asp:Menu>

Open the Default.aspx page and change the Content control named BodyContent to this:

<asp:ContentID="BodyContent"runat="server"ContentPlaceHolderID="MainContent">
<h2>
Welcome to Contoso University!
</h2>
</asp:Content>

You now have a simple home page with links to the various pages that you'll be creating:

CONTOSO UNIVERSITY

Horme About Students Courses Instructors Departments

WELCOME TO CONTOSO UNIVERSITY!

Creating the Database

11

http://i1.asp.net/umbraco-beta-media/2576009/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image03_4.png�

For these tutorials, you'll use the Entity Framework data model designer to automatically create the data model
based on an existing database (often called the database-first approach). An alternative that's not covered in
this tutorial series is to create the data model manually and then have the designer generate scripts that create

the database (the model-first approach).

For the database-first method used in this tutorial, the next step is to add a database to the site. The easiest
way is to first download the project that goes with this tutorial. Then right-click the App_Data folder, select Add

Existing Item, and select the School mdf database file from the downloaded project.

An alternative is to follow the instructions at Creating the School Sample Database. Whether you download the

database or create it, copy the School. mdf file from the following folder to your application's App_Data folder:

%PROGRAMFILES%\Microsoft SQL Server\MSSQL10.SQLEXPRESS\MSSQL\DATA

(This location of the .mdf file assumes you're using SQL Server 2008 Express.)

If you create the database from a script, perform the following steps to create a database diagram:

1. In Server Explorer, expand Data Connections, expand School. mdf, right-click Database Diagrams, and

select Add New Diagram.

Server Explorer

2] |

4 [|J Data Connections
4 | Schoolmdf

b L3 Databfe e
[Tahle Sdd Mew Diagram
b L Views & Refresh
[Stored = .
Properties Alt+Enter
> [Functi = P
o [Synonyms
o [Types
[Assernblies

2. Select all of the tables and then click Add.

12

http://msdn.microsoft.com/en-us/library/bb399731.aspx�
http://i1.asp.net/umbraco-beta-media/2576021/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image35.png�

Add Table '

Tables

StudentiGrade

Refresh][Add][Clase

SQL Server creates a database diagram that shows tables, columns in the tables, and relationships

between the tables. You can move the tables around to organize them however you like.
3. Save the diagram as "SchoolDiagram" and close it.

If you download the School mdf file that goes with this tutorial, you can view the database diagram by double-

clicking SchoolDiagram under Database Diagrams in Server Explorer.

Server Explorer

ERRS
4 [j] Diata Connections
a [k School.mdf

r Clatahace Dliaaramm
SchoolDiagram
[» lables

The diagram looks something like this (the tables might be in different locations from what's shown here):

13

http://i1.asp.net/umbraco-beta-media/2576033/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image36.png�
http://i1.asp.net/umbraco-beta-media/2576045/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image38.png�

StudentGrade Department
% EnrollmentID % DepartrmentdD
CourselD Mame
StudentD Budget
Grade StartDate
Administrator
{:5:'__"-.
i
Person
% PersonID
LastMame Course
Firstharme
. Courselnstructor 7 CourselD
HireDate Title
% CourselD
EnrollmentDate o sl Credits
% PersanlD
DepartrnentlD
3 |
: OnsiteCourse L
OfficeAssignment % CourselD
@ InstructorD Location OnlineCourse
Larcatian Days % CourselD
Tirmestamp Tirne URL

Creating the Entity Framework Data Model

Now you can create an Entity Framework data model from this database. You could create the data model in
the root folder of the application, but for this tutorial you'll place it in a folder named DAL (for Data Access

Layer).

In Solution Explorer, add a project folder named DAL (make sure it's under the project, not under the

solution).

14

http://i1.asp.net/umbraco-beta-media/2576057/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image04_2.png�

Right-click the DAL folder and then select Add and New Item. Under Installed Templates, select Data, select

the ADO.NET Entity Data Model template, name it SchoolModel edmx, and then click Add.

Add Mew Item - Contosolniversity
Installed Templates

4 isual CH ':ij
Code I_El_

Data

General é‘é
Wireh 5
Windours Farms [|
WPF

Reporting T
Sibverlight

Wikl onne i J
L

Online Ternplates

Mame: SchoolModel.edmx

Sort by [Default

]

Database Unit Test

ADCMET Entity Data Maodel

Dataset

LIMND to S0L Classes

0L Server Database

ML File

KML Schema

HELT File

Wisual CH#
Wisual CH
Visual CH
Wisual C#
Wisual CH#
Wisual C#
Yisual CH

Wisual CH

Search Insta

Type: isy

& project it
Entity Data

This starts the Entity Data Model Wizard. In the first wizard step, the Generate from database option is

selected by default. Click Next.

15

http://i1.asp.net/umbraco-beta-media/2576069/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image05_2.png�

Entity Data Model Yizard

Choose Model Contents

What should the model contain?

B

B ERS Ernphy model
from
database

Generates the rmodel from a database. Classes are generated frorm the model when the project is compiled.
This wizard also lets wou specify the database connection and database objects to include in the model.

In the Choose Your Data Connection step, leave the default values and click Next. The School database is

selected by default and the connection setting is saved in the Web.config file as SchoolEntities.

16

http://i1.asp.net/umbraco-beta-media/2576081/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image06_2.png�

Entity Data Model Wizard

J— i Choose Your Data Connection
o=

Yhich data connection should your application use to connect to the database?
Schoal.mdf

v] I Mews Connectian..,

Entity connection string:

metadata=res/™FSchoolModel.csdl|res: A SchoalMadel.ssdl| -
resif M schoolbodelmsl provider=Systern.Data, SglClient; provider connection string="Data Source=,
YEOLEXPRESSAttachDbFilenarme=|DataDirectory\School.mdf Integrated Security=True;User

Instance=True"

Save entity connection settings in Web, Config as:

SchoolEntities|

% Previous] [Mlesct =

In the Choose Your Database Objects wizard step, select all of the tables except sysdiagrams (which was
created for the diagram you generated earlier) and then click Finish.

17

http://i1.asp.net/umbraco-beta-media/2576093/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image07_2.png�

Entity Data Model Wizard (7 |[=]

Choose Your Database Objects

Which database objects do yvou want to include in your madel?

4 :ﬁ Tables
W] Course (dbo)
W1 Courselnstructar (dba)
[V Department (dbo)
W= Officefssignment (dbao)
V= onlineCourse (dba)
[V OnsiteCourse (dba)
[V Person (dba)
W] StudentGrade {dba)
[[sysdiagrams (dbo)

) kg Wiews
- [k Stored Procedures

Pluralize or singularize generated object narmes

Include foreign key columns in the model

Model Marnespace:

Schaoaolkbladel

Mext = [Finish] I Cancel

After it's finished creating the model, Visual Studio shows you a graphical representation of the Entity
Framework objects (entities) that correspond to your database tables. (As with the database diagram, the
location of individual elements might be different from what you see in this illustration. You can drag the

elements around to match the illustration if you want.)

18

http://i1.asp.net/umbraco-beta-media/2576105/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image08_2.png�

1

Pl T,
% StudentGrade %]

= Properties
"?ﬁ EnrollmentID
ﬁ CourselD
5 StudentID
i Grade
= Navigation Properties
Course

E‘a Person

MIEEEEEEEEBEEE

=
L3
B

= Properties
@ PerzonlD
f LastMame
ﬁ FirstMame
5 HireDate
ﬂ EnrollmentDate

= Mavigation Properties

@ CourseGrades
Officefssignment
Eﬂ Courses

L)

= Properties
@ InstructorID

f Location
= Timestamp

L

= Navigation Properties
E‘ﬂ Perscn

LF

|
|

= Properties
@ﬁ CourselD
75 URL

=l Navigation Properties

@ Course

.

4+ Department 2]

= Properties
'@ DepartmentlD
f Mame
= Budget
5 StartDate
ﬁ Administrator
= Mavigation Properties
@ Courses

1
*

=

3 o
¢ Course %]

= Properties
"?E CourselD
P Title
57 Credits
@ DepartmentID
= Navigation Properties
@ Departrment
E'a CourseGrades
@ OnhneCourse
@.. CnsiteCourse
E'a People

1

{ oot

L

#¢ OnsiteCourse £

= Properties
'@ Cour=elD
f Location
= Days
5 Time

=l Mavigation Properties

@ Course

19

http://i1.asp.net/umbraco-beta-media/2576117/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image09_2.png�

Exploring the Entity Framework Data Model

You can see that the entity diagram looks very similar to the database diagram, with a couple of differences.
One difference is the addition of symbols at the end of each association that indicate the type of association

(table relationships are called entity associations in the data model):

e A one-to-zero-or-one association is represented by "1" and "0..1".

4oL
=5

'*3?; Person

=

= Properties

'@ PersonlD

ﬁ LastMame

ﬁ Firsthame

O = HireDate

ﬁ EnrollmentDate

= Mavigation Properties
CourseGrades

Officefssignment
Courses

iv

0.1

o - ™,
¢ OfficeAssignm...

= Properties
'@ InstructorID

4 ﬁ Location T
= Timestamp

= Mavigation Properties
Perscn

In this case, a Person entity may or may not be associated with an OfficeAssignment entity. An
OfficeAssignment entity must be associated with a Person entity. In other words, an instructor may or

may not be assigned to an office, and any office can be assigned to only one instructor.

e A one-to-many association is represented by "1" and "*".

20

http://i1.asp.net/umbraco-beta-media/2576129/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image39.png�

s "y
“#¢ StudentGrade

= Properties
@ﬁ EnrollmentID
ﬁ CourselD
o studentD ::
i Grade

= Navigation Properties
Course

@ Person

| #: Person \
= Properties .
'@ PersonlD ’
@ LastMame
ﬁ FirstMame

O 5 HireDate -
ﬁ EnrollmentDate

= Mavigation Properties
CourseGrades
Officefssignment
@ Courses

In this case, a Person entity may or may not have associated StudentGrade entities. A StudentGrade
entity must be associated with one Person entity. StudentGrade entities actually represent enrolled
courses in this database; if a student is enrolled in a course and there's no grade yet, the Grade property
is null. In other words, a student may not be enrolled in any courses yet, may be enrolled in one course, or

may be enrolled in multiple courses. Each grade in an enrolled course applies to only one student.

A many-to-many association is represented by "*" and "*".

21

http://i1.asp.net/umbraco-beta-media/2576141/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image40.png�

L '\

r i - ¢ Course
“# Person
Properties
= Properties i
%5\ liﬁ{luurs&lD

4 personID = Title
5 LastName = Credits
57 FirstName ' DepartmentlD

0 : R
HireDate
=) 1 | = Mavigation Properties
ﬁ EnrollmentDate
Department
= Navigation Properties el {:EFE Eg'i:j
ourseGrades

CourseGrades

: : CnlineCourse
Officefssignment OnsiteCourse

Courses @ People

In this case, a Person entity may or may not have associated Course entities, and the reverse is also true:
a Course entity may or may not have associated Person entities. In other words, an instructor may teach
multiple courses, and a course may be taught by multiple instructors. (In this database, this relationship
applies only to instructors; it does not link students to courses. Students are linked to courses by the
StudentGrades table.)

Another difference between the database diagram and the data model is the additional Navigation Properties
section for each entity. A navigation property of an entity references related entities. For example, the Courses

property in a Person entity contains a collection of all the Course entities that are related to that Person

entity.
= = = ¢ Course
2 Person
: = Properties
= Properties e ———eee < #9 CourselD
@ﬁ PersonlD ﬁ Title
ﬁ LastMame ﬁ Credits
@ Firsthame DD
] - b e :
HireDate
ﬁ L _ L | = Navigation Properties
== I:rlrLl‘IIr'Ilt'rIlL)q:ﬂ.t'
= Navigation Properties @ Depariment
avigation Prop @
CourseGrades
% Lelsslmes @ CnlineCourse
Officefssignment @ OnsiteCourse
Courses @ People
Y o J P
.\:_} : - >
| L

22

http://i1.asp.net/umbraco-beta-media/2576153/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image41.png�
http://i1.asp.net/umbraco-beta-media/2576165/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image12_2.png�

Yet another difference between the database and data model is the absence of the CourseInstructor
association table that's used in the database to link the Person and Course tables in a many-to-many
relationship. The navigation properties enable you to get related Course entities from the Person entity and

related Person entities from the Course entity, so there's no need to represent the association table in the

data model.
Ferson c
ourse
% PersanlD fo = o
Courselnstructo aurse
LastMarme = .
% CourselD g Title
FirstMarme i
% PersanlD 5 Credits
HireDate 4 m b
DepartrmentD
EnrallmentDate ﬁ —

For purposes of this tutorial, suppose the FirstName column of the Person table actually contains both a
person's first name and middle name. You want to change the name of the field to reflect this, but the database
administrator (DBA) might not want to change the database. You can change the name of the FirstName

property in the data model, while leaving its database equivalent unchanged.

In the designer, right-click FirstName in the Person entity, and then select Rename.

23

http://i1.asp.net/umbraco-beta-media/2576177/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image11_2.png�

[Py

Jl

s Person

= Properties

'?ﬁ PersonIDy e
ﬁ LastMame

5 Hire[Fat add b
25 Enral|me Rename
= Mawigation | Fefactor Into New Carmples [ype
CourseG 46 Cut Chrl +3
Officeds 53 Copy Ctrl+0
LEurses 4 Paste el +4
Mﬁ_l X Delete Del
é Entity Key
&Y & Table Mapping
2 Officehssit 2 Stored Procedure Mapping
Zhow in kodel Browser
= Properties
Update Model from Database..,
I"3“'§Instrl.u:t|:
P | gcation Generate Database from MModel..,
5 Tirnestat Add Code Generation [kerm...
= Navigation F Yalidate
Pergan Properties Lt +Enter

] = I

Type in the new name "FirstMidName". This changes the way you refer to the column in code without changing
the database.

24

http://i1.asp.net/umbraco-beta-media/2576189/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image13_2.png�

s

42 Person

=l Properties
lI:":'EF'Ersu:unII:ZI
L astMarme '
rgﬁrstmmwame |
i HireDate
ﬁEnrDllmentDate

= Mavigation Properties

@ CourseGrades
@. Officedssignment
@. Courses

¥

i1

The model browser provides another way to view the database structure, the data model structure, and the

mapping between them. To see it, right-click a blank area in the entity designer and then click Model Browser.

schooodelecrc < [

Sdd 3

Ciagram]
Zoom k
Grid]
Scalar Property Format k
Select &l

Bdaning [letail

hadel Broweser

ES

Update Model trom Database..,

Generate Database from Maodel...
Add Code Generation lkern..

Walidate
Properties Alt+Enter

| —i

The Model Browser pane displays a tree view. (The Model Browser pane might be docked with the Solution
Explorer pane.) The SchoolModel node represents the data model structure, and the SchoolModel.Store

node represents the database structure.

25

http://i1.asp.net/umbraco-beta-media/2576201/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image29.png�
http://i1.asp.net/umbraco-beta-media/2576213/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image18_2.png�

(G NEG AT Schoolkdodel.edmx

Type here to search

4 4 SchoolModel.edmx
|&] SchoolModel
| 1| SchoolModel Store

Expand SchoolModel.Store to see the tables, expand Tables / Views to see tables, and then expand Course to

see the columns within a table.

4 | J SchoolModel.Stare
4 [Tables / Views
4 [Course
33 CourselD
= Credits
=] DepartmentlD
& Title
[CourseGrade
[Courselnstructor
[Department
[OfficeAssignment
[OnlineCourse
£ OnsiteCourse
[Person
[sysdiagrams

Expand SchoolModel, expand Entity Types, and then expand the Course node to see the entities and the

properties within the entities.

4 |4] SchoolModel
4 [Entity Types
’ O@ Course

@E CourselD
P8 Credits
5 DepartmentlD
P Title
E'a CourseGrades
| Departrnent
E'a OnlineCourse
E'a OnsiteCourse
| People

O@ CourseGrade

%2 Department

%2 Officelssignment

O@ OnlineCourse

O@ OnzsiteCourse

O@ Person

26

http://i1.asp.net/umbraco-beta-media/2576225/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image26.png�
http://i1.asp.net/umbraco-beta-media/2576237/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image19_2.png�
http://i1.asp.net/umbraco-beta-media/2576249/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image20.png�

In either the designer or the Model Browser pane you can see how the Entity Framework relates the objects of

the two models. Right-click the Person entity and select Table Mapping.

A QS Perzo
¥ pd LF Table Mapping
g :Er SLOFEd PEOCECUEE IMapping
in
5 Hi Show in Designer
g La Update kodel from Database..,
Cc
|§-’ Co Generate Database from kdadel...
@ Of Add Code Generation Ikerm..,
#2 sysdia
£ Complex Walidate
(3 Assaciatic Properties Alt+Enter
[%] Coursk.. ._.h.“._..p
- Eﬁ Louree I gpadment

This opens the Mapping Details window. Notice that this window lets you see that the database column

FirstName is mapped to FirstMidName, which is what you renamed it to in the data model.

Mapping Details - Person

Colurnn Dperatar Walue f Property

= 4 Tables
4 [Maps to Person
ER «Add a Condition:
4 [Colurmn bMappings
PersanlD :int

[E] LastMarme : revarchar

8 personD : Int32

o LastMarme : String

o FirsthidMarne @ String
= HireDate : Date Time
= EnrollmentDate : DateTirne

[E] FirstMame : nvarchar

Z] HireDate : datetime

[E] EnrollmentDate : datetime
0l <add a Table or Wiew:s

THIPR T

The Entity Framework uses XML to store information about the database, the data model, and the mappings
between them. The SchoolModel.edmx file is actually an XML file that contains this information. The designer
renders the information in a graphical format, but you can also view the file as XML by right-clicking the .edmx
file in Solution Explorer, clicking Open With, and selecting XML (Text) Editor. (The data model designer and
an XML editor are just two different ways of opening and working with the same file, so you cannot have the

designer open and open the file in an XML editor at the same time.)

You've now created a website, a database, and a data model. In the next walkthrough you'll begin working with

data using the data model and the ASP.NET EntityDataSource control.

27

http://i1.asp.net/umbraco-beta-media/2576261/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image21_2.png�
http://i1.asp.net/umbraco-beta-media/2576273/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart1_D384_Image22_2.png�

The EntityDataSource Control

In the previous tutorial you created a web site, a database, and a data model. In this tutorial you work with the
EntityDataSource control that ASP.NET provides in order to make it easy to work with an Entity Framework
data model. You'll create a GridView control for displaying and editing student data, a DetailsView control
for adding new students, and a DropDownList control for selecting a department (which you'll use later for

displaying associated courses).

STUDENT LIST
Name Enrollment Date Number of Courses
Edit Delete Abercrombie, Kim]
Edit Delete Barzdukas, Gytis 9,/1/2005 Z
Edit Delete Justice, Pegoy 9712001 P

ADD NEW STUDENTS
FirsttAidilame John

LastMame Smith

EnrollmentDate 1412011

Inzert Cancel

COURSES BY DEPARTMENT

select a department: | Engineering |+
Engineering
English

Economics
Mathematics

Note that in this application you won't be adding input validation to pages that update the database, and some
of the error handling will not be as robust as would be required in a production application. That keeps the
tutorial focused on the Entity Framework and keeps it from getting too long. For details about how to add
these features to your application, see Validating User Input in ASP.NET Web Pages and Error Handling in
ASP.NET Pages and Applications.

Adding and Configuring the EntityDataSource Control
You'll begin by configuring an EntityDataSource control to read Person entities from the People entity set.

28

http://msdn.microsoft.com/en-us/library/7kh55542.aspx�
http://msdn.microsoft.com/en-us/library/w16865z6.aspx�
http://msdn.microsoft.com/en-us/library/w16865z6.aspx�
http://i1.asp.net/umbraco-beta-media/2576285/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image20_2.png�
http://i1.asp.net/umbraco-beta-media/2576297/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image09_2.png�
http://i1.asp.net/umbraco-beta-media/2576309/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image18_2.png�

Make sure you have Visual Studio open and that you're working with the project you created in part 1. If you
haven't built the project since you created the data model or since the last change you made to it, build the

project now. Changes to the data model are not made available to the designer until the project is built.

Create a new web page using the Web Form using Master Page template, and name it Students.aspx.

Add MNew Item - Contosollnnversity

Installed Templates Sort by: Ithﬂhﬂt - i | Search Installed Ternpla
4 Misual C# “ i
Type: "
Code Wifeh Form Wisual C# EBEs it
e & form for Web Applic
= _| | from a Master Page

General Web Form using Master Page Visual Ce# =5

Wieh

Windows Forms O EH= ek User Control Wisual C# T

WRF

Reporting Class Wisual C#

Silverlight

W orkflow

Master Page Wiswal CH#

Online Templates

HTrL Page Wisual C#

ol
j MNested Master Page Wisual C#
2
A

Shile Sheat Wisiial C#

]

Specify Site.Master as the master page. All of the pages you create for these tutorials will use this master page.

29

http://i1.asp.net/umbraco-beta-media/2576321/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image23_1.png�

i bt

Select a Master Page

Project folders: Contents of folder

4 H_.% Contosolniversity Site Master
- [Account

> 3 App_Data

» [=d] Properties
» «3] References
» [Scripts

- [Styles

| ook || cancel

In Source view, add an h2 heading to the Content control named Content2, as shown in the following

example:

<asp:ContentID="Content2"ContentPlaceHolderID="MainContent"runat="server">
<h2>Student List</h2>
</asp:Content>

From the Data tab of the Toolbox, drag an EntityDataSource control to the page, drop it below the
heading, and change the ID to StudentsEntityDataSource:

<asp:ContentID="Content2"ContentPlaceHolderID="MainContent"runat="server">
<h2>Student List</h2>
<asp:EntityDataSourceID="StudentsEntityDataSource"runat="server">
</asp:EntityDataSource>

</asp:Content>

Switch to Design view, click the data source control's smart tag, and then click Configure Data Source to

launch the Configure Data Source wizard.

30

http://i1.asp.net/umbraco-beta-media/2576333/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image24_1.png�

| MainConkent {Custamn’ |
|

asp:EnkityDataSource#StudentsEntit. . |
EntityDataSource - StudentsEntityDataSaurce] | [EntityDataSource Tasks
Configure Data Source..,

In the Configure ObjectContext wizard step, select SchoolEntities as the value for Named Connection, and

select SchoolEntities as the DefaultContainerName value. Then click Next.

[

Configure Data Source - StudentsEntityDataSource
| ;{g Configure OhjectContext

Connectionstring:

@ Marmed Connection

SchoolEntities

() Connection String

DefaultContainerMame:

SchoaolEntities

% Previous Finish

Note: If you get the following dialog box at this point, you have to build the project before proceeding.

31

http://i1.asp.net/umbraco-beta-media/2576345/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image01_1.png�
http://i1.asp.net/umbraco-beta-media/2576357/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image02_1.png�

Microsoft Visual Studio -

l.-"__ﬂ\.l The metadata specified in the connection string could not be loaded.
% Consider rebuilding the web project to build assemblies that may

contain metadata. The following error(s} cccurred:

Unable to load the specified metadata resource.

oK

b <

In the Configure Data Selection step, select People as the value for EntitySetName. Under Select, make sure
the Select All check box is selected. Then select the options to enable update and delete. When you're done,

click Finish.

32

http://i1.asp.net/umbraco-beta-media/2576369/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image25.png�

Configure Data Source - StudentsEntityDataSource

| ég Configure Data Selection

EntitySetMarme:

[F‘enple

EntityTypeFilter:
[(Mone)

Select:

Select Al Entity Walue)
[] PersanlD

[] LastMarme

[] FirstMidMarme

[] HireDate

[] EnrallmentDate

[] Enable automatic inserts
Enable automatic updates

Enahle automatic deletes

Configuring Database Rules to Allow Deletion

You'll be creating a page that lets users delete students from the Person table, which has three relationships
with other tables (Course, StudentGrade, and OfficeAssignment). By default, the database will prevent you
from deleting a row in Person if there are related rows in one of the other tables. You can manually delete the
related rows first, or you can configure the database to delete them automatically when you delete a Person
row. For student records in this tutorial, you'll configure the database to delete the related data automatically.
Because students can have related rows only in the StudentGrade table, you need to configure only one of

the three relationships.

33

http://i1.asp.net/umbraco-beta-media/2576381/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image03_1.png�

If you're using the School. mdf file that you downloaded from the project that goes with this tutorial, you can
skip this section because these configuration changes have already been done. If you created the database by

running a script, configure the database by performing the following procedures.

In Server Explorer, open the database diagram that you created in part 1. Right-click the relationship between

Person and StudentGrade (the line between tables), and then select Properties.

StudentGrade
% EnrollmentID

CaurselD
StudentID
Grade

o

AE a Delete Relationships frorm Database
L Properties

i ' b d
| RN =Y =g F 2 =y

LastMame
FirstMarme
HireDate

EnrollmentDate

$

In the Properties window, expand INSERT and UPDATE Specification and set the DeleteRule property to

Cascade.

34

http://i1.asp.net/umbraco-beta-media/2576393/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image04_1.png�

Properties
[Rel] FK_StudentGrade Student

g 2 =]
(Mame) FE_StudentGrade_Student
Check Existing Data On Creation Or Yes

Description

Enforce For Replication Yes
Enfarce Foreign Key Constraint Yes
4 IMSERT And UPDATE Specification
Delete Rule Cascade
Update Rule

[» Tables &nd Colurmns Specification | EEEEEES

ST LU
Set Default

Delete Rule

Save and close the diagram. If you're asked whether you want to update the database, click Yes.

To make sure that the model keeps entities that are in memory in sync with what the database is doing, you
must set corresponding rules in the data model. Open SchoolModel.edmx, right-click the association line

between Person and StudentGrade, and then select Properties.

35

http://i1.asp.net/umbraco-beta-media/2576405/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image05_1.png�

(“#+ StudentGrade '

= Praperties
rEﬁEr'|rn:nIIr'r'nar'utII:il
@CDurseID
7 StudentlD
ﬁGrade

= Mavigation Properties

=l Course
El Person

g y.

.
By Renarme
@3 Person | ¢ Dejete Del
= Fropertie: select
@ﬁ Persor @I Show in Model Browser
S Lasth Update Model frorm Database...
5 Firsth Generate Database from kModel..,
“r HireD _
“ Enroll Add Code Generation [term...
= Navigatig Walidate
@, Offick Froperties Alt+Enter
&=l cour '
El StudentGrades J

1

In the Properties window, set End1 OnDelete to Cascade.

36

http://i1.asp.net/umbraco-beta-media/2576417/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image21_1.png�

Properties X
SchoolModel.FK_StudentGrade_Student fssoc -

ezl |:|

Endl Multiplicity 1 (One of Person) o

alu M gatiok

Endl OnDelet
End2 Multiplicity
End?2 Mavigation Pro| e

m

Endz OnDelete Maone
End2 Raole Mame StudentiGrade
Marme FK_StudentGrade_Stu

Referential Constrain Person - = StudentGrad

Endl OnDelete

Specifies the action to take when an entity on this
end is deleted

Save and close the SchoolModel. edmx file, and then rebuild the project.
In general, when the database changes, you have several choices for how to sync up the model:

e For certain kinds of changes (such as adding or refreshing tables, views, or stored procedures), right-click
in the designer and select Update Model from Database to have the designer make the changes

automatically.
e Regenerate the data model.

e Make manual updates like this one.

In this case, you could have regenerated the model or refreshed the tables affected by the relationship change,

but then you'd have to make the field-name change again (from FirstName to FirstMidName),
Using a GridView Control to Read and Update Entities

In this section you'll use a GridView control to display, update, or delete students.

Open or switch to Students.aspx and switch to Design view. From the Data tab of the Toolbox, drag a

GridView control to the right of the EntityDataSource control, name it StudentsGridView, click the

smart tag, and then select StudentsEntityDataSource as the data source.

37

http://i1.asp.net/umbraco-beta-media/2576429/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image22_1.png�

MainConkent (Custarm) |

STUDENT LIST

Lu.ti.tlLDa.taSnuLLF_-St]ude ntsEntityDataSource
asps gridviewdGridviswl .

Column0/Columnl/Column2l <] Grid¥iew Tasks
ahc ahe abe Ayto Format...
abc abc abe

0 | Choose Data Source:

abc abc abc

h h b Edit Columns., =

apc apc apc StudentsEntibyDataSource
ahc ahc abc Add Mew Colum| <Mew data source..»

1
[m;

Edit Ternplates

Click Refresh Schema (click Yes if you're prompted to confirm), then click Enable Paging, Enable Sorting,

Enable Editing, and Enable Deleting.

Click Edit Columns.

HireDate EnrollmentDate || GridView Tasks
9/21,/2010 12:00:00 AM|3,21/2010 12:00:00 AM|| | Auta Format...
9/21,/2010 12:00:00 AM|9,/21/2010 12:00:00 AM
9212010 12:00:00 AM|9,21,/2010 12:00:00 AM
9/21/2010 12:00:00 AM|3/21,2010 12:00:00 M | | Sonfigure Data Source...
9/21/2010 12:00:00 AM|9,21,/2010 12:00:00 An|| || Refresh Schema
0/21/2010 12:00:00 AM 9/21/2010 12:00:00 AM T|| Edit Columns...
9/21,/2010 12:00:00 AM|3,21/2010 12:00:00 AM || | Add Mew Calumn...
9/21,/2010 12:00:00 AM|9,/21/2010 12:00:00 AM Erable Paging
9212010 12:00:00 AM|9,21,/2010 12:00:00 AM
9/21,/2010 12:00:00 AM|9,/21/2010 12:00:00 AM

Choose Data Source: StudentsEntit}fDataSnurulzn

Enable Sorting
Enahle Editing

L]
[w;
p—

Enable Deleting

[] Enable Selection

I

Edit Ternplates i
B ontent? | aaneGridyiewdEGrdhy e T

In the Selected fields box, delete PersonID, LastName, and HireDate. You typically don't display a record key
to users, hire date is not relevant to students, and you'll put both parts of the name in one field, so you only

need one of the name fields.)

38

http://i1.asp.net/umbraco-beta-media/2576441/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image06_1.png�
http://i1.asp.net/umbraco-beta-media/2576453/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image10_1.png�

Selected fields:

& CommandField #
=] PersonID

LastName E
= FirsthidMame
I 'E HireDate I

El EnrolimentDate

Select the FirstMidName field and then click Convert this field into a TemplateField.

Do the same for EnrollmentDate.

Bosailable fields: BoundField properties:

- A] HyperlLinkField - el |__‘_|
@ IrnageField
2] ButtanField

& CormmandField
.@ Edit, Update, Cancel
PE Zelect

;E Delete

...=1 TernnlateField i

K

Add

Selected fields:

@CummandField
=] FirstMidMame
El EnrollmentDate

L+

[] Auta-generate fields I Coreert this field into a TernplateField I

Click OK and then switch to Source view. The remaining changes will be easier to do directly in markup. The
GridView control markup now looks like the following example

<asp:GridViewID="StudentsGridView"runat="server"AllowPaging="True"

AllowSorting="True"AutoGenerateColumns="False"DataKeyNames="PersonID"
DataSourceID="StudentsEntityDataSource">

39

http://i1.asp.net/umbraco-beta-media/2576465/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image11_1.png�
http://i1.asp.net/umbraco-beta-media/2576477/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image13_1.png�

<Columns>

<asp:CommandFieldShowDeleteButton="True"ShowEditButton="True"/>
<asp:TemplateFieldHeaderText="FirstMidName"SortExpression="FirstMidName">
<EditItemTemplate>

<asp:TextBox ID="TextBoxl" runat="server" Text='<%# Bind("FirstMidName")
%>"'></asp:TextBox>

</EditItemTemplate>

<ItemTemplate>

<asp:Label ID="Labell" runat="server" Text='<%# Bind("FirstMidName") %>'></asp:Label>
</ItemTemplate>

</asp:TemplateField>
<asp:TemplateFieldHeaderText="EnrollmentDate"SortExpression="EnrollmentDate">
<EditItemTemplate>

<asp:TextBox ID="TextBox2" runat="server" Text='<%# Bind("EnrollmentDate")
%>"'></asp:TextBox>

</EditItemTemplate>

<ItemTemplate>

<asp:Label ID="Label2" runat="server" Text='<%# Bind("EnrollmentDate")
%>'></asp:Label>

</ItemTemplate>

</asp:TemplateField>

</Columns>

</asp:GridView>

The first column after the command field is a template field that currently displays the first name. Change the

markup for this template field to look like the following example:

<asp:TemplateFieldHeaderText="Name"SortExpression="LastName">

<EditItemTemplate>

<asp:TextBox ID="LastNameTextBox" runat="server" Text='<%# Bind("LastName")
%>"'></asp:TextBox>

<asp:TextBox ID="FirstNameTextBox" runat="server" Text='<%# Bind("FirstMidName")
%>"'></asp:TextBox>

</EditItemTemplate>

<ItemTemplate>

<asp:Label ID="LastNamelLabel" runat="server" Text='<%# Eval("LastName")

%>'></asp:Label>,

40

<asp:Label ID="FirstNamelLabel" runat="server" Text='<%# Eval("FirstMidName")
%>"'></asp:Label>

</ItemTemplate>

</asp:TemplateField>

In display mode, two Label controls display the first and last name. In edit mode, two text boxes are provided
so you can change the first and last name. As with the Label controls in display mode, you use Bind and Eval
expressions exactly as you would with ASP.NET data source controls that connect directly to databases. The

only difference is that you're specifying entity properties instead of database columns.

The last column is a template field that displays the enrollment date. Change the markup for this field to look

like the following example:

<asp:TemplateFieldHeaderText="Enrollment Date"SortExpression="EnrollmentDate">
<EditItemTemplate>

<asp:TextBox ID="EnrollmentDateTextBox" runat="server" Text='<%#
Bind("EnrollmentDate", "{@:d}") %>'></asp:TextBox>

</EditItemTemplate>

<ItemTemplate>

<asp:Label ID="EnrollmentDatelLabel" runat="server" Text='<%# Eval("EnrollmentDate",
"{@:d}") %>'></asp:Label>

</ItemTemplate>

</asp:TemplateField>

In both display and edit mode, the format string "{0,d}" causes the date to be displayed in the "short date"
format. (Your computer might be configured to display this format differently from the screen images shown in

this tutorial)

Notice that in each of these template fields, the designer used a Bind expression by default, but you've
changed that to an Eval expression in the ItemTemplate elements. The Bind expression makes the data
available in GridView control properties in case you need to access the data in code. In this page you don't
need to access this data in code, so you can use Eval, which is more efficient. For more information, see

Getting your data out of the data controls.

Revising EntityDataSource Control Markup to Improve Performance

41

http://weblogs.asp.net/davidfowler/archive/2008/12/12/getting-your-data-out-of-the-data-controls.aspx�

In the markup for the EntityDataSource control, remove the ConnectionString and
DefaultContainerName attributes and replace them with a
ContextTypeName="ContosoUniversity.DAL.SchoolEntities" attribute. This is a change you should
make every time you create an EntityDataSource control, unless you need to use a connection that is
different from the one that's hard-coded in the object context class. Using the ContextTypeName attribute

provides the following benefits:

e Better performance. When the EntityDataSource control initializes the data model using the

ConnectionString and DefaultContainerName attributes, it performs additional work to load

metadata on every request. This isn't necessary if you specify the ContextTypeName attribute.

e Lazy loading is turned on by default in generated object context classes (such as SchoolEntities in this
tutorial) in Entity Framework 4.0. This means that navigation properties are loaded with related data

automatically right when you need it. Lazy loading is explained in more detail later in this tutorial.

e Any customizations that you've applied to the object context class (in this case, the SchoolEntities
class) will be available to controls that use the EntityDataSource control. Customizing the object
context class is an advanced topic that is not covered in this tutorial series. For more information, see

Extending Entity Framework Generated Types.

The markup will now resemble the following example (the order of the properties might be different):

<asp:EntityDataSourceID="StudentsEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"
EntitySetName="People"

EnableDelete="True"EnableUpdate="True">

</asp:EntityDataSource>

The EnableFlattening attribute refers to a feature that was needed in earlier versions of the Entity
Framework because foreign key columns were not exposed as entity properties. The current version makes it
possible to use foreign key associations, which means foreign key properties are exposed for all but many-to-
many associations. If your entities have foreign key properties and no complex types, you can leave this
attribute set to False. Don't remove the attribute from the markup, because the default value is True. For

more information, see Flattening Objects (EntityDataSource).

Run the page and you see a list of students and employees (you'll filter for just students in the next tutorial).

The first name and last name are displayed together.

42

http://msdn.microsoft.com/en-us/library/dd456844.aspx�
http://msdn.microsoft.com/en-us/library/bb738472.aspx�
http://msdn.microsoft.com/en-us/library/ee404746.aspx�

STUDENT LIST

Name EnrollmentDate
Edit Delete Ahercrombie, Kim
Edit Delete Barzdukas, Gytis 9,/1,/2005
Edit Delete Justice, Pegoy 91,2001
Edit Delete Fakhouri, Fadi
Edit Delete Harui, Roger
Edit Delete Li, an 97172002
Edit Delete Morman, Laura 9712003
Edit Delete Olivotto, Mino 97172005
Edit Delete Tang, Wayne 9/1,/2005
Edit Delete Alonso, Meredith 97172002

24

m

[
L]

To sort the display, click a column name.

Click Edit in any row. Text boxes are displayed where you can change the first and last name.

STUDENT LIST

MName EnrollmentDate
Edit Delete Ahercrombie, Kim
Update Cancel Barzdukas . Gytis 9/1.,/2005
Edit Delete lustice, Pegoy 91,2001
Edit Delete Fakhouri, Fadi
Edit Delete Harui, Roger
Edit Delete Li, an 97172002
Edit Delete Maorrman, Laura 91,2003
Edit Delete Olivatto, Mino 97172005
Edit Delete Tang, Waynhe 91,2005
Edit Delete Alonso, Meredith 97172002
1234

The Delete button also works. Click delete for a row that has an enrollment date and the row disappears. (Rows
without an enrollment date represent instructors and you may get a referential integrity error. In the next

tutorial you'll filter this list to include just students.)

Displaying Data from a Navigation Property

43

http://i1.asp.net/umbraco-beta-media/2576489/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image07_1.png�
http://i1.asp.net/umbraco-beta-media/2576501/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image08_1.png�

Now suppose you want to know how many courses each student is enrolled in. The Entity Framework provides
that information in the StudentGrades navigation property of the Person entity. Because the database
design does not allow a student to be enrolled in a course without having a grade assigned, for this tutorial you
can assume that having a row in the StudentGrade table row that is associated with a course is the same as

being enrolled in the course. (The Courses navigation property is only for instructors.)

When you use the ContextTypeName attribute of the EntityDataSource control, the Entity Framework
automatically retrieves information for a navigation property when you access that property. This is called lazy
loading. However, this can be inefficient, because it results in a separate call to the database each time
additional information is needed. If you need data from the navigation property for every entity returned by the
EntityDataSource control, it's more efficient to retrieve the related data along with the entity itself in a
single call to the database. This is called eager loading, and you specify eager loading for a navigation property
by setting the Include property of the EntityDataSource control.

In Students.aspx, you want to show the number of courses for every student, so eager loading is the best choice.
If you were displaying all students but showing the number of courses only for a few of them (which would

require writing some code in addition to the markup), lazy loading might be a better choice.

Open or switch to Students.aspx, switch to Design view, select StudentsEntityDataSource, and in the
Properties window set the Include property to StudentGrades. (If you wanted to get multiple navigation

properties, you could specify their names separated by commas — for example, StudentGrades, Courses.)

Praoperties > 1
StudentsEntityDataSource Systern Mideb ULWehContrals B -

=HME =
EntityTypeFilter &
—— [
Include StudentGrades il

Configqure Data Source..,

Include

& comma-separated list of navigation paths to include in the
quERy,

Switch to Source view. In the StudentsGridView control, after the last asp:TemplateField element, add

the following new template field:

<asp:TemplateFieldHeaderText="Number of Courses">

<ItemTemplate>

44

http://i1.asp.net/umbraco-beta-media/2576513/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image19_1.png�

<asp:Label ID="Labell" runat="server" Text='<%# Eval("StudentGrades.Count")
%>"'></asp:Label>

</ItemTemplate>

</asp:TemplateField>

In the Eval expression, you can reference the navigation property StudentGrades. Because this property
contains a collection, it has a Count property that you can use to display the number of courses in which the
student is enrolled. In a later tutorial you'll see how to display data from navigation properties that contain
single entities instead of collections. (Note that you cannot use BoundField elements to display data from

navigation properties.)
Run the page and you now see how many courses each student is enrolled in.

STUDENT LIST

Mame EntollmentDate Number of Courses
Edit Delete Abercrombie, Kim]
Edit Delete Barzdukas, Gytis 9/1,/2005 P
Edit Delete Justice, Peggy Q71,2001 Z

Using a DetailsView Control to Insert Entities

The next step is to create a page that has a DetailsView control that will let you add new students. Close the
browser and then create a new web page using the Site.Master master page. Name the page StudentsAdd.aspx,

and then switch to Source view.

Add the following markup to replace the existing markup for the Content control named Content2:

<asp:ContentID="Content2"ContentPlaceHolderID="MainContent"runat="server">
<h2>Add New Students</h2>
<asp:EntityDataSourceID="StudentsEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"
EnableInsert="True"EntitySetName="People">

</asp:EntityDataSource>
<asp:DetailsViewID="StudentsDetailsView"runat="server"
DataSourceID="StudentsEntityDataSource"AutoGenerateRows="False"
DefaultMode="Insert">

<Fields>

<asp:BoundFieldDataField="FirstMidName"HeaderText="First Name"

45

http://i1.asp.net/umbraco-beta-media/2576525/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image20_3.png�

SortExpression="FirstMidName"/>
<asp:BoundFieldDataField="LastName"HeaderText="Last Name"
SortExpression="LastName"/>
<asp:BoundFieldDataField="EnrollmentDate"HeaderText="Enrollment Date"
SortExpression="EnrollmentDate"/>
<asp:CommandFieldShowInsertButton="True"/>

</Fields>

</asp:DetailsView>

</asp:Content>

This markup creates an EntityDataSource control that is similar to the one you created in Students.aspx,
except it enables insertion. As with the GridView control, the bound fields of the DetailsView control are
coded exactly as they would be for a data control that connects directly to a database, except that they
reference entity properties. In this case, the DetailsView control is used only for inserting rows, so you have

set the default mode to Insert.

Run the page and add a new student.

ADD NEW STUDENTS
FirstbdidMame Jahn
LastMame Smith
EnrollmentDate 1/1/2011

Inzert Cancel

Nothing will happen after you insert a new student, but if you now run Students.aspx, you'll see the new student

information.
Displaying Data in a Drop-Down List

In the following steps you'll databind a DropDownList control to an entity set using an EntityDataSource
control. In this part of the tutorial, you won't do much with this list. In subsequent parts, though, you'll use the

list to let users select a department to display courses associated with the department.

Create a new web page named Courses.aspx. In Source view, add a heading to the Content control that's
named Content2:

46

http://i1.asp.net/umbraco-beta-media/2576537/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image09_3.png�

<asp:ContentID="Content2"ContentPlaceHolderID="MainContent"runat="server">
<h2>Courses by Department</h2>
</asp:Content>

In Design view, add an EntityDataSource control to the page as you did before, except this time name it

DepartmentsEntityDataSource. Select Departments as the EntitySetName value, and select only the
DepartmentID and Name properties.

EntitySetMarme:

’Departments

Entity TypeFilter:
’ (Mone)

Select:

Select Al Entity Walue)
DepartrmentlD

Marme

Budget

StartDate
Adrministrator

From the Standard tab of the Toolbox, drag a DropDownList control to the page, name it

DepartmentsDropDownlist, click the smart tag, and select Choose Data Source to start the DataSource
Configuration Wizard.

| MainConkent { Cuskarn) |

ICOURSES BY DEPARTMENT
Mﬂu&ﬂ&n&ﬁ:ﬂmﬁﬁntit}@ ataSource
asp:Dru:upDu:uwnLllst#DepartmentsDr. ay

“Unhnund :i *| DropDownlList Tasks

Choose Data Source..,

Edit Tterms..,

Enable AutoPostBack

In the Choose a Data Source step, select DepartmentsEntityDataSource as the data source, click Refresh

Schema, and then select Name as the data field to display and DepartmentID as the value data field. Click OK.

47

http://i1.asp.net/umbraco-beta-media/2576572/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image15_1.png�
http://i1.asp.net/umbraco-beta-media/2576584/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image16_1.png�

Data Source Configuration Wizard

Choose a Data Source

Select a data source;

DepartmentsEntityDataSource -

Zelect a data field to display in the DropDownList:

Marne -

Select a data field for the wvalue of the DropDownlist:

DepartrmentlD ¥

Refresh Scherma

The method you use to databind the control using the Entity Framework is the same as with other ASP.NET

data source controls except you're specifying entities and entity properties.

Switch to Source view and add "Select a department:" immediately before the DropDownList control.

Select a department:

<asp:DropDownList ID="DropDownListl" runat="server"
DataSourceID="EntityDataSourcel"DataTextField="Name"
DataValueField="DepartmentID">

</asp:DropDownList>

As a reminder, change the markup for the EntityDataSource control at this point by replacing the
ConnectionString and DefaultContainerName attributes with a

ContextTypeName="ContosoUniversity.DAL.SchoolEntities" attribute. It's often best to wait until

after you've created the data-bound control that is linked to the data source control before you change the

48

http://i1.asp.net/umbraco-beta-media/2576596/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image17_1.png�

EntityDataSource control markup, because after you make the change, the designer will not provide you

with a Refresh Schema option in the data-bound control.

Run the page and you can select a department from the drop-down list.

COURSES BY DEPARTMENT

select a department: | Engineering |-
Engineering
English

Economics
Mathematics

This completes the introduction to using the EntityDataSource control. Working with this control is
generally no different from working with other ASP.NET data source controls, except that you reference entities
and properties instead of tables and columns. The only exception is when you want to access navigation
properties. In the next tutorial you'll see that the syntax you use with EntityDataSource control might also

differ from other data source controls when you filter, group, and order data.

49

http://i1.asp.net/umbraco-beta-media/2576608/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart2_BCA7_Image18_3.png�

Filtering, Ordering, and Grouping Data

In the previous tutorial you used the EntityDataSource control to display and edit data. In this tutorial you'll
filter, order, and group data. When you do this by setting properties of the EntityDataSource control, the
syntax is different from other data source controls. As you'll see, however, you can use the QueryExtender

control to minimize these differences.

You'll change the Students.aspx page to filter for students, sort by name, and search on name. You'll also
change the Courses.aspx page to display courses for the selected department and search for courses by name.

Finally, you'll add student statistics to the About.aspx page.

STUDENT LIST

Name

EnrollmentDate Mumber of Courses

Edit Delete Barzdukas, Gytis 9,1,/2005 2
Edit Delete Justice, Pegoy Q7172001 2
Edit Delete Li, Yan 9/1,/2002 2

COURSES BY DEPARTMENT

[~

Select a Department|Enin5h

ID Title Credits
2021 Composition 3
2030 Poetry 2

2042 Literature 4

COURSES BY NAME

Enter a course name

| Search

Department ID Title Credits
Economics 4041 Macroeconomics 3
Economics 4022 Microeconamics 3
Economics 4063 new course 3

50

http://i1.asp.net/umbraco-beta-media/2576620/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image02_2.png�
http://i1.asp.net/umbraco-beta-media/2576632/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image11_2.png�

STUDENTBODY STATISTICS
Date of Enrollment Students
Q12000 2
9/1/2001
QL2002
1,/30/2003
Q12003
9/1/2004
Q12005
1/1/2011

[=2 B » R S R AR R ¥) |

FIND STUDENTS BY NAME

Enter any part of the name g | =earch

Name EnrollmentDate
Barzdukas, Gytis 12005
lustice, Peggy Q71,2001
Tang, Wayne Q172005

Using the EntityDataSource "Where" Property to Filter Data

Open the Students.aspx page that you created in the previous tutorial. As currently configured, the GridView
control in the page displays all the names from the People entity set. However, you want to show only

students, which you can find by selecting Person entities that have non-null enroliment dates.

Switch to Design view and select the EntityDataSource control. In the Properties window, set the Where

property to it.EnrollmentDate is not null

51

http://i1.asp.net/umbraco-beta-media/2576644/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image10_2.png�
http://i1.asp.net/umbraco-beta-media/2576656/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image14_2.png�

Properties
EntityDataSourcel SystermMieb ULWehControls EntityDataSource

BT E

EnableFlattening False

Enablelhsert True
EnableUpdate True
Enableviewnstate True
EntitySetMarme People
EntityTypeFilter Person
GroupBy

Include

OrderBy

Zelect

StoreDriginalvaluesIntfiewstate True

ITTTTCTTe

Yifhere it.EnrollmentDate is not null

Confiqure Data Source,.,

Where
The expression passed to the Where query builder method.

The syntax you use in the Where property of the EntityDataSource control is Entity SQL. Entity SQL is similar
to Transact-SQL, but it's customized for use with entities rather than database objects. In the expression
it.EnrollmentDate is not null, the word it represents a reference to the entity returned by the query.
Therefore, it.EnrollmentDate refers to the EnrollmentDate property of the Person entity that the

EntityDataSource control returns.

Run the page. The students list now contains only students. (There are no rows displayed where there's no

enrollment date.)

STUDENT LIST
Name EntallmentDate Mumber of Courses
Edit Delete Barzdukas, Gytis Q7172005 2
Edit Delete lustice, Pegay 9,1,/2001 2
Edit Delete Li, Yan Q12002 2

Using the EntityDataSource "OrderBy" Property to Order Data

52

http://i1.asp.net/umbraco-beta-media/2576668/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image01_1.png�
http://i1.asp.net/umbraco-beta-media/2576680/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image02_3.png�

You also want this list to be in name order when it's first displayed. With the Students.aspx page still open in

Design view, and with the EntityDataSource control still selected, in the Properties window set the

OrderBy property to it.LastName,

Properties X
StudentsEntityDataSource System Meb ULWebControls EntityDataSource -

M El =
OrderBy it.Lastame -
Select
StoreQriginalvaluesInViewstate True
WiewStatebode Inherit F
Widhere it.EnrollmentDate is not null .

Configqure Data Source...

OrderBy
The expression passed to the OrderBy queny builder rmethaod.

Run the page. The students list is now in order by last name.

STUDENT LIST
Name EnrollmentDate Mumber of Courses
Edit Delete Alexander, Carson 9/1,/2005 3
Edit Delete Alonso, Meredith 9/1,/2002 1
Edit Delete Anand, Arturo 91,2003 P

Using a Control Parameter to Set the "Where" Property

As with other data source controls, you can pass parameter values to the Where property. On the Courses.aspx
page that you created in part 2 of the tutorial, you can use this method to display courses that are associated

with the department that a user selects from the drop-down list.

Open Courses.aspx and switch to Design view. Add a second EntityDataSource control to the page, and

name it CoursesEntityDataSource. Connect it to the SchoolEntities model, and select Courses as the

EntitySetName value.

In the Properties window, click the ellipsis in the Where property box. (Make sure the

CoursesEntityDataSource control is still selected before using the Properties window.)

53

http://i1.asp.net/umbraco-beta-media/2576692/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image05_1.png�
http://i1.asp.net/umbraco-beta-media/2576704/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image04_1.png�

Properties > X
CoursesEntityDataSource Systernibeb, ULWebContrals.] -
=HE =

StoreQriginalvaluesInie True -
WiewStatehode Inherit

Where LI

Configure Data Source...

Where
The expression passed to the Where query builder method,

The Expression Editor dialog box is displayed. In this dialog box, select Automatically generate the Where
expression based on the provided parameters, and then click Add Parameter. Name the parameter
DepartmentID, select Control as the Parameter source value, and select DepartmentsDropDownlList as the

ControlID value.

54

http://i1.asp.net/umbraco-beta-media/2576716/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image06_1.png�

Expression Editor

Ilutu:umati-:all'_-,-' generate the Withere expression based on the provided parameters,

Where Expression:

Pararmeters: Pararneter source:
Mame Walue i [':Dﬂtr'ﬂ ']
DepartmentIlD DepartrmentsDropDownList Selectedalue M ControllD:

x [DepartmentsDrnpannList v]

Default'falue;

Showy advanced properties

Add Parameter

OF] | Cancel

Click Show advanced properties, and in the Properties window of the Expression Editor dialog box, change
the Type property to Int32,

55

http://i1.asp.net/umbraco-beta-media/2576728/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image07_1.png�

Properties:

Direction Input o
Marre Department
PropertyMarne SelectedValue —

. 0 E
Type Int32 m
ControllD

The ID of the control to get the
property walue from.

When you're done, click OK.

Below the drop-down list, add a GridView control to the page and name it CoursesGridView. Connect it to
the CoursesEntityDataSource data source control, click Refresh Schema, click Edit Columns, and remove

the DepartmentID column. The GridView control markup resembles the following example.

<asp:GridViewID="CoursesGridView"runat="server"AutoGenerateColumns="False"
DataKeyNames="CourseID"DataSourceID="CoursesEntityDataSource">

<Columns>
<asp:BoundFieldDataField="CourseID"HeaderText="ID"ReadOnly="True"
SortExpression="CourseID"/>
<asp:BoundFieldDataField="Title"HeaderText="Title"SortExpression="Title"/>
<asp:BoundFieldDataField="Credits"HeaderText="Credits"
SortExpression="Credits"/>

</Columns>

</asp:GridView>

When the user changes the selected department in the drop-down list, you want the list of associated courses
to change automatically. To make this happen, select the drop-down list, and in the Properties window set the

AutoPostBack property to True.

56

http://i1.asp.net/umbraco-beta-media/2576740/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image15_1.png�

(10 DropDowunlistl I
Arcesskey ﬂ
S R
AutoPostBack True
T Cackomar

CausesWalidatic False

ClientIDMode Inherit

CssClass

Databdernber -

Now that you're finished using the designer, switch to Source view and replace the ConnectionString and
DefaultContainer name properties of the CoursesEntityDataSource control with the

ContextTypeName="ContosoUniversity.DAL.SchoolEntities" attribute. When you're done, the

markup for the control will look like the following example.

<asp:EntityDataSourceID="CoursesEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="false"
EntitySetName="Courses"

AutoGenerateWhereClause="true"Where="">

<WhereParameters>
<asp:ControlParameterControlID="DepartmentsDropDownList"Type="Int32"
Name="DepartmentID"PropertyName="SelectedValue"/>

</WhereParameters>

</asp:EntityDataSource>

Run the page and use the drop-down list to select different departments. Only courses that are offered by the

selected department are displayed in the GridView control.

COURSES BY DEPARTMENT
select a Departrment | English |E|

ID Title Credits
2021 Composition 3
2030 Poetry 2
2042 Literature 4

Using the EntityDataSource "GroupBy" Property to Group Data

57

http://i1.asp.net/umbraco-beta-media/2576752/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image08_1.png�
http://i1.asp.net/umbraco-beta-media/2576764/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image09_1.png�

Suppose Contoso University wants to put some student-body statistics on its About page. Specifically, it wants

to show a breakdown of numbers of students by the date they enrolled.

Open About.aspx, and in Source view, replace the existing contents of the BodyContent control with "Student

Body Statistics" between h2 tags:

<asp:ContentID="BodyContent"runat="server"ContentPlaceHolderID="MainContent">
<h2>Student Body Statistics</h2>
</asp:Content>

After the heading, add an EntityDataSource control and name it
StudentStatisticsEntityDataSource. Connect it to SchoolEntities, select the People entity set, and

leave the Select box in the wizard unchanged. Set the following properties in the Properties window:

e To filter for students only, set the Where property to it.EnrollmentDate is not null
e To group the results by the enrollment date, set the GroupBY property to it.EnrollmentDate.

e To select the enrollment date and the number of students, set the Select property to
it.EnrollmentDate, Count(it.EnrollmentDate) AS NumberOfStudents.

e To order the results by the enroliment date, set the OrderBy property to it.EnrollmentDate.

In Source view, replace the ConnectionString and DefaultContainer name properties with a

ContextTypeName property. The EntityDataSource control markup now resembles the following example.

<asp:EntityDataSourceID="StudentStatisticsEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"
EntitySetName="People"

Select="it.EnrollmentDate, Count(it.EnrollmentDate) AS NumberOfStudents"
OrderBy="it.EnrollmentDate"GroupBy="it.EnrollmentDate"
Where="it.EnrollmentDate is not null">

</asp:EntityDataSource>

The syntax of the Select, GroupBy, and Where properties resembles Transact-SQL except for the it keyword

that specifies the current entity.

Add the following markup to create a GridView control to display the data.

58

<asp:GridViewID="StudentStatisticsGridView"runat="server"AutoGenerateColumns="False"
DataSourceID="StudentStatisticsEntityDataSource">

<Columns>

<asp:BoundFieldDataField="EnrollmentDate"DataFormatString="{0:d}"

HeaderText="Date of Enrollment"

ReadOnly="True"SortExpression="EnrollmentDate"/>
<asp:BoundFieldDataField="NumberOfStudents"HeaderText="Students"
ReadOnly="True"SortExpression="NumberOfStudents"/>

</Columns>

</asp:GridView>

Run the page to see a list showing the number of students by enrollment date.

STUDENTBODY STATISTICS
Date of Enrollment Students
9,/1,/2000 2
21,2001
9/1/2002
13072003
9/1/2003
12004
9,/1/2005
1152011

[a2 B 3 R ' N e R R R) |

Using the QueryExtender Control for Filtering and Ordering

The QueryExtender control provides a way to specify filtering and sorting in markup. The syntax is
independent of the database management system (DBMS) you're using. It's also generally independent of the
Entity Framework, with the exception that syntax you use for navigation properties is unique to the Entity

Framework.

In this part of the tutorial you'll use a QueryExtender control to filter and order data, and one of the order-by

fields will be a navigation property.

(If you prefer to use code instead of markup to extend the queries that are automatically generated by the
EntityDataSource control, you can do that by handling the QueryCreated event. This is how the

QueryExtender control extends EntityDataSource control queries also.)

59

http://i1.asp.net/umbraco-beta-media/2576776/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image10_3.png�

Open the Courses.aspx page, and below the markup you added previously, insert the following markup to
create a heading, a text box for entering search strings, a search button, and an EntityDataSource control

that's bound to the Courses entity set.

<h2>Courses by Name</h2>

Enter a course name
<asp:TextBoxID="SearchTextBox"runat="server"></asp:TextBox>
<asp:ButtonID="SearchButton"runat="server"Text="Search"/>

<asp:EntityDataSourceID="SearchEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"
EntitySetName="Courses"
Include="Department">

</asp:EntityDataSource>

Notice that the EntityDataSource control's Include property is set to Department. In the database, the
Course table does not contain the department name; it contains a DepartmentID foreign key column. If you
were querying the database directly, to get the department name along with course data, you would have to
join the Course and Department tables. By setting the Include property to Department, you specify that
the Entity Framework should do the work of getting the related Department entity when it gets a Course
entity. The Department entity is then stored in the Department navigation property of the Course entity. (By
default, the SchoolEntities class that was generated by the data model designer retrieves related data when
it's needed, and you've bound the data source control to that class, so setting the Include property is not
necessary. However, setting it improves performance of the page, because otherwise the Entity Framework
would make separate calls to the database to retrieve data for the Course entities and for the related

Department entities.)

After the EntityDataSource control you just created, insert the following markup to create a

QueryExtender control that's bound to that EntityDataSource control.

<asp:QueryExtenderID="SearchQueryExtender"runat="server"
TargetControlID="SearchEntityDataSource">
<asp:SearchExpressionSearchType="StartsWith"DataFields="Title">
<asp:ControlParameterControlID="SearchTextBox"/>
</asp:SearchExpression>
<asp:0rderByExpressionDataField="Department.Name"Direction="Ascending">

<asp:ThenByDataField="Title"Direction="Ascending"/>

60

</asp:0rderByExpression>

</asp:QueryExtender>

The SearchExpression element specifies that you want to select courses whose titles match the value
entered in the text box. Only as many characters as are entered in the text box will be compared, because the

SearchType property specifies StartsWith.

The OrderByExpression element specifies that the result set will be ordered by course title within
department name. Notice how department name is specified: Department.Name, Because the association
between the Course entity and the Department entity is one-to-one, the Department navigation property
contains a Department entity. (If this were a one-to-many relationship, the property would contain a

collection.) To get the department name, you must specify the Name property of the Department entity.

Finally, add a GridView control to display the list of courses:

<asp:GridViewID="SearchGridView"runat="server"AutoGenerateColumns="False"
DataKeyNames="CourseID"DataSourceID="SearchEntityDataSource"AllowPaging="true">
<Columns>

<asp:TemplateFieldHeaderText="Department">

<ItemTemplate>

<asp:Label ID="Label2" runat="server" Text='<%# Eval("Department.Name")
%>"'></asp:Label>

</ItemTemplate>

</asp:TemplateField>

<asp:BoundFieldDataField="CourseID"HeaderText="ID"/>
<asp:BoundFieldDataField="Title"HeaderText="Title"/>
<asp:BoundFieldDataField="Credits"HeaderText="Credits"/>

</Columns>

</asp:GridView>

The first column is a template field that displays the department name. The databinding expression specifies

Department.Name, just as you saw in the QueryExtender control.

Run the page. The initial display shows a list of all courses in order by department and then by course title.

61

COURSES BY DEPARTMENT
Select a Department|Enin5h El

ID Title Credits
2021 Composition 3
2030 Poetry 2
2042 Literature 4

COURSES BY NAME

Enter a course name | Search

Department ID Title Credits
Economics 4041 Macroeconomics 3
Economics 4022 Microeconamics 3
Economics 4063 new course 3

Enter an "m" and click Search to see all courses whose titles begin with "m" (the search is not case sensitive).

COURSES BY DEPARTMENT
Select a Department|Eninsh |E|

ID Title Credits
2021 Composition 3
2030 Poetry 2
2047 Literature 4

COURSES BY NAME

Enter a course narme Search

Department ID Title Credits
Economics 4041 Macroeconomics 3

Economics 4022 Microeconomics 3

Using the "Like" Operator to Filter Data

You can achieve an effect similar to the QueryExtender control's StartsWith, Contains, and EndsWith
search types by using a Like operator in the EntityDataSource control's Where property. In this part of the

tutorial, you'll see how to use the Like operator to search for a student by name.
Open Students.aspx in Source view. After the GridView control, add the following markup:

62

http://i1.asp.net/umbraco-beta-media/2576788/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image11_3.png�
http://i1.asp.net/umbraco-beta-media/2576800/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image12_1.png�

<h2>Find Students by Name</h2>

Enter any part of the name
<asp:TextBoxID="SearchTextBox"runat="server"AutoPostBack="true"></asp:TextBox>
<asp:ButtonID="SearchButton"runat="server"Text="Search"/>

<asp:EntityDataSourceID="SearchEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"
EntitySetName="People"
Where="it.EnrollmentDate is not null and (it.FirstMidName Like '%' + @StudentName +
'%" or it.LastName Like '%' + @StudentName + '%')">
<WhereParameters>
<asp:ControlParameterControlID="SearchTextBox"Name="StudentName"PropertyName="Text"
Type="String"DefaultValue="%"/>
</WhereParameters>
</asp:EntityDataSource>
<asp:GridViewID="SearchGridView"runat="server"AutoGenerateColumns="False"DataKeyNames
="PersonID"
DataSourceID="SearchEntityDataSource"AllowPaging="true">
<Columns>
<asp:TemplateFieldHeaderText="Name"SortExpression="LastName, FirstMidName">
<ItemTemplate>
<asp:Label ID="LastNameFoundLabel" runat="server" Text='<%# Eval("LastName")
%>'></asp:Label>,
<asp:Label ID="FirstNameFoundLabel" runat="server" Text='<%# Eval("FirstMidName")
%>'></asp:Label>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateFieldHeaderText="Enrollment Date"SortExpression="EnrollmentDate">
<ItemTemplate>
<asp:Label ID="EnrollmentDateFoundLabel" runat="server" Text='<%#
Eval("EnrollmentDate", "{@:d}") %>'></asp:Label>
</ItemTemplate>
</asp:TemplateField>
</Columns>

</asp:GridView>

63

This markup is similar to what you've seen earlier except for the Where property value. The second part of the
Where expression defines a substring search (LIKE %FirstMidName% or LIKE %LastNameZ%) that searches

both the first and last names for whatever is entered in the text box.

Run the page. Initially you see all of the students because the default value for the StudentName parameter is
nopn

FIND STUDENTS BY NAME

Enter any part of the name | search

Name EnrollmentDate
Barzdukas, Gytis Q71,2005
lustice, Feggy Q71,2001
Li, ¥an 9/1,/2002

n_n

Enter the letter "g" in the text box and click Search. You see a list of students that have a "g" in either the first

or last name.

FIND STUDENTS BY NAME

Enter any part of the name g | =earch

Name EnrollmentDate
Barzdukas, Gytis 9/1,/2005
lustice, Peggy Q71,2001
Tang, Wayne Q12005

You've now displayed, updated, filtered, ordered, and grouped data from individual tables. In the next tutorial

you'll begin to work with related data (master-detail scenarios).

Working with Related Data

In the previous tutorial you used the EntityDataSource control to filter, sort, and group data. In this tutorial

you'll display and update related data.

You'll create the Instructors page that shows a list of instructors. When you select an instructor, you see a list of
courses taught by that instructor. When you select a course, you see details for the course and a list of students
enrolled in the course. You can edit the instructor name, hire date, and office assignment. The office assignment

is a separate entity set that you access through a navigation property.

64

http://i1.asp.net/umbraco-beta-media/2576812/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image13_1.png�
http://i1.asp.net/umbraco-beta-media/2576824/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart3_C03F_Image14_3.png�

You can link master data to detail data in markup or in code. In this part of the tutorial, you'll use both

methods.
INSTRUCTORS

MName Hire Date Office Assignment
Edit Select Abercrombie, Kirm 371171995 Srnith 18
Edit Select Fakhouri, Fadi B/6,/2002 29 Adams
Edit Select Harui, Roger 7i11998 37 wWilliams
Edit Select 7heng, Roger 271272004 143 Srnith
Edit Select Kapoor, Candace 1/15/2001 57 Adams
Edit Select Serrano, Stacy 6/1,/1999 271 Williams
Edit Select Steweart, Jasmine 1071271997 131 Srith
Edit Select Xu, Kristen Fr232001 203 Williams

m
o

it Select Van Houten, Roger 12,/7/2000 213 Smith

COURSE DETAILS

D 2030

Title Poetry

Credits 2

Department English

Location

LURL hittp:ffwwaw fineartschool.n

COURSES TAUGHT

ID Title Department
Select 2030 Poetry English

STUDEMT GRADES
| Name |Grade
|E=arzdukas, Gytis |3.50

|Ju5tice, Pegoy |4.DD

Displaying and Updating Related Entities in a GridView Control

Create a new web page named Instructors.aspx that uses the Site.Master master page, and add the following

markup to the Content control named Content2:

<h2>Instructors</h2>

<div>

<asp:EntityDataSourceID="InstructorsEntityDataSource"runat="server"

ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"

EntitySetName="People"

Where="it.HireDate is not null"Include="OfficeAssignment"EnableUpdate="True">

</asp:EntityDataSource>
</div>

This markup creates an EntityDataSource control that selects instructors and enables updates. The div

element configures markup to render on the left so that you can add a column on the right later.

Between the EntityDataSource markup and the closing </div> tag, add the following markup that creates a

GridView control and a Label control that you'll use for error messages:

65

http://i1.asp.net/umbraco-beta-media/2576836/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart4_C24C_Image01.png�

<asp:GridViewID="InstructorsGridView"runat="server"AllowPaging="True"AllowSorting="Tr
ue"
AutoGenerateColumns="False"DataKeyNames="PersonID"DataSourceID="InstructorsEntityData
Source"

OnSelectedIndexChanged="InstructorsGridView SelectedIndexChanged"
SelectedRowStyle-BackColor="LightGray"
onrowupdating="InstructorsGridView_RowUpdating">

<Columns>

<asp:CommandFieldShowSelectButton="True"ShowEditButton="True"/>
<asp:TemplateFieldHeaderText="Name"SortExpression="LastName">

<ItemTemplate>

<asp:Label ID="InstructorLastNameLabel” runat="server" Text='<%# Eval("LastName")
%>"'></asp:Label>,

<asp:Label ID="InstructorFirstNamelLabel" runat="server" Text='<%#
Eval("FirstMidName") %>'></asp:Label>

</ItemTemplate>

<EditItemTemplate>

<asp:TextBox ID="InstructorLastNameTextBox" runat="server" Text='<%#
Bind("FirstMidName") %>' Width="7em"></asp:TextBox>

<asp:TextBox ID="InstructorFirstNameTextBox" runat="server" Text='<%#
Bind("LastName") %>' Width="7em"></asp:TextBox>

</EditItemTemplate>

</asp:TemplateField>

<asp:TemplateFieldHeaderText="Hire Date"SortExpression="HireDate">

<ItemTemplate>

<asp:Label ID="InstructorHireDatelLabel” runat="server" Text='<%# Eval("HireDate",
"{0:d}") %>'></asp:Label>

</ItemTemplate>

<EditItemTemplate>

<asp:TextBox ID="InstructorHireDateTextBox" runat="server" Text='<%# Bind("HireDate",
"{0:d}") %>' Width="7em"></asp:TextBox>

</EditItemTemplate>

</asp:TemplateField>

<asp:TemplateFieldHeaderText="0ffice
Assignment"SortExpression="0fficeAssignment.Location">

<ItemTemplate>

<asp:Label ID="InstructorOfficelLabel” runat="server" Text='<%#

Eval("OfficeAssignment.Location") %>'></asp:Label>

66

</ItemTemplate>
<EditItemTemplate>
<asp:TextBox ID="InstructorOfficeTextBox" runat="server"
Text="<%# Eval("OfficeAssignment.Location™") %>' Width="7em"
oninit="InstructorOfficeTextBox_Init"></asp:TextBox>
</EditItemTemplate>
</asp:TemplateField>
</Columns>
<SelectedRowStyleBackColor="LightGray"></SelectedRowStyle>
</asp:GridView>
<asp:LabelID="ErrorMessagelLabel"runat="server"Text=""Visible="false"ViewStateMode="Di

sabled"></asp:Label>

This GridView control enables row selection, highlights the selected row with a light gray background color,
and specifies handlers (which you'll create later) for the SelectedIndexChanged and Updating events. It also
specifies PersonID for the DataKeyNames property, so that the key value of the selected row can be passed to

another control that you'll add later.

The last column contains the instructor's office assignment, which is stored in a navigation property of the
Person entity because it comes from an associated entity. Notice that the EditItemTemplate element
specifies Eval instead of Bind, because the GridView control cannot directly bind to navigation properties in
order to update them. You'll update the office assignment in code. To do that, you'll need a reference to the

TextBox control, and you'll get and save that in the TextBox control's Init event.

Following the GridView control is a Label control that's used for error messages. The control's Visible
property is false, and view state is turned off, so that the label will appear only when code makes it visible in

response to an error.

Open the Instructors.aspx.cs file and add the following using statement:

usingContosoUniversity.DAL;

Add a private class field immediately after the partial-class name declaration to hold a reference to the office

assignment text box.

privateTextBox instructorOfficeTextBox;

67

Add a stub for the SelectedIndexChanged event handler that you'll add code for later. Also add a handler for
the office assignment TextBox control's Init event so that you can store a reference to the TextBox control.
You'll use this reference to get the value the user entered in order to update the entity associated with the

navigation property.

protectedvoidInstructorsGridView_SelectedIndexChanged(object sender,EventArgs e)

{
}

protectedvoidInstructorOfficeTextBox_Init(object sender,EventArgs e)

{

instructorOfficeTextBox = sender asTextBox;

You'll use the GridView control's Updating event to update the Location property of the associated

OfficeAssignment entity. Add the following handler for the Updating event:

protectedvoidInstructorsGridView_RowUpdating(object sender,GridViewUpdateEventArgs e)

{

using(var context =newSchoolEntities())

{
var instructorBeingUpdated =Convert.ToInt32(e.Keys[0]);

var officeAssignment =(from o in context.OfficeAssignments
where o.InstructorID== instructorBeingUpdated
select o0).FirstOrDefault();

try

{
if(String.IsNullOrWhiteSpace(instructorOfficeTextBox.Text)==false)

{

if(officeAssignment ==null)

{

context.OfficeAssignments.AddObject (OfficeAssignment.CreateOfficeAssignment(instructo

rBeingUpdated, instructorOfficeTextBox.Text,null));
}

else

68

officeAssignment.Location= instructorOfficeTextBox.Text;

}
}

else

{

if(officeAssignment !=null)

{

context.DeleteObject (officeAssignment);

context.SaveChanges();

}

catch(Exception)

{

e.Cancel=true;
ErrorMessagelabel.Visible=true;
ErrorMessagelabel.Text="Update failed.";
//Add code to log the error.

}
}
}

This code is run when the user clicks Update in a GridView row. The code uses LINQ to Entities to retrieve the
OfficeAssignment entity that's associated with the current Person entity, using the PersonID of the

selected row from the event argument.

The code then takes one of the following actions depending on the value in the InstructorOfficeTextBox

control:

e If the text box has a value and there's no OfficeAssignment entity to update, it creates one.

e If the text box has a value and there's an OfficeAssignment entity, it updates the Location property

value.

e If the text box is empty and an OfficeAssignment entity exists, it deletes the entity.
After this, it saves the changes to the database. If an exception occurs, it displays an error message.

Run the page.

69

INSTRUCTORS

Name Hire Date Office Assignment
Edit Select Abercraombie, Kim 3£11,/1995 Srmith 17
Edit Select Fakhouri, Fadi Br6/2002 29 Adams
Edit Select Harui, Roger Fra99s 0 37 Williams
Edit Select heng, Roger 2F1272004 143 Srnith
Edit Select Kapoor, Candace 1/15/2001 57 Adams
Edit Select Serrano, Stacy 67171999 271 Williams
Edit Select Stewart, lasmine 101271997 131 Srmith
Edit Select XU, Kristen Fr2a52001 203 wWilliams
Edit Seledt Van Houten, Roger 12/7/2000 213 Smith

Click Edit and all fields change to text boxes.

INSTRUCTORS

Name Hire Date Office Assignment
Update Cancel Kim Ahercrombie 3/11/1895 Srith 17
Edit Select Fakhouri, Fadi a/6,2002 29 Adams
Edit Select Harui, Roger 7i171998 a7 williams
Edit Select Zheng, Roger 21122004 143 Smith
Edit Select k.apoor, Candace 171572001 57 Adams
Edit Select Serrano, Stagy 61,1939 271 Williams
Edit Select Stewart, Jasmine 10121997 121 Srmith
Edit Select ¥, Kristen Fraafe00l 203 Williams
Edit Select Wan Houten, Roger 127772000 213 Smith

Change any of these values, including Office Assignment. Click Update and you'll see the changes reflected in
the list.

Displaying Related Entities in a Separate Control

Each instructor can teach one or more courses, so you'll add an EntityDataSource control and a GridView
control to list the courses associated with whichever instructor is selected in the instructors GridView control.
To create a heading and the EntityDataSource control for courses entities, add the following markup

between the error message Label control and the closing </div> tag:

<h3>Courses Taught</h3>

<asp:EntityDataSourceID="CoursesEntityDataSource"runat="server"

70

http://i1.asp.net/umbraco-beta-media/2576848/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart4_C24C_Image02.png�
http://i1.asp.net/umbraco-beta-media/2576860/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart4_C24C_Image03.png�

ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"
EntitySetName="Courses"

Where="@PersonID IN (SELECT VALUE instructor.PersonID FROM it.People AS instructor)">
<WhereParameters>
<asp:ControlParameterControlID="InstructorsGridView"Type="Int32"Name="PersonID"Proper
tyName="SelectedValue"/>

</WhereParameters>

</asp:EntityDataSource>

The Where parameter contains the value of the PersonID of the instructor whose row is selected in the
InstructorsGridView control. The Where property contains a subselect command that gets all associated
Person entities from a Course entity's People navigation property and selects the Course entity only if one

of the associated Person entities contains the selected PersonID value.

To create the GridView control., add the following markup immediately following the

CoursesEntityDataSource control (before the closing </div> tag):

<asp:GridViewID="CoursesGridView"runat="server"
DataSourceID="CoursesEntityDataSource"
AllowSorting="True"AutoGenerateColumns="False"
SelectedRowStyle-BackColor="LightGray"

DataKeyNames="CourseID">

<EmptyDataTemplate>

<p>No courses found.</p>

</EmptyDataTemplate>

<Columns>

<asp:CommandFieldShowSelectButton="True"/>
<asp:BoundFieldDataField="CourseID"HeaderText="ID"ReadOnly="True"SortExpression="Cour
seID"/>
<asp:BoundFieldDataField="Title"HeaderText="Title"SortExpression="Title"/>
<asp:TemplateFieldHeaderText="Department"SortExpression="DepartmentID">
<ItemTemplate>

<asp:Label ID="GridViewDepartmentLabel” runat="server" Text="<J%#
Eval("Department.Name") %>'></asp:Label>

</ItemTemplate>

</asp:TemplateField>

71

</Columns>

</asp:GridView>

Because no courses will be displayed if no instructor is selected, an EmptyDataTemplate element is included.

Run the page.

INSTRUCTORS

Name Hire Date Office Assignment
Edit Select Abercrombie, Kim 371171995 Smith 17
Edit Select Fakhouri, Fadi a/6/2002 29 Adams
Edit Select Harui, Roger 71998 37 Williams
Edit Select Zheng, Roger 21272004 143 Smith
Edit Select Kapoor, Candace 1/15/2001 57 Adams
Edit Select Serrano, Stacy 611999 271 Williams
Edit Select Steweart, Jasmine 1071271997 131 Smith
Edit Select ¥u, Kristen FL232001 203 Williams
Edit Select Wan Houten, Roger 12/7,2000 213 Smith

COURSES TAUGHT

Mo courses found,

Select an instructor who has one or more courses assigned, and the course or courses appear in the list. (Note:
although the database schema allows multiple courses, in the test data supplied with the database no instructor
actually has more than one course. You can add courses to the database yourself using the Server Explorer

window or the CoursesAdd.aspx page, which you'll add in a later tutorial.)

72

http://i1.asp.net/umbraco-beta-media/2576872/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart4_C24C_Image04.png�

INSTRUCTORS

MName Hire Date Office Assighment
Edit Select Abercrombie, Kirm 371171995 Srmith 17
Edit Select Fakhouri, Fadi Bf6/2002 29 Adams
Edit Select Harui, Roger 7AL998 37 williams
Edit Select Zheng, Roger 2712/2004 143 Srnith

Edit Select Kapoor, Candace 1/15/2001 57 Adams
Edit Select Serrano, Stacy 6/1/1999 271 Williams
Edit Select Stewart, Jasmine 1071271997 131 Srnith
Edit Select ¥u, Kristen Fr23 2001 203 Williams
Edit Select Wan Houten, Roger 12,/7/2000 213 Smith

COURSES TAUGHT

ID Title Department
Select 2030 Poetry English

The CoursesGridView control shows only a few course fields. To display all the details for a course, you'll use
a DetailsView control for the course that the user selects. In Instructors.aspx, add the following markup after

the closing </div> tag (make sure you place this markup after the closing div tag, not before it):

<div>
<h3>Course Details</h3>
<asp:EntityDataSourceID="CourseDetailsEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"
EntitySetName="Courses"
AutoGenerateWhereClause="False"Where="1it.CourseID =
@CourseID"Include="Department,OnlineCourse,OnsiteCourse,StudentGrades.Person”
OnSelected="CourseDetailsEntityDataSource_Selected">
<WhereParameters>
<asp:ControlParameterControlID="CoursesGridView"Type="Int32"Name="CourseID"PropertyNa
me="SelectedValue"/>
</WhereParameters>
</asp:EntityDataSource>
<asp:DetailsViewID="CourseDetailsView"runat="server"AutoGenerateRows="False"
DataSourceID="CourseDetailsEntityDataSource">
<EmptyDataTemplate>
<p>

No course selected.</p>

</EmptyDataTemplate>

73

http://i1.asp.net/umbraco-beta-media/2576884/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart4_C24C_Image05.png�

<Fields>
<asp:BoundFieldDataField="CourseID"HeaderText="ID"ReadOnly="True"SortExpression="Cour
seID"/>
<asp:BoundFieldDataField="Title"HeaderText="Title"SortExpression="Title"/>
<asp:BoundFieldDataField="Credits"HeaderText="Credits"SortExpression="Credits"/>
<asp:TemplateFieldHeaderText="Department">

<ItemTemplate>

<asp:Label ID="DetailsViewDepartmentLabel" runat="server" Text='<%#
Eval("Department.Name") %>'></asp:Label>

</ItemTemplate>

</asp:TemplateField>

<asp:TemplateFieldHeaderText="Location">

<ItemTemplate>

<asp:Label ID="LocationlLabel" runat="server" Text='<%# Eval("OnsiteCourse.Location")
%>'></asp:Label>

</ItemTemplate>

</asp:TemplateField>

<asp:TemplateFieldHeaderText="URL">

<ItemTemplate>

<asp:Label ID="URLLabel" runat="server" Text='<%# Eval("OnlineCourse.URL")
%>'></asp:Label>

</ItemTemplate>

</asp:TemplateField>

</Fields>

</asp:DetailsView>

</div>

This markup creates an EntityDataSource control that's bound to the Courses entity set. The Where
property selects a course using the CourselID value of the selected row in the courses GridView control. The
markup specifies a handler for the Selected event, which you'll use later for displaying student grades, which

is another level lower in the hierarchy.

In Instructors.aspx.cs, create the following stub for the CourseDetailsEntityDataSource_Selected

method. (You'll fill this stub out later in the tutorial; for now, you need it so that the page will compile and run.)

protectedvoidCourseDetailsEntityDataSource_Selected(object

sender,EntityDataSourceSelectedEventArgs e)

74

Run the page.

INSTRUCTORS

Name
glect Ahercrombie, Kim
glect Fakhouri, Fadi
elect Harui, Roger
Select heng, Roger
elect Kapoor, Candace
elect Serrano, Stacy
Stewart, lasming
¥, Kristen

m
p
=
L1

lnal
p
=5
L7

m
o
+
]
[

lnal
p
=

m
p
=%
L1

m
o
—
L
[}

m
o
+
]
[

it Sele

m
o
—
L
[}

it Sele

m
o
+
]
[

it Sele

Van Houten, Roger 12/7/2000 213 Smith

Hire Date Office Assignment
31141995 Srith 17

BB 2002 29 Adams
77171998 37 williams
2122004 143 Smith
1/15/2001 57 Adams
61,1999 271 Williams
1041271997 131 Srnith
FrE32001 203 Williams

COURSES TAUGHT

Mo courses found,

COURSE DETAILS

Mo course selected,

Initially there are no course details because no course is selected. Select an instructor who has a course

assigned, and then select a course to see the details.

INSTRUCTORS

Mame

Edit Select Abercrombie, Kim 3/11,/1995

m
L
=
L7

it Select Fakhouri, Fadi
elect Harui, Roger
Select 7heng, Roger
elect Kapoor, Candace
elect Serrano, Stacy
glect Stewart, lasmineg

glect Xu, Kristen

m
o
=
Lo

T
o
—

m
o
=
Lo

m
L
=
L7

m
o
=
Lo

m
L
=
L7

m
o
=
Lo

Hire Date Office Assignment

17 Srith
B/6/2002 29 Adams
7/1/1998 37 williams
2/12/2004 143 Smith
1/15/2001 57 Adams
6/1/1999 271 Williams

10/12/1997 131 Smith
77232001 203 Williams

elect Wan Houten, Roger 12/7/2000 213 Srith

COURSE DETAILS

o 2030

Title Foetry

Credits 2

Department English

Location

UEL http: /o fineartd

COURSES TAUGHT

ID Title Department

Select 2030 Foetry English

75

http://i1.asp.net/umbraco-beta-media/2576896/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart4_C24C_Image06.png�
http://i1.asp.net/umbraco-beta-media/2576908/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart4_C24C_Image07.png�

Using the EntityDataSource "Selected" Event to Display Related Data

Finally, you want to show all of the enrolled students and their grades for the selected course. To do this, you'll

use the Selected event of the EntityDataSource control bound to the course DetailsView,

In Instructors.aspx, add the following markup after the DetailsView control:

<h3>Student Grades</h3>
<asp:ListViewID="GradesListView"runat="server">
<EmptyDataTemplate>

<p>No student grades found.</p>

</EmptyDataTemplate>

<LayoutTemplate>
<tableborder="1"runat="server"id="itemPlaceholderContainer">
<trrunat="server">

<thrunat="server">

Name
</th>
<thrunat="server">

Grade
</th>
</tr>
<trid="itemPlaceholder"runat="server">
</tr>
</table>
</LayoutTemplate>
<ItemTemplate>
<tr>
<td>

<asp:Label ID="StudentLastNamelLabel" runat="server" Text='<%# Eval("Person.LastName")
%" />,

<asp:Label ID="StudentFirstNameLabel" runat="server" Text='<J%#
Eval("Person.FirstMidName™) %>' />

</td>

<td>

<asp:Label ID="StudentGradelLabel" runat="server" Text='<%# Eval("Grade") %>' />

</td>

</tr>

76

</ItemTemplate>

</asp:ListView>

This markup creates a ListView control that displays a list of students and their grades for the selected course.
No data source is specified because you'll databind the control in code. The EmptyDataTemplate element
provides a message to display when no course is selected—in that case, there are no students to display. The
LayoutTemplate element creates an HTML table to display the list, and the ItemTemplate specifies the
columns to display. The student ID and the student grade are from the StudentGrade entity, and the student
name is from the Person entity that the Entity Framework makes available in the Person navigation property

of the StudentGrade entity.

In Instructors.aspx.cs, replace the stubbed-out CourseDetailsEntityDataSource_Selected method with

the following code:

protectedvoidCourseDetailsEntityDataSource_Selected(object
sender,EntityDataSourceSelectedEventArgs e)

{

var course = e.Results.Cast<Course>().FirstOrDefault();
if(course !=null)

{

var studentGrades = course.StudentGrades.TolList();
GradesListView.DataSource= studentGrades;
GradesListView.DataBind();

}

}

The event argument for this event provides the selected data in the form of a collection, which will have zero
items if nothing is selected or one item if a Course entity is selected. If a Course entity is selected, the code
uses the First method to convert the collection to a single object. It then gets StudentGrade entities from
the navigation property, converts them to a collection, and binds the GradesListView control to the

collection.

This is sufficient to display grades, but you want to make sure that the message in the empty data template is
displayed the first time the page is displayed and whenever a course is not selected. To do that, create the

following method, which you'll call from two places:

77

privatevoidClearStudentGradesDataSource()

{
var emptyStudentGradesList =newlList<StudentGrade>();

GradeslListView.DataSource= emptyStudentGradeslList;
GradesListView.DataBind();

}

Call this new method from the Page_Load method to display the empty data template the first time the page
is displayed. And call it from the InstructorsGridView_SelectedIndexChanged method because that

event is raised when an instructor is selected, which means new courses are loaded into the courses GridView

control and none is selected yet. Here are the two calls:

protectedvoidPage Load(object sender,EventArgs e)

{
if(!IsPostBack)

{
ClearStudentGradesDataSource();

}
}

protectedvoidInstructorsGridView_SelectedIndexChanged(object sender,EventArgs e)

{
ClearStudentGradesDataSource();

}

Run the page.

78

INSTRUCTORS

MName Hire Date Office Assignment

Edit Select Abercrombie, Kim 3111995 Smith 17 COURSE DETAILS
Edit Select Fakhouri, Fadi B/6,/2002 29 Adams

. . . Mo course selected,
Edit Select Harui, Roger 7i11998 37 wWilliams
Edit Select 7heng, Roger 271272004 143 Srnith
Edit Select kapoor, Candace 1/15/2001 57 Adarns STUDENT GRADES
Edit Select Serrano, Stacy 61,1999 271 Williams
Edit Select Stewart, Jasmine 10/12/1997 131 Smith No student grades found,
Edit Select Xu, Kristen Tr232001 203 Williams
Edit Select Wan Houten, Roger 12/7/2000 213 Smith

COURSES TAUGHT

Mo courses found,

Select an instructor that has a course assigned, and then select the course.

INSTRUCTORS
Name Hire Date Office Assignment
Edit Select Abercrombie, Kim 371171395 17 Smith COURSE DETALS
Edit Select Fakhouri, Fadi 8/6,/2002 29 Adams L 2030
Edit Select Harui, Roger 7/1/1998 37 williams Title Poetry
Edit Select Zheng, Roger 2/12/2004 143 Smith Credits 2
Edit Select Kapoor, Candace 1/15/2001 57 Adarmns Departrment English
Edit Select Serrano, Stacy 6/1/1993 271 Williams Location
Edit Select Stewart, Jasmine 10/12/1997 131 Smith URL http:/ A finearts
Edit Select XL, Kristen Tr2as2001 203 Williarns
Edit Select Van Houten, Roger 12/7/2000 213 Smith STUDENT GRADES
| Name |Grar.le

COURSES TAUGHT |Barzdukas, Gytis |3.50

ID Title Department |Ju5tice, Pegay |4.UU
Select 2030 Poetry English

You have now seen a few ways to work with related data. In the following tutorial, you'll learn how to add
relationships between existing entities, how to remove relationships, and how to add a new entity that has a

relationship to an existing entity.

79

http://i1.asp.net/umbraco-beta-media/2576920/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart4_C24C_Image08.png�
http://i1.asp.net/umbraco-beta-media/2576932/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart4_C24C_Image09.png�

Working with Related Data, Continued

In the previous tutorial you began to use the EntityDataSource control to work with related data. You
displayed multiple levels of hierarchy and edited data in navigation properties. In this tutorial you'll continue to

work with related data by adding and deleting relationships and by adding a new entity that has a relationship
to an existing entity.

You'll create a page that adds courses that are assigned to departments. The departments already exist, and

when you create a new course, at the same time you'll establish a relationship between it and an existing

department.

ADD COURSES
I

Title

Credits

Department|Engineering El
Inzert Cancel

You'll also create a page that works with a many-to-many relationship by assigning an instructor to a course
(adding a relationship between two entities that you select) or removing an instructor from a course (removing
a relationship between two entities that you select). In the database, adding a relationship between an
instructor and a course results in a new row being added to the CourseInstructor association table;
removing a relationship involves deleting a row from the CourseInstructor association table. However, you

do this in the Entity Framework by setting navigation properties, without referring to the CourseInstructor
table explicitly.

80

http://i1.asp.net/umbraco-beta-media/2576944/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart5_C553_Image02.png�

ASSIGN INSTRUCTORS TO COURSES OR REMOVE FROM COURSES
Select an Instructor: | Abercrambie Kim |Z|

ASSIGM A COURSE

Select a Course: | Calculus [~

REMOWE A COURSE

Select a Course: | Chemistry |E|

Remuove

Adding an Entity with a Relationship to an Existing Entity

Create a new web page named CoursesAdd.aspx that uses the Site.Master master page, and add the following

markup to the Content control named Content2;

<h2>Add Courses</h2>
<asp:EntityDataSourceID="CoursesEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"
EntitySetName="Courses"

EnableInsert="True"EnableDelete="True">

</asp:EntityDataSource>
<asp:DetailsViewID="CoursesDetailsView"runat="server"AutoGenerateRows="False"
DataSourceID="CoursesEntityDataSource"DataKeyNames="CourseID"
DefaultMode="Insert"oniteminserting="CoursesDetailsView_ItemInserting">
<Fields>

<asp:BoundFieldDataField="CourseID"HeaderText="ID"/>
<asp:BoundFieldDataField="Title"HeaderText="Title"/>
<asp:BoundFieldDataField="Credits"HeaderText="Credits"/>
<asp:TemplateFieldHeaderText="Department">

<InsertItemTemplate>
<asp:EntityDataSourceID="DepartmentsEntityDataSource"runat="server"ConnectionString="
name=SchoolEntities”

DefaultContainerName="SchoolEntities"EnableDelete="True"EnableFlattening="False"

81

http://i1.asp.net/umbraco-beta-media/2576956/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart5_C553_Image01.png�

EntitySetName="Departments"EntityTypeFilter="Department">
</asp:EntityDataSource>
<asp:DropDownListID="DepartmentsDropDownList"runat="server"DataSourceID="DepartmentsE
ntityDataSource"
DataTextField="Name"DataValueField="DepartmentID"
oninit="DepartmentsDropDownList Init">
</asp:DropDownlList>

</InsertItemTemplate>

</asp:TemplateField>
<asp:CommandFieldShowInsertButton="True"/>

</Fields>

</asp:DetailsView>

This markup creates an EntityDataSource control that selects courses, that enables inserting, and that
specifies a handler for the Inserting event. You'll use the handler to update the Department navigation

property when a new Course entity is created.

The markup also creates a DetailsView control to use for adding new Course entities. The markup uses
bound fields for Course entity properties. You have to enter the CourselID value because this is not a system-

generated ID field. Instead, it's a course number that must be specified manually when the course is created.

You use a template field for the Department navigation property because navigation properties cannot be
used with BoundField controls. The template field provides a drop-down list to select the department. The
drop-down list is bound to the Departments entity set by using Eval rather than Bind, again because you
cannot directly bind navigation properties in order to update them. You specify a handler for the
DropDownList control's Init event so that you can store a reference to the control for use by the code that

updates the DepartmentID foreign key.

In CoursesAdd.aspx.cs just after the partial-class declaration, add a class field to hold a reference to the

DepartmentsDropDownlList control:

privateDropDownlList departmentDropDownList;

Add a handler for the DepartmentsDropDownlList control's Init event so that you can store a reference to
the control. This lets you get the value the user has entered and use it to update the DepartmentID value of

the Course entity.

82

protectedvoidDepartmentsDropDownList_Init(object sender,EventArgs e)

{

departmentDropDownlList = sender asDropDownList;

Add a handler for the DetailsView control's Inserting event:

protectedvoidCoursesDetailsView ItemInserting(object
sender,DetailsViewInsertEventArgs e)

{
var departmentID =Convert.ToInt32(departmentDropDownlList.SelectedValue);
e.Values["DepartmentID"]= departmentID;

When the user clicks Insert, the Inserting event is raised before the new record is inserted. The code in the
handler gets the DepartmentID from the DropDownList control and uses it to set the value that will be used

for the DepartmentID property of the Course entity.

The Entity Framework will take care of adding this course to the Courses navigation property of the associated

Department entity. It also adds the department to the Department navigation property of the Course entity.

Run the page.

ADD COURSES
W]

Title

Credits

Department | Engineering [:]
Inzert Cance

Enter an ID, a title, a number of credits, and select a department, then click Insert.

Run the Courses.aspx page, and select the same department to see the new course.

83

http://i1.asp.net/umbraco-beta-media/2576968/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart5_C553_Image02_1.png�

COURSES BY DEPARTMENT
select a Department | Engineering |E|

ID Title Credits
1050 Chemistry 4
1061 Physics 4

4062 Mew engineering course 3

Working with Many-to-Many Relationships

The relationship between the Courses entity set and the People entity set is a many-to-many relationship. A
Course entity has a navigation property named People that can contain zero, one, or more related Person
entities (representing instructors assigned to teach that course). And a Person entity has a navigation property
named Courses that can contain zero, one, or more related Course entities (representing courses that that
instructor is assigned to teach). One instructor might teach multiple courses, and one course might be taught
by multiple instructors. In this section of the walkthrough, you'll add and remove relationships between Person

and Course entities by updating the navigation properties of the related entities.

Create a new web page named InstructorsCourses.aspx that uses the Site.Master master page, and add the

following markup to the Content control named Content2:

<h2>Assign Instructors to Courses or Remove from Courses</h2>

<asp:EntityDataSourceID="InstructorsEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"
EntitySetName="People"
Where="it.HireDate is not null"Select="it.LastName + ', ' + it.FirstMidName AS Name,
it.PersonID">
</asp:EntityDataSource>

Select an Instructor:
<asp:DropDownListID="InstructorsDropDownList"runat="server"DataSourceID="InstructorsE
ntityDataSource"
AutoPostBack="true"DataTextField="Name"DataValueField="PersonID"
OnSelectedIndexChanged="InstructorsDropDownlList_SelectedIndexChanged"
OnDataBound="InstructorsDropDownList DataBound">
</asp:DropDownlList>
<h3>

Assign a Course</h3>

84

http://i1.asp.net/umbraco-beta-media/2576980/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart5_C553_Image03.png�

Select a Course:
<asp:DropbDownListID="UnassignedCoursesDropDownList"runat="server"
DataTextField="Title"DataValueField="CourseID">
</asp:DropDownlList>

<asp:ButtonID="AssignCourseButton"runat="server"Text="Assign"0OnClick="AssignCourseBut
ton_Click"/>

<asp:LabelID="CourseAssignedLabel"runat="server"Visible="false"Text="Assignment
successful”></asp:Label>

<h3>

Remove a Course</h3>

Select a Course:
<asp:DropDownListID="AssignedCoursesDropDownList"runat="server"
DataTextField="title"DataValueField="courseiD">
</asp:DropDownlList>

<asp:ButtonID="RemoveCourseButton"runat="server"Text="Remove"OnClick="RemoveCourseBut
ton_Click"/>

<asp:LabelID="CourseRemovedLabel"runat="server"Visible="false"Text="Removal

successful”></asp:Label>

This markup creates an EntityDataSource control that retrieves the name and PersonID of Person entities

for instructors. A DropDrownList control is bound to the EntityDataSource control. The DropDownlList
control specifies a handler for the DataBound event. You'll use this handler to databind the two drop-down

lists that display courses.

The markup also creates the following group of controls to use for assigning a course to the selected instructor:

e A DropDownList control for selecting a course to assign. This control will be populated with courses that

are currently not assigned to the selected instructor.
e A Button control to initiate the assignment.

e A Label control to display an error message if the assignment fails.

85

Finally, the markup also creates a group of controls to use for removing a course from the selected instructor.

In InstructorsCourses.aspx.cs, add a using statement:

usingContosoUniversity.DAL;

Add a method for populating the two drop-down lists that display courses:

privatevoidPopulateDropDownLists()

{

using(var context =newSchoolEntities())

{

var allCourses =(from c in context.Courses
select c¢).ToList();

var instructorID =Convert.ToInt32(InstructorsDropDownlList.SelectedValue);
var instructor =(from p in context.People.Include("Courses™)

where p.PersonID== instructorID

select p).First();

var assignedCourses = instructor.Courses.TolList();

var unassignedCourses = allCourses.Except(assignedCourses.AsEnumerable()).ToList();

UnassignedCoursesDropDownlList.DataSource= unassignedCourses;
UnassignedCoursesDropDownlList.DataBind();

UnassignedCoursesDropDownList.Visible=true;

AssignedCoursesDropDownList.DataSource= assignedCourses;
AssignedCoursesDropDownlList.DataBind();
AssignedCoursesDropDownlList.Visible=true;

}

}

This code gets all courses from the Courses entity set and gets the courses from the Courses navigation
property of the Person entity for the selected instructor. It then determines which courses are assigned to that

instructor and populates the drop-down lists accordingly.

86

Add a handler for the Assign button's Click event:

protectedvoidAssignCourseButton_Click(object sender,EventArgs e)

{

using(var context =newSchoolEntities())
{
var instructorID =Convert.ToInt32(InstructorsDropDownlList.SelectedValue);
var instructor =(from p in context.People
where p.PersonID== instructorID
select p).First();
var courseID =Convert.ToInt32(UnassignedCoursesDropDownlList.SelectedValue);
var course =(from c¢ in context.Courses
where c.CourseID== courselD
select c¢).First();
instructor.Courses.Add(course);

try
{

context.SaveChanges();
PopulateDropDownlLists();
CourseAssignedLabel.Text="Assignment successful.";

}

catch(Exception)

{

CourseAssignedLabel.Text="Assignment unsuccessful.";

//Add code to log the error.
}

CourseAssignedLabel.Visible=true;

}
}

This code gets the Person entity for the selected instructor, gets the Course entity for the selected course, and
adds the selected course to the Courses navigation property of the instructor's Person entity. It then saves

the changes to the database and repopulates the drop-down lists so the results can be seen immediately.

Add a handler for the Remove button's C1ick event;

87

protectedvoidRemoveCourseButton_Click(object sender,EventArgs e)

{

using(var context =newSchoolEntities())

{

var instructorID =Convert.ToInt32(InstructorsDropDownList.SelectedValue);
var instructor =(from p in context.People

where p.PersonID== instructorID

select p).First();

var courseID =Convert.ToInt32(AssignedCoursesDropDownlList.SelectedValue);
var courses = instructor.Courses;

var courseToRemove =newCourse();

foreach(Course c in courses)

{

if(c.CourseID== courselD)
{
courseToRemove = c;

break;

try

courses.Remove(courseToRemove) ;

context.SaveChanges();
PopulateDropDownlLists();
CourseRemovedLabel.Text="Removal successful.";

}

catch(Exception)

{

CourseRemovedLabel.Text="Removal unsuccessful.";
//Add code to log the error.

}

CourseRemovedLabel.Visible=true;

}
}

88

This code gets the Person entity for the selected instructor, gets the Course entity for the selected course, and
removes the selected course from the Person entity's Courses navigation property. It then saves the changes

to the database and repopulates the drop-down lists so the results can be seen immediately.

Add code to the Page_Load method that makes sure the error messages are not visible when there's no error
to report, and add handlers for the DataBound and SelectedIndexChanged events of the instructors drop-

down list to populate the courses drop-down lists:

protectedvoidPage_Load(object sender,EventArgs e)

{

CourseAssignedLabel.Visible=false;

CourseRemovedLabel.Visible=false;

}

protectedvoidInstructorsDropDownlList_DataBound(object sender,EventArgs e)

{
PopulateDropDownLists();

}

protectedvoidInstructorsDropDownList_SelectedIndexChanged(object sender,EventArgs e)

{
PopulateDropDownlLists();

}

Run the page.

89

ASSIGN INSTRUCTORS TO COURSES OR REMOVE FROM COURSES

Select an Instructor: |Ahercrumhie,l«<im El

ASSIGN A COURSE

Select a Course: | Calculus |E|

REMOWE & COURSE

Select a Course: ﬂ

Select an instructor. The Assign a Course drop-down list displays the courses that the instructor doesn't teach,
and the Remove a Course drop-down list displays the courses that the instructor is already assigned to. In the
Assign a Course section, select a course and then click Assign. The course moves to the Remove a Course
drop-down list. Select a course in the Remove a Course section and click Remove. The course moves to the
Assign a Course drop-down list.

You have now seen some more ways to work with related data. In the following tutorial, you'll learn how to use

inheritance in the data model to improve the maintainability of your application.

90

http://i1.asp.net/umbraco-beta-media/2576992/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart5_C553_Image01_1.png�

Implementing Table-per-Hierarchy
Inheritance

In the previous tutorial you worked with related data by adding and deleting relationships and by adding a new
entity that had a relationship to an existing entity. This tutorial will show you how to implement inheritance in

the data model.

In object-oriented programming, you can use inheritance to make it easier to work with related classes. For
example, you could create Instructor and Student classes that derive from a Person base class. You can

create the same kinds of inheritance structures among entities in the Entity Framework.

In this part of the tutorial, you won't create any new web pages. Instead, you'll add derived entities to the data

model and modify existing pages to use the new entities.
Table-per-Hierarchy versus Table-per-Type Inheritance

A database can store information about related objects in one table or in multiple tables. For example, in the
School database, the Person table includes information about both students and instructors in a single table.
Some of the columns apply only to instructors (HireDate), some only to students (EnrollmentDate), and
some to both (LastName, FirstName).

Ferson
% PersonlD

LastMame
:l-'..:'_,‘=| Both
FirstMarme

HireDate Instructors only
EnrallmentDate Students n“h’(

You can configure the Entity Framework to create Instructor and Student entities that inherit from the

Person entity. This pattern of generating an entity inheritance structure from a single database table is called

table-per-hierarchy (TPH) inheritance.

For courses, the School database uses a different pattern. Online courses and onsite courses are stored in
separate tables, each of which has a foreign key that points to the Course table. Information common to both

course types is stored only in the Course table.

91

http://i1.asp.net/umbraco-beta-media/2577004/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image11_4.png�

Course
% CourselD

Title
Credits

m |>

1

4 L 3

; ?

OnsiteCourse OnlineCourse
% CourselD % CourselD
Location LRL
Days
Tirne

You can configure the Entity Framework data model so that OnlineCourse and OnsiteCourse entities inherit
from the Course entity. This pattern of generating an entity inheritance structure from separate tables for each

type, with each separate table referring back to a table that stores data common to all types, is called table per
type (TPT) inheritance.

TPH inheritance patterns generally deliver better performance in the Entity Framework than TPT inheritance
patterns, because TPT patterns can result in complex join queries. This walkthrough demonstrates how to
implement TPH inheritance. You'll do that by performing the following steps:

e Create Instructor and Student entity types that derive from Person,

Move properties that pertain to the derived entities from the Person entity to the derived entities.
e Set constraints on properties in the derived types.

e Make the Person entity an abstract entity.

Map each derived entity to the Person table with a condition that specifies how to determine whether a
Person row represents that derived type.

Adding Instructor and Student Entities

Open the SchoolModel.edmx file, right-click an unoccupied area in the designer, select Add, then select Entity.

92

http://i1.asp.net/umbraco-beta-media/2577016/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image12_4.png�

Add > Enitity...

Diagram] Szsociation..,
foom] Inheritance...
Grid k Cormplex Type
Scalar Property Format] Function Inport..,
Select Al

bMapping Details

i

rAadel Browser

Update Model from Database..,

Generate Database from Maodel..,
Sdd Code Generation Iterm..,
Walidate
Properties Alt+Enter

In the Add Entity dialog box, name the entity Instructor and set its Base type option to Person.

93

http://i1.asp.net/umbraco-beta-media/2577028/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image01_4.png�

[.dd Entity [® |[=]

Properties

Entity narme:

Instructor

Base type:

[F‘ersu:un v]

Entity Set:

|F'e-:up|e |

ey Property
[] Create key property

Property name:
E |

Property bype:
Int32 -

(0] Cancel]

Click OK. The designer creates an Instructor entity that derives from the Person entity. The new entity does

not yet have any properties.

94

http://i1.asp.net/umbraco-beta-media/2577040/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image02_4.png�

."-.
flg Instruckor
=* Person

=l Properties

= Mavigation Propetties

b

./.
=+ Person

= properties
4 personlD
@Lastl‘\lame
7 FirstMidMarne
@Hire[ﬁlate
@Enrnllment[ﬁlate
= Mavigation Properties

Dfficefssignment

@_. Courses

StudentGrades

Repeat the procedure to create a Student entity that also derives from Person,

Only instructors have hire dates, so you need to move that property from the Person entity to the
Instructor entity. In the Person entity, right-click the HireDate property and click Cut. Then right-click

Properties in the Instructor entity and click Paste.

95

http://i1.asp.net/umbraco-beta-media/2577052/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image03_4.png�

" "

p p
{lg Student *-’tg Instructor
=* Person =* Person

= Properties IEI Properties

= Mawvigation Properties = Mawigation Properties

b b

V

r Y

¢ Person

= Properties
% PersonID

ﬁ LastMame
o FirsthidMarme

EnrollmentDate
ﬁ HireDate
= Mavigation Properties

Dfficedssignment
Courses
StudentGrades

The hire date of an Instructor entity cannot be null. Right-click the HireDate property, click Properties, and

then in the Properties window change Nullable to False,

Properties > 1 X
SchoolModel.Instructor.HireDate Froperty -
ge 21 | =]
Concurrency Mode Mane L
Default Value (Mone)
[Docurmentation
Ertity Key False
Getter Fublic -
Marme HireDate N
(o) =
Precision {Mone)
Setter True
StoreGeneratedPattern
EYLT Iafehime E
Mullable
Deterrmines whether the property is nullable,

96

http://i1.asp.net/umbraco-beta-media/2577064/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image04_4.png�
http://i1.asp.net/umbraco-beta-media/2577076/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image05_4.png�

Repeat the procedure to move the EnrollmentDate property from the Person entity to the Student entity.

Make sure that you also set Nullable to False for the EnrollmentDate property.

Now that a Person entity has only the properties that are common to Instructor and Student entities
(aside from navigation properties, which you're not moving), the entity can only be used as a base entity in the
inheritance structure. Therefore, you need to ensure that it's never treated as an independent entity. Right-click
the Person entity, select Properties, and then in the Properties window change the value of the Abstract

property to True.

Froperties > 3 x
SchoolModel.Person EntityType -

e

Ee

Ahstract

Arcess
Base Type

[+ Documentation
Entity Set Marme
Mame Person

Abstract
Determines if an entity type is abstract,

Mapping Instructor and Student Entities to the Person Table

Now you need to tell the Entity Framework how to differentiate between Instructor and Student entities in
the database.

Right-click the Instructor entity and select Table Mapping. In the Mapping Details window, click Add a
Table or View and select Person.

97

http://i1.asp.net/umbraco-beta-media/2577088/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image06_4.png�

Mapping Details - Instructor

E Caolumn Operator Walue f Property
EZ | 4 Tables
[<Add a Table or Views E]

Departrment
Dfficedssignment
OnlineCourse
OnsiteCourse

m

StudentiGrade

1

Click Add a Condition, and then select HireDate.

bapping Details - Instructar

Column

Operator Walue f Property
Ef | 4 Tables

4 [Maps to Person

B8 <fdd a Condition»

4 [|EnrollmentDate
FirstMarme

i HireDate : DateTirme

o

> @

4

LastMame
0 <Adda Table or Wiew s

Change Operator to Is and Value / Property to Not Null.

Mapping Details - Instructar

E Colurnn COperator Walue f Property
ER | 4 Tables
4 [Maps to Person

ﬁ When HireDate

Is
B8 «Add a Condition:
4 [Column Mappings
[E] HireDate : datetirne —+ Ff HireDate @ DateTime
[E] EnrollmentDate : datetirme +—

-y

E «<Add a Table or Wiews

Repeat the procedure for the Students entity, specifying that this entity maps to the Person table when the
EnrollmentDate column is not null. Then save and close the data model.

Build the project in order to create the new entities as classes and make them available in the designer.

98

http://i1.asp.net/umbraco-beta-media/2577100/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image07_4.png�
http://i1.asp.net/umbraco-beta-media/2577112/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image09_4.png�
http://i1.asp.net/umbraco-beta-media/2577124/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image10_4.png�

Using the Instructor and Student Entities

When you created the web pages that work with student and instructor data, you databound them to the
Person entity set, and you filtered on the HireDate or EnrollmentDate property to restrict the returned
data to students or instructors. However, now when you bind each data source control to the Person entity set,
you can specify that only Student or Instructor entity types should be selected. Because the Entity
Framework knows how to differentiate students and instructors in the Person entity set, you can remove the

Where property settings you entered manually to do that.

In the Visual Studio Designer, you can specify the entity type that an EntityDataSource control should select
in the EntityTypeFilter drop-down box of the Configure Data Source wizard, as shown in the following

example.

Configure Data Source - StudentsEntityDataSource

Lég Configure Data Selection

EntitysetMarme:

’F‘eu:uple

EntityTypeFilter:

|EI"~.I|:|ne:||

(Mone)
Instructar
Person

And in the Properties window you can remove Where clause values that are no longer needed, as shown in the

following example.

99

http://i1.asp.net/umbraco-beta-media/2577136/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image13_4.png�

Properties » X
StudentsEntityDataSource System ieb, ULWebContrals. EntityData -

B A=E

Enableiewstate True

EntitySetMarme People

EntityTypeFilter

GroupBy

Include StudentGrades

OrderBy it.FirstMiddame,it.LastMame
Select

StoreOriginalvaluesIniewStat True

YWiewstateMode Inherit
Yifhere it.EnrollmentDate is not null DE'EtE
¥here

The expression passed to the Where query builder method.

However, because you've changed the markup for EntityDataSource controls to use the ContextTypeName
attribute, you cannot run the Configure Data Source wizard on EntityDataSource controls that you've

already created. Therefore, you'll make the required changes by changing markup instead.

Open the Students.aspx page. In the StudentsEntityDataSource control, remove the Where attribute and

add an EntityTypeFilter="Student" attribute. The markup will now resemble the following example:

<asp:EntityDataSourceID="StudentsEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"
EntitySetName="People"EntityTypeFilter="Student"

Include="StudentGrades"

EnableDelete="True"EnableUpdate="True"

OrderBy="it.LastName">

</asp:EntityDataSource>

Setting the EntityTypeFilter attribute ensures that the EntityDataSource control will select only the
specified entity type. If you wanted to retrieve both Student and Instructor entity types, you would not set
this attribute. (You have the option of retrieving multiple entity types with one EntityDataSource control
only if you're using the control for read-only data access. If you're using an EntityDataSource control to
insert, update, or delete entities, and if the entity set it's bound to can contain multiple types, you can only work

with one entity type, and you have to set this attribute.)

100

http://i1.asp.net/umbraco-beta-media/2577148/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image14_4.png�

Repeat the procedure for the SearchEntityDataSource control, except remove only the part of the Where
attribute that selects Student entities instead of removing the property altogether. The opening tag of the

control will now resemble the following example:

<asp:EntityDataSourceID="SearchEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"
EntitySetName="People"EntityTypeFilter="Student"

Where="it.FirstMidName Like '%' + @StudentName + '%' or it.LastName Like '%' +

@StudentName + '%'">

Run the page to verify that it still works as it did before.

101

STUDENT LIST
ID MName Enrellment Date Mumber of Courses
Edit Delete 14 Walker, Alexandra 9712000 2
Edit Delete 20 Shan, Alicia Q12003 Pl
Edit Delete 2&White, Anthony 9712001 2
Edit Delete 12 Anand, Arturo Q12003 Pl
Edit Delete 22 Alexander, Carson 9712005 3
Edit Delete 19 Bryant, Carson as2001 1
1
2
1
]

Edit Delete 15 Powell, Carson Q7172004
Edit Delete 26 Rogers, Cody Q12002
Edit Delete 16 Jai, Darmien Q71,2001
Edit Delete 22 Gao, Erica 1/230/2003
122

FIND STUDENTS BY NAME

Enter any part of the name

MName Enrallment Date
Barzdukas, Gytis 9,1,/2005
lustice, Peggy 9712001

Li, an 012002
Marman, Laura Q172003
Olivotto, Mino 9,1,/2005
Tang, Wayne Q1720035

Alonso, Meredith 9512002
Lopez, Sophia 0172004
Browning, Meredith 9/172000
Anand, Arturo 9/1,2003
123

Update the following pages that you created in earlier tutorials so that they use the new Student and

Instructor entities instead of Person entities, then run them to verify that they work as they did before:

e In StudentsAdd.aspx, add EntityTypeFilter="Student" to the StudentsEntityDataSource control.

The markup will now resemble the following example:

<asp:EntityDataSource ID="StudentsEntityDataSource" runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"
EnableFlattening="False"
EntitySetName="People" EntityTypeFilter="Student"

102

http://i1.asp.net/umbraco-beta-media/2577160/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image15_4.png�

EnableInsert="True'

</asp:EntityDataSource>

ADD NEW STUDENTS

First
Mame

Last Mame

Enrollment
Date

Insert Cancel

In About.aspx, add EntityTypeFilter="Student" to the StudentStatisticsEntityDataSource
control and remove Where="it.EnrollmentDate is not null" The markup will now resemble the

following example:

<asp:EntityDataSourceID="StudentStatisticsEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"
EntitySetName="People"EntityTypeFilter="Student"

Select="it.EnrollmentDate, Count(it.EnrollmentDate) AS NumberOfStudents"
OrderBy="1it.EnrollmentDate"GroupBy="it.EnrollmentDate">
</asp:EntityDataSource>

STUDENTBODY STATISTICS
Date of Enrollment Students
9/1/2000 2
Q172001
9/1/2002
173072003
9/1/2003
Q12004
9/1/2005
17172011

= ot LN = wn

In Instructors.aspx and InstructorsCourses.aspx, add EntityTypeFilter="Instructor" to the
InstructorsEntityDataSource control and remove Where="it.HireDate is not null" The

markup in Instructors.aspx now resembles the following example:

103

http://i1.asp.net/umbraco-beta-media/2577172/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image16_4.png�
http://i1.asp.net/umbraco-beta-media/2577184/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image17_4.png�

<asp:EntityDataSourceID="InstructorsEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="false"
EntitySetName="People"EntityTypeFilter="Instructor"

Include="0fficeAssignment"

EnableUpdate="True">

</asp:EntityDataSource>

INSTRUCTORS

D Name Hire Date Office Assignment
Edit Select 1 Abercrombie, Kirm 3/11/1995 17 Smith COURSE DETALS
Edit Select 4 Fakhouri, Fadi 8/6/2002 29 Adams ID 2044
Edit Select 5 Harui, Roger 7411008 37 Williams Title Literature
Edit Select 18 Zheng, Roger 2/12/2004 143 Smith Credits 4
Edit Select 25 Kapoor, Candace 1/15/2001 57 Adarns Department English
Edit Select 27 Serrano, Stacy 6/1/1999 271 Williams Location 225 Adams
Edit Select 21 Stewart, lasmine 10/12/1997 131 Smith URL
Edit Select 32 XU, Kristen Fr2a52001 203 wWilliams
Edit

STUDEMT GRADES

Select 34 Van Houten, Roger 12/7,/2000 213 Smith
|E| Mame |Grar.le

COURSES TAUGHT 6 [Li van 13.50
D Title Department |?_|Narman, Laura |4.UU

Select 2042 Literature English |E_|r:llimtt0, Mino |3.UU

Seledt 3141 Trigonometry Mathernatics

Seledt 4022 Microeconormics Econormics

Select 4041 Macroeconaomics Economics

Select 4061 Quantitative Econormics

Seled 4062 Mew engineering course Engineering

Select 4063 new course Econormics

The markup in InstructorsCourses.aspx will now resemble the following example:

<asp:EntityDataSourceID="InstructorsEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="False"
EntitySetName="People"EntityTypeFilter="Instructor"

Select="it.LastName + ',' + it.FirstMidName AS Name, it.PersonID">

</asp:EntityDataSource>

104

http://i1.asp.net/umbraco-beta-media/2577196/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image18_4.png�

ASSIGN INSTRUCTORS TO COURSES OR REMOVE FROM COURSES

Select an Instructaor: |Ahercrnmhie, Kim El

ASSIGH A COURSE

Select a Course: |Ca|cu|us EI

FEMOWVE A COURSE

Select a Course: |Literature |E|

Remuove

As a result of these changes, you've improved the Contoso University application's maintainability in several
ways. You've moved selection and validation logic out of the Ul layer (.aspx markup) and made it an integral
part of the data access layer. This helps to isolate your application code from changes that you might make in
the future to the database schema or the data model. For example, you could decide that students might be
hired as teachers' aids and therefore would get a hire date. You could then add a new property to differentiate
students from instructors and update the data model. No code in the web application would need to change
except where you wanted to show a hire date for students. Another benefit of adding Instructor and
Student entities is that your code is more readily understandable than when it referred to Person objects that

were actually students or instructors.

You've now seen one way to implement an inheritance pattern in the Entity Framework. In the following
tutorial, you'll learn how to use stored procedures in order to have more control over how the Entity Framework

accesses the database.

105

http://i1.asp.net/umbraco-beta-media/2577208/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart6_CA12_image19_4.png�

Using Stored Procedures

In the previous tutorial you implemented a table-per-hierarchy inheritance pattern. This tutorial will show you

how to use stored procedures to gain more control over database access.

The Entity Framework lets you specify that it should use stored procedures for database access. For any entity
type, you can specify a stored procedure to use for creating, updating, or deleting entities of that type. Then in
the data model you can add references to stored procedures that you can use to perform tasks such as

retrieving sets of entities.

Using stored procedures is a common requirement for database access. In some cases a database administrator
may require that all database access go through stored procedures for security reasons. In other cases you may
want to build business logic into some of the processes that the Entity Framework uses when it updates the
database. For example, whenever an entity is deleted you might want to copy it to an archive database. Or
whenever a row is updated you might want to write a row to a logging table that records who made the
change. You can perform these kinds of tasks in a stored procedure that's called whenever the Entity

Framework deletes an entity or updates an entity.

As in the previous tutorial, you'll not create any new pages. Instead, you'll change the way the Entity Framework

accesses the database for some of the pages you already created.

In this tutorial you'll create stored procedures in the database for inserting Student and Instructor entities.
You'll add them to the data model, and you'll specify that the Entity Framework should use them for adding
Student and Instructor entities to the database. You'll also create a stored procedure that you can use to

retrieve Course entities.

Creating Stored Procedures in the Database

(If you're using the School. mdf file from the project available for download with this tutorial, you can skip this

section because the stored procedures already exist.)

In Server Explorer, expand School. mdf, right-click Stored Procedures, and select Add New Stored Procedure.

106

Server Explarer

2] 1 | ¥
4 [} Data Connections
a4 [k Schoolmdf
> [Database Diagrams

» [Tables
s Wiews
. |C3 Stored Drocadiua
> [Fur Add Mew Stored Procedure
> L Sy E Refresh
T
i S ;ﬂ-.:‘:: Properties Lt +Enter

» ?'5 SEPVERS
> g SharePaint Cannections

Copy the following SQL statements and paste them into the stored procedure window, replacing the skeleton

stored procedure.

CREATE PROCEDURE [dbo].[InsertStudent]
@LastName nvarchar(50),
@FirstName nvarchar(50),
@EnrollmentDate datetime
AS
INSERT INTO dbo.Person(LastName,
FirstName,
EnrollmentDate)
VALUES (@LastName,
@FirstName,
@EnrollmentDate);
SELECT SCOPE_IDENTITY()asNewPersonID;

107

http://i1.asp.net/umbraco-beta-media/2577220/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart7_CE32_image15_4.png�

dbo.StoredProce, DATANSCHOOL MDFY

1 CREATE PROCEDURE [dbo].[InsertStudent]

2 iLastMame nvarchar(5@),

3 {@iFirstName nvarchar(5@),

- @EnrollmentDate datetime

5 AS

6 FNSERT INTO dbo.Person (LastName,

7 FirstName,

8 EnrollmentDate)

| VALUES (@LastName,

1@ [@FirstName,

11 @EnrollmentDate);

12 ELECT| SCOPE_IDENTITY() as MewPersonID;
100 % = 4

Student entities have four properties: PersonID, LastName, FirstName, and EnrollmentDate. The
database generates the ID value automatically, and the stored procedure accepts parameters for the other
three. The stored procedure returns the value of the new row's record key so that the Entity Framework can

keep track of that in the version of the entity it keeps in memory.

Save and close the stored procedure window.

Create an InsertInstructor stored procedure in the same manner, using the following SQL statements:

CREATE PROCEDURE [dbo].[InsertInstructor]
@LastName nvarchar(50),
@FirstName nvarchar(50),
@HireDate datetime
AS
INSERT INTO dbo.Person(LastName,
FirstName,
HireDate)
VALUES (@LastName,
@FirstName,
@HireDate);
SELECT SCOPE_IDENTITY()asNewPersonID;

Create Update stored procedures for Student and Instructor entities also. (The database already has a

DeletePerson stored procedure which will work for both Instructor and Student entities.)

108

http://i1.asp.net/umbraco-beta-media/2577232/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart7_CE32_image14_4.png�

CREATE PROCEDURE [dbo].[UpdateStudent]
@PersonIDint,
@LastName nvarchar(50),
@FirstName nvarchar(50),
@EnrollmentDate datetime
AS
UPDATE Person SET LastName=@LastName,
FirstName=@FirstName,
EnrollmentDate=@EnrollmentDate
WHERE PersonID=@PersonID;

CREATE PROCEDURE [dbo].[UpdateInstructor]
@PersonIDint,
@LastName nvarchar(50),
@FirstName nvarchar(50),
@HireDate datetime
AS
UPDATE Person SET LastName=@LastName,
FirstName=@FirstName,
HireDate=@HireDate
WHERE PersonID=@PersonID;

In this tutorial you'll map all three functions -- insert, update, and delete -- for each entity type. The Entity
Framework version 4 allows you to map just one or two of these functions to stored procedures without
mapping the others, with one exception: if you map the update function but not the delete function, the Entity
Framework will throw an exception when you attempt to delete an entity. In the Entity Framework version 3.5,
you did not have this much flexibility in mapping stored procedures: if you mapped one function you were

required to map all three.

To create a stored procedure that reads rather than updates data, create one that selects all Course entities,

using the following SQL statements:
CREATE PROCEDURE [dbo].[GetCourses]

AS
SELECT CourseID,Title,Credits,DepartmentID FROM dbo.Course

109

Adding the Stored Procedures to the Data Model

The stored procedures are now defined in the database, but they must be added to the data model to make
them available to the Entity Framework. Open SchoolModel.edmx, right-click the design surface, and select
Update Model from Database. In the Add tab of the Choose Your Database Objects dialog box, expand
Stored Procedures, select the newly created stored procedures and the DeletePerson stored procedure, and

then click Finish.

110

i qJEF) Choose Your Database Objects

Add | Refresh I Delete |

Update Wizard @

[¥] % Stored Procedures
D; DeleteOfficebssignment (dba)
DeletePerson (dba)
[C1=Z] fn_diagrarnobjects {dbo)
GetCourses (dbo)
D; GetDepartrnentMarme (dbo)
=] GetStudentGrades (dhba)
InserInstructor (dbao)
(1] InsertOfficeAssignrment (dba)
D; InsertPerson (dbo)
InsertStudent (dbo)
(1] sp_alterdiagrarm {dba)
(1] sp_creatediagram (dbo)
D; sp_dropdiagram {dba)
[CI=E] sp_helpdiagramdefinition (dho)
(1] sp_helpdiagrarms (dbo)
(1] sp_renamediagram (dbo)
D; sp_upgraddiagrarns (dba)
Updatelnstructar (dho)
[C1Z] UpdateOfficedssignment (dbo)
[[1Z] UpdatePerson (dba)
UpdateStudent (dhbo)

Pluralize or singularize generated ohject names

Include foreign key columns in the model

m

1

Zelect iterms to add to the model,

< Previous Mgt = Firish] I Cancel

Mapping the Stored Procedures

In the data model designer, right-click the Student entity and select Stored Procedure Mapping.

111

http://i1.asp.net/umbraco-beta-media/2577244/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart7_CE32_image20_4.png�

s
o Student
=* Person &dd r

=l Propetties Rename

“ Enrallmer Cut Chrl +3
= Mavigation P Copy Ctrl+C
. Paste Crl +4

Delete Drel

T

L

Collapse

Tahble Mapping
Stored Procedure Mapping

B il W XL

Showy in Model Browser

Update Model frorm Database...

Generate Database from MModel,.,
Add Code Generation Iterm...
Walidate
Properties Llt+Enter

The Mapping Details window appears, in which you can specify stored procedures that the Entity Framework

should use for inserting, updating, and deleting entities of this type.

Mapping Details - Student
&=

Pararneter / Column Dperator Properky Use Qriginal Walue Ro
] | + [Fncioms T T

2] «Select Insert Functions
[Z] <Select Update Function >
D <%elect Delete Function»

Set the Insert function to InsertStudent. The window shows a list of stored procedure parameters, each of
which must be mapped to an entity property. Two of these are mapped automatically because the names are
the same. There's no entity property named FirstName, so you must manually select FirstMidName from a
drop-down list that shows available entity properties. (This is because you changed the name of the

FirstName property to FirstMidName in the first tutorial.)

112

http://i1.asp.net/umbraco-beta-media/2577256/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart7_CE32_image21_4.png�
http://i1.asp.net/umbraco-beta-media/2577268/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart7_CE32_image22_4.png�

Mapping Details - Student

E Pararneter / Column Dperator Fropery Use Qriging
Ef| | 4 Functions
4 [Z] Insert Using InsertStudent
4 [] Parameters
'@ LastMarne : rvarchar +— 2 LastNarne ; String
i@ FirstMarne : resarchar +— i (=]
tad EnrollmentDate : datetime +— i |EnrollmentDate : DateTime
4 [Result Column Bindings "'-ar':fr'ir'uq
@ <AddResult Binding> Ofﬁce.&ssiénmentlnstructu
[Z] «Select Update Functions PersanlD @ Int32

In the same Mapping Details window, map the Update function to the UpdateStudent stored procedure

(make sure you specify FirstMidName as the parameter value for FirstName, as you did for the Insert

stored procedure) and the Delete function to the DeletePerson stored procedure.

Mapping Details - Student

Pararmeter / Column
ER| | 4« Functions
4] Insert Using InsertStudent
4 [] Parameters
@l LastMame : rvarchar - 4
'@ FirstMarne : mvarchar 4+
@l EnrollmentDate : datetirr4—
4 [Result Colurmn Bindings
B <Add Result Binding =
4 7] Update Using UpdateStudent
4 [Parameters
'@ PersonlD : int +—
@l LastMame : rvarchar - 4
'@ FirstMarne : mvarchar 4+
@l EnrollmentDate : datetirr4—
4 [Result Colurmn Bindings
B <Add Result Binding =
4 7] Delete Using DeletePerson
4 [Parameters
'@ PersonlD : int +—

Operatar

Property

e Lasthame : String
= FirsthidMame : String
i EnrollmentDate : DateTirne

'i?ﬁ PersonlD : Int32

e Lasthame : String

= FirsthidMame : String

i EnrollmentDate : DateTirne

'i?ﬁ PersonlD : Int32

113

http://i1.asp.net/umbraco-beta-media/2577280/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart7_CE32_image23_4.png�
http://i1.asp.net/umbraco-beta-media/2577292/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart7_CE32_image01_4.png�

Follow the same procedure to map the insert, update, and delete stored procedures for instructors to the

Instructor entity.

bapping Details - Instructar

= Pararneter / Colurnn Operatar Property
Ef| | 4 Functions
4] Insert Using InsertInstructor

4 |7 Parameters

@l LastMarne : rvarchar 4 o LastMame @ String
@ FirstMame : nvarchar 4+ 0 FirsthidMame : String
'@ HireDate @ datetime +— 5 HireDate : DateTirne

4 [Result Colurmn Bindings
B <Add Result Binding =
4 7] Update Using Updatelnstructar
4 [Parameters

'@ PersonlD @ int +— '?ﬁ PersonlD : Int32
@l LastMarne : rvarchar 4 o LastMame @ String
@ FirstMame : nvarchar 4+ 0 FirsthidMame : String
'@ HireDate @ datetime +— 5 HireDate : DateTirne
4 [Result Colurmn Bindings
B <Add Result Binding =
4 [-Z] Delete Using DeletePersan
4 [Parameters
'@ PersonlD @ int +— '?ﬁ PersonlD : Int32

For stored procedures that read rather than update data, you use the Model Browser window to map the
stored procedure to the entity type it returns. In the data model designer, right-click the design surface and
select Model Browser. Open the SchoolModel.Store node and then open the Stored Procedures node. Then

right-click the GetCourses stored procedure and select Add Function Import.

114

http://i1.asp.net/umbraco-beta-media/2577304/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart7_CE32_image02_4.png�

(SN SGIT choolldodel edmx

Type here to search

4 g SchoolModel.edmsx
4 [8] SchoolModel
[Entity Types
1 Complex Types
[Asszociations
I @ EntityCentainer: SchoolEntities
4 | || SchoalModel.Stare
[Tables / Views
4 [Stored Frocedures
; Getloanrrar
Elnser }‘.’ Delete Drel
Ea g:;:ri Add Function Impaort..,

Update Model from Database..,

Generate Database from MMaodel..
Add Code Generation Iterm...
Walidate
Properties L/t +Enter

In the Add Function Import dialog box, under Returns a Collection Of select Entities, and then select

Course as the entity type returned. When you're done, click OK. Save and close the .edmx file.

115

http://i1.asp.net/umbraco-beta-media/2577316/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart7_CE32_image24_4.png�

Add Function Irmport @

Function Import Mare:

GetCourses

Stored Procedure Mame:

GetCourses -

Returns a Collection Of
) Maone
) Scalars:

7 Complex Update

@ Entities: ‘ v'

Departrment
Stared Procedur Instructor

Officefssignment
Get Calurmn It OnlineCourse

OnsiteCourse

Person
Click on ' Stydent =
procedur Sy dentGrade Zreate Mewy

Cormplex I'vpe" below to create a compatible complex type, You can
also always update an existing complex type to match the returned
scherna, The changes will be applied to the model ance you click an
I,

Create Mew Complex Type

o

Using Insert, Update, and Delete Stored Procedures

Stored procedures to insert, update, and delete data are used by the Entity Framework automatically after

you've added them to the data model and mapped them to the appropriate entities. You can now run the

StudentsAdd.aspx page, and every time you create a new student, the Entity Framework will use the

InsertStudent stored procedure to add the new row to the Student table.

116

http://i1.asp.net/umbraco-beta-media/2577328/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart7_CE32_image25_4.png�

ADD NEW STUDENTS

First
Mame

Last Mame Student

Enrollment
Date

Insert Cancel

e

09102010

Run the Students.aspx page and the new student appears in the list.

STUDENT LIST

ID Mame Enrollment Date Mumber of Courses

Edit Celete 26 Rogers, Cody 9/1/2002
Edit Delete 2& White, Anthomy 9,/1/2001
Edit Delete 29 Griffin, Rachel 9/1,/2004
Edit Delete 30 Shan, Alicia Q71,2003
Edit Delete 33 Gao, Erica 1/30/2003
Edit Delete 35 Smith, John 17152011
Edit Delete 38 Student, Mew 9/10/2010
12

LN}

2

2
1
2
a
]
a

Change the name to verify that the update function works, and then delete the student to verify that the delete

function works.

STUDENT LIST
(0] Mame

Enroliment Date

Edit Delete 26 Rogers, Cody 9/1/2002
Edit Delete 28 White, Anthony 9/1/2001
Edif Delete 20 Griffin, Rachel Q712004
Edit Delefe 30 Shan, Alicia 9/1/2003
Edit Delete 33 Gao, Erica 1/30/2003
Edit Delete 35 Smith, John 17172011
Update Cancel 38 Student ToBeDeleted| 51072010
123

Mumber of Courses

L= = B = R N R ol S I E]

Using Select Stored Procedures

The Entity Framework does not automatically run stored procedures such as GetCourses, and you cannot use

them with the EntityDataSource control. To use them, you call them from code.

117

http://i1.asp.net/umbraco-beta-media/2577340/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart7_CE32_image03_4.png�
http://i1.asp.net/umbraco-beta-media/2577352/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart7_CE32_image04_4.png�
http://i1.asp.net/umbraco-beta-media/2577364/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart7_CE32_image05_4.png�

Open the InstructorsCourses.aspx.cs file. The PopulateDropDownLists method uses a LINQ-to-Entities query
to retrieve all course entities so that it can loop through the list and determine which ones an instructor is

assigned to and which ones are unassigned:

var allCourses =(from c in context.Courses

select c).TolList();

Replace this with the following code:

var allCourses = context.GetCourses();

The page now uses the GetCourses stored procedure to retrieve the list of all courses. Run the page to verify
that it works as it did before.

(Navigation properties of entities retrieved by a stored procedure might not be automatically populated with
the data related to those entities, depending on ObjectContext default settings. For more information, see
Loading Related Objects in the MSDN Library.)

In the next tutorial, you'll learn how to use Dynamic Data functionality to make it easier to program and test
data formatting and validation rules. Instead of specifying on each web page rules such as data format strings
and whether or not a field is required, you can specify such rules in data model metadata and they're

automatically applied on every page.

118

http://msdn.microsoft.com/en-us/library/bb896272.aspx�

Using Dynamic Data Functionality to
Format and Validate Data

In the previous tutorial you implemented stored procedures. This tutorial will show you how Dynamic Data

functionality can provide the following benéefits:

e Fields are automatically formatted for display based on their data type.
e Fields are automatically validated based on their data type.

e You can add metadata to the data model to customize formatting and validation behavior. When you do
this, you can add the formatting and validation rules in just one place, and they're automatically applied

everywhere you access the fields using Dynamic Data controls.

To see how this works, you'll change the controls you use to display and edit fields in the existing Students.aspx

page, and you'll add formatting and validation metadata to the name and date fields of the Student entity

type.

STUDENT LIST

Name Enrollment Date Mumber of Courses

Edit Delete Alexander, Carson 9/1,/2055 a
Edit Delete Alonso, Meredith 9/1,/2002 1
Edit Delete Anand, Arturo 9/1,/2003 2
Edit Delete Barzdukas, Gytis Q71,2005 2
Edit Celete Browning, Meredith 9/1,/2000 2
Edit Delete Bryant, Carsan Q71,2001 1
Edit Delete Carlson, Robyn Q71,2005 1
Edit Delete Gao, Erica 173072003 1]
Edit Delete Griffin, Rachel Q71,2004 1
Edit Delete Holt, Roger Q7172004 1
123

FIND STUDENTS BY NAME

Enter any part of the name bar i mearch i

MName Enrellment Date
Barzdulkas, Gytis 9/1,/2005

Using DynamicField and DynamicControl Controls

119

http://i1.asp.net/umbraco-beta-media/2577376/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart8_D23E_Image01.png�

Open the Students.aspx page and in the StudentsGridView control replace the Name and Enrollment

DateTemplateField elements with the following markup:

<asp:TemplateFieldHeaderText="Name"SortExpression="LastName">

<EditItemTemplate>
<asp:DynamicControlID="LastNameTextBox"runat="server"DataField="LastName"Mode="Edit"/
>
<asp:DynamicControlID="FirstNameTextBox"runat="server"DataField="FirstMidName"Mode="E
dit"/>

</EditItemTemplate>

<ItemTemplate>
<asp:DynamicControlID="LastNameLabel"runat="server"DataField="LastName"Mode="ReadOnly
/>,
<asp:DynamicControlID="FirstNameLabel"runat="server"DataField="FirstMidName"Mode="Rea
donly"/>

</ItemTemplate>

</asp:TemplateField>
<asp:DynamicFieldDataField="EnrollmentDate"HeaderText="Enrollment

Date"SortExpression="EnrollmentDate"/>

This markup uses DynamicControl controls in place of TextBox and Label controls in the student name

template field, and it uses a DynamicField control for the enroliment date. No format strings are specified.

Add a ValidationSummary control after the StudentsGridView control.

<asp:ValidationSummaryID="StudentsValidationSummary"runat="server"ShowSummary="true"

DisplayMode="BulletList"Style="color:Red"/>

In the SearchGridView control replace the markup for the Name and Enrollment Date columns as you did in

the StudentsGridView control, except omit the EditItemTemplate element. The Columns element of the

SearchGridView control now contains the following markup:

<asp:TemplateFieldHeaderText="Name"SortExpression="LastName">
<ItemTemplate>
<asp:DynamicControlID="LastNamelLabel"runat="server"DataField="LastName"Mode="ReadOnly

/>,

120

<asp:DynamicControlID="FirstNameLabel"runat="server"DataField="FirstMidName"Mode="Rea
donly"/>

</ItemTemplate>

</asp:TemplateField>
<asp:DynamicFieldDataField="EnrollmentDate"HeaderText="Enrollment

Date"SortExpression="EnrollmentDate"/>

Open Students.aspx.cs and add the following using statement:

usingContosoUniversity.DAL;

Add a handler for the page's Init event:

protectedvoidPage_Init(object sender,EventArgs e)

{
StudentsGridView.EnableDynamicData(typeof(Student));

SearchGridView.EnableDynamicData(typeof(Student));
}

This code specifies that Dynamic Data will provide formatting and validation in these data-bound controls for
fields of the Student entity. If you get an error message like the following example when you run the page, it

typically means you've forgotten to call the EnableDynamicData method in Page_Init

Could not determine a MetaTable. A MetaTable could not be determined for the data

source 'StudentsEntityDataSource' and one could not be inferred from the request URL.

Run the page.

121

STUDENT LIST

MName Enrollment Date MNumber of Courses
Edit Delete Alexander, Carson 9/1,/2055 12:00:00 Ak
Edit Delete Alonso, Meredith 971,/2002 12:00:00 AR
Edit Delete Anand, Arturo Q7172003 12:00:00 AM
Edit Delete Barzdukas, Gytis Q71,2005 12:00:00 AR
Edit Delete Browning, Meredith 9/1,/2000 12:00:00 AR

[l S LS T LS B L]

Edit Celete Bryant, Carson Q71,2001 12:00:00 AR
Edit Delete Carlzon, Robyn Q7172005 12:00:00 AR 1
Edit Delete Gao, Erica 1/20,/2003 12:00:00 AR O
Edit Delete Griffin, Rachel Q7172004 12:00:00 AR 1
Edit Delete Holt, Roger Q71,2004 12:00:00 AR 1
123

FIND STUDENTS BY NAME

Enter any part of the name | =earch

Name Enrollment Date
Barzdukas, Gytis Q12005 12:00:00 A
lustice, Peggy Q12001 12:00:00 AkA

Li, an Q712002 12:00:00 AR
Maorman, Laura Q12003 12:00:00 AkA
Olivotto, Ming Q712005 12:00:00 AR

In the Enrollment Date column, the time is displayed along with the date because the property type is
DateTime. You'll fix that later.

For now, notice that Dynamic Data automatically provides basic data validation. For example, click Edit, clear
the date field, click Update, and you see that Dynamic Data automatically makes this a required field because
the value is not nullable in the data model. The page displays an asterisk after the field and an error message in
the ValidationSummary control:

122

http://i1.asp.net/umbraco-beta-media/2577388/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart8_D23E_Image03.png�

STUDENT LIST

MName

Enrellment Date

Edit Delete Alonso, Meredith
Edit Delete Anand, Arturo

Edit Delete Barzdulkas, Gytis
Edit Delete Browning, Meredith
Edit Delete Bryant, Carson

Edit Delete Carlson, Rokyn
Edit Delete Gano, Erica

Edit Delete Griffin, Rachel

Edit Delete Holt, Roger

v

Carson

9/1/2002
9/1/2003
9/1/2005
9/1/2000
9/1/2001
9/1/2005
1/30,2003
9/1/2004
9/1/2004

* The EnrollmentDate field is required.

You could omit the ValidationSummary control, because you can also hold the mouse pointer over the

asterisk to see the error message:

Enrollment Date Number of Courses
* g
The EnrcllmentDate field is required.
9172002 I
9172003 2

Dynamic Data will also validate that data entered in the Enrollment Date field is a valid date:

123

http://i1.asp.net/umbraco-beta-media/2577400/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart8_D23E_Image05.png�
http://i1.asp.net/umbraco-beta-media/2577412/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart8_D23E_Image06.png�

STUDENT LIST

Name Enrollment Date
Update Cancel Alexander . Carzon 10322010
Edit Delete Alonso, Meredith Q7172002 12:00:00 AM
Edit Delete Anand, Arturo Q71,2003 12:00:00 A
Edit Delete Barzdulkas, Gytis Q7172005 12:00:00 AM
Edit Delete Browning, Meredith Q12000 12:00:00 AK
Edit Delete Bryant, Carson Q7172001 12:00:00 AKA
Edit Delete Carlson, Robyn Q12005 12:00:00 AK
Edit Delete Gao, Erica 173072003 12:00:00 AR
Edit Delete Griffin, Rachel Q12004 12:00:00 A
Edit Delete Holt, Roger Q7172004 12:00:00 AM
123

= The value is not valid.

As you can see, this is a generic error message. In the next section you'll see how to customize messages as well

as validation and formatting rules.

Adding Metadata to the Data Model

Typically, you want to customize the functionality provided by Dynamic Data. For example, you might change
how data is displayed and the content of error messages. You typically also customize data validation rules to

provide more functionality than what Dynamic Data provides automatically based on data types. To do this, you

create partial classes that correspond to entity types.

In Solution Explorer, right-click the ContosoUniversity project, select Add Reference, and add a reference to

System.ComponentModel.DataAnnotations,

124

http://i1.asp.net/umbraco-beta-media/2577424/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart8_D23E_Image04.png�

P

o8 Add Reference @

MNET |CDM I Projects | Erouvse I Recent|

Filtered to: .MET Framework 4

Component Marne Wi
Systern.Componentbdodel. Datafnnotations 4.|—|
systern Lonfiguration 4.
Systern.Configuration Install 4,

Systern.Core

Systern.Data, DataSetExtensions
Systern.Data
Systern.Data.Entity.Design
Systern.Data, Entity
Systern.Data.ling

EalEE S

Systern.Data, OracleClient

1 | 1]

-

8]8 l ’ Cancel

In the DAL folder, create a new class file, name it Student.cs, and replace the template code in it with the

following code.

usingSystem;
usingSystem.ComponentModel;

usingSystem.ComponentModel.DataAnnotations;

namespaceContosoUniversity.DAL

{
[MetadataType(typeof(StudentMetadata))]

publicpartialclassStudent

{
}

publicclassStudentMetadata

{
[DisplayFormat(DataFormatString="{0:d}",ApplyFormatInEditMode=true)]
publicDateTimeEnrollmentDate{get;set;}

125

http://i1.asp.net/umbraco-beta-media/2577436/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart8_D23E_Image11_2.png�

[StringlLength(25,ErrorMessage="First name must be 25 characters or less in length.")]
[Required(ErrorMessage="First name is required.")]

publicStringFirstMidName{get;set;}

[StringlLength(25,ErrorMessage="Last name must be 25 characters or less in length.")]
[Required(ErrorMessage="Last name is required.")]

publicStringlLastName{get;set;}

}
}

This code creates a partial class for the Student entity. The MetadataType attribute applied to this partial
class identifies the class that you're using to specify metadata. The metadata class can have any name, but

using the entity name plus "Metadata" is a common practice.

The attributes applied to properties in the metadata class specify formatting, validation, rules, and error

messages. The attributes shown here will have the following results:

e EnrollmentDate will display as a date (without a time).
e Both name fields must be 25 characters or less in length, and a custom error message is provided.

e Both name fields are required, and a custom error message is provided.

Run the Students.aspx page again, and you see that the dates are now displayed without times:

STUDENT LIST
Mame Enrollment Date Mumber of Courses
Edit Delete Alexander. Carson 97172055 3
Edit Delete Alonso, Meredith 9712002 1
Edit Delete Anand, Arturo 9712003 2

Edit a row and try to clear the values in the name fields. The asterisks indicating field errors appear as soon as
you leave a field, before you click Update. When you click Update, the page displays the error message text

you specified.

126

http://i1.asp.net/umbraco-beta-media/2577448/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart8_D23E_Image08.png�

STUDENT LIST

MName

Edit Delete Alonso, Meredith
Edit Delete Anand, Arturo

Edit Delete Barzdukas, Gytis
Edit Delete Erowning, Meredith

Edit Delete Bryant, Carson
Edit Delete Carlson, Robyn
Edit Delete Gao, Erica

Edit Delete Griffin, Rachel

Edit Delete Holt, Roger

= Last nare is required.
= First name is reguired.

Try to enter names that are longer than 25 characters, click Update, and the page displays the error message

text you specified.

STUDENT LIST

Name

Update Cancel Alexander more than 25 ¢ * Carson more than 25 char *

Edit Delete Alonso, Meredith
Edit Delete Anand, Arturo

Edit Delete Barzdukas, Gytis
Edit Delete Browning, Meredith
Edit Delete Bryant, Carson

Edit Delete Carlsan, Rokyn
Edit Delete Gao, Erica

Edit Delete Griffin, Rachel

Edit Delete Holt, Roger

= Last name must be 25 characters or less in length.
= First name must be 25 characters or less in length.

Now that you've set up these formatting and validation rules in the data model metadata, the rules will
automatically be applied on every page that displays or allows changes to these fields, so long as you use

DynamicControl or DynamicField controls. This reduces the amount of redundant code you have to write,

127

http://i1.asp.net/umbraco-beta-media/2577460/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart8_D23E_Image10.png�
http://i1.asp.net/umbraco-beta-media/2577472/WindowsLiveWriter_TheEntityFramewor.NETGettingStartedPart8_D23E_Image09.png�

which makes programming and testing easier, and it ensures that data formatting and validation are consistent

throughout an application.

128

The ObjectDataSource Control

The EntityDataSource control enables you to create an application very quickly, but it typically requires you
to keep a significant amount of business logic and data-access logic in your .aspx pages. If you expect your
application to grow in complexity and to require ongoing maintenance, you can invest more development time
up front in order to create an n-tier or layered application structure that's more maintainable. To implement this
architecture, you separate the presentation layer from the business logic layer (BLL) and the data access layer
(DAL). One way to implement this structure is to use the ObjectDataSource control instead of the
EntityDataSource control. When you use the ObjectDataSource control, you implement your own data-
access code and then invoke it in .aspx pages using a control that has many of the same features as other data-
source controls. This lets you combine the advantages of an n-tier approach with the benefits of using a Web

Forms control for data access.

The ObjectDataSource control gives you more flexibility in other ways as well. Because you write your own
data-access code, it's easier to do more than just read, insert, update, or delete a specific entity type, which are
the tasks that the EntityDataSource control is designed to perform. For example, you can perform logging
every time an entity is updated, archive data whenever an entity is deleted, or automatically check and update

related data as needed when inserting a row with a foreign key value.

Business Logic and Repository Classes

An ObjectDataSource control works by invoking a class that you create. The class includes methods that
retrieve and update data, and you provide the names of those methods to the ObjectDataSource control in
markup. During rendering or postback processing, the ObjectDataSource calls the methods that you've

specified.

Besides basic CRUD operations, the class that you create to use with the ObjectDataSource control might
need to execute business logic when the ObjectDataSource reads or updates data. For example, when you
update a department, you might need to validate that no other departments have the same administrator

because one person cannot be administrator of more than one department.

In some ObjectDataSource documentation, such as the ObjectDataSource Class overview, the control calls a
class referred to as a business object that includes both business logic and data-access logic. In this tutorial you
will create separate classes for business logic and for data-access logic. The class that encapsulates data-access
logic is called a repository. The business logic class includes both business-logic methods and data-access

methods, but the data-access methods call the repository to perform data-access tasks.

129

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.objectdatasource.aspx�

You will also create an abstraction layer between your BLL and DAL that facilitates automated unit testing of the
BLL. This abstraction layer is implemented by creating an interface and using the interface when you instantiate
the repository in the business-logic class. This makes it possible for you to provide the business-logic class with
a reference to any object that implements the repository interface. For normal operation, you provide a
repository object that works with the Entity Framework. For testing, you provide a repository object that works

with data stored in a way that you can easily manipulate, such as class variables defined as collections.

The following illustration shows the difference between a business-logic class that includes data-access logic
without a repository and one that uses a repository.

Without Repository With Repository

Business logic and data access logic Business logic and data access logic in separate classes;
in the same class. unit tests for business logic can easily manipulate and
verify data in order to test business logic.

ObjectDataSource

- Unit Test Class
or Unit Test Class I

Business Logic Business Logic Business Logic
Class Class Class

Repository Repository

Interface Interface

Normal Test
Repository Class Repository Class

Datain easily
managed
collections

Entity Framework Entity Framework
& Database & Database

130

http://i1.asp.net/umbraco-beta-media/2574856/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image05.png�

You will begin by creating web pages in which the ObjectDataSource control is bound directly to a
repository because it only performs basic data-access tasks. In the next tutorial you will create a business logic
class with validation logic and bind the ObjectDataSource control to that class instead of to the repository

class. You will also create unit tests for the validation logic. In the third tutorial in this series you will add sorting
and filtering functionality to the application.

The pages you create in this tutorial work with the Departments entity set of the data model that you created

in previous tutorials in this series.

DEPARTMENTS

Mame Budget 5Start Date Administrator
Edit Delete Econormics $200,000.00 9712007 Fakhouri, Fadi
Edit Delete Engineering $330,000.00 9/1,/2007 Barzdukas, Gytis
Edit Delete English $120,000.00 9/1/2007 Li, Y¥an
Edit Delete Mathematics $2530,000.00 9/1,/2007 Justice, Pegoy

ADD DEPARTMENTS

Mame

Budget

Start Date

Administrator | Abercrombie Kim =]
Insert Cancel

Updating the Database and the Data Model

You will begin this tutorial by making two changes to the database, both of which require corresponding
changes to the data model that you created earlier. In one of the earlier tutorials, you made changes in the
designer manually to synchronize the data model with the database after a database change. In this tutorial,

you will use the designer's Update Model From Database tool to update the data model automatically.

Adding a Relationship to the Database

In Visual Studio, open the Contoso University web application you created in the previous tutorials, and then
open the SchoolDiagram database diagram.

If you look at the Department table in the database diagram, you will see that it has an Administrator

column. This column is a foreign key to the Person table, but no foreign key relationship is defined in the

131

http://i1.asp.net/umbraco-beta-media/2574868/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image01.png�
http://i1.asp.net/umbraco-beta-media/2574880/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image02.png�

database. You need to create the relationship and update the data model so that the Entity Framework can
automatically handle this relationship.

In the database diagram, right-click the Department table, and select Relationships.

| I [» [=d| Properties

Department Table View b
% DepartrmentD)
Set Primary Key
Mame o
h Insert Column
Budget i
HHge '11" Delete Colurmn I
StartDate !
Ilji Delete Tables from Database
Adrninistrator
04 Rernowve fromm Diagrarm
50 Add Related Tables |
[E Sutosize Selected Tables
n -.‘_"} Arrange Selection
Course EE Relationships... 2
% CourselD T E Indexes/Keys.. '
i ?; Fulltesxt Index...
Title -
Credit AL Indexes..,
redits
[E Check Canstraints,.,
DepartrmentID n
g Spatial Indexes..,
Generate Change Script...
ﬁ %) [Properties Alt+Enter
2 -

In the Foreign Key Relationships box click Add, then click the ellipsis for Tables and Columns Specification.

132

http://i1.asp.net/umbraco-beta-media/2574892/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image80.png�

’Fureign ey Relationships @

Selected Relationship:

FE_Course_Department Editing properties for new relationship, The Tables &nd Colurmns
FK_Department_Department® Specifii:cztin:nn' property needs to be filled in befare the new relationship will be
accepted,

4 [General)
Check Existing Data On Creati Yes
Tables &nd Caolurmns Specific E]

4 Database Designer

Enfarce For Replication Yes
Enforce Foreign Key Constrair Yes
= IMSERT And UPDATE Specific
4 Identity
(Marme) Fk_Departrnent_Department
Cescription

add [Delee

In the Tables and Columns dialog box, set the primary key table and field to Person and PersonlID, and set
the foreign key table and field to Department and Administrator. (When you do this, the relationship name

will change from FK_Department_Department to FK_Department_Person,)

133

http://i1.asp.net/umbraco-beta-media/2574904/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image81.png�

[o)

Tables and Columns

Relationship name:

FK_Departrment_Persan|

Primary key table: Foreign key table:
Person - Departrment
PersonlD Adrministrator -

]] ’ Cancel

Click OK in the Tables and Columns box, click Close in the Foreign Key Relationships box, and save the

changes. If you're asked if you want to save the Person and Department tables, click Yes.

Note If you've deleted Person rows that correspond to data that's already in the Administrator column, you
will not be able to save this change. In that case, use the table editor in Server Explorer to make sure that the
Administrator value in every Department row contains the ID of a record that actually exists in the Person

table.

After you save the change, you will not be able to delete a row from the Person table if that person is a
department administrator. In a production application, you would provide a specific error message when a
database constraint prevents a deletion, or you would specify a cascading delete. For an example of how to

specify a cascading delete, see The Entity Framework and ASP.NET — Getting Started Part 2.

Adding a View to the Database

In the new Departments.aspx page that you will be creating, you want to provide a drop-down list of instructors,
with names in "last, first" format so that users can select department administrators. To make it easier to do
that, you will create a view in the database. The view will consist of just the data needed by the drop-down list:

the full name (properly formatted) and the record key.

In Server Explorer, expand School. mdf, right-click the Views folder, and select Add New View.

134

http://www.asp.net/entity-framework/tutorials/the-entity-framework-and-aspnet-–-getting-started-part-2�
http://i1.asp.net/umbraco-beta-media/2574916/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image82.png�

Server Explorer

2] | T g
4 |j] Data Connections

a4 [k School.mdf
» [Database Diagrams

- [Tahles

[Yiewrs
i Add e Wiew
> R Cammpare Data
s [Sy
. BT Mewe Clery

y Ejgglﬂ Refresh
- T Servers Properties

Click Close when the Add Table dialog box appears, and paste the following SQL statement into the SQL pane:

SELECT LastName+', '+FirstName AS FullName,PersonID
FROM dbo.Person
WHERE (HireDate IS NOT NULL)

Save the view as vInstructorName,
Updating the Data Model

In the DAL folder, open the SchoolModel.edmx file, right-click the design surface, and select Update Model

from Database.

135

http://i1.asp.net/umbraco-beta-media/2574928/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image06.png�

A L

Diagrarm k
Zoom]
Grid]
Scalar Property Farmat *
Select &l

Mapping Details

R

fAode| Brouser

Update Model frorm Database...

Laenerate Database trom Wodel..,
Add Code Generation Ikerm..,

YWalidate

Froperties Alt+Enter

In the Choose Your Database Objects dialog box, select the Add tab and select the view you just created.

136

http://i1.asp.net/umbraco-beta-media/2574940/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image07.png�

Update Wizard @

Choose Your Database Objects

Add | Refresh I Delete |

. Dﬁ Tahles
4 _@ Wi s
wInstructarMarne (dbo)
- [k Stored Procedures

Fluralize or singularize generated object narmes

Include foreign key columns in the model

Zelect iterms to add to the model,

% Previous Mgt = Finish] I Cancel

—

Click Finish.

In the designer, you see that the tool created a vInstructorName entity and a new association between the

Department and Person entities.

137

http://i1.asp.net/umbraco-beta-media/2574952/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image08.png�

=l Properties

@E FullMame
#4 personiD

= Mavigation Properties

0

r y
¢ vinstructorMa...

y

= Properties
IL?EEFWD”FHEHHD
fﬂnurseID
7 StudentlD

ﬁGrade

= Mavigation Properties

@ Course
E_L Persan

(¢ StudentGrade |

¢ Instructor

g

= Person
=l Propetties

ﬁ HireDate
= Mawigation Properties

(“#+ Department |

=l Propetties

"?E DepartrmentID
ﬁ Mame
' Budget

.-"rl
o W—
J 0.1 | i
| 4: Person
| #: Student))
= Prnpertieg =* Person
4 PersonlD =l Praperties
T LastMame 5 EnrallmentDate

o FirsthidName
= Mavigation Properties
E_L Officedssignment

E_L Caurses

E&L StudentGrades
E_L Departrmernts

‘1

0.1

g

= Mawigation Properties

1 i |
0 :
¢ Course
= Properties
II?E CourselD

ﬁ StartDate
ﬁ Administratar

= Mavigation Properties

E’__eL Courses
|5_el Person

5 Title
ﬁ Credits

1 DepartmentD
= Mavigation Properties
'3"7&1 Departrment

E'Tel OnlineCourse
= OnsiteCourse

ES| Peaple

|5_el StudentGrades

1

e |

Note In the Output and Error List windows you might see a warning message informing you that the tool

automatically created a primary key for the new vInstructorName view. This is expected behavior.

138

http://i1.asp.net/umbraco-beta-media/2574964/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image13.png�

When you refer to the new vInstructorName entity in code, you don't want to use the database convention

of prefixing a lower-case "v" to it. Therefore, you will rename the entity and entity set in the model.

Open the Model Browser. You see VInstructorName listed as an entity type and a view.

4 4 SchoolModel.edmx
4 | 4] SchoolModel
4 [Entity Types
Course

%2 Department
'5’3 Instructor
%2 Officessignment
'5’3 COnlineCourse
'5’3 OnsiteCourse

'5’3 Person
'5’3 Student

I %v{nstructcrl'ﬁiame I

[Complex Types
[Assaciations
L D) EntityContainer: SchoclEntities
4 | J SchoolModel.Stare
4 [Tables / Views
£ Course
[Courselnstructor
[Department
[Officessignment
[OnlineCourse
= OnsiteCourse
[Person
[StudentGrade
L vInstructorMame
[Stored Frocedures
3 Constraints

Under SchoolModel (not SchoolModel.Store), right-click vInstructorName and select Properties. In the
Properties window, change the Name property to "InstructorName" and change the Entity Set Name

property to "InstructorNames".

139

http://i1.asp.net/umbraco-beta-media/2574976/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image14.png�

Properties * 1 X
SchoolModel.InstructorMame EntityType -

oz wb [=]
4
Ahstract False
Arcess Public
4
Base Type Mone)

> Documentation
Entity Set Marme InstructorMames
Marme InstructorMame

Mame
The narme of the entity,

Save and close the data model, and then rebuild the project.

Using a Repository Class and an ObjectDataSource Control

Create a new class file in the DAL folder, name it SchoolRepository.cs, and replace the existing code with the

following code:

usingSystem;
usingSystem.Collections.Generic;
usingSystem.Linqg;

usingContosoUniversity.DAL;

namespaceContosoUniversity.DAL

{

publicclassSchoolRepository:IDisposable

{

privateSchoolEntities context =newSchoolEntities();
publicIEnumerable<Department>GetDepartments()
{

return context.Departments.Include("Person").ToList();

140

http://i1.asp.net/umbraco-beta-media/2574988/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image15.png�

privatebool disposedValue =false;

protectedvirtualvoidDispose(bool disposing)

{
if(!this.disposedValue)
{
if(disposing)
{
context.Dispose();
}
}
this.disposedValue =true;
}
publicvoidDispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}

This code provides a single GetDepartments method that returns all of the entities in the Departments entity
set. Because you know that you will be accessing the Person navigation property for every row returned, you
specify eager loading for that property by using the Include method. The class also implements the

IDisposable interface to ensure that the database connection is released when the object is disposed.

Note A common practice is to create a repository class for each entity type. In this tutorial, one repository class
for multiple entity types is used. For more information about the repository pattern, see the posts in the Entity

Framework team's blog and Julie Lerman's blog.

The GetDepartments method returns an IEnumerable object rather than an IQueryable object in order to
ensure that the returned collection is usable even after the repository object itself is disposed. An IQueryable
object can cause database access whenever it's accessed, but the repository object might be disposed by the

time a databound control attempts to render the data. You could return another collection type, such as an

141

http://blogs.msdn.com/b/adonet/archive/2009/06/16/using-repository-and-unit-of-work-patterns-with-entity-framework-4-0.aspx�
http://blogs.msdn.com/b/adonet/archive/2009/06/16/using-repository-and-unit-of-work-patterns-with-entity-framework-4-0.aspx�
http://thedatafarm.com/blog/data-access/agile-ef4-repository-part-3-fine-tuning-the-repository/�

IList object instead of an IEnumerable object. However, returning an IEnumerable object ensures that you
can perform typical read-only list processing tasks such as foreach loops and LINQ queries, but you cannot
add to or remove items in the collection, which might imply that such changes would be persisted to the

database

Create a Departments.aspx page that uses the Site.Master master page, and add the following markup in the

Content control named Content2:

<h2>Departments</h2>
<asp:0bjectDataSourceID="DepartmentsObjectDataSource"runat="server"
TypeName="ContosoUniversity.DAL.SchoolRepository"
DataObjectTypeName="ContosoUniversity.DAL.Department”
SelectMethod="GetDepartments">

</asp:0bjectDataSource>
<asp:GridViewID="DepartmentsGridView"runat="server"AutoGenerateColumns="False"
DataSourceID="DepartmentsObjectDataSource">

<Columns>

<asp:CommandFieldShowEditButton="True"ShowDeleteButton="True"
ItemStyle-VerticalAlign="Top">

</asp:CommandField>
<asp:DynamicFieldDataField="Name"HeaderText="Name"SortExpression="Name"ItemStyle-
VerticalAlign="Top"/>
<asp:DynamicFieldDataField="Budget"HeaderText="Budget"SortExpression="Budget"ItemStyl
e-VerticalAlign="Top"/>

<asp:DynamicFieldDataField="StartDate"HeaderText="Start Date"ItemStyle-
VerticalAlign="Top"/>
<asp:TemplateFieldHeaderText="Administrator"SortExpression="Person.LastName"ItemStyle
-VerticalAlign="Top">

<ItemTemplate>

<asp:Label ID="AdministratorLastNameLabel" runat="server" Text='<%#
Eval("Person.LastName") %>'></asp:Label>,

<asp:Label ID="AdministratorFirstNameLabel"” runat="server" Text='<%#
Eval("Person.FirstMidName") %>'></asp:Label>

</ItemTemplate>

</asp:TemplateField>

</Columns>

</asp:GridView>

142

This markup creates an ObjectDataSource control that uses the repository class you just created, and a
GridView control to display the data. The GridView control specifies Edit and Delete commands, but you

haven't added code to support them yet.

Several columns use DynamicField controls so that you can take advantage of automatic data formatting and
validation functionality. For these to work, you will have to call the EnableDynamicData method in the
Page_Init event handler. (DynamicControl controls are not used in the Administrator field because they

don't work with navigation properties.)

The Vertical-Align="Top" attributes will become important later when you add a column that has a nested

GridView control to the grid.

Open the Departments.aspx.cs file and add the following using statement:

usingContosoUniversity.DAL;

Then add the following handler for the page's Init event:

protectedvoidPage_Init(object sender,EventArgs e)

{
DepartmentsGridView.EnableDynamicData(typeof(Department));

}

In the DAL folder, create a new class file named Department.cs and replace the existing code with the following

code:

usingSystem;
usingSystem.ComponentModel;

usingSystem.ComponentModel.DataAnnotations;

namespaceContosoUniversity.DAL

{
[MetadataType(typeof (DepartmentMetaData))]

publicpartialclassDepartment

{
}

143

publicclassDepartmentMetaData

{

[DataType(DataType.Currency)]

[Range(0,1000000, ErrorMessage="Budget must be less than $1,000,000.00")]
publicDecimalBudget{get;set;}

[DisplayFormat(DataFormatString="{0:d}",ApplyFormatInEditMode=true)]
publicDateTimeStartDate{get;set;}

This code adds metadata to the data model. It specifies that the Budget property of the Department entity
actually represents currency although its data type is Decimal, and it specifies that the value must be between
0 and $1,000,000.00. It also specifies that the StartDate property should be formatted as a date in the format
mm/dd/yyyy.

Run the Departments.aspx page.

DEPARTMENTS

Mame Budget Start Date Administrator
Edit Delete Economics $200,000,00 971/2007 Fakhouri, Fadi
Edit Delete Engineering $350,000.00 95172007 Barzdukas, Gytis
Edit Delete Englizh $120.000,009/1/2007 Li, Yan

Edit Delete Mathernatics $250,000.00 95172007 Jlustice, Peggy

Notice that although you did not specify a format string in the Departments.aspx page markup for the Budget
or Start Date columns, default currency and date formatting has been applied to them by the DynamicField

controls, using the metadata that you supplied in the Department.cs file.

Adding Insert and Delete Functionality

Open SchoolRepository.cs, add the following code in order to create an Insert method and a Delete method.
The code also includes a method named GenerateDepartmentID that calculates the next available record key
value for use by the Insert method. This is required because the database is not configured to calculate this

automatically for the Department table.

144

http://i1.asp.net/umbraco-beta-media/2575000/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image01_1.png�

publicvoidInsertDepartment(Department department)

{

try

{
department.DepartmentID=GenerateDepartmentID();
context.Departments.AddObject (department);
context.SaveChanges();

}

catch(Exception ex)

{

//Include catch blocks for specific exceptions first,
//and handle or log the error as appropriate in each.
//Include a generic catch block like this one last.
throw ex;

}

}

publicvoidDeleteDepartment(Department department)
{

try

{
context.Departments.Attach(department);
context.Departments.DeleteObject(department);
context.SaveChanges();

}

catch(Exception ex)

{

//Include catch blocks for specific exceptions first,
//and handle or log the error as appropriate in each.
//Include a generic catch block like this one last.
throw ex;

}

}

privateInt32GenerateDepartmentID()

{
Int32 maxDepartmentID =0;

var department =(from d inGetDepartments()

145

orderby d.DepartmentIDdescending
select d).FirstOrDefault();
if(department !=null)

{
maxDepartmentID = department.DepartmentID+1;
}
return maxDepartmentID;
}

The Attach Method

The DeleteDepartment method calls the Attach method in order to re-establish the link that's maintained in
the object context's object state manager between the entity in memory and the database row it represents.

This must occur before the method calls the SaveChanges method.

The term object context refers to the Entity Framework class that derives from the ObjectContext class that
you use to access your entity sets and entities. In the code for this project, the class is named
SchoolEntities, and an instance of it is always named context. The object context's object state manager is
a class that derives from the ObjectStateManager class. The object contact uses the object state manager to
store entity objects and to keep track of whether each one is in sync with its corresponding table row or rows in
the database.

When you read an entity, the object context stores it in the object state manager and keeps track of whether
that representation of the object is in sync with the database. For example, if you change a property value, a
flag is set to indicate that the property you changed is no longer in sync with the database. Then when you call
the SaveChanges method, the object context knows what to do in the database because the object state

manager knows exactly what's different between the current state of the entity and the state of the database.

However, this process typically does not work in a web application, because the object context instance that
reads an entity, along with everything in its object state manager, is disposed after a page is rendered. The
object context instance that must apply changes is a new one that's instantiated for postback processing. In the
case of the DeleteDepartment method, the ObjectDataSource control re-creates the original version of the
entity for you from values in view state, but this re-created Department entity does not exist in the object state
manager. If you called the DeleteObject method on this re-created entity, the call would fail because the
object context does not know whether the entity is in sync with the database. However, calling the Attach
method re-establishes the same tracking between the re-created entity and the values in the database that was

originally done automatically when the entity was read in an earlier instance of the object context.

146

There are times when you don't want the object context to track entities in the object state manager, and you

can set flags to prevent it from doing that. Examples of this are shown in later tutorials in this series.
The SaveChanges Method

This simple repository class illustrates basic principles of how to perform CRUD operations. In this example, the
SaveChanges method is called immediately after each update. In a production application you might want to
call the SaveChanges method from a separate method to give you more control over when the database is
updated. (At the end of the next tutorial you will find a link to a white paper that discusses the unit of work
pattern which is one approach to coordinating related updates.) Notice also that in the example, the
DeleteDepartment method does not include code for handling concurrency conflicts; code to do that will be

added in a later tutorial in this series.
Retrieving Instructor Names to Select When Inserting

Users must be able to select an administrator from a list of instructors in a drop-down list when creating new
departments. Therefore, add the following code to SchoolRepository.cs to create a method to retrieve the list of

instructors using the view that you created earlier:

publicIEnumerable<InstructorName>GetInstructorNames()

{

return context.InstructorNames.OrderBy("it.FullName").TolList();

}

Creating a Page for Inserting Departments

Create a DepartmentsAdd.aspx page that uses the Site.Master page, and add the following markup in the

Content control named Content2:

<h2>Departments</h2>
<asp:0ObjectDataSourceID="DepartmentsObjectDataSource"runat="server"
TypeName="ContosoUniversity.DAL.SchoolRepository"DataObjectTypeName="ContosoUniversit
y .DAL.Department”

InsertMethod="InsertDepartment">

</asp:0bjectDataSource>

<asp:DetailsViewID="DepartmentsDetailsView"runat="server"
DataSourceID="DepartmentsObjectDataSource"AutoGenerateRows="False"

DefaultMode="Insert"OnItemInserting="DepartmentsDetailsView ItemInserting">

147

<Fields>
<asp:DynamicFieldDataField="Name"HeaderText="Name"/>
<asp:DynamicFieldDataField="Budget"HeaderText="Budget"/>
<asp:DynamicFieldDataField="StartDate"HeaderText="Start Date"/>
<asp:TemplateFieldHeaderText="Administrator">
<InsertItemTemplate>
<asp:0ObjectDataSourceID="InstructorsObjectDataSource"runat="server"
TypeName="ContosoUniversity.DAL.SchoolRepository"
DataObjectTypeName="ContosoUniversity.DAL.InstructorName"
SelectMethod="GetInstructorNames">

</asp:0bjectDataSource>
<asp:DropDownListID="InstructorsDropDownList"runat="server"
DataSourceID="InstructorsObjectDataSource"
DataTextField="FullName"DataValueField="PersonID"OnInit="DepartmentsDropDownList Init
">

</asp:DropDownlList>

</InsertItemTemplate>

</asp:TemplateField>

<asp:CommandFieldShowInsertButton="True"/>

</Fields>

</asp:DetailsView>
<asp:ValidationSummaryID="DepartmentsValidationSummary"runat="server"

ShowSummary="true"DisplayMode="BulletList"/>

This markup creates two ObjectDataSource controls, one for inserting new Department entities and one for
retrieving instructor names for the DropDownList control that's used for selecting department administrators.
The markup creates a DetailsView control for entering new departments, and it specifies a handler for the
control's ItemInserting event so that you can set the Administrator foreign key value. At the end is a

ValidationSummary control to display error messages.

Open DepartmentsAdd.aspx.cs and add the following using statement:

usingContosoUniversity.DAL;

Add the following class variable and methods:

148

privateDropDownList administratorsDropDownlList;

protectedvoidPage_Init(object sender,EventArgs e)

{
DepartmentsDetailsView.EnableDynamicData(typeof (Department));

}

protectedvoidDepartmentsDropDownList _Init(object sender,EventArgs e)

{

administratorsDropDownList = sender asDropDownlList;

protectedvoidDepartmentsDetailsView ItemInserting(object

sender,DetailsViewInsertEventArgs e)

{

e.Values["Administrator"]= administratorsDropDownlList.SelectedValue;

The Page_Init method enables Dynamic Data functionality. The handler for the DropDownList control's
Init event saves a reference to the control, and the handler for the DetailsView control's Inserting event
uses that reference to get the PersonID value of the selected instructor and update the Administrator

foreign key property of the Department entity.

Run the page, add information for a new department, and then click the Insert link.

ADD DEPARTMENTS
Marme Mew Department
Budget 100000

Start Date 141201

sdministrator| Kapoor Candace ||
Insert Cancel

Enter values for another new department. Enter a number greater than 1,000,000.00 in the Budget field and tab
to the next field. An asterisk appears in the field, and if you hold the mouse pointer over it, you can see the

error message that you entered in the metadata for that field.

149

http://i1.asp.net/umbraco-beta-media/2575012/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image04.png�

ADD DEPARTMENTS

Marme Mew Department 2

Budget 10000000 *
[Budget must be less than 51,000,000.00

Start Date 1/1/2011]

sdministrator| Abercrombie Kim [«]
Insert Cancel

Click Insert, and you see the error message displayed by the ValidationSummary control at the bottom of
the page.

ADD DEPARTMENTS

Marme Mew Department 2

Budget 100000000 *
Start Date 141201

Administratar | Abercrombie Kim E|

= Budget must be less than $1,000,000.00

Next, close the browser and open the Departments.aspx page. Add delete capability to the Departments.aspx
page by adding a DeleteMethod attribute to the ObjectDataSource control, and a DataKeyNames attribute

to the GridView control. The opening tags for these controls will now resemble the following example:

<asp:0bjectDataSourceID="DepartmentsObjectDataSource"runat="server"
TypeName="ContosoUniversity.DAL.SchoolRepository"
DataObjectTypeName="ContosoUniversity.DAL.Department”
SelectMethod="GetDepartments"

DeleteMethod="DeleteDepartment">

<asp:GridViewID="DepartmentsGridView"runat="server"AutoGenerateColumns="False"

DataSourceID="DepartmentsObjectDataSource"DataKeyNames="DepartmentID">

Run the page.

150

http://i1.asp.net/umbraco-beta-media/2575024/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image03.png�
http://i1.asp.net/umbraco-beta-media/2575036/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image12.png�

DEPARTMENTS

MName Budget Start Date Administrator
Edit Delete Econormics $200,000,009/1/2007 Fakhouri, Fadi
Edit Delete Engineering $350,000.009/1/2007 Barzdukas, Gytis
Edit Delete English $120.000.00 912007 Li, Yan
Edit Delete Mathermatics $250,000.009/1/2007 lustice, Pegay
Edit Delete Mew Department $100,000.00 17172011 Kapoor, Candace

Delete the department you added when you ran the DepartmentsAdd.aspx page.

Adding Update Functionality
Open SchoolRepository.cs and add the following Update method:

publicvoidUpdateDepartment(Department department,Department origDepartment)
{

try

{
context.Departments.Attach(origDepartment);
context.ApplyCurrentValues("Departments"”, department);
context.SaveChanges();

}

catch(Exception ex)

{

//Include catch blocks for specific exceptions first,
//and handle or log the error as appropriate in each.
//Include a generic catch block like this one last.
throw ex;

}

}

When you click Update in the Departments.aspx page, the ObjectDataSource control creates two
Department entities to pass to the UpdateDepartment method. One contains the original values that have
been stored in view state, and the other contains the new values that were entered in the GridView control.
The code in the UpdateDepartment method passes the Department entity that has the original values to the
Attach method in order to establish the tracking between the entity and what's in the database. Then the code
passes the Department entity that has the new values to the ApplyCurrentValues method. The object

151

http://i1.asp.net/umbraco-beta-media/2575048/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image09.png�

context compares the old and new values. If a new value is different from an old value, the object context
changes the property value. The SaveChanges method then updates only the changed columns in the
database. (However, if the update function for this entity were mapped to a stored procedure, the entire row

would be updated regardless of which columns were changed.)

Open the Departments.aspx file and add the following attributes to the DepartmentsObjectDataSource

control:

e UpdateMethod="UpdateDepartment"

e ConflictDetection="CompareAllValues"
This causes old values to be stored in view state so that they can be compared with the new values in the

Update method.

e OldValuesParameterFormatString="orig{o}"

This informs the control that the name of the original values parameter is origDepartment,

The markup for the opening tag of the ObjectDataSource control now resembles the following example:

<asp:0ObjectDataSourceID="DepartmentsObjectDataSource"runat="server"
TypeName="ContosoUniversity.DAL.SchoolRepository"
DataObjectTypeName="ContosoUniversity.DAL.Department”
SelectMethod="GetDepartments"DeleteMethod="DeleteDepartment"
UpdateMethod="UpdateDepartment"
ConflictDetection="CompareAllValues"

OldvValuesParameterFormatString="orig{0}">

Add an OnRowUpdating="DepartmentsGridView_RowUpdating" attribute to the GridView control. You
will use this to set the Administrator property value based on the row the user selects in a drop-down list.

The GridView opening tag now resembles the following example:
<asp:GridViewID="DepartmentsGridView"runat="server"AutoGenerateColumns="False"

DataSourceID="DepartmentsObjectDataSource"DataKeyNames="DepartmentID"

OnRowUpdating="DepartmentsGridView_ RowUpdating">

Add an EditItemTemplate control for the Administrator column to the GridView control, immediately

after the ItemTemplate control for that column:

152

<EditItemTemplate>
<asp:0bjectDataSourceID="InstructorsObjectDataSource"runat="server"DataObjectTypeName
="ContosoUniversity.DAL.InstructorName"
SelectMethod="GetInstructorNames"TypeName="ContosoUniversity.DAL.SchoolRepository">
</asp:0bjectDataSource>
<asp:DropDownList ID="InstructorsDropDownList" runat="server"
DataSourceID="InstructorsObjectDataSource”
SelectedValue="<%# Eval("Administrator") %>’
DataTextField="FullName" DataValueField="PersonID"
OnInit="DepartmentsDropDownList_Init" >
</asp:DropDownlList>
</EditItemTemplate>

This EditItemTemplate control is similar to the InsertItemTemplate control in the DepartmentsAdd.aspx

page. The difference is that the initial value of the control is set using the SelectedValue attribute.

Before the GridView control, add a ValidationSummary control as you did in the DepartmentsAdd.aspx

page.

<asp:ValidationSummaryID="DepartmentsValidationSummary"runat="server"

ShowSummary="true"DisplayMode="BulletList"/>

Open Departments.aspx.cs and immediately after the partial-class declaration, add the following code to create

a private field to reference the DropDownList control:

privateDropDownlList administratorsDropDownList;

Then add handlers for the DropDownList control's Init event and the GridView control's RowUpdating

event:

protectedvoidDepartmentsDropDownlList_Init(object sender,EventArgs e)

{

administratorsDropDownlList = sender asDropDownlList;

protectedvoidDepartmentsGridView_RowUpdating(object sender,GridViewUpdateEventArgs e)

153

e.NewValues["Administrator"]= administratorsDropDownlList.SelectedValue;

The handler for the Init event saves a reference to the DropDownList control in the class field. The handler
for the RowUpdating event uses the reference to get the value the user entered and apply it to the
Administrator property of the Department entity.

Use the DepartmentsAdd.aspx page to add a new department, then run the Departments.aspx page and click
Edit on the row that you added.

Note You will not be able to edit rows that you did not add (that is, that were already in the database), because
of invalid data in the database; the administrators for the rows that were created with the database are
students. If you try to edit one of them, you will get an error page that reports an error like
"InstructorsDropDownList' has a SelectedValue which is invalid because it does not

exist in the 1list of items.

DEFARTMENTS
Mame Budget Start Date Administrator
Edit Deleta Ecanamics §200,000.00 0/1,2007 Fakhauri, Fadi
Edit Delete Engineering $350,000.00 01,2007 Barzdukas, Gylis
Edit Delete English $120,000.00 9/1/2007 Li, Yan
Echt Delete Mathemabcs §250,000.00 o/12007 Justice, Peggy
Update Cance| Mew Department 1000000000 1M2011 Kapoor,Candace ||

If you enter an invalid Budget amount and then click Update, you see the same asterisk and error message

that you saw in the Departments.aspx page.

Change a field value or select a different administrator and click Update. The change is displayed.

DEPARTMENTS

Mame Budget Start Date Administrator
Edit Delete Economics $200,000.00 97152007 Fakhouri, Fadi
Edit Dielete Engineering $350,000.00 97172007 Barzdulas, Gytis
Edit Delete English $120,000.00 9/1/2007 L, ¥an
Edit Delete Mathermatics $250,000.00 9/1/2007 Justice, Peggy
Edit Delete Mew Department $100,000.00 1/1/2011 Kapoor, Candace

154

http://i1.asp.net/umbraco-beta-media/2575060/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image10.png�
http://i1.asp.net/umbraco-beta-media/2575072/Windows-Live-Writer_Using-the-Entity-Framework-and-the-Objec_B875_Image09_1.png�

This completes the introduction to using the ObjectDataSource control for basic CRUD (create, read, update,
delete) operations with the Entity Framework. You've built a simple n-tier application, but the business-logic
layer is still tightly coupled to the data-access layer, which complicates automated unit testing. In the following

tutorial you'll see how to implement the repository pattern to facilitate unit testing.

155

Adding a Business Logic Layer and Unit
Tests

In the previous tutorial you created an n-tier web application using the Entity Framework and the
ObjectDataSource control. This tutorial shows how to add business logic while keeping the business-logic
layer (BLL) and the data-access layer (DAL) separate, and it shows how to create automated unit tests for the
BLL.

In this tutorial you'll complete the following tasks:

e Create a repository interface that declares the data-access methods you need.

e Implement the repository interface in the repository class.

e Create a business-logic class that calls the repository class to perform data-access functions.

e Connect the ObjectDataSource control to the business-logic class instead of to the repository class.
e Create a unit-test project and a repository class that uses in-memory collections for its data store.

e Create a unit test for business logic that you want to add to the business-logic class, then run the test and
see it fail.

e Implement the business logic in the business-logic class, then re-run the unit test and see it pass.
You'll work with the Departments.aspx and DepartmentsAdd.aspx pages that you created in the previous tutorial.

Creating a Repository Interface

You'll begin by creating the repository interface.

156

ObjectDataSource

Business Logic
Class

Repository
Interface

Normal
Repository Class

Entity Framework
& Database

In the DAL folder, create a new class file, name it ISchoolRepository.cs, and replace the existing code with the

following code:

usingSystem;

usingSystem.Collections.Generic;

namespaceContosoUniversity.DAL

{

publicinterfaceISchoolRepository:IDisposable

{

IEnumerable<Department>GetDepartments();
voidInsertDepartment(Department department);
voidDeleteDepartment(Department department);
voidUpdateDepartment(Department department,Department origDepartment);

157

http://i1.asp.net/umbraco-beta-media/2575084/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9803_Image08_4.png�

IEnumerable<InstructorName>GetInstructorNames();

}
}

The interface defines one method for each of the CRUD (create, read, update, delete) methods that you created

in the repository class.

In the SchoolRepository class in SchoolRepository.cs, indicate that this class implements the

ISchoolRepository interface:

publicclassSchoolRepository:IDisposable,ISchoolRepository

Creating a Business-Logic Class

Next, you'll create the business-logic class. You do this so that you can add business logic that will be executed
by the ObjectDataSource control, although you will not do that yet. For now, the new business-logic class

will only perform the same CRUD operations that the repository does.

158

Unit Test Class

Business Logic
Class

Repository

Interface

Test
Repository Class

Datain easily
managed
collections

Create a new folder and name it BLL. (In a real-world application, the business-logic layer would typically be
implemented as a class library — a separate project — but to keep this tutorial simple, BLL classes will be kept

in a project folder.)

In the BLL folder, create a new class file, name it SchoolBL.cs, and replace the existing code with the following

code:

usingSystem;
usingSystem.Collections.Generic;
usingSystem.Linq;
usingSystem.Web;

usingContosoUniversity.DAL;

159

http://i1.asp.net/umbraco-beta-media/2575096/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9803_Image09_4.png�

namespaceContosoUniversity.BLL

{
publicclassSchoolBL:IDisposable

{

privateISchoolRepository schoolRepository;

publicSchoolBL()
{

this.schoolRepository =newSchoolRepository();

}

publicSchoolBL(ISchoolRepository schoolRepository)
{

this.schoolRepository = schoolRepository;

}

publicIEnumerable<Department>GetDepartments()

{

return schoolRepository.GetDepartments();

}

publicvoidInsertDepartment(Department department)

{

try
{
schoolRepository.InsertDepartment(department);
}
catch(Exception ex)
{

//Include catch blocks for specific exceptions first,
//and handle or log the error as appropriate in each.
//Include a generic catch block like this one last.
throw ex;

}

}

publicvoidDeleteDepartment(Department department)
{

160

try

{
schoolRepository.DeleteDepartment(department);
}
catch(Exception ex)
{

//Include catch blocks for specific exceptions first,
//and handle or log the error as appropriate in each.
//Include a generic catch block like this one last.
throw ex;

}

}

publicvoidUpdateDepartment(Department department,Department origDepartment)
{

try
{
schoolRepository.UpdateDepartment(department, origDepartment);
}
catch(Exception ex)
{

//Include catch blocks for specific exceptions first,

//and handle or log the error as appropriate in each.
//Include a generic catch block like this one last.

throw ex;

}

publicIEnumerable<InstructorName>GetInstructorNames()

{

return schoolRepository.GetInstructorNames();
}
privatebool disposedValue =false;

protectedvirtualvoidDispose(bool disposing)

161

{
if(!this.disposedValue)

{
if(disposing)
{
schoolRepository.Dispose();
}
}
this.disposedValue =true;
}
publicvoidDispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}

This code creates the same CRUD methods you saw earlier in the repository class, but instead of accessing the

Entity Framework methods directly, it calls the repository class methods.

The class variable that holds a reference to the repository class is defined as an interface type, and the code
that instantiates the repository class is contained in two constructors. The parameterless constructor will be
used by the ObjectDataSource control. It creates an instance of the SchoolRepository class that you
created earlier. The other constructor allows whatever code that instantiates the business-logic class to pass in

any object that implements the repository interface.

The CRUD methods that call the repository class and the two constructors make it possible to use the business-
logic class with whatever back-end data store you choose. The business-logic class does not need to be aware
of how the class that it's calling persists the data. (This is often called persistence ignorance.) This facilitates unit
testing, because you can connect the business-logic class to a repository implementation that uses something

as simple as in-memory List collections to store data.

Note Technically, the entity objects are still not persistence-ignorant, because they're instantiated from classes
that inherit from the Entity Framework's EntityObject class. For complete persistence ignorance, you can use

plain old CLR objects, or POCOs, in place of objects that inherit from the EntityObject class. Using POCOs is

162

beyond the scope of this tutorial. For more information, see Testability and Entity Framework 4.0 on the MSDN
website.)

Now you can connect the ObjectDataSource controls to the business-logic class instead of to the repository

and verify that everything works as it did before.

In Departments.aspx and DepartmentsAdd.aspx, change each occurrence of
TypeName="ContosoUniversity.DAL.SchoolRepository" to

TypeName="ContosoUniversity.BLL.SchoolBL", (There are four instances in all.)

Run the Departments.aspx and DepartmentsAdd.aspx pages to verify that they still work as they did before.

DEPARTMENTS

Mame Budget Start Date Administrator
Edit Delete Economics $200,000,00 9712007 Fakhouri, Fadi
Edit Delete Engineering $350,000.00 95172007 Barzdukas, Gytis
Edit Dielete Englizh $120.000,00 912007 Li, Yan
Edit Delete Mathernatics $250,000.00 95172007 Justice, Peggy

ADD DEPARTMENTS

Mame

Budget

Start Date

Administrator | Abercrombie Kim |E|
Inzert Cancel

Creating a Unit-Test Project and Repository Implementation

Add a new project to the solution using the Test Project template, and name it ContosoUniversity.Tests.

In the test project, add a reference to System.Data.Entity and add a project reference to the
ContosoUniversity project.

You can now create the repository class that you'll use with unit tests. The data store for this repository will be
within the class.

163

http://msdn.microsoft.com/en-us/library/ff714955.aspx�
http://i1.asp.net/umbraco-beta-media/2575108/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9803_Image01_1.png�
http://i1.asp.net/umbraco-beta-media/2575120/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9803_Image02_1.png�

Unit Test Class

Business Logic
Class

Repository
Interface

Test
Repository Class

DELERTICEHIY
managed
collections

In the test project, create a new class file, name it MockSchoolRepository.cs, and replace the existing code with
the following code:

usingSystem;
usingSystem.Collections.Generic;
usingSystem.Linq;
usingSystem.Text;
usingContosoUniversity.DAL;

usingContosoUniversity.BLL;
namespaceContosoUniversity.Tests

{

classMockSchoolRepository:ISchoolRepository,IDisposable

164

http://i1.asp.net/umbraco-beta-media/2575132/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9803_Image12_4.png�

{

List<Department> departments =newList<Department>();

List<InstructorName> instructors =newList<InstructorName>();

publicIEnumerable<Department>GetDepartments()

{

return departments;

}

publicvoidInsertDepartment(Department department)

{
departments.Add(department);

publicvoidDeleteDepartment(Department department)
{

departments.Remove(department);

publicvoidUpdateDepartment(Department department,Department origDepartment)
{

departments.Remove(origDepartment);

departments.Add(department);

publicIEnumerable<InstructorName>GetInstructorNames()

{

return instructors;

}

publicvoidDispose()

{

165

This repository class has the same CRUD methods as the one that accesses the Entity Framework directly, but
they work with List collections in memory instead of with a database. This makes it easier for a test class to set

up and validate unit tests for the business-logic class.

Creating Unit Tests

The Test project template created a stub unit test class for you, and your next task is to modify this class by

adding unit test methods to it for business logic that you want to add to the business-logic class.

Unit Test Class

Business Logic
Class

Repository
Interface

Test
Repository Class

Data in easily

managed
collections

At Contoso University, any individual instructor can only be the administrator of a single department, and you
need to add business logic to enforce this rule. You will start by adding tests and running the tests to see them

fail. You'll then add the code and rerun the tests, expecting to see them pass.

166

http://i1.asp.net/umbraco-beta-media/2575144/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9803_Image13_4.png�

Open the UnitTestl.cs file and add using statements for the business logic and data-access layers that you

created in the ContosoUniversity project:

usingContosoUniversity.BLL;

usingContosoUniversity.DAL;

Replace the TestMethodl method with the following methods:

privateSchoolBLCreateSchoolBL()
{
var schoolRepository =newMockSchoolRepository();
var schoolBL =newSchoolBL(schoolRepository);
schoolBL.InsertDepartment(newDepartment(){Name="First
Department"”,DepartmentID=0,Administrator=1,Person=newInstructor(){FirstMidName="Admin
",LastName="0ne"}});
schoolBL.InsertDepartment(newDepartment(){Name="Second
Department"”,DepartmentID=1,Administrator=2,Person=newInstructor(){FirstMidName="Admin
",LastName="Two"}});
schoolBL.InsertDepartment(newDepartment(){Name="Third
Department"”,DepartmentID=2,Administrator=3,Person=newInstructor(){FirstMidName="Admin
",LastName="Three"}});

return schoolBL;

}

[TestMethod]

[ExpectedException(typeof(DuplicateAdministratorException))]

publicvoidAdministratorAssignmentRestrictionOnInsert()

{

var schoolBL =CreateSchoolBL();
schoolBL.InsertDepartment(newDepartment(){Name="Fourth

Department"”,DepartmentID=3,Administrator=2,Person=newInstructor(){FirstMidName="Admin

",LastName="Two"}});

}
[TestMethod]

[ExpectedException(typeof(DuplicateAdministratorException))]

publicvoidAdministratorAssignmentRestrictionOnUpdate()

167

{
var schoolBL =CreateSchoolBL();

var origDepartment =(from d in schoolBL.GetDepartments()
where d.Name=="Second Department"
select d).First();
var department =(from d in schoolBL.GetDepartments()
where d.Name=="Second Department"
select d).First();

department.Administrator=1;

schoolBL .UpdateDepartment(department, origDepartment);

The CreateSchoolBL method creates an instance of the repository class that you created for the unit test
project, which it then passes to a new instance of the business-logic class. The method then uses the business-

logic class to insert three departments that you can use in test methods.

The test methods verify that the business-logic class throws an exception if someone tries to insert a new
department with the same administrator as an existing department, or if someone tries to update a
department's administrator by setting it to the ID of a person who is already the administrator of another

department.

You haven't created the exception class yet, so this code will not compile. To get it to compile, right-click

DuplicateAdministratorException and select Generate, and then Class.

168

[TestMetheod]

§ublic vold Administratords Refactor "
var schoolBL = CreateSe Generate - Class
SCI"IG'D].BL..IHSEI"‘tDEPEI"‘tI'I'IE I:Irganize Lljingj [3 NEWT}-'FIE
¥ “:I} Fun Tests
[TestMethod] Generate Sequence Diagrarm..,
[EXP?CtEd?XCEpt{'C?{tEPEDf{E C=-]_,, Insert Snippet... Crl +E, Chrl +3
public void AdministratorAs
7 S, Surround With,.. Chrl +k, Cirl +5
var schoolBL = CreateS¢ ‘@ g, Tp Definition F12
var origDepartment = (1
N Find Al References Shift+F12
= 55 Wiew Call Hierarchy Chrl +F, Cel+T
var department = (from)
whert Breakpoint *
seled 5= Run To Cursor Cirl+F10
department.Administratg
schoolBL.UpdateDepartme & Cut Ctrl+X
I 53 Copy Crl+C
- Paste Cirl -+

This creates a class in the test project which you can delete after you've created the exception class in the main

project. and implemented the business logic.

Run the test project. As expected, the tests fail.

Test Results
3-: 75 | Wy |.&II v| | “h Run * Be] Debug = 01 @ | gy 2Ff~ % 3 | Group By: [

Q ltestrunis), Results: 2/2 completed, 0 passed, 2 failed Results: 0/2 passed;

Result Test Marne Project Error hessage
O éa Failed AdrministratorfssignimentRestrictionOnlnsert Contosol The ExpectedException attribute def]
(1= Failed AdministratorfssignmentRestrictionOnUpdate Contosol The ExpectedException attribute def]

Adding Business Logic to Make a Test Pass

Next, you'll implement the business logic that makes it impossible to set as the administrator of a department
someone who is already administrator of another department. You'll throw an exception from the business-
logic layer, and then catch it in the presentation layer if a user edits a department and clicks Update after
selecting someone who is already an administrator. (You could also remove instructors from the drop-down list
who are already administrators before you render the page, but the purpose here is to work with the business-

logic layer.)

169

http://i1.asp.net/umbraco-beta-media/2575156/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9803_Image14_1.png�
http://i1.asp.net/umbraco-beta-media/2575168/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9803_Image03_1.png�

Start by creating the exception class that you'll throw when a user tries to make an instructor the administrator
of more than one department. In the main project, create a new class file in the BLL folder, name it

DuplicateAdministratorException.cs, and replace the existing code with the following code:

usingSystem;

namespaceContosoUniversity.BLL

{

publicclassDuplicateAdministratorException:Exception

{

publicDuplicateAdministratorException(string message)

:base(message)

Now delete the temporary DuplicateAdministratorException.cs file that you created in the test project earlier in

order to be able to compile.

In the main project, open the SchoolBL.cs file and add the following method that contains the validation logic.

(The code refers to a method that you'll create later.)

privatevoidValidateOneAdministratorAssignmentPerInstructor(Department department)

{

if(department.Administrator!=null)

{

var duplicateDepartment =

schoolRepository.GetDepartmentsByAdministrator(department.Administrator.GetValueOrDef

ault()).FirstOrDefault();

if(duplicateDepartment !=null&& duplicateDepartment.DepartmentID!=

department.DepartmentID)

{

thrownewDuplicateAdministratorException(String.Format(

"Instructor {0} {1} is already administrator of the {2} department.",
duplicateDepartment.Person.FirstMidName,

duplicateDepartment.Person.LastName,

170

duplicateDepartment.Name));

You'll call this method when you're inserting or updating Department entities in order to check whether

another department already has the same administrator.

The code calls a method to search the database for a Department entity that has the same Administrator
property value as the entity being inserted or updated. If one is found, the code throws an exception. No
validation check is required if the entity being inserted or updated has no Administrator value, and no
exception is thrown if the method is called during an update and the Department entity found matches the

Department entity being updated.

Call the new method from the Insert and Update methods:
publicvoidInsertDepartment(Department department)

{

ValidateOneAdministratorAssignmentPerInstructor(department);

try

publicvoidUpdateDepartment(Department department,Department origDepartment)
{

ValidateOneAdministratorAssignmentPerInstructor(department);

try

In ISchoolRepository.cs, add the following declaration for the new data-access method:

IEnumerable<Department>GetDepartmentsByAdministrator(Int32 administrator);

In SchoolRepository.cs, add the following using statement:

usingSystem.Data.Objects;

171

In SchoolRepository.cs, add the following new data-access method:

publicIEnumerable<Department>GetDepartmentsByAdministrator(Int32 administrator)
{

returnnewObjectQuery<Department>("SELECT VALUE d FROM Departments as d",
context,MergeOption.NoTracking).Include("Person™).Where(d => d.Administrator==
administrator).TolList();

}

This code retrieves Department entities that have a specified administrator. Only one department should be
found (if any). However, because no constraint is built into the database, the return type is a collection in case

multiple departments are found.

By default, when the object context retrieves entities from the database, it keeps track of them in its object state
manager. The MergeOption.NoTracking parameter specifies that this tracking will not be done for this
query. This is necessary because the query might return the exact entity that you're trying to update, and then
you would not be able to attach that entity. For example, if you edit the History department in the
Departments.aspx page and leave the administrator unchanged, this query will return the History department. If
NoTracking is not set, the object context would already have the History department entity in its object state
manager. Then when you attach the History department entity that's re-created from view state, the object
context would throw an exception that says "An object with the same key already exists in the
ObjectStateManager. The ObjectStateManager cannot track multiple objects with the

same key".

(As an alternative to specifying MergeOption.NoTracking, you could create a new object context just for this
query. Because the new object context would have its own object state manager, there would be no conflict
when you call the Attach method. The new object context would share metadata and database connection
with the original object context, so the performance penalty of this alternate approach would be minimal. The
approach shown here, however, introduces the NoTracking option, which you'll find useful in other contexts.

The NoTracking option is discussed further in a later tutorial in this series.)

In the test project, add the new data-access method to MockSchoolRepository.cs:

publicIEnumerable<Department>GetDepartmentsByAdministrator(Int32 administrator)

{
return(from d in departments

where d.Administrator== administrator

172

select d);
}

This code uses LINQ to perform the same data selection that the ContosoUniversity project repository uses

LINQ to Entities for.

Run the test project again. This time the tests pass.

Test Results

v||~"[>Run'E_.l_,-‘?lDehug' n @ ||_-]'3 - by

w) ltestrunis), Results: 2/2 completed, 2 passed, 0 failed

Results: 2/2 passed;

Result Test Mame Project Error bessage
[1¢=]@ Passed AdrministratorfssignmentRestrictionOnlnsert Contosol
I:lqé"l@ Passed AdministratorfssignmentRestrictionOnUpdate Contosol

Handling ObjectDataSource Exceptions

In the ContosoUniversity project, run the Departments.aspx page and try to change the administrator for a
department to someone who is already administrator for another department. (Remember that you can only
edit departments that you added during this tutorial, because the database comes preloaded with invalid data.)

You get the following server error page:

173

http://i1.asp.net/umbraco-beta-media/2575180/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9803_Image04_1.png�

Server Error in '/' Application.

Instructor Fadi Fakhouri is already administrator of the
Economics department.

Description: An unhandled exception occurred during the execution of the current web request. Please review
the stack trace for more information about the error and wwhere it originated in the code.

Exception Details: Cortozolniversity BLL DuplicatefdministratorException: Instructor Fadi Fakhouri is already
administrator of the Economics department.

Source Error:

Line 135: if {duplicatebepartment = null && duplicateDepartment.Dn
Line 136: I

Line 137: throw new DuplicatefdministratorException(string. Forr
Line 138: "Instructor {0+ {1} 1s already administrator of -
Line 139: duplicatebepartment.Person.Fi1rstMidiame,

Source File: ChContozo UniversityvicsContozolniver sty BLLSchoolBL.c: - Line: 137

You don't want users to see this kind of error page, so you need to add error-handling code. Open
Departments.aspx and specify a handler for the OnUpdated event of the DepartmentsObjectDataSource.

The ObjectDataSource opening tag now resembles the following example.

<asp:0bjectDataSourceID="DepartmentsObjectDataSource"runat="server"
TypeName="ContosoUniversity.BLL.SchoolBL"
DataObjectTypeName="ContosoUniversity.DAL.Department”
SelectMethod="GetDepartments"

DeleteMethod="DeleteDepartment"

UpdateMethod="UpdateDepartment"
ConflictDetection="CompareAllValues"
OldvValuesParameterFormatString="orig{o}"
OnUpdated="DepartmentsObjectDataSource_Updated">

In Departments.aspx.cs, add the following using statement:

usingContosoUniversity.BLL;

174

http://i1.asp.net/umbraco-beta-media/2575192/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9803_Image05_1.png�

Add the following handler for the Updated event:

protectedvoidDepartmentsObjectDataSource Updated(object

sender,0ObjectDataSourceStatusEventArgs e)

{

if(e.Exception!=null)

{

if(e.Exception.InnerExceptionisDuplicateAdministratorException)

{

var duplicateAdministratorValidator =newCustomValidator();
duplicateAdministratorValidator.IsValid=false;
duplicateAdministratorValidator.ErrorMessage="Update failed:

e.Exception.InnerException.Message;

Page.Validators.Add(duplicateAdministratorValidator);

e.ExceptionHandled=true;

If the ObjectDataSource control catches an exception when it tries to perform the update, it passes the

+

exception in the event argument (€) to this handler. The code in the handler checks to see if the exception is

the duplicate administrator exception. If it is, the code creates a validator control that contains an error

message for the ValidationSummary control to display

Run the page and attempt to make someone the administrator of two departments again. This time the

ValidationSummary control displays an error message.

DEPARTMENTS
» Update failed: Instructor Fadi Fakhouri is already administrator of the Economics
department.
Name Budget Start Date Administrator
Edit Delete Economics $999,000.00 94152007 Fakhouri, Fadi
Edit Delete Engineering $350,000.009/1,/2007 Barzdukas, Gytis
Edit Delete English $120.000,00 912007 Li, Yan
Edit Delete Mathermatics $250,000.00 9/1,/2007 lustice, Peggy
Edit Delete Mew Department $100,000.00 17172011 Kapoor, Candace

175

http://i1.asp.net/umbraco-beta-media/2575204/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9803_Image06_1.png�

Make similar changes to the DepartmentsAdd.aspx page. In DepartmentsAdd.aspx, specify a handler for the
OnInserted event of the DepartmentsObjectDataSource. The resulting markup will resemble the following

example.

<asp:0bjectDataSourceID="DepartmentsObjectDataSource"runat="server"
TypeName="ContosoUniversity.BLL.SchoolBL"DataObjectTypeName="ContosoUniversity.DAL.De
partment”

InsertMethod="InsertDepartment"

OnInserted="DepartmentsObjectDataSource_Inserted">

In DepartmentsAdd.aspx.cs, add the same using statement:

usingContosoUniversity.BLL;

Add the following event handler:

protectedvoidDepartmentsObjectDataSource Inserted(object

sender,0ObjectDataSourceStatusEventArgs e)

{

if(e.Exception!=null)

{
if(e.Exception.InnerExceptionisDuplicateAdministratorException)
{

var duplicateAdministratorValidator =newCustomValidator();
duplicateAdministratorValidator.IsValid=false;
duplicateAdministratorValidator.ErrorMessage="Insert failed: "+

e.Exception.InnerException.Message;

Page.Validators.Add(duplicateAdministratorValidator);

e.ExceptionHandled=true;

You can now test the DepartmentsAdd.aspx.cs page to verify that it also correctly handles attempts to make one

person the administrator of more than one department.

176

This completes the introduction to implementing the repository pattern for using the ObjectbDataSource
control with the Entity Framework. For more information about the repository pattern and testability, see the
MSDN whitepaper Testability and Entity Framework 4.0.

In the following tutorial you'll see how to add sorting and filtering functionality to the application.

177

http://msdn.microsoft.com/en-us/library/ff714955.aspx�

Sorting and Filtering

In the previous tutorial you implemented the repository pattern in an n-tier web application that uses the Entity
Framework and the ObjectDataSource control. This tutorial shows how to do sorting and filtering and handle

master-detail scenarios. You'll add the following enhancements to the Departments.aspx page:

e A text box to allow users to select departments by name.
e Alist of courses for each department that's shown in the grid.

e The ability to sort by clicking column headings.

DEPARTMENTS

Enter ary part of the name or leave blank to see all | Search
MName Budget Start Date Administrator Courses

Edit Delete Economics $200.000.00 9712007 Fakhouri, Fadi [n) Title

4022 Microecanamics
4041 Macroeconarmics
4061 Quantitative

Edit Delete Engineering $350,000.,00 97172007 Barzdukas, Gytis ID Title
1050 Chernistry
1061 Physics
3000 new course

Edit Delete English $120.000,00 9/1/2007 Li, Yan D Title
2021 Composition
2030 Poetry
2042 Literature
Edit Delete History $1,000,000.00 1/10/2011 Zheng, Roger 1D Title

1010 US History

Adding the Ability to Sort GridView Columns

Open the Departments.aspx page and add a SortParameterName="sortExpression” attribute to the

ObjectDataSource control named DepartmentsObjectDataSource. (Later you'll create a
GetDepartments method that takes a parameter named sortExpression.) The markup for the opening tag

of the control now resembles the following example.

178

http://i1.asp.net/umbraco-beta-media/2575216/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9909_Image01.png�

<asp:0ObjectDataSourceID="DepartmentsObjectDataSource"runat="server"
TypeName="ContosoUniversity.BLL.SchoolBL"DataObjectTypeName="ContosoUniversity.DAL.De
partment”
SelectMethod="GetDepartments"DeleteMethod="DeleteDepartment"UpdateMethod="UpdateDepar
tment"

ConflictDetection="CompareAllValues"OldValuesParameterFormatString="orig{0}"

OnUpdated="DepartmentsObjectDataSource_Updated"SortParameterName="sortExpression">

Add the AllowSorting="true" attribute to the opening tag of the GridView control. The markup for the

opening tag of the control now resembles the following example.

<asp:GridViewID="DepartmentsGridView"runat="server"AutoGenerateColumns="False"
DataSourceID="DepartmentsObjectDataSource"DataKeyNames="DepartmentID"
OnRowUpdating="DepartmentsGridView_ RowUpdating"

AllowSorting="true">

In Departments.aspx.cs, set the default sort order by calling the GridView control's Sort method from the

Page_Load method:

protectedvoidPage_Load(object sender,EventArgs e)
{
if(!IsPostBack)

{
DepartmentsGridView.Sort("Name",SortDirection.Ascending);
}
}

You can add code that sorts or filters in either the business logic class or the repository class. If you do it in the
business logic class, the sorting or filtering work will be done after the data is retrieved from the database,
because the business logic class is working with an IEnumerable object returned by the repository. If you add
sorting and filtering code in the repository class and you do it before a LINQ expression or object query has
been converted to an IEnumerable object, your commands will be passed through to the database for
processing, which is typically more efficient. In this tutorial you'll implement sorting and filtering in a way that

causes the processing to be done by the database — that is, in the repository.

179

To add sorting capability, you must add a new method to the repository interface and repository classes as well
as to the business logic class. In the ISchoolRepository.cs file, add a new GetDepartments method that takes a

sortExpression parameter that will be used to sort the list of departments that's returned:

IEnumerable<Department>GetDepartments(string sortExpression);

The sortExpression parameter will specify the column to sort on and the sort direction.

Add code for the new method to the SchoolRepository.cs file:

publicIEnumerable<Department>GetDepartments(string sortExpression)

{
if(String.IsNullOrWhiteSpace(sortExpression))

{

sortExpression ="Name";

}

return context.Departments.Include("Person").0OrderBy("it."+ sortExpression).ToList();

}

Change the existing parameterless GetDepartments method to call the new method:

publicIEnumerable<Department>GetDepartments()

{

returnGetDepartments("");

}

In the test project, add the following new method to MockSchoolRepository.cs:

publicIEnumerable<Department>GetDepartments(string sortExpression)

{

return departments;

}

180

If you were going to create any unit tests that depended on this method returning a sorted list, you would need
to sort the list before returning it. You won't be creating tests like that in this tutorial, so the method can just

return the unsorted list of departments.

In the SchoolBL.cs file, add the following new method to the business logic class:

publicIEnumerable<Department>GetDepartments(string sortExpression)

{

return schoolRepository.GetDepartments(sortExpression);

}

This code passes the sort parameter to the repository method.

Run the Departments.aspx page.

DEPARTMENTS

MName Budget Start Date Administrator
Edit Delete Economics $200,000,00 9712007 Fakhour, Fadi
Edit Delete Engineering $350,000.00 9/1/2007 Barzdukas, Gytis
Edit Delete English $120,000,00 97,2007 L Yan
Edit Delete History $1,000,000.00 1/10/2011 Zheng, Roger
Edit Delete M athematics $250,000.00 9/1/2007 Justice, Pegoy
Edit Delete Mew Departrment $100,000.00 1/1/2011 Harui, Roger

You can now click any column heading to sort by that column. If the column is already sorted, clicking the

heading reverses the sort direction.

Adding a Search Box

In this section you'll add a search text box, link it to the ObjectDataSource control using a control parameter,

and add a method to the business logic class to support filtering.

Open the Departments.aspx page and add the following markup between the heading and the first
ObjectDataSource control:

181

http://i1.asp.net/umbraco-beta-media/2575228/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9909_Image02.png�

Enter any part of the name or leave the box blank to see all names:
<asp:TextBox ID="SearchTextBox" runat="server"AutoPostBack="true"></asp:TextBox>

<asp:Button ID="SearchButton" runat="server"Text="Search"/>

In the ObjectDataSource control named DepartmentsObjectDataSource, do the following:

e Add aSelectParameters element for a parameter named nameSearchString that gets the value

entered in the SearchTextBox control.

e Change the SelectMethod attribute value to GetDepartmentsByName. (You'll create this method later.)

The markup for the ObjectDataSource control now resembles the following example:

<asp:0ObjectDataSourceID="DepartmentsObjectDataSource"runat="server"TypeName="ContosoU
niversity.BLL.SchoolBL"
SelectMethod="GetDepartmentsByName"DeleteMethod="DeleteDepartment"UpdateMethod="Updat
eDepartment"
DataObjectTypeName="ContosoUniversity.DAL.Department"”ConflictDetection="CompareAllVal
ues"

SortParameterName="sortExpression"0OldValuesParameterFormatString="orig{0}"
OnUpdated="DepartmentsObjectDataSource_Updated">

<SelectParameters>
<asp:ControlParameterControlID="SearchTextBox"Name="nameSearchString"PropertyName="Te
xt"

Type="String"/>

</SelectParameters>

</asp:0bjectDataSource>

In ISchoolRepository.cs, add a GetDepartmentsByName method that takes both sortExpression and

nameSearchString parameters:

IEnumerable<Department>GetDepartmentsByName(string sortExpression,string

nameSearchString);

In SchoolRepository.cs, add the following new method:

182

publicIEnumerable<Department>GetDepartmentsByName(string sortExpression,string

nameSearchString)
{
if(String.IsNullOrWhiteSpace(sortExpression))
{
sortExpression ="Name";
}
if(String.IsNullOrWhiteSpace(nameSearchString))
{
nameSearchString ="";
}

return context.Departments.Include("Person").0OrderBy("it."+ sortExpression).Where(d

=> d.Name.Contains(nameSearchString)).ToList();

}

This code uses a Where method to select items that contain the search string. If the search string is empty, all
records will be selected. Note that when you specify method calls together in one statement like this (Include,

then OrderBy, then Where), the Where method must always be last.

Change the existing GetDepartments method that takes a sortExpression parameter to call the new

method:

publicIEnumerable<Department>GetDepartments(string sortExpression)

{

returnGetDepartmentsByName(sortExpression,™");

}

In MockSchoolRepository.cs in the test project, add the following new method:

publicIEnumerable<Department>GetDepartmentsByName(string sortExpression,string

nameSearchString)

{

return departments;

}

In SchoolBL.cs, add the following new method:

183

publicIEnumerable<Department>GetDepartmentsByName(string sortExpression,string
nameSearchString)

{

return schoolRepository.GetDepartmentsByName(sortExpression, nameSearchString);

}

Run the Departments.aspx page and enter a search string to make sure that the selection logic works. Leave the

text box empty and try a search to make sure that all records are returned.

DEPARTMENTS

Enter any part of the name or leave blank to see all en
Hame Budget Start Date Administrator

Edit Delete Engineering $350,000.009,/1,/2007 Barzdukas, Gytis

Edit Delete English $120,000.00 9712007 Li, ¥an

Edit Delete Mew Department $100,000.00 1172011 Harui, Roger

Adding a Details Column for Each Grid Row

Next, you want to see all of the courses for each department displayed in the right-hand cell of the grid. To do
this, you'll use a nested GridView control and databind it to data from the Courses navigation property of the

Department entity.

Open Departments.aspx and in the markup for the GridView control, specify a handler for the RowDataBound

event. The markup for the opening tag of the control now resembles the following example.

<asp:GridViewID="DepartmentsGridView"runat="server"AutoGenerateColumns="False"
DataSourceID="DepartmentsObjectDataSource"DataKeyNames="DepartmentID"
OnRowUpdating="DepartmentsGridView_ RowUpdating"
OnRowDataBound="DepartmentsGridView_RowDataBound"

AllowSorting="True">

Add a new TemplateField element after the Administrator template field:

<asp:TemplateFieldHeaderText="Courses">
<ItemTemplate>

<asp:GridViewID="CoursesGridView"runat="server"AutoGenerateColumns="False">

184

http://i1.asp.net/umbraco-beta-media/2575240/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9909_Image03.png�

<Columns>
<asp:BoundFieldDataField="CourseID"HeaderText="ID"/>
<asp:BoundFieldDataField="Title"HeaderText="Title"/>
</Columns>

</asp:GridView>

</ItemTemplate>

</asp:TemplateField>

This markup creates a nested GridView control that shows the course number and title of a list of courses. It

does not specify a data source because you'll databind it in code in the RowDataBound handler.

Open Departments.aspx.cs and add the following handler for the RowDataBound event:

protectedvoidDepartmentsGridView_RowDataBound(object sender,GridViewRowEventArgs e)

{
if(e.Row.RowType==DataControlRowType.DataRow)

{

var department = e.Row.DataltemasDepartment;

var coursesGridView =(GridView)e.Row.FindControl("CoursesGridView");
coursesGridView.DataSource= department.Courses.TolList();

coursesGridView.DataBind();

This code gets the Department entity from the event arguments, converts the Courses navigation property to

a List collection, and databinds the nested GridView to the collection.

Open the SchoolRepository.cs file and specify eager loading for the Courses navigation property by calling the
Include method in the object query that you create in the GetDepartmentsByName method. The return

statement in the GetDepartmentsByName method now resembles the following example.

return context.Departments.Include("Person").Include("Courses").
OrderBy("it."+ sortExpression).Where(d =>

d.Name.Contains(nameSearchString)).TolList();

185

Run the page. In addition to the sorting and filtering capability that you added earlier, the GridView control

now shows nested course details for each department.

DEPARTMENTS

Enter any part of the name or leave blank to see all | =earch
MName Budget Start Date Administrator Courses

Edit Delete Econormics $£200.000,00 9172007 Fakhour, Fadi D Title

4022 Microecanamics
4041 Macroeconomics
4061 Quantitative

Edit Delete Engineering $350,000.,00 97172007 Barzdukas, Gytis ID Title
1050 Chernistry
1061 Physics
3000 new course

Edit Delete English $120.000,00 9512007 Li, Yan D Title
2021 Composition
2030 Poetry
2042 Literature
Edit Delete History $1,000,000.00 1/10/2011 Zheng, Roger 1D Title

1010 US History

This completes the introduction to sorting, filtering, and master-detail scenarios. In the next tutorial, you'll see

how to handle concurrency.

186

http://i1.asp.net/umbraco-beta-media/2575252/Windows-Live-Writer_UsingtheEntityFrameworkandtheObjectDataS_9909_Image01_1.png�

Handling Concurrency

By Tom Dykstra|January 26, 2011

This tutorial series builds on the Contoso University web application that is created by the Getting Started with
the Entity Framework tutorial series. If you didn't complete the earlier tutorials, as a starting point for this
tutorial you can download the application that you would have created. You can also download the application
that is created by the complete tutorial series. If you have questions about the tutorials, you can post them to
the ASP.NET Entity Framework forum.

In the previous tutorial you learned how to sort and filter data using the ObjectDataSource control and the
Entity Framework. This tutorial shows options for handling concurrency in an ASP.NET web application that uses
the Entity Framework. You will create a new web page that's dedicated to updating instructor office
assignments. You'll handle concurrency issues in that page and in the Departments page that you created

earlier.

OFFICE ASSIGNMENTS

Instructor Location
Edit Delete Abercrombie, Kim 17 Smith
Edit Delete Fakhouri, Fadi 29 Adarns
Edit Delete Harui, Roger 37 Williams

Edit Delete Kapoor, Candace 37 Adams
Edit Delete Serrano, Stacy 271 Williams
Edit Delete Stewvart, Jasmine 131 Srmith
Edit Delete Wan Houten, Roger 213 Smith
Edit Delete Xu, Kristen 203 Williarms
Edit Delete Zheng, Roger 1432 Srnith

187

http://asp.net/entity-framework/tutorials#Getting%20Started�
http://asp.net/entity-framework/tutorials#Getting%20Started�
http://code.msdn.microsoft.com/ASPNET-Web-Forms-97f8ee9a�
http://code.msdn.microsoft.com/ASPNET-Web-Forms-6c7197aa�
http://forums.asp.net/1227.aspx�
http://i1.asp.net/umbraco-beta-media/2575264/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image06_1.png�

DEPARTMENTS

Enter ary part of the name or leave blank to see all | =earch
Name Budget Start Date Administrator Courses
Edit Delete Econormics $200.000,00 9172007 Fakhour, Fadi D Title

4022 Microeconomics
4041 Macroeconarmics
4061 Quantitative

Edit Delete Engineering $350,000.00 97172007 Barzdukas, Gytis ID Title
1050 Chermistry
1061 Physics
3000 new course

Edit Delete Englizh $120.00000 9/1/2007 Li, Yan D Title
2021 Composition
2030 Poetry
2042 Literature
Edit Delete History $1,000,000.00 1/10/2011 Zheng, Roger j{n] Title

1010 US History

Concurrency Conflicts

A concurrency conflict occurs when one user edits a record and another user edits the same record before the
first user's change is written to the database. If you don't set up the Entity Framework to detect such conflicts,
whoever updates the database last overwrites the other user's changes. In many applications, this risk is
acceptable, and you don't have to configure the application to handle possible concurrency conflicts. (If there
are few users, or few updates, or if isn't really critical if some changes are overwritten, the cost of programming
for concurrency might outweigh the benefit.) If you don't need to worry about concurrency conflicts, you can

skip this tutorial; the remaining two tutorials in the series don't depend on anything you build in this one.
Pessimistic Concurrency (Locking)

If your application does need to prevent accidental data loss in concurrency scenarios, one way to do that is to
use database locks. This is called pessimistic concurrency. For example, before you read a row from a database,
you request a lock for read-only or for update access. If you lock a row for update access, no other users are
allowed to lock the row either for read-only or update access, because they would get a copy of data that's in
the process of being changed. If you lock a row for read-only access, others can also lock it for read-only access

but not for update.

188

http://i1.asp.net/umbraco-beta-media/2575276/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image01_1.png�

Managing locks has some disadvantages. It can be complex to program. It requires significant database
management resources, and it can cause performance problems as the number of users of an application
increases (that is, it doesn't scale well). For these reasons, not all database management systems support
pessimistic concurrency. The Entity Framework provides no built-in support for it, and this tutorial doesn't show

you how to implement it.
Optimistic Concurrency

The alternative to pessimistic concurrency is optimistic concurrency. Optimistic concurrency means allowing
concurrency conflicts to happen, and then reacting appropriately if they do. For example, John runs the
Department.aspx page, clicks the Edit link for the History department, and reduces the Budget amount from
$1,000,000.00 to $125,000.00. (John administers a competing department and wants to free up money for his

own department.)

DEPARTMENTS

Enter any part of the name or leave blank to see all history i Search I
Name Budlget Start Date

Update Cancel Histary 125000.00 1410/2011

Before John clicks Update, Jane runs the same page, clicks the Edit link for the History department, and then
changes the Start Date field from 1/10/2011 to 1/1/1999. (Jane administers the History department and wants

to give it more seniority.)

DEPARTMENTS

Enter any part of the name or leave blank to see all history i =earch i
Name Budget Start Date

Update Cancel History 10000000000 1411993

John clicks Update first, then Jane clicks Update. Jane's browser now lists the Budget amount as $1,000,000.00,
but this is incorrect because the amount has been changed by John to $125,000.00.

Some of the actions you can take in this scenario include the following:

e You can keep track of which property a user has modified and update only the corresponding columns in

the database. In the example scenario, no data would be lost, because different properties were updated

189

http://i1.asp.net/umbraco-beta-media/2575288/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image07_1.png�
http://i1.asp.net/umbraco-beta-media/2575300/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image08_1.png�

by the two users. The next time someone browses the History department, they will see 1/1/999 and
$125,000.00.

This is the default behavior in the Entity Framework, and it can substantially reduce the number of
conflicts that could result in data loss. However, this behavior doesn't avoid data loss if competing
changes are made to the same property of an entity. In addition, this behavior isn't always possible; when
you map stored procedures to an entity type, all of an entity's properties are updated when any changes
to the entity are made in the database.

You can let Jane's change overwrite John's change. After Jane clicks Update, the Budget amount goes
back to $1,000,000.00. This is called a Client Wins or Last in Wins scenario. (The client's values take

precedence over what's in the data store.)

You can prevent Jane's change from being updated in the database. Typically, you would display an error
message, show her the current state of the data, and allow her to reenter her changes if she still wants to
make them. You could further automate the process by saving her input and giving her an opportunity to
reapply it without having to reenter it. This is called a Store Wins scenario. (The data-store values take

precedence over the values submitted by the client.)

Detecting Concurrency Conflicts

In the Entity Framework, you can resolve conflicts by handling OptimisticConcurrencyException

exceptions that the Entity Framework throws. In order to know when to throw these exceptions, the Entity

Framework must be able to detect conflicts. Therefore, you must configure the database and the data model

appropriately. Some options for enabling conflict detection include the following:

In the database, include a table column that can be used to determine when a row has been changed. You
can then configure the Entity Framework to include that column in the Where clause of SQL Update or

Delete commands.

That's the purpose of the Timestamp column in the OfficeAssignment table.

OfficeAssignment
% InstructarlD

Location

Tirnestamp

190

http://i1.asp.net/umbraco-beta-media/2575312/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image09_1.png�

The data type of the Timestamp column is also called Timestamp. However, the column doesn't actually
contain a date or time value. Instead, the value is a sequential number that's incremented each time the
row is updated. In an Update or Delete command, the Where clause includes the original Timestamp
value. If the row being updated has been changed by another user, the value in Timestamp is different
than the original value, so the Where clause returns no row to update. When the Entity Framework finds
that no rows have been updated by the current Update or Delete command (that is, when the number

of affected rows is zero), it interprets that as a concurrency conflict.

e Configure the Entity Framework to include the original values of every column in the table in the Where

clause of Update and Delete commands.

As in the first option, if anything in the row has changed since the row was first read, the Where clause
won't return a row to update, which the Entity Framework interprets as a concurrency conflict. This
method is as effective as using a Timestamp field, but can be inefficient. For database tables that have
many columns, it can result in very large Where clauses, and in a web application it can require that you
maintain large amounts of state. Maintaining large amounts of state can affect application performance
because it either requires server resources (for example, session state) or must be included in the web

page itself (for example, view state).

In this tutorial you will add error handling for optimistic concurrency conflicts for an entity that doesn't have a
tracking property (the Department entity) and for an entity that does have a tracking property (the
OfficeAssignment entity).

Handling Optimistic Concurrency Without a Tracking Property

To implement optimistic concurrency for the Department entity, which doesn't have a tracking (Timestamp)

property, you will complete the following tasks:

e Change the data model to enable concurrency tracking for Department entities.
e Inthe SchoolRepository class, handle concurrency exceptions in the SaveChanges method.

e Inthe Departments.aspx page, handle concurrency exceptions by displaying a message to the user
warning that the attempted changes were unsuccessful. The user can then see the current values and retry

the changes if they are still needed.

Enabling Concurrency Tracking in the Data Model

In Visual Studio, open the Contoso University web application that you were working with in the previous

tutorial in this series.

191

Open SchoolModel.edmx, and in the data model designer, right-click the Name property in the Department

entity and then click Properties. In the Properties window, change the ConcurrencyMode property to Fixed.

Properties
SchoolModel.Department.Mame Property
g 21 | =]

Concurrency Mode B2kl
Default Value

[+ Documentation

Entity Key

Fized Length False
Getter Public
hAze | ammth, on

Concurrency Mode

Do the same for the other non-primary-key scalar properties (Budget, StartDate, and Administrator) (You
can't do this for navigation properties.) This specifies that whenever the Entity Framework generates a Update
or Delete SQL command to update the Department entity in the database, these columns (with original
values) must be included in the Where clause. If no row is found when the Update or Delete command

executes, the Entity Framework will throw an optimistic-concurrency exception.
Save and close the data model.

Handling Concurrency Exceptions in the DAL

Open SchoolRepository.cs and add the following using statement for the System.Data namespace:

usingSystem.Data;

Add the following new SaveChanges method, which handles optimistic concurrency exceptions:
publicvoidSaveChanges()
{

try

context.SaveChanges();

192

http://i1.asp.net/umbraco-beta-media/2575324/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image16_1.png�

}

catch(OptimisticConcurrencyException ocex)
{
context.Refresh(RefreshMode.StoreWins, ocex.StateEntries[0].Entity);
throw ocex;
}
}

If a concurrency error occurs when this method is called, the property values of the entity in memory are
replaced with the values currently in the database. The concurrency exception is rethrown so that the web page

can handle it.

In the DeleteDepartment and UpdateDepartment methods, replace the existing call to

context.SaveChanges() with a call to SaveChanges() in order to invoke the new method.
Handling Concurrency Exceptions in the Presentation Layer

Open Departments.aspx and add an OnDeleted="DepartmentsObjectDataSource_Deleted" attribute to
the DepartmentsObjectDataSource control. The opening tag for the control will now resemble the

following example.

<asp:0ObjectDataSourceID="DepartmentsObjectDataSource"runat="server"
TypeName="ContosoUniversity.BLL.SchoolBL"DataObjectTypeName="ContosoUniversity.DAL.De
partment”
SelectMethod="GetDepartmentsByName"DeleteMethod="DeleteDepartment"UpdateMethod="Updat
eDepartment”
ConflictDetection="CompareAllValues"OldValuesParameterFormatString="orig{0}"
OnUpdated="DepartmentsObjectDataSource_Updated"SortParameterName="sortExpression"

OnDeleted="DepartmentsObjectDataSource_Deleted">

In the DepartmentsGridView control, specify all of the table columns in the DataKeyNames attribute, as
shown in the following example. Note that this will create very large view state fields, which is one reason why

using a tracking field is generally the preferred way to track concurrency conflicts.

<asp:GridViewID="DepartmentsGridView"runat="server"AutoGenerateColumns="False"
DataSourceID="DepartmentsObjectDataSource"

DataKeyNames="DepartmentID,Name,Budget,StartDate,Administrator"

193

OnRowUpdating="DepartmentsGridView_ RowUpdating"
OnRowDataBound="DepartmentsGridView_RowDataBound"

AllowSorting="True">

Open Departments.aspx.cs and add the following using statement for the System.Data namespace:

usingSystem.Data;

Add the following new method, which you will call from the data source control's Updated and Deleted event

handlers for handling concurrency exceptions:

privatevoidCheckForOptimisticConcurrencyException(ObjectDataSourceStatusEventArgs

e,stringfunction)

{

if(e.Exception.InnerExceptionisOptimisticConcurrencyException)

{

var concurrencyExceptionValidator =newCustomValidator();
concurrencyExceptionValidator.IsValid=false;
concurrencyExceptionValidator.ErrorMessage=

"The record you attempted to edit or delete was modified by another "+

"user after you got the original value. The edit or delete operation was canceled "+
"and the other user's values have been displayed so you can "+

"determine whether you still want to edit or delete this record.";
Page.Validators.Add(concurrencyExceptionValidator);

e.ExceptionHandled=true;

This code checks the exception type, and if it's a concurrency exception, the code dynamically creates a

CustomValidator control that in turn displays a message in the ValidationSummary control.

Call the new method from the Updated event handler that you added earlier. In addition, create a new

Deleted event handler that calls the same method (but doesn't do anything else):

protectedvoidDepartmentsObjectDataSource Updated(object

sender,0ObjectDataSourceStatusEventArgs e)

194

{

if(e.Exception!=null)

{

CheckForOptimisticConcurrencyException(e, "update™);

T

protectedvoidDepartmentsObjectDataSource_Deleted(object

sender,0ObjectDataSourceStatusEventArgs e)

{

if(e.Exception!=null)

{

CheckForOptimisticConcurrencyException(e, "delete™);

}
}

Testing Optimistic Concurrency in the Departments Page

Run the Departments.aspx page.

DEPARTMENTS

Enter ary part of the name or leave blank to see all
MName Budget Start Date Administrator Courses

Edit Delete Econormics $200.000,00 9172007 Fakhour, Fadi D Title

4022 Microeconomics
4041 Macroeconormics
4061 Quantitative

1 e — |

Click Edit in a row and change the value in the Budget column. (Remember that you can only edit records that
you've created for this tutorial, because the existing School database records contain some invalid data. The

record for the Economics department is a safe one to experiment with.)

DEPARTMENTS

Enter any part of the name or leave blank to see all
MName Budget Start Date

Update Cancel Economics 0.00 9/1,/2007

195

http://i1.asp.net/umbraco-beta-media/2575336/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image17_2.png�
http://i1.asp.net/umbraco-beta-media/2575348/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image18_1.png�

Open a new browser window and run the page again (copy the URL from the first browser window's address

box to the second browser window).

DEPARTMENTS
Enter any part of the name or leave blank to see all

MName Budget Start Date Administrator
Edit Delete Econormics $£200.000,00 9172007 Fakhour, Fadi

| Search

Courses
ID Title
4022 Microecanamics
4041 Macroeconomics
4061 Quantitative

e ——

Click Edit in the same row you edited earlier and change the Budget value to something different.

DEPARTMENTS

Enter any part of the name or leave blank to see all | Search I
MName Budget Start Date

Update Cancel Economics §93000.00 9142007

In the second browser window, click Update. The Budget amount is successfully changed to this new value.

DEPARTMENTS
Enter any part of the name or leave blank to see all

MName Budget Start Date Administrator
Edit Delete Econormics $999.000.00 971,2007 Fakhour, Fadi

Search

Courses
ID Title
4022 Microeconomics
4041 Macroeconormics
4061 Quantitative

In the first browser window, click Update. The update fails. The Budget amount is redisplayed using the value

you set in the second browser window, and you see an error message.

196

http://i1.asp.net/umbraco-beta-media/2575360/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image17_3.png�
http://i1.asp.net/umbraco-beta-media/2575372/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image19_1.png�
http://i1.asp.net/umbraco-beta-media/2575384/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image20_1.png�

DEPARTMENTS

Enter any part of the name or leave the box blank to see all names:

= The record you attempted to edit or delete was modified by another user after
you got the original walue, The edit or delete operation was canceled and the
other user's values have been displayed so you can determine whether you still
want to edit or delete this record.

Name Budget Start Date Administrator Courses
Edit Delete Economics $999,000.00 9412007 Fakhouri, Fadi 1D Title

4022 Microeconarmics
4041 Macroeconomics
4061 Quantitative

Handling Optimistic Concurrency Using a Tracking Property

To handle optimistic concurrency for an entity that has a tracking property, you will complete the following
tasks:

e Add stored procedures to the data model to manage OfficeAssignment entities. (Tracking properties

and stored procedures don't have to be used together; they're just grouped together here for illustration.)

e Add CRUD methods to the DAL and the BLL for OfficeAssignment entities, including code to handle

optimistic concurrency exceptions in the DAL.
e Create an office-assignments web page.
e Test optimistic concurrency in the new web page.

Adding OfficeAssignment Stored Procedures to the Data Model

Open the SchoolModel.edmx file in the model designer, right-click the design surface, and click Update Model
from Database. In the Add tab of the Choose Your Database Objects dialog box, expand Stored Procedures
and select the three OfficeAssignment stored procedures (see the following screenshot), and then click
Finish. (These stored procedures were already in the database when you downloaded or created it using a
script.)

197

http://i1.asp.net/umbraco-beta-media/2575396/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image21_1.png�

Update Wizard @

| _éj-l Choose Your Database Objects

Add | Refresh I Delete |

> Dﬁ Tables
) Wiews

a [V %5 Stored Procedures
[VIZ] DeleteOfficefssignrment (dbo)
[[1Z] fn_diagrarnobjects {dbo)
(1] GetDepartrnentMarne (dbo)
=] GetStudentGrades (dhba)
[VIZ] InsertOfficedssignrment (dba)
[C1Z] InsertPerson (dbo)
D; sp_alterdiagrarm (dbao)
[TI=Z] sp_creatediagrarn (dho)
(1] sp_dropdiagram (dba)
(1] sp_helpdiagrarndefinition (dba)
D; sp_helpdiagrams (dbo)
[CI=Z] sp_renamediagrarm (dho)
[(1Z] sp_upgraddiagrarms {dbo)
V2] UpdateOfficedssignment (dba)
D; UpdatePerson {dba)

Fluralize or singularize generated object narmes

Ihclude foreign key colurnns in the model

Select iterns to add to the model,

Firizh l I Cancel

Right-click the OfficeAssignment entity and select Stored Procedure Mapping.

198

http://i1.asp.net/umbraco-beta-media/2575408/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image02_1.png�

= Propertie
r@Instm
ﬁ Locat
ﬁTime

= Mawvigati

@ Perso

by 9

XL

Ldd

Renarne

Cut

Copy

Paste

Delete
Collapse

Tahle Manning

Stored Procedure Mapping

Set the Insert, Update, and Delete functions to use their corresponding stored procedures. For the

OrigTimestamp parameter of the Update function, set the Property to Timestamp and select the Use

&l

Showy in haodel Broweser

Update Model from Database...

Generate Datahase from kadel...

Add Code Generation ke,

YWalidate

Properties

Original Value option.

Ctrl +3
Ctrl +0C
Crl +4
Del

Alt+Enter

199

http://i1.asp.net/umbraco-beta-media/2575420/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image03_1.png�

Mapping Details - Officefssignment

E Pararmeter / Column Dperator Property Use Qriginal Walue
4 [7] Insert Using InsertOfficedssignrment
4 [7] Parameters
fad InstructordD ; int
'@ Location @ nvarchar
4 [Result Colurnn Bindings
B <Add Result Binding =
4 [.Z] Update Using UpdateOfficedssignrment
4 [] Parameters

¥4 InstructordD : Int32

4_
+— Z Location : String

'@ InstructodD @int +— '?ﬁ InstructodD @ Int32]
@d Location : rvarchar +— B Location @ String O
@l OrigTimestarp @ timestamp +— i Tirnestarnp @ Binary

4 [Result Colurnn Bindings
B «<Add Result Binding =

4[] Delete Using Delete OfficeAssignrment

4 [7 Parameters

fad InstructordD : int +— #4 InstructordD : Int32

H OTARE N — WDl - - R o Mapping Details

When the Entity Framework calls the UpdateOfficeAssignment stored procedure, it will pass the original

value of the Timestamp column in the OrigTimestamp parameter. The stored procedure uses this parameter

in its Where clause:

ALTER PROCEDURE [dbo].[UpdateOfficeAssignment]
@InstructorIDint,
@Location nvarchar(50),
@OrigTimestamp timestamp
AS
UPDATE OfficeAssignment SET Location=@Location
WHERE InstructorID=@InstructorID AND [Timestamp]=@0rigTimestamp;
IF @@ROWCOUNT>®O
BEGIN
SELECT [Timestamp] FROM OfficeAssignment
WHERE InstructorID=@InstructorID;
END

200

http://i1.asp.net/umbraco-beta-media/2575432/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image04_1.png�

The stored procedure also selects the new value of the Timestamp column after the update so that the Entity
Framework can keep the OfficeAssignment entity that's in memory in sync with the corresponding database

row.

(Note that the stored procedure for deleting an office assignment doesn't have an OrigTimestamp parameter.

Because of this, the Entity Framework can't verify that an entity is unchanged before deleting it.)

Save and close the data model.
Adding OfficeAssignment Methods to the DAL

Open ISchoolRepository.cs and add the following CRUD methods for the OfficeAssignment entity set:

IEnumerable<OfficeAssignment>GetOfficeAssignments(string sortExpression);
voidInsertOfficeAssignment(OfficeAssignmentOfficeAssignment);
voidDeleteOfficeAssignment(OfficeAssignmentOfficeAssignment);
voidUpdateOfficeAssignment(OfficeAssignmentOfficeAssignment,OfficeAssignment

origOfficeAssignment);

Add the following new methods to SchoolRepository.cs. In the UpdateOfficeAssignment method, you call

the local SaveChanges method instead of context.SaveChanges

publicIEnumerable<OfficeAssignment>GetOfficeAssignments(string sortExpression)

{
returnnewObjectQuery<OfficeAssignment>("SELECT VALUE o FROM OfficeAssignments AS o",

context).Include("Person").0OrderBy("it."+ sortExpression).TolList();

}

publicvoidInsertOfficeAssignment (OfficeAssignment officeAssignment)

{
context.OfficeAssignments.AddObject(officeAssignment);

context.SaveChanges();

publicvoidDeleteOfficeAssignment (OfficeAssignment officeAssignment)

{

context.OfficeAssignments.Attach(officeAssignment);

context.OfficeAssignments.DeleteObject (officeAssignment);

201

context.SaveChanges();

publicvoidUpdateOfficeAssignment (OfficeAssignment officeAssignment,OfficeAssignment

origOfficeAssignment)

{
context.OfficeAssignments.Attach(origOfficeAssignment);
context.ApplyCurrentValues("OfficeAssignments"”, officeAssignment);
SaveChanges();
}

In the test project, open MockSchoolRepository.cs and add the following OfficeAssignment collection and
CRUD methods to it. (The mock repository must implement the repository interface, or the solution won't

compile.)

List<OfficeAssignment> officeAssignments =newlList<OfficeAssignment>();

publicIEnumerable<OfficeAssignment>GetOfficeAssignments(string sortExpression)

{

return officeAssignments;

}

publicvoidInsertOfficeAssignment (OfficeAssignment officeAssignment)

{

officeAssignments.Add(officeAssignment);

publicvoidDeleteOfficeAssignment (OfficeAssignment officeAssignment)

{

officeAssignments.Remove(officeAssignment);

publicvoidUpdateOfficeAssignment (OfficeAssignment officeAssignment,OfficeAssignment

origOfficeAssignment)

{

officeAssignments.Remove(origOfficeAssignment);

202

officeAssignments.Add(officeAssignment);

Adding OfficeAssignment Methods to the BLL

In the main project, open SchoolBL.cs and add the following CRUD methods for the OfficeAssignment entity

set to it:

publicIEnumerable<OfficeAssignment>GetOfficeAssignments(string sortExpression)

{

if(string.IsNullOrEmpty(sortExpression)) sortExpression ="Person.LastName";

return schoolRepository.GetOfficeAssignments(sortExpression);

}

publicvoidInsertOfficeAssignment (OfficeAssignment officeAssignment)

{

try
{
schoolRepository.InsertOfficeAssignment(officeAssignment);
}
catch(Exception ex)
{

//Include catch blocks for specific exceptions first,
//and handle or log the error as appropriate in each.
//Include a generic catch block like this one last.
throw ex;

}

}

publicvoidDeleteOfficeAssignment (OfficeAssignment officeAssignment)

{

try
{
schoolRepository.DeleteOfficeAssignment(officeAssignment);
}
catch(Exception ex)
{

203

//Include catch blocks for specific exceptions first,
//and handle or log the error as appropriate in each.
//Include a generic catch block like this one last.
throw ex;

}

}

publicvoidUpdateOfficeAssignment (OfficeAssignment officeAssignment,OfficeAssignment
origOfficeAssignment)
{
try
{
schoolRepository.UpdateOfficeAssignment(officeAssignment,
origOfficeAssignment);
}
catch(Exception ex)
{
//Include catch blocks for specific exceptions first,
//and handle or log the error as appropriate in each.
//Include a generic catch block like this one last.
throw ex;
}
}

Creating an OfficeAssignments Web Page

Create a new web page that uses the Site.Master master page and name it OfficeAssignments.aspx. Add the

following markup to the Content control named Content2:

<h2>0ffice Assignments</h2>
<asp:0bjectDataSourceID="0fficeAssignmentsObjectDataSource"runat="server"TypeName="Co
ntosoUniversity.BLL.SchoolBL"
DataObjectTypeName="ContosoUniversity.DAL.OfficeAssignment"SelectMethod="GetOfficeAss
ignments"
DeleteMethod="DeleteOfficeAssignment"UpdateMethod="UpdateOfficeAssignment"ConflictDet
ection="CompareAllValues"

OldvaluesParameterFormatString="orig{o}"

204

SortParameterName="sortExpression"OnUpdated="0fficeAssignmentsObjectDataSource_Update
d">

</asp:0bjectDataSource>
<asp:ValidationSummaryID="0OfficeAssignmentsValidationSummary"runat="server"ShowSummar
y="true"

DisplayMode="BulletList"Style="color:Red; width:40em;"/>
<asp:GridViewID="0fficeAssignmentsGridView"runat="server"AutoGenerateColumns="False"
DataSourceID="0fficeAssignmentsObjectDataSource"DataKeyNames="InstructorID, Timestamp"
AllowSorting="True">

<Columns>

<asp:CommandFieldShowEditButton="True"ShowDeleteButton="True"ItemStyle-
VerticalAlign="Top">

<ItemStyleVerticalAlign="Top"></ItemStyle>

</asp:CommandField>
<asp:TemplateFieldHeaderText="Instructor"SortExpression="Person.LastName">
<ItemTemplate>

<asp:Label ID="InstructorLastNameLabel" runat="server" Text='<J%#
Eval("Person.LastName") %>'></asp:Label>,

<asp:Label ID="InstructorFirstNameLabel” runat="server" Text='<%#
Eval("Person.FirstMidName") %>'></asp:Label>

</ItemTemplate>

</asp:TemplateField>
<asp:DynamicFieldDataField="Location"HeaderText="Location"SortExpression="Location"/>
</Columns>

<SelectedRowStyleBackColor="LightGray"></SelectedRowStyle>

</asp:GridView>

Notice that in the DataKeyNames attribute, the markup specifies the Timestamp property as well as the record
key (InstructorlID). Specifying properties in the DataKeyNames attribute causes the control to save them in

control state (which is similar to view state) so that the original values are available during postback processing.

If you didn't save the Timestamp value, the Entity Framework would not have it for the Where clause of the
SQL Update command. Consequently nothing would be found to update. As a result, the Entity Framework

would throw an optimistic concurrency exception every time an OfficeAssignment entity is updated.

Open OfficeAssignments.aspx.cs and add the following using statement for the data access layer:

205

usingContosoUniversity.DAL;

Add the following Page_Init method, which enables Dynamic Data functionality. Also add the following

handler for the ObjectDataSource control's Updated event in order to check for concurrency errors:

protectedvoidPage_Init(object sender,EventArgs e)
{
OfficeAssignmentsGridView.EnableDynamicData(typeof(OfficeAssignment));

}

protectedvoidOfficeAssignmentsObjectDataSource Updated(object

sender,ObjectDataSourceStatusEventArgs e)

{

if(e.Exception!=null)

{

var concurrencyExceptionValidator =newCustomValidator();
concurrencyExceptionValidator.IsValid=false;
concurrencyExceptionValidator.ErrorMessage="The record you attempted

to "+

"update has been modified by another user since you last visited this page. "+

"Your update was canceled to allow you to review the other user's "+

"changes and determine if you still want to update this record.";

Page.Validators.Add(concurrencyExceptionValidator);

e.ExceptionHandled=true;

Testing Optimistic Concurrency in the OfficeAssignments Page
Run the OfficeAssignments.aspx page.

OFFICE ASSIGNMENTS
Instructor Location
Edit Delete Abercrombie, Kim 17 Smith

Click Edit in a row and change the value in the Location column.

206

http://i1.asp.net/umbraco-beta-media/2575444/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image10_2.png�

Instructor Location

OFFICE ASSIGNMENTS |

Update Cancel shercrambie, Kim Harry Potter Cloget]

Open a new browser window and run the page again (copy the URL from the first browser window to the

second browser window).

OFFICE ASSIGNMENTS
Instructor Location
Edit Delete Abercrombie, Kim 17 Smith

Click Edit in the same row you edited earlier and change the Location value to something different.

OFFICE ASSIGNMENTS

Instructor Location ‘

Update Cancel shercrombie, Kim 17 Mordor Tower

In the second browser window, click Update.

OFFICE ASSIGNMENTS
Instructor Location
Edit Delete Ahercrombie, Kim 17 Mordor Tower

Switch to the first browser window and click Update.

OFFICE ASSIGNMENTS

= The record you attermpted to update has been modified by another user since
you last visited this page. Your update was canceled to allow you to review the
other user's changes and determine if you still want to update this record.

Instructor Location
Edit Delete Ahercrombie, Kim 17 Mordor Tower

You see an error message and the Location value has been updated to show the value you changed it to in the

second browser window.

Handling Concurrency with the EntityDataSource Control

207

http://i1.asp.net/umbraco-beta-media/2575456/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image11_1.png�
http://i1.asp.net/umbraco-beta-media/2575468/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image10_3.png�
http://i1.asp.net/umbraco-beta-media/2575480/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image12_1.png�
http://i1.asp.net/umbraco-beta-media/2575492/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image13_1.png�
http://i1.asp.net/umbraco-beta-media/2575504/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image15_1.png�

The EntityDataSource control includes built-in logic that recognizes the concurrency settings in the data
model and handles update and delete operations accordingly. However, as with all exceptions, you must handle

OptimisticConcurrencyException exceptions yourself in order to provide a user-friendly error message.

Next, you will configure the Courses.aspx page (which uses an EntityDataSource control) to allow update
and delete operations and to display an error message if a concurrency conflict occurs. The Course entity
doesn't have a concurrency tracking column, so you will use the same method that you did with the

Department entity: track the values of all non-key properties.

Open the SchoolModel.edmx file. For the non-key properties of the Course entity (Title, Credits, and

DepartmentID), set the Concurrency Mode property to Fixed. Then save and close the data model.
Open the Courses.aspx page and make the following changes:

e Inthe CoursesEntityDataSource control, add EnableUpdate="true" and EnableDelete="true"

attributes. The opening tag for that control now resembles the following example:

<asp:EntityDataSourceID="CoursesEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="false"
AutoGenerateWhereClause="True"EntitySetName="Courses"

EnableUpdate="true"EnableDelete="true">

e Inthe CoursesGridView control, change the DataKeyNames attribute value to
"CourselD,Title,Credits,DepartmentID". Then add a CommandField element to the
Columnselement that shows Edit and Delete buttons (<asp:CommandField ShowEditButton="True"

ShowDeleteButton="True" />). The GridView control now resembles the following example:

<asp:GridViewID="CoursesGridView"runat="server"AutoGenerateColumns="False"
DataKeyNames="CourseID,Title,Credits,DepartmentID"
DataSourceID="CoursesEntityDataSource">

<Columns>

<asp:CommandFieldShowEditButton="True"ShowDeleteButton="True"/>
<asp:BoundFieldDataField="CourseID"HeaderText="CourseID"ReadOnly="True"SortExpres
sion="CourseID"/>
<asp:BoundFieldDataField="Title"HeaderText="Title"SortExpression="Title"/>
<asp:BoundFieldDataField="Credits"HeaderText="Credits"SortExpression="Credits"/>
</Columns>

</asp:GridView>

208

Run the page and create a conflict situation as you did before in the Departments page. Run the page in two
browser windows, click Edit in the same line in each window, and make a different change in each one. Click
Update in one window and then click Update in the other window. When you click Update the second time,

you see the error page that results from an unhandled concurrency exception.

Server Error in '/' Application.

Store update, insert, or delete statement affected
an unexpected number of rows (0). Entities may
have been modified or deleted since entities were
loaded. Refresh ObjectStateManager entries.

m

Description: An unhandled exception occurred during the execution of the current web request.

Fleasze revievy the stack trace for mare information about the error and where i originated in the
code.

Exception Details: System Data OptimisticConcurrencyException: Store update, insert, ar
delete statement affected an unexpected number of roves (0). Entties may have been modified or
deleted since entities were loaded. Refresh OhjectStateManager entries.

Source Error:

An unhandled exception was generated during the execution of
the current web redquest. Information regarding the origin
and location of the exception can be identified using the e
exception stack trace helow.

You handle this error in a manner very similar to how you handled it for the ObjectDataSource control. Open
the Courses.aspx page, and in the CoursesEntityDataSource control, specify handlers for the Deleted and

Updated events. The opening tag of the control now resembles the following example:

<asp:EntityDataSourceID="CoursesEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.SchoolEntities"EnableFlattening="false"
AutoGenerateWhereClause="true"EntitySetName="Courses"
EnableUpdate="true"EnableDelete="true"
OnDeleted="CoursesEntityDataSource Deleted"
OnUpdated="CoursesEntityDataSource_Updated">

Before the CoursesGridView control, add the following ValidationSummary control:

209

http://i1.asp.net/umbraco-beta-media/2575516/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image22_4.png�

<asp:ValidationSummaryID="CoursesValidationSummary"runat="server"

ShowSummary="true"DisplayMode="BulletList"/>

In Courses.aspx.cs, add a using statement for the System.Data namespace, add a method that checks for
concurrency exceptions, and add handlers for the EntityDataSource control's Updated and Deleted

handlers. The code will look like the following:

usingSystem.Data;

protectedvoidCoursesEntityDataSource_Updated(object
sender,EntityDataSourceChangedEventArgs e)
{

CheckForOptimisticConcurrencyException(e, "update™);

}

protectedvoidCoursesEntityDataSource_Deleted(object
sender,EntityDataSourceChangedEventArgs e)
{

CheckForOptimisticConcurrencyException(e, "delete");

}

privatevoidCheckForOptimisticConcurrencyException(EntityDataSourceChangedEventArgs

e,stringfunction)

{

if(e.Exception!=null&& e.ExceptionisOptimisticConcurrencyException)

{

var concurrencyExceptionValidator =newCustomValidator();
concurrencyExceptionValidator.IsValid=false;
concurrencyExceptionValidator.ErrorMessage=

"The record you attempted to edit or delete was modified by another "+

"user after you got the original value. The edit or delete operation was canceled

"and the other user's values have been displayed so you can "+

"determine whether you still want to edit or delete this record.";

Page.Validators.Add(concurrencyExceptionValidator);

e.ExceptionHandled=true;

210

+

The only difference between this code and what you did for the ObjectDataSource control is that in this case

the concurrency exception is in the Exception property of the event arguments object rather than in that

exception's InnerException property.

Run the page and create a concurrency conflict again. This time you see an error message:

COURSES BY DEPARTMENT
Select a department: |Engineering El

= The record you attempted to edit or delete was modified by another user after
you got the original value, The edit or delete operation was canceled and the
other user's values have been displayed so you can determine whether you still
want to edit or delete this record.

CourselD Title Credits
Edit Delete 1050 Chernistry 4
Edit Delete 1061 Physics 4

Edit Delete 4062 Mew Engineering Course 5

This completes the introduction to handling concurrency conflicts. The next tutorial will provide guidance on

how to improve performance in a web application that uses the Entity Framework.

211

http://i1.asp.net/umbraco-beta-media/2575528/Windows-Live-Writer_HandlingConcurrencywit.NETWebApplication_9EF7_Image23_4.png�

Maximizing Performance

In the previous tutorial, you saw how to handle concurrency conflicts. This tutorial shows options for improving
the performance of an ASP.NET web application that uses the Entity Framework. You'll learn several methods

for maximizing performance or for diagnosing performance problems.
Information presented in the following sections is likely to be useful in a broad variety of scenarios:

e Efficiently load related data.

e Manage view state.

Information presented in the following sections might be useful if you have individual queries that present

performance problems:

e Use the NoTracking merge option.
e Pre-compile LINQ queries.

e Examine query commands sent to the database.

Information presented in the following section is potentially useful for applications that have extremely large

data models:

e Pre-generate views.

Note Web application performance is affected by many factors, including things like the size of request and
response data, the speed of database queries, how many requests the server can queue and how quickly it can
service them, and even the efficiency of any client-script libraries you might be using. If performance is critical
in your application, or if testing or experience shows that application performance isn't satisfactory, you should
follow normal protocol for performance tuning. Measure to determine where performance bottlenecks are

occurring, and then address the areas that will have the greatest impact on overall application performance.

This topic focuses mainly on ways in which you can potentially improve the performance specifically of the
Entity Framework in ASP.NET. The suggestions here are useful if you determine that data access is one of the
performance bottlenecks in your application. Except as noted, the methods explained here shouldn't be
considered "best practices" in general — many of them are appropriate only in exceptional situations or to

address very specific kinds of performance bottlenecks.

To start the tutorial, start Visual Studio and open the Contoso University web application that you were working

with in the previous tutorial.

212

Efficiently Loading Related Data

There are several ways that the Entity Framework can load related data into the navigation properties of an

entity:

e Lazy loading. When the entity is first read, related data isn't retrieved. However, the first time you attempt
to access a navigation property, the data required for that navigation property is automatically retrieved.
This results in multiple queries sent to the database — one for the entity itself and one each time that

related data for the entity must be retrieved.

departments = context.Departments.Tolist(); szl Read Department roWs
foreach (Department d in departments)
1
if (d.Name == "History")
1
adminLastName = d.Person.LastName; -====_——= Read one Person row
¥
¥

Eager loading. When the entity is read, related data is retrieved along with it. This typically results in a single join
query that retrieves all of the data that's needed. You specify eager loading by using the Include method, as

you've seen already in these tutorials.

departments = context.Departments.Include("Person™).Tolist(); "::=RE=EId
foreach (Department d in departments)

f Department
if (d.Name == "History") rows and all
{ related

adminLastName = d.Person.LastName;
} Person rows

e Explicit loading. This is similar to lazy loading, except that you explicitly retrieve the related data in code; it
doesn't happen automatically when you access a navigation property. You load related data manually
using the Load method of the navigation property for collections, or you use the Load method of the
reference property for properties that hold a single object. (For example, you call the

PersonReference.Load method to load the Person navigation property of a Department entity.)

213

http://i1.asp.net/umbraco-beta-media/2575540/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image05_2.png�
http://i1.asp.net/umbraco-beta-media/2575552/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image07_2.png�

departments = context.Departments.Tolist(); ..:: Read Department rows
foreach (Department d in departments) P
1
if (d.Name == "History")
{
d.PersonReference.load(); ==m=—= Fead one Person row
adminlLastMame = d.Person.LastName;
¥
s

Because they don't immediately retrieve the property values, lazy loading and explicit loading are also both

known as deferred loading.

Lazy loading is the default behavior for an object context that has been generated by the designer. If you open
the SchoolModel.Designer.cs file that defines the object context class, you'll find three constructor methods, and

each of them includes the following statement:

this.ContextOptions.LazylLoadingEnabled=true;

In general, if you know you need related data for every entity retrieved, eager loading offers the best
performance, because a single query sent to the database is typically more efficient than separate queries for
each entity retrieved. On the other hand, if you need to access an entity's navigation properties only
infrequently or only for a small set of the entities, lazy loading or explicit loading may be more efficient,

because eager loading would retrieve more data than you need.

In a web application, lazy loading may be of relatively little value anyway, because user actions that affect the
need for related data take place in the browser, which has no connection to the object context that rendered
the page. On the other hand, when you databind a control, you typically know what data you need, and so it's

generally best to choose eager loading or deferred loading based on what's appropriate in each scenario.

In addition, a databound control might use an entity object after the object context is disposed. In that case, an
attempt to lazy-load a navigation property would fail. The error message you receive is clear: "The
ObjectContext instance has been disposed and can no longer be used for operations

that require a connection."

The EntityDataSource control disables lazy loading by default. For the ObjectDataSource control that
you're using for the current tutorial (or if you access the object context from page code), there are several ways
you can make lazy loading disabled by default. You can disable it when you instantiate an object context. For

example, you can add the following line to the constructor method of the SchoolRepository class:

214

http://i1.asp.net/umbraco-beta-media/2575564/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image06_2.png�

context.ContextOptions.LazylLoadingEnabled=false;

For the Contoso University application, you'll make the object context automatically disable lazy loading so that

this property doesn't have to be set whenever a context is instantiated.

Open the SchoolModel edmx data model, click the design surface, and then in the properties pane set the Lazy
Loading Enabled property to False. Save and close the data model.

Properties
SchoolModel ConceptualEntitytdodel

Code Generation Strat Default

Connection String rnetadata=res DAL Schoolkodel.c
Database Generation % TablePerTypeStrategycaml (W5
Database Schema Mar dbo

DDL Generation Termp S50LToS0L104 (W5

Entity Container &cce: Public

Entity Container Marm SchoolEntities

Lazy Loading Enabled

hdetadata Artifact PriFalse
Marrespace

Pluralize Mew Chjects —Troe
Transform Related Ter True
YWalidate On Build True

Lazy Loading Enabled

Used to set the default lazy loading behavior for the generated
ObjectContest,

Managing View State

In order to provide update functionality, an ASP.NET web page must store the original property values of an
entity when a page is rendered. During postback processing the control can re-create the original state of the
entity and call the entity's Attach method before applying changes and calling the SaveChanges method. By
default, ASP.NET Web Forms data controls use view state to store the original values. However, view state can
affect performance, because it's stored in hidden fields that can substantially increase the size of the page that's

sent to and from the browser.

215

http://i1.asp.net/umbraco-beta-media/2575576/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image04_2.png�

Techniques for managing view state, or alternatives such as session state, aren't unique to the Entity
Framework, so this tutorial doesn't go into this topic in detail. For more information see the links at the end of

the tutorial.

However, version 4 of ASP.NET provides a new way of working with view state that every ASP.NET developer of
Web Forms applications should be aware of: the ViewStateMode property. This new property can be set at the
page or control level, and it enables you to disable view state by default for a page and enable it only for

controls that need it.

For applications where performance is critical, a good practice is to always disable view state at the page level
and enable it only for controls that require it. The size of view state in the Contoso University pages wouldn't be
substantially decreased by this method, but to see how it works, you'll do it for the Instructors.aspx page. That
page contains many controls, including a Label control that has view state disabled. None of the controls on
this page actually need to have view state enabled. (The DataKeyNames property of the GridView control
specifies state that must be maintained between postbacks, but these values are kept in control state, which
isn't affected by the ViewStateMode property.)

The Page directive and Label control markup currently resembles the following example:

<%@PageTitle=""Language="C#"MasterPageFile="~/Site.Master"AutoEventWireup="true"

CodeBehind="Instructors.aspx.cs"Inherits="ContosoUniversity.Instructors" %>

<asp:LabelID="ErrorMessagelLabel"runat="server"Text=""Visible="false"ViewStateMode="Di

sabled"></asp:Label>

Make the following changes:

e AddViewStateMode="Disabled" to the Page directive.

e Remove ViewStateMode="Disabled" from the Label control.

The markup now resembles the following example:
<%@PageTitle=""Language="C#"MasterPageFile="~/Site.Master"AutoEventWireup="true"

CodeBehind="Instructors.aspx.cs"Inherits="ContosoUniversity.Instructors"
ViewStateMode="Disabled" %>

216

<asp:LabelID="ErrorMessagelLabel"runat="server"Text=""Visible="false"></asp:Label>

View state is now disabled for all controls. If you later add a control that does need to use view state, all you
need to do is include the ViewStateMode="Enabled" attribute for that control.

Using The NoTracking Merge Option

When an object context retrieves database rows and creates entity objects that represent them, by default it
also tracks those entity objects using its object state manager. This tracking data acts as a cache and is used
when you update an entity. Because a web application typically has short-lived object context instances, queries
often return data that doesn't need to be tracked, because the object context that reads them will be disposed

before any of the entities it reads are used again or updated.

In the Entity Framework, you can specify whether the object context tracks entity objects by setting a merge
option. You can set the merge option for individual queries or for entity sets. If you set it for an entity set, that

means that you're setting the default merge option for all queries that are created for that entity set.

For the Contoso University application, tracking isn't needed for any of the entity sets that you access from the
repository, so you can set the merge option to NoTracking for those entity sets when you instantiate the
object context in the repository class. (Note that in this tutorial, setting the merge option won't have a
noticeable effect on the application's performance. The NoTracking option is likely to make an observable

performance improvement only in certain high-data-volume scenarios.)

In the DAL folder, open the SchoolRepository.cs file and add a constructor method that sets the merge option

for the entity sets that the repository accesses:

publicSchoolRepository()

{
context.Departments.MergeOption=MergeOption.NoTracking;
context.InstructorNames.MergeOption=MergeOption.NoTracking;
context.OfficeAssignments.MergeOption=MergeOption.NoTracking;
}

Pre-Compiling LINQ Queries

217

The first time that the Entity Framework executes an Entity SQL query within the life of a given ObjectContext
instance, it takes some time to compile the query. The result of compilation is cached, which means that
subsequent executions of the query are much quicker. LINQ queries follow a similar pattern, except that some
of the work required to compile the query is done every time the query is executed. In other words, for LINQ

queries, by default not all of the results of compilation are cached.

If you have a LINQ query that you expect to run repeatedly in the life of an object context, you can write code

that causes all of the results of compilation to be cached the first time the LINQ query is run.

As an illustration, you'll do this for two Get methods in the SchoolRepository class, one of which doesn't
take any parameters (the GetInstructorNames method), and one that does require a parameter (the
GetDepartmentsByAdministrator method). These methods as they stand now actually don't need to be

compiled because they aren't LINQ queries:

publicIEnumerable<InstructorName>GetInstructorNames()

{

return context.InstructorNames.OrderBy("it.FullName").TolList();

}

publicIEnumerable<Department>GetDepartmentsByAdministrator(Int32 administrator)

{
returnnewObjectQuery<Department>("SELECT VALUE d FROM Departments as d",

context,MergeOption.NoTracking).Include("Person™).Where(d => d.Administrator==

administrator).TolList();

}

However, so that you can try out compiled queries, you'll proceed as if these had been written as the following

LINQ queries:

publicIEnumerable<InstructorName>GetInstructorNames()

{

return(from i in context.InstructorNamesorderby i.FullNameselect i).ToList();

}

publicIEnumerable<Department>GetDepartmentsByAdministrator(Int32 administrator)

{

context.Departments.MergeOption=MergeOption.NoTracking;

218

return(from d in context.Departmentswhere d.Administrator== administrator select
d).ToList();

}

You could change the code in these methods to what's shown above and run the application to verify that it

works before continuing. But the following instructions jump right into creating pre-compiled versions of them.

Create a class file in the DAL folder, name it SchoolEntities.cs, and replace the existing code with the following

code:

usingSystem;
usingSystem.Collections.Generic;
usingSystem.Linqg;

usingSystem.Data.Objects;

namespaceContosoUniversity.DAL

{

publicpartialclassSchoolEntities

{
privatestaticreadonlyFunc<SchoolEntities,IQueryable<InstructorName>>
compiledInstructorNamesQuery =

CompiledQuery.Compile((SchoolEntities context)=>from i in

context.InstructorNamesorderby i.FullNameselect i);

publicIEnumerable<InstructorName>CompiledInstructorNamesQuery()

{

return compiledInstructorNamesQuery(this).ToList();

}

privatestaticreadonlyFunc<SchoolEntities,Int32,IQueryable<Department>>
compiledDepartmentsByAdministratorQuery =
CompiledQuery.Compile((SchoolEntities context,Int32 administrator)=>from d in

context.Departments.Include("Person")where d.Administrator==administrator select d);

publicIEnumerable<Department>CompiledDepartmentsByAdministratorQuery(Int32

administrator)

{

219

return compiledDepartmentsByAdministratorQuery(this, administrator).TolList();
}
}
}

This code creates a partial class that extends the automatically generated object context class. The partial class
includes two compiled LINQ queries using the Compile method of the CompiledQuery class. It also creates

methods that you can use to call the queries. Save and close this file.

Next, in SchoolRepository.cs, change the existing GetInstructorNames and

GetDepartmentsByAdministrator methods in the repository class so that they call the compiled queries:

publicIEnumerable<InstructorName>GetInstructorNames()

{

return context.CompiledInstructorNamesQuery();

}

publicIEnumerable<Department>GetDepartmentsByAdministrator(Int32 administrator)

{

return context.CompiledDepartmentsByAdministratorQuery(administrator);

}

Run the Departments.aspx page to verify that it works as it did before. The GetInstructorNames method is
called in order to populate the administrator drop-down list, and the GetDepartmentsByAdministrator
method is called when you click Update in order to verify that no instructor is an administrator of more than

one department.

DEPARTMENTS
Enter amy part of the name or leave blank to see all Economics
Mame Budget Start Date Administrator
Update Cancel Economics 2000000000 91,2007 \Harui Roger [~
Abercrombie Kim
Fakhouri Fadi
Harul Roger

Kapoor, Candace
Serrano,Stacy
Stewart Jasmine
“Wan Houten Roger
U Khsten

Zheng Roger

220

http://i1.asp.net/umbraco-beta-media/2575588/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image03_2.png�

You've pre-compiled queries in the Contoso University application only to see how to do it, not because it
would measurably improve performance. Pre-compiling LINQ queries does add a level of complexity to your
code, so make sure you do it only for queries that actually represent performance bottlenecks in your

application.

Examining Queries Sent to the Database

When you're investigating performance issues, sometimes it's helpful to know the exact SQL commands that
the Entity Framework is sending to the database. If you're working with an IQueryable object, one way to do

this is to use the ToTraceString method.

In SchoolRepository.cs, change the code in the GetDepartmentsByName method to match the following

example:

publicIEnumerable<Department>GetDepartmentsByName(string sortExpression,string

nameSearchString)

{

var departments =newObjectQuery<Department>("SELECT VALUE d FROM Departments AS d",
context).OrderBy("it."+ sortExpression).Include("Person™).Include("Courses™).Where(d
=> d.Name.Contains(nameSearchString));

string commandText =((ObjectQuery)departments).ToTraceString();

return departments.TolList();

}

The departments variable must be cast to an ObjectQuery type only because the Where method at the end
of the preceding line creates an IQueryable object; without the Where method, the cast would not be

necessary.

Set a breakpoint on the return line, and then run the Departments.aspx page in the debugger. When you hit
the breakpoint, examine the commandText variable in the Locals window and use the text visualizer (the
magnifying glass in the Value column) to display its value in the Text Visualizer window. You can see the

entire SQL command that results from this code:

221

Text Wisualizer

Expression:

“Walue:

carnmand T ext

SELECT

[Projectl].
[Prejectl].
[Frojectl].
[Frojectl].
[Frejectl].
[Projectl].
[Projectl].
[Projectl].
[Projectl].
[Prejectl].
[Frojectl].
[Frojectl].
[Frejectl].
[Projectl].
[Projectl].
[Projectl].
FROM [SELECT

[PersenID] AS [PersonID],
[DepartmentID] AS [DepartmentID],
[Mame] AS [Name],
[Budget] AS [Budget],
[5tartDate] AS [StartDate],
[ﬁdmlnlstrator] A5 [Administrater],
[c1] as [c1],

[LastName] AS [LastName],
[FlrstName] &5 [FirstName],
[c2] As [c2],

[C3] A5 [C3]
[C4] A5 [C4],
[CourseIl] AS [CourseID],

[Title] A5 [Title],

[Credits] A5 [Credits],
[DepartmentIDl] AS [DepartmentIDl]

r

)

[Extentl].
[Extentl].
[Extentl].
[Extentl].
[Extentl].
[Extent2].
[Extent2].
[Extent2].

CASE WHEN
CASE WHEN
CASE WHEN

[Extent3].
[Extent3].
[Extent3].
[Extent3].

CASE WHEN
FROM

[DepartmentID] AS [DepartmentID],
[Mame] A5 [Name],

[Budget] A5 [Budget],

[5tartDate] AS [StartDate],
[Administrater] AS [Administrator],
[PersenID] AS [PersonID],
[LastName] AS [LastName],
[FirstName] AS [FirstMame],

([[Extent2].[PersonID] IS NULL) THEN
([[Extent2].[PersonID] IS NULL) THEN
([[Extent2].[PersonID] IS NULL) THEN
[CourseID] AS [Coursell],

[Title] A5 [Title],

[Credits] AS [Credits],
[DepartmentID] AS [DepartmentIDl],
([Esxtent3].[CourseID] IS NULL) THEN CAST(NULL &5 inmt) ELSE 1 END

CAST(NULL AS warchar(1l)) WHE
CAST(NULL AS datetime2) WHEN
CAST(NULL A5 datetime2) WHEN

[dbo]. [Department] AS [Extentl]

LEFT OUTER 10IN [dbe].[Person] &5 [Extent2] ON (([Extent2].[HireDate] IS N
LEFT COUTER 10IN [dbe].[Course] AS [Extent3] ON [Extentl].[DepartmentID] =
AS [Projectl]

ORDER BY [Projectl].[Name] ASC,

[Projectl]. [PersonID] ASC, [Projectl].[DepartmentI

4

Wirap

I 2

| Close

Help

As an alternative, the IntelliTrace feature in Visual Studio Ultimate provides a way to view SQL commands

generated by the Entity Framework that doesn't require you to change your code or even set a breakpoint.

222

http://i1.asp.net/umbraco-beta-media/2575600/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image08_2.png�

Note You can perform the following procedures only if you have Visual Studio Ultimate.

Restore the original code in the GetDepartmentsByName method, and then run the Departments.aspx page in

the debugger.

In Visual Studio, select the Debug menu, then IntelliTrace, and then IntelliTrace Events.

Debug Tearn Data Tools Architecture Test Analyze Window Help

Wind o (INE.,] |dh|:n.a|umni v| | B
b Continue F5 RlEE|Z20FNB &G4
4 Stop Debugging Shift+F3 A d ""'f Stack Frame: |[External Code]
B Start Performance Analysis Alt+F2

Zolution Explorer

i Ll
=] | =

Terminate Al

d Restart Ctrl+Shift+F5 -
: == :; Solution "Contosalniversity
E_:* Sttach to Process.., i . T
< W a |2l Script Documents
Exceptions..., Crl +81t+E ng; 4 3 Windows Internet E
= Step Into F11 racking. || signin.htm
= Tracking |E| Departrnents.as
= Step Over F10 —| Vep 33
o) | | WebResource 2,
=l SRR SR || WebResource_1,
Toggle Breakpaint F4 Fi % ContosoUniversity
Mew Breakpaint 3 > [l Properties
D Delete All Breakpoints Ctrl+Shift +F1 > [References
w [Arcount
IntelliTrace * | © Return To Call Site
Clear &Il DataTips £ GoTo Previous Call ar IntelliTrace Event
Export DataTips .. + tepIn
Irnport DataTips .. ¥ GoTo Mext Call or IntelliTrace Bvent
Options and Settings... -+ G0 ToLive Mode

IntelliTrace Events

IntelliTrace Calls

ew ObjectQuery<Department("SELECT VALUE d PI

A
LH

ity Show Log Sumimary

In the IntelliTrace window, click Break All.

223

http://i1.asp.net/umbraco-beta-media/2575612/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image11_2.png�

IntelliTrace [X

S ERORT
To wiew IntelliTrace data, you must break execution of your application,

Il Break Al

Maore options:
Open IntelliTrace Settings

Disable Just My Code

Learn more about IntelliTrace

The IntelliTrace window displays a list of recent events:

IntelliTrace

| = || &)1 Threads

ASP.MET: GET "/default.aspx"

ASP.MET: Save State Completed "/defaultaspx”

ASP.MET: GET "/Departments,aspx”

ADOQMET: Execute Reader "SELECT [Projectl].[PersanlD] &5 [PersonID], [Pro
ASP.MET: Save State Completed "/Departments. asps”

{5} Live Event: Debugger Break

Click the ADO.NET line. It expands to show you the command text:

224

http://i1.asp.net/umbraco-beta-media/2575624/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image12_2.png�
http://i1.asp.net/umbraco-beta-media/2575636/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image09_2.png�

IntelliTrace

&)l Cateqories [E] Ll Threads
| Search

< ADOMET: Execute Reader "SELECT [Projectl].[PersonlD] A% [PersonlD], [Projectl].[DepartrentlD] &5 [Dg
The cormmand text "SELECT
[Projectl].[PersanID] &5 [PersonlD],
[Projectl].[DepartmentID] &% [DepartrnentD],
[Projectl].[Mame] A% [Marme],
[Projectl].[Budget] A5 [Budget],
[Projectl].[StartDate] A% [StartDate],
[Projectl].[Administrator] 85 [Administrator],
[Projectl].[C1] AS [C1],
[Projectl].[LastMarme] A5 [LastMarme],
[Projectl].[FirstMarme] AS [FirstNarme],
[Projectl].[C2] AS [C2],
[Projectl].[C3] AS[C3],
[Projectl].[C4] A5 [C4],
[Projectl].[CourselD] A% [CourselD],
[Projectl].[Title] &5 [Title],
[Projectl].[Credits] A% [Credits],
[Projectl].[DepartmentIDl] 8% [DepartmentID])
FROM { SELECT
[Extentl].[DepartmentID] A% [DepartmentID],
[Extentl].[Mame] &A% [Mame],
[Extentl].[Budget] 85 [Budget],
[Extentl].[StartDate] A5 [StartDate],
[Extentl].[Adrministrator] A5 [Sdministrator],
[Extent2].[PersanID] A5 [PersanIl],
[Extent2].[LastMame] &A% [LastMame],
[Extent2].[FirstMame] A5 [FirstMame],
CASEWHEM ([Extent2].[PersonlD] IS MULLY THEM CASTIMULL A% varchar(l)) WHEM {[Extent2].
[HireDate] IS MOT MULLY THEM "2:0%" ELSE 231 EMD AS[C1],
CASE WHEM {[Extent?].[PersanlD] IS MULLY THEM CAST{MULL AS datetirne2) WHEM ([Extent?].
[HireDate] IS MOT MULLY THEM [Extent2].[HireDate] EMD AL [C2],
CASE WHEM ([Extent?].[PersanID] IS MULLY THEM CAST{MULL A% datetirme) WiYHERM ([Extent?].
[HireDate] I5 MOT MULLY) THEM CAST(MULL A% datetime) ELSE [Extent2].[EnrollmentDate] ERD A5 [C3],
[Extent3].[CourselD] A% [CourselD],
[Extent3].[Title] &% [Title],
[Extent3].[Credits] &5 [Credits],
[Extent3].[DepartmentID] A5 [DepartmentIDl],
CASE WHEM {[Extent3].[Caursell] IS MIULLY THEMN CAST{MULL A5 inth ELSE 1 EMD A% [C4]
FROM [dhol[Departrnent] A% [Extentl]
LEFT QUTER JOIM [dbao].[Person] A% [Extent2] QM ({[Extent2]. [HireDate] IS MOT MIJLLY OR
([Extent?].[EnrallmentDate] I5 MOT MULLY AMD (Exdentl].[Administratar] = [Extent2].[PersonID])
LEFT QUTER JOIM [dba] [Course] &5 [Extent3] OM [Extentl].[DepartmentD] = [Extent3].
[DepartrmentID]

You can copy the entire command text string to the clipboard from the Locals window.

Suppose you were working with a database with more tables, relationships, and columns than the simple

School database. You might find that a query that gathers all the information you need in a single

225

http://i1.asp.net/umbraco-beta-media/2575648/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image10_2.png�

Selectstatement containing multiple Join clauses becomes too complex to work efficiently. In that case you

can switch from eager loading to explicit loading to simplify the query.

For example, try changing the code in the GetDepartmentsByName method in SchoolRepository.cs. Currently in
that method you have an object query that has Include methods for the Person and Courses navigation
properties. Replace the return statement with code that performs explicit loading, as shown in the following

example:

publicIEnumerable<Department>GetDepartmentsByName(string sortExpression,string

nameSearchString)

{

var departments =newObjectQuery<Department>("SELECT VALUE d FROM Departments AS d",
context) .OrderBy("it."+ sortExpression).Where(d =>
d.Name.Contains(nameSearchString)).TolList();

foreach(Department d in departments)

{
d.Courses.Load();
d.PersonReference.Load();
}
return departments;
}

Run the Departments.aspx page in the debugger and check the IntelliTrace window again as you did before.

Now, where there was a single query before, you see a long sequence of them.

226

IntelliTrace

=1 el 68
&)l Cateqories E| &)l Threads
| Search

ASP.MET: GET "fdefault.aspx"

ASP.MET: Sawve State Completed "/defaultaspx"

ASP.MET: GET "fDepartrnents.aspx"

ADO.MET: Execute Reader "SELECT [Extentl] [DepartmentID] A% [Departmen
ADO.MET: Execute Reader "SELECT [Extentl].[CourselD] AS [CourselD], [Exte
ADO.MET: Execute Reader "SELECT CASE WHEN {[Extentl].[HireDate] IS MO
ADO.MET: Execute Reader "SELECT [Extentl].[CaurselD] AS [Caursell], [Exte
ADO.MET: Execute Reader "SELECT CASE WHEM ([Extentl].[HireDate] IS MOT
ADO.MET: Execute Reader "SELECT [Extentl].[CourselD] A% [Courselld], [Exte
ADO.MET: Execute Reader "SELECT CASE WHEM ([Extentl].[HireDate] IS MOT
ADOMET: Execute Reader "SELECT [Extentl].[CourselD] A% [CourselD], [Exte
ADO.MET: Execute Reader "SELECT CASE WHEM {[Extentl].[HireDate] IS MC
ADO.MET: Execute Reader "SELECT [Extentl].[CourselD] AS [CourselD], [Exte
ADO.MET: Execute Reader "SELECT CASE WHEN {[Extentl].[HireDate] IS MO
ADO.MET: Execute Reader "SELECT [Extentl].[CaurselD] AS [Caursell], [Exte
ADO.MET: Execute Reader "SELECT CASE WHEM ([Extentl].[HireDate] IS MOT
ASP.MET: Sawve State Completed "/Departments.aspx"

q.i‘; Live Event: Debugger Break

Click the first ADO.NET line to see what has happened to the complex query you viewed earlier.

227

http://i1.asp.net/umbraco-beta-media/2575660/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image13_2.png�

IntelliTrace

S| =S D
&)l Cateqories E] &)l Threads
| Search

ASP.MET: GET "fdefault.aspx"
ASP.MET: Sawve State Completed "/defaultaspx"
ASP.MET: GET "fDepartrnents.aspx"

ADO.MET: Execute Reader "SELECT [Extentl] [DepartmentID] A% [Departmen
The command text "SELECT

[Extentl].[DepartmentID] A5 [DepartmentID],

[Extentl].[Mame] &5 [Mame],

[Extentl].[Budget] A% [Budget],

[Extentl].[StartDate] A% [StartDate],

[Extentl].[Adminiztrator] A% [Administratar]

FROM [dba] [Departrnent] &5 [Extentl]

QRDER BY [Extentl][Marme] A3C" was executed on connection "Data
Source=M\S0LEXPRESS AttachDbFilename=|Datalirectorny|
Yichoolmdfilntegrated Security=True;User
Instance=TruekultipledctiveResultiets=True", building a SglDataReader,
Thread: <MNao Mame = [4684]

Related views: Locals |, Call Stack

ADO.MET: Execute Reader "SELECT [Extentl].[CourselD] A% [Courselld], [Exte
ADO.MET: Execute Reader "SELECT CASE WHEM ([Extentl].[HireDate] IS MOT
ADOMET: Execute Reader "SELECT [Extentl].[CourselD] A% [CourselD], [Exte
ADO.MET: Execute Reader "SELECT CASE WHEM {[Extentl].[HireDate] IS MC
ADO.MET: Execute Reader "SELECT [Extentl].[CourselD] AS [CourselD], [Exte
ADO.MET: Execute Reader "SELECT CASE WHEN {[Extentl].[HireDate] IS MO

The query from Departments has become a simple Select query with no Join clause, but it's followed by
separate queries that retrieve related courses and an administrator, using a set of two queries for each

department returned by the original query.

Note If you leave lazy loading enabled, the pattern you see here, with the same query repeated many times,
might result from lazy loading. A pattern that you typically want to avoid is lazy-loading related data for every
row of the primary table. Unless you've verified that a single join query is too complex to be efficient, you'd

typically be able to improve performance in such cases by changing the primary query to use eager loading.
Pre-Generating Views
When an ObjectContext object is first created in a new application domain, the Entity Framework generates a

set of classes that it uses to access the database. These classes are called views, and if you have a very large

data model, generating these views can delay the web site's response to the first request for a page after a new

228

http://i1.asp.net/umbraco-beta-media/2575672/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image14_2.png�

application domain is initialized. You can reduce this first-request delay by creating the views at compile time

rather than at run time.

Note If your application doesn't have an extremely large data model, or if it does have a large data model but
you aren't concerned about a performance problem that affects only the very first page request after IIS is
recycled, you can skip this section. View creation doesn't happen every time you instantiate an ObjectContext
object, because the views are cached in the application domain. Therefore, unless you're frequently recycling

your application in IIS, very few page requests would benefit from pre-generated views.

You can pre-generate views using the EdmGen.exe command-line tool or by using a Text Template

Transformation Toolkit (T4) template. In this tutorial you'll use a T4 template.

In the DAL folder, add a file using the Text Template template (it's under the General node in the Installed

Templates list), and name it SchoolModel Views.tt. Replace the existing code in the file with the following code:

<#

/***

Copyright (c) Microsoft Corporation. All rights reserved.

THIS CODE IS PROVIDED *AS IS* WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING ANY
IMPLIED WARRANTIES OF FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR NON-INFRINGEMENT.

***/

#>
<#
//
// TITLE: T4 template to generate views for an EDMX file in a C# project
//
// DESCRIPTION:
// This is a T4 template to generate views in C# for an EDMX file in C# projects.
// The generated views are automatically compiled into the project's output
assembly.

//

// This template follows a simple file naming convention to determine the EDMX

229

file to process:

// - It assumes that [edmx-file-name].Views.tt will process and generate views
for [edmx-file-name].EDMX

// - The views are generated in the code behind file [edmx-file-name].Views.cs

//

// USAGE:

// Do the following to generate views for an EDMX file (e.g. Modell.edmx) in a C#
project

// 1. In Solution Explorer, right-click the project node and choose
"Add...Existing...Item" from the context menu

// 2. Browse to and choose this .tt file to include it in the project

// 3. Ensure this .tt file is in the same directory as the EDMX file to process

// 4. In Solution Explorer, rename this .tt file to the form [edmx-file-
name].Views.tt (e.g. Modell.Views.tt)

// 5. In Solution Explorer, right-click Modell.Views.tt and choose "Run Custom
Tool" to generate the views

// 6. The views are generated in the code behind file Modell.Views.cs

//

// TIPS:

// If you have multiple EDMX files in your project then make as many copies of
this .tt file and rename appropriately

// to pair each with each EDMX file.

//

// To generate views for all EDMX files in the solution, click the "Transform All
Templates" button in the Solution Explorer toolbar

// (its the rightmost button in the toolbar)

//
#>
<#
//
// T4 template code follows
//
#>

<#@ template language="C#" hostspecific="true"#>
<#@ include file="EF.Utility.CS.ttinclude"#>
<#@ output extension=".cs" #>
<#
// Find EDMX file to process: Modell.Views.tt generates views for Modell.EDMX

230

string edmxFileName =
Path.GetFileNameWithoutExtension(this.Host.TemplateFile).ToLowerInvariant().Replace("

.views", "") + ".edmx";
string edmxFilePath = Path.Combine(Path.GetDirectoryName(this.Host.TemplateFile),
edmxFileName);

if (File.Exists(edmxFilePath))

{
// Call helper class to generate pre-compiled views and write to output
this.WritelLine(GenerateViews(edmxFilePath));

}

else

{

this.Error(String.Format("No views were generated. Cannot find file {@}.
Ensure the project has an EDMX file and the file name of the .tt file is of the form

[edmx-file-name].Views.tt", edmxFilePath));

}

// All done!
#>

<H+

private String GenerateViews(string edmxFilePath)

{
MetadatalLoader loader = new MetadatalLoader(this);
MetadataWorkspace workspace;
if(!loader.TrylLoadAllMetadata(edmxFilePath, out workspace))
{

this.Error("Error in the metadata");

return String.Empty;

String generatedViews = String.Empty;
try
{

using (StreamWriter writer = new StreamWriter(new MemoryStream()))

{
StorageMappingItemCollection mappingItems =

(StorageMappingItemCollection)workspace.GetItemCollection(DataSpace.CSSpace);

231

// Initialize the view generator to generate views in C#
EntityViewGenerator viewGenerator = new EntityViewGenerator();
viewGenerator.LanguageOption = LanguageOption.GenerateCSharpCode;
IList<EdmSchemaError> errors =

viewGenerator.GenerateViews(mappingItems, writer);

foreach (EdmSchemaError e in errors)

{

// log error

this.Error(e.Message);

MemoryStream memStream = writer.BaseStream as MemoryStream;

generatedViews = Encoding.UTF8.GetString(memStream.ToArray());

}
}
catch (Exception ex)
{
// log error
this.Error(ex.ToString());
}

return generatedViews;

#>

This code generates views for an .edmx file that's located in the same folder as the template and that has the
same name as the template file. For example, if your template file is named SchoolModel.Views.tt, it will look for

a data model file named SchoolModel. edmx.

Save the file, then right-click the file in Solution Explorer and select Run Custom Tool.

232

Solution Explorer

|2 2] &3
Q Solution 'Contosoldniversity' (1 project) -
4 i‘% ContosoUniversity

> [=d Propetties
» [+ References

» [Account
> 3 App_Data
4 [BLL
] DepartrmentProvider.cs L
4 [DAL 1

4 4 SchoolModeledrm:
“) Schoolbodel.Designer.cs

> |2 SchoolMg
. [Scripts L Open
s [Styles Dpen With,.,
. | Aboutaspx
S E] Courses.aspx
s .j Coursesfdd.:

Exclude From Project

Fun Custorn Tool

. || Defaultaspx | & Cut Chrl 3
. E| Departments, 2= Copy Chpl +0
S E] Departrments, % Delete Del
4 .j Instructors.as
% Instructor Rename
% Instructor Properties Alt+Enter

Visual Studio generates a code file that creates the views, which is named SchoolModel.Views.cs based on the
template. (You might have noticed that the code file is generated even before you select Run Custom Tool, as

soon as you save the template file.)

233

http://i1.asp.net/umbraco-beta-media/2575684/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image02_2.png�

Solution Explorer

S S ES e
I,:; Solution 'Contosoldniversity' (1 project)
4 % ContosoUniversity

[=d] Properties

[+3] References

[Account

3 App_Data

[BLL

] DepartrentProvider.cs
[DAL
4 SchoolModel.edmx
4 |2} SchoolModelWiews. t
% SchoolMaodel Miews,cs

[+ | =cripts
o [Styles
b E] Aboutaspx

You can now run the application and verify that it works as it did before.
For more information about pre-generated views, see the following resources:

e How to: Pre-Generate Views to Improve Query Performance on the MSDN web site. Explains how to use

the EdmGen. exe command-line tool to pre-generate views.

e Isolating Performance with Precompiled/Pre-generated Views in the Entity Framework 4 on the Windows

Server AppFabric Customer Advisory Team blog.

This completes the introduction to improving performance in an ASP.NET web application that uses the Entity

Framework. For more information, see the following resources:

e Performance Considerations (Entity Framework) on the MSDN web site.
e Performance-related posts on the Entity Framework Team blog.

e EF Merge Options and Compiled Queries. Blog post that explains unexpected behaviors of compiled
queries and merge options such as NoTracking. If you plan to use compiled queries or manipulate

merge option settings in your application, read this first.

e Entity Framework-related posts in the Data and Modeling Customer Advisory Team blog. Includes posts

on compiled queries and using the Visual Studio 2010 Profiler to discover performance issues.
e Entity Framework forum thread with advice on improving performance of highly complex queries.

e ASP.NET State Management Recommendations.

234

http://msdn.microsoft.com/en-us/library/bb896240.aspx�
http://blogs.msdn.com/b/appfabriccat/archive/2010/08/06/isolating-performance-with-precompiled-pre-generated-views-in-the-entity-framework-4.aspx�
http://msdn.microsoft.com/en-us/library/cc853327.aspx�
http://blogs.msdn.com/b/adonet/archive/tags/performance/�
http://blogs.msdn.com/b/dsimmons/archive/2010/01/12/ef-merge-options-and-compiled-queries.aspx�
http://blogs.msdn.com/b/dmcat/archive/tags/entity+framework/�
http://social.msdn.microsoft.com/Forums/en-US/adodotnetentityframework/thread/ffe8b2ab-c5b5-4331-8988-33a872d0b5f6�
http://msdn.microsoft.com/en-us/library/z1hkazw7.aspx�
http://i1.asp.net/umbraco-beta-media/2575696/Windows-Live-Writer_MaximizingPerformancew.NETWebApplication_9F91_Image01_2.png�

e Using the Entity Framework and the ObjectDataSource: Custom Paging. Blog post that builds on the
ContosoUniversity application created in these tutorials to explain how to implement paging in the

Departments.aspx page.

The next tutorial reviews some of the important enhancements to the Entity Framework that are new in version
4.

235

http://geekswithblogs.net/Frez/articles/using-the-entity-framework-and-the-objectdatasource-custom-paging.aspx�

What's New in the Entity Framework 4

By Tom Dykstra|January 26, 2011

This tutorial series builds on the Contoso University web application that is created by the Getting Started with
the Entity Framework tutorial series. If you didn't complete the earlier tutorials, as a starting point for this
tutorial you can download the application that you would have created. You can also download the application
that is created by the complete tutorial series. If you have questions about the tutorials, you can post them to
the ASP.NET Entity Framework forum.

In the previous tutorial you saw some methods for maximizing the performance of a web application that uses
the Entity Framework. This tutorial reviews some of the most important new features in version 4 of the Entity
Framework, and it links to resources that provide a more complete introduction to all of the new features. The

features highlighted in this tutorial include the following:

e Foreign-key associations.
e Executing user-defined SQL commands.
e Model-first development.

e POCO support.

In addition, the tutorial will briefly introduce code-first development, a feature that's coming in the next release

of the Entity Framework.

To start the tutorial, start Visual Studio and open the Contoso University web application that you were working

with in the previous tutorial.

Foreign-Key Associations

Version 3.5 of the Entity Framework included navigation properties, but it didn't include foreign-key properties
in the data model. For example, the CourseID and StudentID columns of the StudentGrade table would be

omitted from the StudentGrade entity.

236

http://asp.net/entity-framework/tutorials#Getting%20Started�
http://asp.net/entity-framework/tutorials#Getting%20Started�
http://code.msdn.microsoft.com/ASPNET-Web-Forms-97f8ee9a�
http://code.msdn.microsoft.com/ASPNET-Web-Forms-6c7197aa�
http://forums.asp.net/1227.aspx�

Table Entity

r

.*"fg StudentGrade
StudentGrace _
% EnrollmentID =l Properties
CourselD B4 EnrollmentlD
StudentID
Grade
= MNavigation Properties

Course
Person

The reason for this approach was that, strictly speaking, foreign keys are a physical implementation detail and
don't belong in a conceptual data model. However, as a practical matter, it's often easier to work with entities in

code when you have direct access to the foreign keys.

For an example of how foreign keys in the data model can simplify your code, consider how you would have
had to code the DepartmentsAdd.aspx page without them. In the Department entity, the Administrator
property is a foreign key that corresponds to PersonlID in the Person entity. In order to establish the
association between a new department and its administrator, all you had to do was set the value for the

Administrator property in the ItemInserting event handler of the databound control:

protectedvoidDepartmentsDetailsView ItemInserting(object
sender,DetailsViewInsertEventArgs e)

{

e.Values["Administrator"]= administratorsDropDownlList.SelectedValue;

Without foreign keys in the data model, you'd handle the Inserting event of the data source control instead
of the ItemInserting event of the databound control, in order to get a reference to the entity itself before
the entity is added to the entity set. When you have that reference, you establish the association using code like

that in the following examples:

departmentEntityToBeInserted.PersonReference.EntityKey=newSystem.Data.EntityKey("Scho

olEntities.Departments”,"PersonID",Convert.ToInt32(administratorsDropDownlList.Selecte
dvalue));

237

http://i1.asp.net/umbraco-beta-media/2575708/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image01_2.png�

departmentEntityToBeInserted.Person= context.People.Single(p =>

p.PersonID==Convert.ToInt32(administratorsDropDownlList.SelectedValue));

As you can see in the Entity Framework team's blog post on Foreign Key associations, there are other cases
where the difference in code complexity is much greater. To meet the needs of those who prefer to live with
implementation details in the conceptual data model for the sake of simpler code, the Entity Framework now

gives you the option of including foreign keys in the data model.

In Entity Framework terminology, if you include foreign keys in the data model you're using foreign key

associations, and if you exclude foreign keys you're using independent associations.

Executing User-Defined SQL Commands

In earlier versions of the Entity Framework, there was no easy way to create your own SQL commands on the fly
and run them. Either the Entity Framework dynamically generated SQL commands for you, or you had to create
a stored procedure and import it as a function. Version 4 adds ExecuteStoreQuery and
ExecuteStoreCommand methods the ObjectContext class that make it easier for you to pass any query

directly to the database.

Suppose Contoso University administrators want to be able to perform bulk changes in the database without
having to go through the process of creating a stored procedure and importing it into the data model. Their
first request is for a page that lets them change the number of credits for all courses in the database. On the
web page, they want to be able to enter a number to use to multiply the value of every Course row's Credits

column.

Create a new page that uses the Site. Master master page and name it UpdateCredits.aspx. Then add the

following markup to the Content control named Content2;

<h2>Update Credits</h2>

Enter the number to multiply the current number of credits by:
<asp:TextBoxID="CreditsMultiplierTextBox"runat="server"></asp:TextBox>

<asp:ButtonID="ExecuteButton"runat="server"Text="Execute"OnClick="ExecuteButton_Click
"/>

Rows affected:
<asp:LabelID="RowsAffectedLabel"runat="server"Text="0"ViewStateMode="Disabled"></asp:
Label>

238

http://blogs.msdn.com/b/efdesign/archive/2009/03/16/foreign-keys-in-the-entity-framework.aspx�

This markup creates a TextBox control in which the user can enter the multiplier value, a Button control to

click in order to execute the command, and a Label control for indicating the number of rows affected.

Open UpdateCredits.aspx.cs, and add the following using statement and a handler for the button's Click

event:

usingContosoUniversity.DAL;

protectedvoidExecuteButton_Click(object sender,EventArgs e)

{

using(SchoolEntities context =newSchoolEntities())

{

RowsAffectedLabel.Text= context.ExecuteStoreCommand("UPDATE Course SET Credits =
Credits * {@}",CreditsMultiplierTextBox.Text).ToString();

}

}

This code executes the SQL Update command using the value in the text box and uses the label to display the
number of rows affected. Before you run the page, run the Courses.aspx page to get a "before" picture of some
data.

COURSES BY DEPARTMENT
Select a Department | English |E|

ID Title Credits
2021 Composition 3
2030 Poetry 2
2042 Literature 4

Run UpdateCredits.aspx, enter "10" as the multiplier, and then click Execute.

UPDATE CREDITS

Enter the number to multiply the current number of credits by 10

Rows affected: 11

239

http://i1.asp.net/umbraco-beta-media/2575720/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image02_2.png�
http://i1.asp.net/umbraco-beta-media/2575732/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image03_2.png�

Run the Courses.aspx page again to see the changed data.

COURSES BY DEPARTMENT
Select a Department | English EI

ID Title Credits
2021 Composition 30
2030 Poetry 20
2042 Literature 40

(If you want to set the number of credits back to their original values, in UpdateCredits.aspx.cs change Credits
* {0} toCredits / {0} and re-run the page, entering 10 as the divisor.)

For more information about executing queries that you define in code, see How to: Directly Execute Commands

Against the Data Source.

Model-First Development

In these walkthroughs you created the database first and then generated the data model based on the
database structure. In the Entity Framework 4 you can start with the data model instead and generate the
database based on the data model structure. If you're creating an application for which the database doesn't
already exist, the model-first approach enables you to create entities and relationships that make sense
conceptually for the application, while not worrying about physical implementation details. (This remains true
only through the initial stages of development, however. Eventually the database will be created and will have
production data in it, and recreating it from the model will no longer be practical; at that point you'll be back to

the database-first approach.)
In this section of the tutorial, you'll create a simple data model and generate the database from it.

In Solution Explorer, right-click the DAL folder and select Add New Item. In the Add New Item dialog box,
under Installed Templates select Data and then select the ADO.NET Entity Data Model template. Name the

new file AlumniAssociationModel.edmx and click Add.

240

http://msdn.microsoft.com/en-us/library/ee358769.aspx�
http://msdn.microsoft.com/en-us/library/ee358769.aspx�
http://i1.asp.net/umbraco-beta-media/2575744/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image04_2.png�

I

Add Mew Itern - Contosolniversity

Installed Templates Sort by | Default x | i | Search Installed Templates
4 Wisual CH - “ ; &
Code Q=1 Database UnitTest Visuslcn [(TPe VienlC
o =1 A project itern for creating 3
a3 . . Entity Data Model,
General @ ADOMET Entity Data Model Visual C#
“Wifeb .
Windows Forms i = Drata Set “isual C#
H e
WPF e
Aoy <ol UING to SQL Classes Visual C#
Sibverlight
Warkilow | J SQL Compact Edition 4.0 Loc...\isual C#
Online Templates :
0L Server Database isual CH#
fﬂ L File \isual C#
B i Sehema Wisnal i 3
Mame: Alurnnifssociationhod el edmix

This launches the Entity Data Model Wizard. In the Choose Model Contents step, select Empty Model and
then click Finish.

241

http://i1.asp.net/umbraco-beta-media/2575756/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image06_2.png�

Entity Data Model Wizard [~ B[]

| 44;) Choose Model Contents

What should the model contain?

L

Generate
from d...

Ernphy

Creates an ernpty model as a starting point forwisually designing a conceptual model from the toolbox
Classes are generated from the model when the projectis cormpiled. You can specify a database connection
later to map the conceptual model to the storage model,

Firizh l I Cancel

The Entity Data Model Designer opens with a blank design surface. Drag an Entity item from the Toolbox

onto the design surface.

242

http://i1.asp.net/umbraco-beta-media/2575768/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image07_2.png�

Toolbox = I X B Alumnifssociationbdodel.edms 3

4 Entity Framewoark
k Pointer
L Association
@2 Entity
L. Inheritance

4 iGeneral

There are no usahle

controls in this group, Drag
an iterr onto this text to
add it to the toolbo,

"% Entity1

= Properties I

= Mavigation Properties

Change the entity name from Entity1l to Alumnus, change the Id property name to AlumnusId, and add a
new scalar property named Name. To add new properties you can press Enter after changing the name of the Id
column, or right-click the entity and select Add Scalar Property. The default type for new properties is String,

which is fine for this simple demonstration, but of course you can change things like data type in the

Properties window.

Create another entity the same way and name it Donation. Change the Id property to DonationId and add a

scalar property named DateAndAmount.

AlumnifssociationModel edmxe® 3

42 Alumnus

= Froperties
4 Alurnnusld
ﬁl"dame

(“+ Donation
= Froperties
! 4 Donationld
ﬁ Datefndtmount

= Mawigation Properties

= Mawigation Properties
\ ",

To add an association between these two entities, right-click the ALumnus entity, select Add, and then select

Association.

243

http://i1.asp.net/umbraco-beta-media/2575780/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image08_2.png�
http://i1.asp.net/umbraco-beta-media/2575792/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image09_2.png�

rd-‘g EAIumnus = - s
' Add - Scalar Property
= properties Rename Mawvigation Property
C] @ﬁ.ﬂ.lumnu J': Cut Chrl +3 Complex Property
P Mame | 53 Copy Chrl+C Sssociation..,
= Navigation | 1% Paste Ctrl +V/ Inheritance...
e % Delete Del Function Import..,
Collapse
& Table Mapping
E Stored Procedure Mapping
Show in bodel Browser
Update Model frorm Database..,
Generate Database from Model..
&dd Code Generation Itern..,
Walidate
[Properties Alt+Enter

The default values in the Add Association dialog box are what you want (one-to-many, include navigation

properties, include foreign keys), so just click OK.

244

http://i1.asp.net/umbraco-beta-media/2575804/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image10_2.png�

Assaciation Mame:

r.ﬂ«dd Assaciation @

AlurnnusDonation|

Add foreign key properties to the 'Donation’ Entity

Alurnnus can have * (Many) instances of Donation, Use Alumnus.Donations
to access the Donation instances.,

Donation can have 1 (0One) instance of Alumnus, Use DonationAlumnus to
access the Alumnus instance,

End End

Erititye: Entity:

’.ﬂ.lumnus vl ’D-:nnatil:un v]
FAultiplicity: FAultiplicity:

|1(One) | [any) 7]
Mavigation Property: Mawvigation Property:

Danations Alurnnus

]4 l I Cancel

The designer adds an association line and a foreign-key property.

245

http://i1.asp.net/umbraco-beta-media/2575816/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image11_2.png�

Alumnifssociationkodel edmx® 2

'f-.'ti Alumnus &) f:"."i Donation \
= Properties = Properties
4 Alurmnusld o . #4 Danationld
ﬁl"dame 1 . ﬁ DateSndimount
=l Mawigation Properties 2 Alumnusalumnusld |
Iﬂ Donations = Mawvigation Properties
8 = Alurnnus

Now you're ready to create the database. Right-click the design surface and select Generate Database from

Model.

Sdd J
Diagrarm]
Zoom L
Grid]
Scalar Property Format]
Select &)

& bMapping Details
@ todel Browser
Update Model fram Database..,

| Generate Database from Podel.., |

Add Code Generation Ikerm...
Walidate
= Properties At +Enter

This launches the Generate Database Wizard. (If you see warnings that indicate that the entities aren't mapped,

you can ignore those for the time being.)

In the Choose Your Data Connection step, click New Connection.

246

http://i1.asp.net/umbraco-beta-media/2575828/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image12_2.png�
http://i1.asp.net/umbraco-beta-media/2575840/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image13_2.png�

Generate Database Wizard

| J;) Choose Your Data Connection

Which data connection should your application use to connect to the database?

’Schu:u:ul.mdf

’)

I Mew Cannectian...

In the Connection Properties dialog box, select the local SQL Server Express instance and name the database

AlumniAsssociation.

247

http://i1.asp.net/umbraco-beta-media/2575852/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image14_2.png�

Connection Properties @

Enter information to connect to the selected data source or click "Change" to
choose a different data source andfor provider,

Data source:

Micrasoft SQL Server (SqIClient)

SEPVEF Narme;

MSQLEXPRESS Refresh

4

Log on to the sepver

@ Use Windows Authentication

(1 Use SQL Server Authentication

Save ry passuord

Connect to a database

@ Select or enter a database narme:

Alumnifssaciation -

() Attach a database file:

Browwse..,

Test Connection 0] 4 l ’ Cancel]

Click Yes when you're asked if you want to create the database. When the Choose Your Data Connection step

is displayed again, click Next.

In the Summary and Settings step, click Finish.

248

http://i1.asp.net/umbraco-beta-media/2575864/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image15_2.png�

Gererate Database Wizard @

J— \ Summary and Settings
—

Sawve DOL A5 DADGIumnidssociationhodel edresgl

DoL

1
1
m
=
[=
=
m
=,
(=]
=
m
-
=
=
L
%]
[m
=.
=
=
—+
o
]
(%]
o
—
[y
1
1
-
r-J
=
=]
LLI'I
-1
=
=
s
a
=
ju' S
=
=
m
m

-- Date Created: 11/22,/2010 12:03:34
-- Generated from EDMX file: ChContosolniversibContosolniversibADAL
YWlumnidssociationhodel edin:

SET QUOTED _IDEMTIFIER CFF;

G

5E [Alumnifssaciation];

Go

IF SCHEMA ID{MN'dba"y IS MULL EXECUTE(M'CREATE SCHEMA [dba]');
G

Finizh] I Cancel

A .sql file with the data definition language (DDL) commands is created, but the commands haven't been run

yet.

249

http://i1.asp.net/umbraco-beta-media/2575876/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image18_2.png�

-- Date Created: 11/22/2@818 12:83:34

-- Generated from EDMX file: C:%\ContosoUniversity\ContosoUniversity\DAL\Alumnifssociad

SET QUOTED_IDENTIFIER OFF;

@0
USE [Alumnifssociation];
@0
IF SCHEMA _ID(N'dbo') IS MULL EXECUTE(N'CREATE SCHEMA [dbo]l'):
@0
E __

EIF OBJECT_ID(N'[dbo].[FK_AlumnusDonation]', 'F') IS NOT NULL
ALTER TABLE [dbo].[Donations] DROP CONSTRAINT [FK_AlumnusDonaticn];

\‘—— Dropping existing FOREIGN KEY constraints

Use a tool such as SQL Server Management Studio to run the script and create the tables, as you might have

done when you created the School database for the first tutorial. (Unless you downloaded the database.)

You can now use the AlumniAssociation data model in your web pages the same way you've been using the

School model. To try this out, add some data to the tables and create a web page that displays the data.

Using Server Explorer, add the following rows to the Alumnus and Donation tables.

Alumnusld Marme Donationld Datefndfmo,., Alumnusflurmnusld
1 RogerZheng 1 1712010 $100 1
2 Candace Kapoor |2 1/2/2010 $200 1

3 17372010 $300 ?

Create a new web page named Alumni.aspx that uses the Site.Master master page. Add the following markup to

the Content control named Content2:

250

http://i1.asp.net/umbraco-beta-media/2575888/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image20_2.png�
http://i1.asp.net/umbraco-beta-media/2575900/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image21_2.png�

<h2>Alumni</h2>
<asp:EntityDataSourceID="AlumniEntityDataSource"runat="server"
ContextTypeName="ContosoUniversity.DAL.AlumniAssociationModelContainer"EnableFlatteni
ng="False"

EntitySetName="Alumni">

</asp:EntityDataSource>

<asp:GridViewID="AlumniGridView"runat="server"
DataSourceID="AlumniEntityDataSource"AutoGenerateColumns="False"
OnRowDataBound="AlumniGridView_RowDataBound"

DataKeyNames="AlumnusId">

<Columns>
<asp:BoundFieldDataField="Name"HeaderText="Name"SortExpression="Name"/>
<asp:TemplateFieldHeaderText="Donations">

<ItemTemplate>
<asp:GridViewID="DonationsGridView"runat="server"AutoGenerateColumns="False">
<Columns>

<asp:BoundFieldDataField="DateAndAmount"HeaderText="Date and Amount"/>
</Columns>

</asp:GridView>

</ItemTemplate>

</asp:TemplateField>

</Columns>

</asp:GridView>

This markup creates nested GridView controls, the outer one to display alumni names and the inner one to

display donation dates and amounts.

Open Alumni.aspx.cs. Add a using statement for the data access layer and a handler for the outer GridView

control's RowDataBound event:

usingContosoUniversity.DAL;

//
protectedvoidAlumniGridView_ RowDataBound(object sender,GridViewRowEventArgs e)

{
if(e.Row.RowType==DataControlRowType.DataRow)

251

{

var alumnus = e.Row.DataIltemasAlumnus;
var donationsGridView =(GridView)e.Row.FindControl("DonationsGridView");
donationsGridView.DataSource= alumnus.Donations.TolList();

donationsGridView.DataBind();

This code databinds the inner GridView control using the Donations navigation property of the current row's

Alumnus entity.

Run the page.

ALUMNI
Mame Donations
Date and Amount
Roger Zheng 1172010 $100
1/2/2010 $200

Date and Amount

Candace Kapoor
1/3/2010 $300

(Note: This page is included in the downloadable project, but to make it work you must create the database in

your local SQL Server Express instance; the database isn't included as an .mdf file in the App_Data folder.)

For more information about using the model-first feature of the Entity Framework, see Model-First in the Entity

Framework 4.

POCO Support

When you use domain-driven design methodology, you design data classes that represent data and behavior
that's relevant to the business domain. These classes should be independent of any specific technology used to
store (persist) the data; in other words, they should be persistence ignorant. Persistence ignorance can also
make a class easier to unit test because the unit test project can use whatever persistence technology is most
convenient for testing. Earlier versions of the Entity Framework offered limited support for persistence
ignorance because entity classes had to inherit from the EntityObject class and thus included a great deal of

Entity Framework-specific functionality.

252

http://msdn.microsoft.com/en-us/data/ff830362.aspx�
http://msdn.microsoft.com/en-us/data/ff830362.aspx�
http://i1.asp.net/umbraco-beta-media/2575912/Windows-Live-Writer_WhatsNewintheEntityFramework4_A024_Image22_2.png�

The Entity Framework 4 introduces the ability to use entity classes that don't inherit from the EntityObject
class and therefore are persistence ignorant. In the context of the Entity Framework, classes like this are typically
called plain-old CLR objects (POCO, or POCOs). You can write POCO classes manually, or you can automatically
generate them based on an existing data model using Text Template Transformation Toolkit (T4) templates

provided by the Entity Framework.
For more information about using POCOs in the Entity Framework, see the following resources:

e Working with POCO Entities. This is an MSDN document that's an overview of POCOs, with links to other

documents that have more detailed information.

e Walkthrough: POCO Template for the Entity Framework This is a blog post from the Entity Framework

development team, with links to other blog posts about POCOs.

Code-First Development

POCO support in the Entity Framework 4 still requires that you create a data model and link your entity classes
to the data model. The next release of the Entity Framework will include a feature called code-first development.
This feature enables you to use the Entity Framework with your own POCO classes without needing to use

either the data model designer or a data model XML file. (Therefore, this option has also been called code-only;

code-first and code-only both refer to the same Entity Framework feature.)
For more information about using the code-first approach to development, see the following resources:

e Getting Started with Entity Framework Using MVC

e Code-First Development with Entity Framework 4. This is a blog post by Scott Guthrie introducing code-
first development.

e Entity Framework Development Team Blog - posts tagged CodeOnly
e Entity Framework Development Team Blog - posts tagged Code First
e MVC Music Store tutorial - Part 4: Models and Data Access

e Getting Started with MVC 3 - Part 4: Entity Framework Code-First Development

253

http://msdn.microsoft.com/en-us/library/dd456853.aspx�
http://blogs.msdn.com/b/adonet/archive/2010/01/25/walkthrough-poco-template-for-the-entity-framework.aspx�
http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application�
http://weblogs.asp.net/scottgu/archive/2010/07/16/code-first-development-with-entity-framework-4.aspx�
http://blogs.msdn.com/b/efdesign/archive/tags/codeonly/�
http://blogs.msdn.com/b/efdesign/archive/tags/code+first/�
http://www.asp.net/mvc/tutorials/mvc-music-store-part-4�
http://www.asp.net/mvc/tutorials/getting-started-with-mvc3-part4-cs�

More Information

This concludes this series of tutorials on Getting Started with the Entity Framework. For more resources to help

you learn how to use the Entity Framework, continue with the first tutorial in the next Entity Framework tutorial

series or visit the following sites:

Entity Framework FAQ

The Entity Framework Team Blog

Entity Framework in the MSDN Library

Entity Framework in the MSDN Data Developer Center

EntityDataSource Web Server Control Overview in the MSDN Library

EntityDataSource control API reference in the MSDN Library

Entity Framework Forums on MSDN

Julie Lerman's blog

What's New in ADO.NET MSDN topic on new features in version 4 of the Entity Framework.

Announcing the release of Entity Framework 4 The Entity Framework development team's blog post about

new features in version 4.

254

http://www.asp.net/entity-framework/tutorials/using-the-entity-framework-and-the-objectdatasource-control,-part-1-getting-started�
http://www.asp.net/entity-framework/tutorials/using-the-entity-framework-and-the-objectdatasource-control,-part-1-getting-started�
http://www.ef-faq.org/introduction.html�
http://blogs.msdn.com/b/adonet/�
http://msdn.microsoft.com/en-us/library/bb399572.aspx�
http://msdn.microsoft.com/en-us/data/ef.aspx�
http://msdn.microsoft.com/en-us/library/cc488502.aspx�
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.entitydatasource.aspx�
http://social.msdn.microsoft.com/forums/en-US/adodotnetentityframework/�
http://thedatafarm.com/blog/�
http://msdn.microsoft.com/en-us/library/ex6y04yf.aspx�
http://blogs.msdn.com/b/efdesign/archive/2010/04/12/announcing-the-release-of-entity-framework-4.aspx�

	Cover
	Contents
	Introduction
	Creating the Web Application
	Creating the Database
	Creating the Entity Framework Data Model
	Exploring the Entity Framework Data Model

	The EntityDataSource Control
	Adding and Configuring the EntityDataSource Control
	Configuring Database Rules to Allow Deletion
	Using a GridView Control to Read and Update Entities
	Revising EntityDataSource Control Markup to Improve Performance
	Displaying Data from a Navigation Property
	Using a DetailsView Control to Insert Entities
	Displaying Data in a Drop-Down List

	Filtering, Ordering, and Grouping Data
	Using the EntityDataSource "Where" Property to Filter Data
	Using the EntityDataSource "OrderBy" Property to Order Data
	Using a Control Parameter to Set the "Where" Property
	Using the EntityDataSource "GroupBy" Property to Group Data
	Using the QueryExtender Control for Filtering and Ordering
	Using the "Like" Operator to Filter Data

	Working with Related Data
	Displaying and Updating Related Entities in a GridView Control
	Displaying Related Entities in a Separate Control
	Using the EntityDataSource "Selected" Event to Display Related Data

	Working with Related Data, Continued
	Adding an Entity with a Relationship to an Existing Entity
	Working with Many-to-Many Relationships

	Implementing Table-per-Hierarchy Inheritance
	Table-per-Hierarchy versus Table-per-Type Inheritance
	Adding Instructor and Student Entities
	Mapping Instructor and Student Entities to the Person Table
	Using the Instructor and Student Entities

	Using Stored Procedures
	Creating Stored Procedures in the Database
	Adding the Stored Procedures to the Data Model
	Mapping the Stored Procedures
	Using Insert, Update, and Delete Stored Procedures
	Using Select Stored Procedures

	Using Dynamic Data Functionality to Format and Validate Data
	Using DynamicField and DynamicControl Controls
	Adding Metadata to the Data Model

	The ObjectDataSource Control
	Business Logic and Repository Classes
	Updating the Database and the Data Model
	Adding a Relationship to the Database
	Adding a View to the Database
	Updating the Data Model
	Using a Repository Class and an ObjectDataSource Control
	Adding Insert and Delete Functionality
	The Attach Method
	The SaveChanges Method
	Retrieving Instructor Names to Select When Inserting
	Creating a Page for Inserting Departments
	Adding Update Functionality

	Adding a Business Logic Layer and Unit Tests
	Creating a Repository Interface
	Creating a Business-Logic Class
	Creating a Unit-Test Project and Repository Implementation
	Creating Unit Tests
	Adding Business Logic to Make a Test Pass
	Handling ObjectDataSource Exceptions

	Sorting and Filtering
	Adding the Ability to Sort GridView Columns
	Adding a Search Box
	Adding a Details Column for Each Grid Row

	Handling Concurrency
	Concurrency Conflicts
	Pessimistic Concurrency (Locking)
	Optimistic Concurrency
	Detecting Concurrency Conflicts
	Handling Optimistic Concurrency Without a Tracking Property
	Enabling Concurrency Tracking in the Data Model
	Handling Concurrency Exceptions in the DAL
	Handling Concurrency Exceptions in the Presentation Layer
	Testing Optimistic Concurrency in the Departments Page
	Handling Optimistic Concurrency Using a Tracking Property
	Adding OfficeAssignment Stored Procedures to the Data Model
	Adding OfficeAssignment Methods to the DAL
	Adding OfficeAssignment Methods to the BLL
	Creating an OfficeAssignments Web Page
	Testing Optimistic Concurrency in the OfficeAssignments Page
	Handling Concurrency with the EntityDataSource Control

	Maximizing Performance
	Efficiently Loading Related Data
	Managing View State
	Using The NoTracking Merge Option
	Pre-Compiling LINQ Queries
	Examining Queries Sent to the Database
	Pre-Generating Views

	What's New in the Entity Framework 4
	Foreign-Key Associations
	Executing User-Defined SQL Commands
	Model-First Development
	POCO Support
	Code-First Development
	More Information

